This commit is contained in:
megemini 2026-02-01 12:33:06 +02:00 committed by GitHub
commit e3cf6bcc5e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
17 changed files with 334 additions and 0 deletions

View File

@ -3693,6 +3693,13 @@ class Ernie4_5Model(TextModel):
def set_vocab(self):
self._set_vocab_sentencepiece()
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "add_prefix_space" in tokenizer_config_json:
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
def set_gguf_parameters(self):
super().set_gguf_parameters()
@ -3702,6 +3709,10 @@ class Ernie4_5Model(TextModel):
if (head_dim := self.hparams.get("head_dim")) is None:
head_dim = self.hparams["hidden_size"] // num_heads
if "mlp_AR" in name or "vision_model" in name:
# skip vision model and projector tensors
return []
if "ernie." in name:
name = name.replace("ernie.", "model.")
# split the qkv weights
@ -3811,6 +3822,49 @@ class Ernie4_5MoeModel(Ernie4_5Model):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("PaddleOCRVLForConditionalGeneration")
class PaddleOCRModel(Ernie4_5Model):
model_arch = gguf.MODEL_ARCH.PADDLEOCR
@ModelBase.register("PaddleOCRVisionModel")
class PaddleOCRVisionModel(MmprojModel):
# PaddleOCR-VL uses a modified version of Siglip
min_pixels: int = 0
max_pixels: int = 0
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.hparams_vision is not None
self.min_pixels = self.preprocessor_config["min_pixels"]
self.max_pixels = self.preprocessor_config["max_pixels"]
self.hparams_vision["image_size"] = int(math.sqrt(self.max_pixels))
def set_gguf_parameters(self):
super().set_gguf_parameters()
assert self.hparams_vision is not None
hparams = self.hparams_vision
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PADDLEOCR)
self.gguf_writer.add_vision_max_pixels(self.max_pixels)
self.gguf_writer.add_vision_min_pixels(self.min_pixels)
self.gguf_writer.add_vision_use_gelu(True)
self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("rms_norm_eps", 1e-6))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
name = name.replace("visual.", "model.")
if "vision_model" in name or "mlp_AR" in name:
if "packing_position_embedding" in name:
return [] # unused
elif "vision_model.head" in name:
# we don't yet support image embeddings for this model
return []
else:
return [(self.map_tensor_name(name), data_torch)]
return [] # skip other tensors
@ModelBase.register(
"Qwen2VLModel",
"Qwen2VLForConditionalGeneration",

View File

@ -284,6 +284,8 @@ class Keys:
class ClipVision:
PROJECTOR_TYPE = "clip.vision.projector_type" # for mixed modality models
IMAGE_SIZE = "clip.vision.image_size"
IMAGE_MIN_PIXELS = "clip.vision.image_min_pixels"
IMAGE_MAX_PIXELS = "clip.vision.image_max_pixels"
PREPROC_IMAGE_SIZE = "clip.vision.preproc_image_size"
PATCH_SIZE = "clip.vision.patch_size"
EMBEDDING_LENGTH = "clip.vision.embedding_length"
@ -456,6 +458,7 @@ class MODEL_ARCH(IntEnum):
RND1 = auto()
PANGU_EMBED = auto()
MISTRAL3 = auto()
PADDLEOCR = auto()
MIMO2 = auto()
LLAMA_EMBED = auto()
MAINCODER = auto()
@ -877,6 +880,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.RND1: "rnd1",
MODEL_ARCH.PANGU_EMBED: "pangu-embedded",
MODEL_ARCH.MISTRAL3: "mistral3",
MODEL_ARCH.PADDLEOCR: "paddleocr",
MODEL_ARCH.MIMO2: "mimo2",
MODEL_ARCH.LLAMA_EMBED: "llama-embed",
MODEL_ARCH.MAINCODER: "maincoder",
@ -3016,6 +3020,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.PADDLEOCR: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.FALCON_H1: [
# Token embedding
MODEL_TENSOR.TOKEN_EMBD,
@ -3610,6 +3628,7 @@ class VisionProjectorType:
VOXTRAL = "voxtral"
LFM2 = "lfm2"
KIMIVL = "kimivl"
PADDLEOCR = "paddleocr"
LIGHTONOCR = "lightonocr"
COGVLM = "cogvlm"
JANUS_PRO = "janus_pro"

View File

@ -1098,6 +1098,12 @@ class GGUFWriter:
def add_vision_embedding_length(self, value: int) -> None:
self.add_uint32(Keys.ClipVision.EMBEDDING_LENGTH, value)
def add_vision_max_pixels(self, value: int) -> None:
self.add_uint32(Keys.ClipVision.IMAGE_MAX_PIXELS, value)
def add_vision_min_pixels(self, value: int) -> None:
self.add_uint32(Keys.ClipVision.IMAGE_MIN_PIXELS, value)
def add_vision_feed_forward_length(self, value: int) -> None:
self.add_uint32(Keys.ClipVision.FEED_FORWARD_LENGTH, value)

View File

@ -1256,6 +1256,7 @@ class TensorNameMap:
MODEL_TENSOR.V_MMPROJ: (
"multi_modal_projector.linear_{bid}",
"visual.merger.mlp.{bid}", # qwen2vl
"mlp_AR.linear_{bid}", # PaddleOCR-VL
"merger.mlp.{bid}",
),
@ -1492,6 +1493,7 @@ class TensorNameMap:
"multi_modal_projector.pre_norm",
"pre_mm_projector_norm",
"model.vision.linear_proj.norm1", # cogvlm
"mlp_AR.pre_norm", # PaddleOCR-VL
"merger.ln_q",
),
@ -1517,6 +1519,7 @@ class TensorNameMap:
MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
"resampler.attn.out_proj",
"model.vision_model.head.attention.out_proj",
),
MODEL_TENSOR.V_RESMPL_KV: (

View File

@ -61,6 +61,7 @@ add_library(llama
models/dream.cpp
models/ernie4-5-moe.cpp
models/ernie4-5.cpp
models/paddleocr.cpp
models/exaone.cpp
models/exaone4.cpp
models/exaone-moe.cpp

View File

@ -117,6 +117,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_RND1, "rnd1" },
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_PADDLEOCR, "paddleocr" },
{ LLM_ARCH_MIMO2, "mimo2" },
{ LLM_ARCH_LLAMA_EMBED, "llama-embed" },
{ LLM_ARCH_MAINCODER, "maincoder" },
@ -710,6 +711,7 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
case LLM_ARCH_INTERNLM2:
case LLM_ARCH_GRANITE:
case LLM_ARCH_ERNIE4_5:
case LLM_ARCH_PADDLEOCR:
case LLM_ARCH_SMOLLM3:
case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA:

View File

@ -121,6 +121,7 @@ enum llm_arch {
LLM_ARCH_RND1,
LLM_ARCH_PANGU_EMBED,
LLM_ARCH_MISTRAL3,
LLM_ARCH_PADDLEOCR,
LLM_ARCH_MIMO2,
LLM_ARCH_LLAMA_EMBED,
LLM_ARCH_MAINCODER,

View File

@ -2175,7 +2175,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
} break;
case LLM_ARCH_ERNIE4_5:
case LLM_ARCH_ERNIE4_5_MOE:
case LLM_ARCH_PADDLEOCR:
{
// paddleocr need mrope_section
ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
if (arch == LLM_ARCH_ERNIE4_5_MOE) {
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
@ -6276,6 +6280,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
} break;
case LLM_ARCH_ERNIE4_5:
case LLM_ARCH_ERNIE4_5_MOE:
case LLM_ARCH_PADDLEOCR:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -8021,6 +8026,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{
llm = std::make_unique<llm_build_ernie4_5_moe>(*this, params);
} break;
case LLM_ARCH_PADDLEOCR:
{
llm = std::make_unique<llm_build_paddleocr>(*this, params);
} break;
case LLM_ARCH_HUNYUAN_MOE:
{
llm = std::make_unique<llm_build_hunyuan_moe>(*this, params);
@ -8333,6 +8342,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
return LLAMA_ROPE_TYPE_NEOX;
case LLM_ARCH_QWEN2VL:
case LLM_ARCH_PADDLEOCR:
return LLAMA_ROPE_TYPE_MROPE;
case LLM_ARCH_QWEN3VL:
case LLM_ARCH_QWEN3VLMOE:

View File

@ -2418,6 +2418,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|calls|>" // solar-open
|| t.first == "<end_of_turn>"
|| t.first == "<|endoftext|>"
|| t.first == "</s>" // paddleocr
|| t.first == "<|eom_id|>"
|| t.first == "<EOT>"
|| t.first == "_<EOT>"

View File

@ -158,6 +158,10 @@ struct llm_build_ernie4_5_moe : public llm_graph_context {
llm_build_ernie4_5_moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_paddleocr : public llm_graph_context {
llm_build_paddleocr(const llama_model & model, const llm_graph_params & params);
};
template <bool iswa>
struct llm_build_exaone4 : public llm_graph_context {
llm_build_exaone4(const llama_model & model, const llm_graph_params & params);

119
src/models/paddleocr.cpp Normal file
View File

@ -0,0 +1,119 @@
#include "models.h"
llm_build_paddleocr::llm_build_paddleocr(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
int sections[4];
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
{
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
}
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_multi(
ctx0, Qcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_multi(
ctx0, Kcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -22,6 +22,7 @@ add_library(mtmd
models/llama4.cpp
models/llava.cpp
models/minicpmv.cpp
models/paddleocr.cpp
models/pixtral.cpp
models/qwen2vl.cpp
models/qwen3vl.cpp

View File

@ -36,6 +36,8 @@
// vision-specific
#define KEY_VISION_PROJ_TYPE "clip.vision.projector_type" // for models with mixed modalities
#define KEY_IMAGE_SIZE "clip.vision.image_size"
#define KEY_IMAGE_MIN_PIXELS "clip.vision.image_min_pixels"
#define KEY_IMAGE_MAX_PIXELS "clip.vision.image_max_pixels"
#define KEY_PREPROC_IMAGE_SIZE "clip.vision.preproc_image_size"
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
@ -227,6 +229,7 @@ enum projector_type {
PROJECTOR_TYPE_MUSIC_FLAMINGO,
PROJECTOR_TYPE_LFM2,
PROJECTOR_TYPE_KIMIVL,
PROJECTOR_TYPE_PADDLEOCR,
PROJECTOR_TYPE_LIGHTONOCR,
PROJECTOR_TYPE_COGVLM,
PROJECTOR_TYPE_JANUS_PRO,
@ -260,6 +263,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MUSIC_FLAMINGO, "musicflamingo"},
{ PROJECTOR_TYPE_LFM2, "lfm2"},
{ PROJECTOR_TYPE_KIMIVL, "kimivl"},
{ PROJECTOR_TYPE_PADDLEOCR, "paddleocr"},
{ PROJECTOR_TYPE_LIGHTONOCR,"lightonocr"},
{ PROJECTOR_TYPE_COGVLM, "cogvlm"},
{ PROJECTOR_TYPE_JANUS_PRO, "janus_pro"},

View File

@ -825,6 +825,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
{
builder = std::make_unique<clip_graph_kimivl>(ctx, img);
} break;
case PROJECTOR_TYPE_PADDLEOCR:
{
builder = std::make_unique<clip_graph_paddleocr>(ctx, img);
} break;
case PROJECTOR_TYPE_COGVLM:
{
builder = std::make_unique<clip_graph_cogvlm>(ctx, img);
@ -1220,6 +1224,14 @@ struct clip_model_loader {
hparams.audio_window_len = 400;
hparams.audio_hop_len = 160;
} break;
case PROJECTOR_TYPE_PADDLEOCR:
{
hparams.n_merge = 2;
get_u32(KEY_IMAGE_MIN_PIXELS, hparams.image_min_pixels);
get_u32(KEY_IMAGE_MAX_PIXELS, hparams.image_max_pixels);
hparams.set_warmup_n_tokens(28*28); // avoid OOM on warmup
} break;
case PROJECTOR_TYPE_LFM2A:
{
// audio preprocessing params
@ -1668,6 +1680,7 @@ struct clip_model_loader {
model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
} break;
case PROJECTOR_TYPE_KIMIVL:
case PROJECTOR_TYPE_PADDLEOCR:
{
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
@ -2987,6 +3000,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
} break;
case PROJECTOR_TYPE_PIXTRAL:
case PROJECTOR_TYPE_PADDLEOCR:
case PROJECTOR_TYPE_LIGHTONOCR:
{
GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
@ -3143,6 +3157,7 @@ int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 *
case PROJECTOR_TYPE_QWEN25VL:
case PROJECTOR_TYPE_QWEN3VL:
case PROJECTOR_TYPE_GLM4V:
case PROJECTOR_TYPE_PADDLEOCR:
case PROJECTOR_TYPE_YOUTUVL:
return (img->nx / params.patch_size) / 2;
default:
@ -3159,6 +3174,7 @@ int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 *
case PROJECTOR_TYPE_QWEN25VL:
case PROJECTOR_TYPE_QWEN3VL:
case PROJECTOR_TYPE_GLM4V:
case PROJECTOR_TYPE_PADDLEOCR:
case PROJECTOR_TYPE_YOUTUVL:
return (img->ny / params.patch_size) / 2;
default:
@ -3254,6 +3270,13 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
n_patches = x_patch * y_patch;
} break;
case PROJECTOR_TYPE_PADDLEOCR:
{
// dynamic size
int n_merge = ctx->model.hparams.n_merge;
int stride = n_merge * n_merge;
n_patches = CLIP_ALIGN(n_patches, stride) / stride;
} break;
case PROJECTOR_TYPE_PIXTRAL:
case PROJECTOR_TYPE_LIGHTONOCR:
{
@ -3501,6 +3524,29 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
}
}
set_input_i32("positions", positions);
} break;
case PROJECTOR_TYPE_PADDLEOCR:
{
const int merge_ratio = hparams.n_merge;
const int pw = image_size_width / patch_size;
const int ph = image_size_height / patch_size;
std::vector<int> positions(n_pos * 4);
int ptr = 0;
for (int y = 0; y < ph; y += merge_ratio) {
for (int dy = 0; dy < 2; dy++) {
for (int x = 0; x < pw; x += merge_ratio) {
for (int dx = 0; dx < 2; dx++) {
positions[ ptr] = y + dy;
positions[ num_patches + ptr] = x + dx;
positions[2 * num_patches + ptr] = y + dy;
positions[3 * num_patches + ptr] = x + dx;
ptr++;
}
}
}
}
set_input_i32("positions", positions);
} break;
case PROJECTOR_TYPE_QWEN25VL:
@ -3770,6 +3816,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->model.mm_2_w->ne[1];
case PROJECTOR_TYPE_LFM2:
case PROJECTOR_TYPE_KIMIVL:
case PROJECTOR_TYPE_PADDLEOCR:
return ctx->model.mm_2_w->ne[1];
case PROJECTOR_TYPE_COGVLM:
return ctx->model.mm_4h_to_h_w->ne[1];

View File

@ -52,6 +52,11 @@ struct clip_graph_kimivl : clip_graph {
ggml_cgraph * build() override;
};
struct clip_graph_paddleocr : clip_graph {
clip_graph_paddleocr(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
ggml_cgraph * build() override;
};
struct clip_graph_cogvlm : clip_graph {
clip_graph_cogvlm(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
ggml_cgraph * build() override;

View File

@ -0,0 +1,52 @@
#include "models.h"
ggml_cgraph * clip_graph_paddleocr::build() {
const int n_pos = n_patches;
const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
return ggml_rope_multi(
ctx0, cur, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION,
32768, 10000, 1, 0, 1, 32, 1);
};
ggml_tensor * learned_pos_embd = resize_position_embeddings();
ggml_tensor * inp = build_inp();
ggml_tensor * cur = build_vit(
inp, n_patches,
NORM_TYPE_NORMAL,
hparams.ffn_op,
learned_pos_embd,
add_pos);
cb(cur, "vit_out", -1);
{
// mlp_AR paddleocr projector
float proj_norm_eps = 1e-5;
cur = build_norm(cur,
model.mm_input_norm_w, model.mm_input_norm_b,
NORM_TYPE_NORMAL, proj_norm_eps, -1);
const int scale_factor = model.hparams.n_merge;
cur = build_patch_merge_permute(cur, scale_factor);
cur = build_ffn(cur,
model.mm_1_w, model.mm_1_b,
nullptr, nullptr,
model.mm_2_w, model.mm_2_b,
hparams.ffn_op, -1);
cb(cur, "mlp_out", -1);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}

View File

@ -314,6 +314,10 @@ struct mtmd_context {
img_beg = "<|begin_of_image|>";
img_end = "<|end_of_image|>";
} else if (proj == PROJECTOR_TYPE_PADDLEOCR) {
// <|IMAGE_START|> ... (image embeddings) ... <|IMAGE_END|>
img_beg = "<|IMAGE_START|>";
img_end = "<|IMAGE_END|>";
}
}
@ -877,6 +881,7 @@ bool mtmd_decode_use_mrope(mtmd_context * ctx) {
case PROJECTOR_TYPE_QWEN25VL:
case PROJECTOR_TYPE_QWEN3VL:
case PROJECTOR_TYPE_GLM4V:
case PROJECTOR_TYPE_PADDLEOCR:
return true;
default:
return false;