kimi linear src/llama

This commit is contained in:
Yee Man Chan 2025-12-02 12:02:35 +08:00
parent d73d3e51a5
commit e308026f64
10 changed files with 343 additions and 24 deletions

View File

@ -112,6 +112,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_RND1, "rnd1" },
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_KIMI_LINEAR, "kimi-linear" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@ -2540,6 +2541,54 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_KIMI_LINEAR,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
// Dense FFN (layer 0 only)
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
// MoE FFN (layers 1+)
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
// Shared experts
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
// KDA (using SSM_ enum prefix, keeping GGUF names for backward compat)
{ LLM_TENSOR_SSM_CONV1D_Q, "blk.%d.ssm_conv1d_q" },
{ LLM_TENSOR_SSM_CONV1D_K, "blk.%d.ssm_conv1d_k" },
{ LLM_TENSOR_SSM_CONV1D_V, "blk.%d.ssm_conv1d_v" },
{ LLM_TENSOR_SSM_F_A, "blk.%d.ssm_f_a" },
{ LLM_TENSOR_SSM_F_B, "blk.%d.ssm_f_b" },
{ LLM_TENSOR_SSM_BETA, "blk.%d.ssm_beta" },
{ LLM_TENSOR_SSM_A_LOG, "blk.%d.ssm_a" },
{ LLM_TENSOR_SSM_DT_B, "blk.%d.ssm_dt" },
{ LLM_TENSOR_SSM_G_A, "blk.%d.ssm_g_a" },
{ LLM_TENSOR_SSM_G_B, "blk.%d.ssm_g_b" },
{ LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
// MLA
{ LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
{ LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
{ LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
{ LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
{ LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
{ LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
},
},
{
LLM_ARCH_UNKNOWN,
{
@ -2644,6 +2693,17 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_SSM_C_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
// Kimi KDA - Conv tensors are 4D [d_conv, 1, d_inner, 1], reshaped to 2D at runtime
{LLM_TENSOR_SSM_CONV1D_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_CONV1D_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_CONV1D_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_F_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_F_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_BETA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_A_LOG, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_DT_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_SSM_G_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_G_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_TIME_MIX_LERP_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_TIME_MIX_LN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CHANNEL_MIX_LERP_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
@ -2801,6 +2861,7 @@ bool llm_arch_is_recurrent(const llm_arch & arch) {
case LLM_ARCH_RWKV6QWEN2:
case LLM_ARCH_RWKV7:
case LLM_ARCH_ARWKV7:
case LLM_ARCH_KIMI_LINEAR: // KDA layers use delta attention with recurrent state
return true;
default:
return false;
@ -2817,6 +2878,9 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
case LLM_ARCH_LFM2MOE:
case LLM_ARCH_NEMOTRON_H:
case LLM_ARCH_QWEN3NEXT:
// Kimi: Currently using recurrent-only mode since MLA doesn't use KV cache
// TODO: Enable hybrid when MLA KV caching is implemented
// case LLM_ARCH_KIMI_LINEAR:
return true;
default:
return false;

View File

@ -116,6 +116,7 @@ enum llm_arch {
LLM_ARCH_RND1,
LLM_ARCH_PANGU_EMBED,
LLM_ARCH_MISTRAL3,
LLM_ARCH_KIMI_LINEAR,
LLM_ARCH_UNKNOWN,
};
@ -385,6 +386,17 @@ enum llm_tensor {
LLM_TENSOR_SSM_NORM,
LLM_TENSOR_SSM_OUT,
LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next
// Kimi Linear KDA (using SSM_ prefix for consistency)
LLM_TENSOR_SSM_CONV1D_Q, // kimi: Q conv1d weight
LLM_TENSOR_SSM_CONV1D_K, // kimi: K conv1d weight
LLM_TENSOR_SSM_CONV1D_V, // kimi: V conv1d weight
LLM_TENSOR_SSM_F_A, // kimi: forget gate projection A
LLM_TENSOR_SSM_F_B, // kimi: forget gate projection B
LLM_TENSOR_SSM_BETA, // kimi: beta mixing coefficient
LLM_TENSOR_SSM_A_LOG, // kimi: A_log (pre-converted in GGUF)
LLM_TENSOR_SSM_DT_B, // kimi: dt bias
LLM_TENSOR_SSM_G_A, // kimi: output gate projection A
LLM_TENSOR_SSM_G_B, // kimi: output gate projection B
LLM_TENSOR_TIME_MIX_W0,
LLM_TENSOR_TIME_MIX_W1,
LLM_TENSOR_TIME_MIX_W2,

View File

@ -1387,7 +1387,7 @@ void llama_context::output_reorder() {
//
uint32_t llama_context::graph_max_nodes() const {
if (model.arch == LLM_ARCH_QWEN3NEXT) {
if (model.arch == LLM_ARCH_QWEN3NEXT || model.arch == LLM_ARCH_KIMI_LINEAR) {
return std::max<uint32_t>(8192u, 32u*model.n_tensors());
}
return std::max<uint32_t>(1024u, 8u*model.n_tensors());

View File

@ -1816,11 +1816,14 @@ ggml_tensor * llm_graph_context::build_rs(
ggml_build_forward_expand(gf, output_states);
// copy extra states which won't be changed further (between n_seqs and n_rs)
ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra);
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
states_extra,
ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s))));
// Skip if there are no extra states to copy (n_rs == n_seqs)
if (arch != LLM_ARCH_KIMI_LINEAR || n_rs > n_seqs) { // arch check for backward compat
ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra);
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
states_extra,
ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s))));
}
return output_states;
}

View File

@ -133,6 +133,13 @@ uint32_t llama_hparams::n_embd_r() const {
return n_embd * (n_shortconv_l_cache - 1);
}
if (kda_head_dim != 0) {
// for Kimi KDA layers
// Conv state for Q, K, V: 3 * (d_conv - 1) * n_head * head_dim
const uint32_t d_inner = n_head() * kda_head_dim; // 32 * 128 = 4096
return 3 * (kda_d_conv > 0 ? kda_d_conv - 1 : 3) * d_inner;
}
// TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
// Corresponds to Mamba's conv_states size
@ -145,6 +152,13 @@ uint32_t llama_hparams::n_embd_s() const {
return n_embd * wkv_head_size;
}
if (kda_head_dim != 0) {
// for Kimi KDA layers
// Full recurrent state: head_dim * head_dim * n_head
// h tensor shape for delta attention: [head_dim, head_dim, n_head]
return kda_head_dim * kda_head_dim * n_head(); // 128 * 128 * 32 = 524288
}
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}

View File

@ -133,6 +133,10 @@ struct llama_hparams {
uint32_t ssm_dt_rank = 0;
uint32_t ssm_n_group = 0;
// for Kimi Delta Attention (KDA)
uint32_t kda_head_dim = 0; // head_dim for KDA layers (128 for Kimi)
uint32_t kda_d_conv = 0; // conv kernel size for KDA (4 for Kimi)
// for hybrid state space models
std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr;

View File

@ -2283,6 +2283,54 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_KIMI_LINEAR:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv, false);
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
// KDA (Delta Attention) parameters
hparams.kda_head_dim = 128; // linear_attn_config.head_dim
hparams.kda_d_conv = 4; // linear_attn_config.short_conv_kernel_size
// MLA qk_rope_head_dim (for reference)
// qk_rope_head_dim = 64, qk_nope_head_dim = 128, qk_head_dim = 192
// Mark KDA layers as recurrent using n_head_kv pattern (like Jamba)
// MLA layers are at: 3, 7, 11, 15, 19, 23, 26 (7 MLA layers total)
// KDA layers are all others: 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25 (20 KDA layers)
// Set n_head_kv = 0 for KDA layers (recurrent), n_head_kv = n_head for MLA layers (attention)
for (uint32_t i = 0; i < hparams.n_layer; ++i) {
bool is_mla = (i == 3 || i == 7 || i == 11 || i == 15 || i == 19 || i == 23 || i == 26);
hparams.n_head_kv_arr[i] = is_mla ? hparams.n_head() : 0;
hparams.recurrent_layer_arr[i] = !is_mla; // KDA layers are recurrent
}
// MoE parameters - Kimi uses moe_intermediate_size = 1024
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared, false);
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
// Default values if not in GGUF
if (hparams.n_ff_exp == 0) hparams.n_ff_exp = 1024; // moe_intermediate_size
if (hparams.n_ff_shexp == 0) hparams.n_ff_shexp = 9216; // shared_expert_intermediate_size = intermediate_size
if (hparams.n_expert_shared == 0) hparams.n_expert_shared = 1; // num_shared_experts
if (hparams.n_layer_dense_lead == 0) hparams.n_layer_dense_lead = 1; // first_k_dense_replace
if (hparams.expert_weights_scale == 0.0f) hparams.expert_weights_scale = 2.446f; // routed_scaling_factor
// MoE gating function - Kimi uses sigmoid (moe_router_activation_func: sigmoid)
if (hparams.expert_gating_func == 0) hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
switch (hparams.n_layer) {
case 27: type = LLM_TYPE_48B; break; // Kimi-Linear-48B-A3B
default: type = LLM_TYPE_UNKNOWN;
}
} break;
default: throw std::runtime_error("unsupported model architecture");
}
@ -6395,6 +6443,148 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
}
} break;
case LLM_ARCH_KIMI_LINEAR:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
// Check for KDA specific tensors to determine layer type or if it's a mixed model
// Assuming KDA layer if KDA tensors are present
// KDA uses head_dim = 128 (from linear_attn_config.head_dim)
const int64_t n_embd_head_k_kda = 128;
const int64_t n_embd_head_v_kda = 128;
const int64_t ssm_d_conv = hparams.ssm_d_conv > 0 ? hparams.ssm_d_conv : 4;
// Try loading KDA specific tensors (using SSM_ prefix)
// Conv1d weights: try 4D first, then 3D (quantization may remove trailing 1)
// 4D: [d_conv, 1, d_inner, 1], 3D: [d_conv, 1, d_inner]
layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_q_conv) {
layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, TENSOR_NOT_REQUIRED);
}
if (layer.ssm_q_conv) {
// KDA Layer - Conv1d weights may be 3D or 4D
layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_k_conv) {
layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, 0);
}
layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_v_conv) {
layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head}, 0);
}
// Conv bias may not exist in all models - make optional
layer.ssm_q_conv_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "bias", i), {n_embd_head_k_kda * n_head}, TENSOR_NOT_REQUIRED);
layer.ssm_k_conv_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "bias", i), {n_embd_head_k_kda * n_head}, TENSOR_NOT_REQUIRED);
layer.ssm_v_conv_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "bias", i), {n_embd_head_v_kda * n_head}, TENSOR_NOT_REQUIRED);
// q, k, v projections
// Python: q_proj, k_proj, v_proj
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_v_kda * n_head}, 0);
// KDA specific projections
// f_a_proj, f_b_proj
layer.ssm_f_a = create_tensor(tn(LLM_TENSOR_SSM_F_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0); // head_dim
layer.ssm_f_b = create_tensor(tn(LLM_TENSOR_SSM_F_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0); // projection_size
// b_proj (beta mixing coefficient)
layer.ssm_beta = create_tensor(tn(LLM_TENSOR_SSM_BETA, "weight", i), {n_embd, n_head}, 0);
// A_log - Shape in GGUF: [1, num_heads, 1, 1] (4D) or [1, num_heads] (2D after quantization)
layer.ssm_a_log = create_tensor(tn(LLM_TENSOR_SSM_A_LOG, i), {1, n_head, 1, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_a_log) {
layer.ssm_a_log = create_tensor(tn(LLM_TENSOR_SSM_A_LOG, i), {1, n_head}, 0);
}
// dt_bias - shape [n_embd_head_k_kda * n_head] = [4096]
layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT_B, i), {n_embd_head_k_kda * n_head}, 0);
// g_a_proj, g_b_proj (output gate)
layer.ssm_g_a = create_tensor(tn(LLM_TENSOR_SSM_G_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0);
layer.ssm_g_b = create_tensor(tn(LLM_TENSOR_SSM_G_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0);
// o_norm (reusing SSM_NORM)
layer.ssm_o_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {n_embd_head_k_kda}, 0); // FusedRMSNormGated
layer.ssm_o_norm_b = create_tensor(tn(LLM_TENSOR_SSM_NORM, "bias", i), {n_embd_head_k_kda}, TENSOR_NOT_REQUIRED);
// o_proj
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_v_kda * n_head, n_embd}, 0);
} else {
// MLA Layer - use MLA-specific head dimensions
const int64_t q_lora_rank = hparams.n_lora_q;
const int64_t kv_lora_rank = hparams.n_lora_kv;
const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla > 0 ? hparams.n_embd_head_k_mla : 192;
const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla > 0 ? hparams.n_embd_head_v_mla : 128;
layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, TENSOR_NOT_REQUIRED);
layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
if (layer.attn_q_a_norm) {
layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
} else {
// Kimi MLA without Q compression: wq = [n_embd, n_head * n_embd_head_k_mla]
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
}
// Kimi: qk_rope_head_dim = 64 (actual RoPE dimension for MLA)
// Note: hparams.n_rot may be 72 (from conversion) but actual is 64
const int64_t qk_rope_head_dim = 64; // From config: qk_rope_head_dim
layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + qk_rope_head_dim}, 0);
layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_k_mla - qk_rope_head_dim + n_embd_head_v_mla)}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
}
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
// MoE intermediate size (different from dense FFN)
const int64_t n_ff_exp = hparams.n_ff_exp > 0 ? hparams.n_ff_exp : 1024;
// Kimi uses n_layer_dense_lead to determine which layers use dense FFN vs MoE
// first_k_dense_replace = 1 means layer 0 uses dense FFN, layers 1+ use MoE
if (i < (int) hparams.n_layer_dense_lead) {
// Dense FFN layer - use normal n_ff
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
} else {
// MoE layer - use n_ff_exp (1024) instead of n_ff (9216)
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
// Shared experts use moe_intermediate_size * num_shared_experts
// Kimi: shared_expert_intermediate_size = 1024 * 1 = 1024
// Tensors are 2D: [n_embd, n_ff_shexp] or [n_ff_shexp, n_embd]
const int64_t n_ff_shexp_actual = n_ff_exp * (hparams.n_expert_shared > 0 ? hparams.n_expert_shared : 1);
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED);
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp_actual, n_embd}, TENSOR_NOT_REQUIRED);
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED);
// exp_probs_b (e_score_correction_bias in vLLM)
// Try "bias" first (standard), then "weight" (for compatibility)
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
if (!layer.ffn_exp_probs_b) {
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "weight", i), {n_expert}, TENSOR_NOT_REQUIRED);
}
}
}
} break;
case LLM_ARCH_COGVLM:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -7563,6 +7753,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{
llm = std::make_unique<llm_build_mistral3>(*this, params);
} break;
case LLM_ARCH_KIMI_LINEAR:
{
llm = std::make_unique<llm_build_kimi_linear>(*this, params);
} break;
default:
GGML_ABORT("fatal error");
}
@ -7718,6 +7912,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_ARCTIC:
case LLM_ARCH_DEEPSEEK:
case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_KIMI_LINEAR:
case LLM_ARCH_PLM:
case LLM_ARCH_CHATGLM:
case LLM_ARCH_GLM4:

View File

@ -84,6 +84,7 @@ enum llm_type {
LLM_TYPE_35B,
LLM_TYPE_36B,
LLM_TYPE_40B,
LLM_TYPE_48B,
LLM_TYPE_65B,
LLM_TYPE_70B,
LLM_TYPE_120B,
@ -404,6 +405,23 @@ struct llama_layer {
struct ggml_tensor * ffn_act_beta = nullptr;
struct ggml_tensor * ffn_act_eps = nullptr;
// Kimi Linear KDA (using ssm_ prefix for consistency)
// Note: ssm_dt_b already exists above (mamba bias), reused for Kimi dt_bias
struct ggml_tensor * ssm_q_conv = nullptr;
struct ggml_tensor * ssm_q_conv_b = nullptr;
struct ggml_tensor * ssm_k_conv = nullptr;
struct ggml_tensor * ssm_k_conv_b = nullptr;
struct ggml_tensor * ssm_v_conv = nullptr;
struct ggml_tensor * ssm_v_conv_b = nullptr;
struct ggml_tensor * ssm_f_a = nullptr;
struct ggml_tensor * ssm_f_b = nullptr;
struct ggml_tensor * ssm_beta = nullptr;
struct ggml_tensor * ssm_a_log = nullptr;
struct ggml_tensor * ssm_g_a = nullptr;
struct ggml_tensor * ssm_g_b = nullptr;
struct ggml_tensor * ssm_o_norm = nullptr;
struct ggml_tensor * ssm_o_norm_b = nullptr;
struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext;

View File

@ -724,7 +724,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
// sanity checks for models that have attention layers
if (qs.n_attention_wv != 0 && !is_clip_model)
// Skip this check for Kimi models which have hybrid KDA+MLA architecture
// (only MLA layers have attn_kv_b weights, KDA layers don't)
if (qs.n_attention_wv != 0 && !is_clip_model && model.arch != LLM_ARCH_KIMI_LINEAR)
{
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
// attention layers have a non-zero number of kv heads

View File

@ -1738,26 +1738,33 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
// read bpe merges and populate bpe ranks
const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
// Kimi-K2 uses custom tokenization without traditional BPE merges
const bool is_kimi_k2 = (tokenizer_pre == "kimi-k2");
if (merges_keyidx == -1) {
throw std::runtime_error("cannot find tokenizer merges in model file\n");
}
const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
for (int i = 0; i < n_merges; i++) {
const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
//GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
std::string first;
std::string second;
const size_t pos = word.find(' ', 1);
if (pos != std::string::npos) {
first = word.substr(0, pos);
second = word.substr(pos + 1);
if (!is_kimi_k2) {
throw std::runtime_error("cannot find tokenizer merges in model file\n");
}
// Kimi-K2 doesn't need merges, skip
LLAMA_LOG_INFO("%s: Kimi-K2 tokenizer detected, skipping BPE merges\n", __func__);
} else {
const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
for (int i = 0; i < n_merges; i++) {
const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
//GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
bpe_ranks.emplace(std::make_pair(first, second), i);
std::string first;
std::string second;
const size_t pos = word.find(' ', 1);
if (pos != std::string::npos) {
first = word.substr(0, pos);
second = word.substr(pos + 1);
}
bpe_ranks.emplace(std::make_pair(first, second), i);
}
}
// default special tokens