This commit is contained in:
Aaron Teo 2026-01-02 23:47:03 +02:00 committed by GitHub
commit e1635b1c82
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 642 additions and 248 deletions

View File

@ -47,6 +47,7 @@
/ggml/cmake/ @ggerganov
/ggml/include/ @ggerganov
/ggml/src/ggml-common.h @ggerganov
/ggml/src/ggml-blas/ @taronaeo
/ggml/src/ggml-cpu/ @ggerganov
/ggml/src/ggml-cpu/spacemit/ @alex-spacemit
/ggml/src/ggml-cuda/fattn* @JohannesGaessler

View File

@ -11,9 +11,10 @@ find_package(BLAS)
if (BLAS_FOUND)
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
ggml_add_backend_library(ggml-blas
ggml-blas.cpp
)
file(GLOB GGML_SOURCES_BLAS "*.c" "*.cpp")
file(GLOB GGML_HEADERS_BLAS "*.h" "*.hpp")
ggml_add_backend_library(ggml-blas ${GGML_HEADERS_BLAS} ${GGML_SOURCES_BLAS})
if (${GGML_BLAS_VENDOR} MATCHES "Apple")
add_compile_definitions(ACCELERATE_NEW_LAPACK)

View File

@ -0,0 +1,67 @@
#pragma once
#include "ggml.h"
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include <vector>
#include <memory>
#include <future>
#if defined(GGML_BLAS_USE_ACCELERATE)
# include <Accelerate/Accelerate.h>
#elif defined(GGML_BLAS_USE_MKL)
# include <mkl.h>
#elif defined(GGML_BLAS_USE_BLIS)
# include <blis.h>
#elif defined(GGML_BLAS_USE_NVPL)
# include <nvpl_blas.h>
#else
# include <cblas.h>
#endif
#define GGML_BLAS_NAME "BLAS"
#define GGML_BLAS_VERSION GGML_BACKEND_API_VERSION
#ifdef __cplusplus
extern "C" {
#endif
struct ggml_backend_blas_buffer {
void * data; // dequantized data
size_t size; // ggml_nelements * sizeof(float)
};
struct ggml_backend_blas_buffer_context {
void * data;
size_t size;
std::vector<ggml_backend_blas_buffer *> buffers;
~ggml_backend_blas_buffer_context() {
ggml_aligned_free(data, size);
for (auto * extra : buffers) {
ggml_aligned_free(extra->data, extra->size);
delete extra;
}
}
};
struct ggml_backend_blas_buffer_type_context {
int n_threads;
#ifndef GGML_USE_OPENMP
std::vector<std::future<void>> tasks;
#endif
};
struct ggml_backend_blas_context {
int n_threads;
};
struct ggml_backend_blas_device_context {
char _dummy; // Prevent empty struct warning
};
#ifdef __cplusplus
}
#endif

View File

@ -1,10 +1,18 @@
#include "ggml.h"
#include "ggml-backend.h"
#include "ggml-impl.h"
#include "ggml-blas.h"
#include "ggml-backend-impl.h"
#include "ggml-blas.h"
#include <future>
#include <vector>
#include "ggml-blas/common.hpp"
#include "ggml-blas/mmf.hpp"
#include "ggml-blas/out-prod.hpp"
#include <cstdint>
#include <cstring>
#include <future>
#include <thread>
#include <vector>
#if defined(GGML_BLAS_USE_ACCELERATE)
# include <Accelerate/Accelerate.h>
@ -18,78 +26,143 @@
# include <cblas.h>
#endif
struct ggml_backend_blas_context {
int n_threads = GGML_DEFAULT_N_THREADS;
std::unique_ptr<char[]> work_data;
size_t work_size = 0;
#ifndef GGML_USE_OPENMP
std::vector<std::future<void>> tasks;
#endif
};
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
// BLAS backend - graph compute
GGML_TENSOR_BINARY_OP_LOCALS
static void ggml_blas_compute_forward_mul_mat(
const ggml_backend_blas_context * ctx,
ggml_tensor * dst) {
const enum ggml_type type = src0->type;
const ggml_tensor * src0 = dst->src[0]; // weights
const ggml_tensor * src1 = dst->src[1]; // inputs
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
ggml_blas_mul_mat_f(ctx, src0, src1, dst);
}
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
static void ggml_blas_compute_forward_out_prod(
const ggml_backend_blas_context * ctx,
ggml_tensor * dst) {
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
const ggml_tensor * src0 = dst->src[0]; // inputs
const ggml_tensor * src1 = dst->src[1]; // weights
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
ggml_blas_out_prod_f(ctx, src0, src1, dst);
}
const int64_t ne_plane = ne01*ne00;
const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
// BLAS backend - buffer
if (ctx->work_size < desired_wsize) {
ctx->work_data.reset(new char[desired_wsize]);
ctx->work_size = desired_wsize;
static void ggml_backend_blas_buffer_free_buffer(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
ggml_backend_blas_buffer_context * ctx = (ggml_backend_blas_buffer_context *)buffer->context;
delete ctx;
}
static void * ggml_backend_blas_buffer_get_base(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
ggml_backend_blas_buffer_context * ctx = (ggml_backend_blas_buffer_context *)buffer->context;
uintptr_t data = (uintptr_t)ctx->data;
// align the buffer
if (data % TENSOR_ALIGNMENT != 0) {
data = GGML_PAD(data, TENSOR_ALIGNMENT);
}
void * wdata = ctx->work_data.get();
// convert src0 to float
if (type != GGML_TYPE_F32) {
const auto * type_traits = ggml_get_type_traits(type);
return (void *)data;
}
static enum ggml_status ggml_backend_blas_buffer_init_tensor(
ggml_backend_buffer_t buffer,
ggml_tensor * tensor) {
if (tensor->view_src != NULL) {
assert(tensor->view_src->buffer->buft == buffer->buft);
return GGML_STATUS_SUCCESS;
}
if (tensor->type != GGML_TYPE_F32) {
ggml_backend_blas_buffer_context * ctx = (ggml_backend_blas_buffer_context *)buffer->context;
ggml_backend_blas_buffer * extra = new ggml_backend_blas_buffer;
extra->data = ggml_aligned_malloc(ggml_nelements(tensor) * sizeof(float)); // sizeof(float) because dequantized
extra->size = ggml_nelements(tensor) * sizeof(float);
tensor->extra = extra;
ctx->buffers.push_back(extra);
}
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_blas_buffer_memset_tensor(
ggml_backend_buffer_t buffer,
ggml_tensor * tensor,
uint8_t value,
size_t offset,
size_t size) {
GGML_ASSERT(tensor);
memset((char *)tensor->data + offset, value, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_blas_buffer_set_tensor(
ggml_backend_buffer_t buffer,
ggml_tensor * tensor,
const void * data,
size_t offset,
size_t size) {
GGML_ASSERT(tensor);
memcpy((char *)tensor->data + offset, data, size);
ggml_backend_blas_buffer_type_context * buft_ctx = (ggml_backend_blas_buffer_type_context *)buffer->buft->context;
ggml_backend_blas_buffer * extra = (ggml_backend_blas_buffer *)tensor->extra;
const int64_t ne00 = tensor->ne[0];
const int64_t ne01 = tensor->ne[1];
const int64_t ne02 = tensor->ne[2];
const int64_t ne03 = tensor->ne[3];
const int64_t nb00 = tensor->nb[0];
const int64_t nb01 = tensor->nb[1];
const int64_t nb02 = tensor->nb[2];
const int64_t nb03 = tensor->nb[3];
const int64_t ne_plane = ne01*ne00;
if (tensor->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS
&& tensor->type != GGML_TYPE_F32
&& ggml_get_type_traits(tensor->type)->to_float != NULL) {
const auto * type_traits = ggml_get_type_traits(tensor->type);
ggml_to_float_t const to_float = type_traits->to_float;
GGML_ASSERT(to_float != nullptr);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
const void * x = (char *)tensor->data + i02*nb02 + i03*nb03;
float * const wplane = (float *)extra->data + i02*ne_plane + i03*ne02*ne_plane;
const int min_cols_per_thread = 4096;
const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
const int min_rows_per_thread = std::max((int)(min_cols_per_thread / ne00), 1);
const int n_threads = std::max(std::min(buft_ctx->n_threads, (int)(ne01 / min_rows_per_thread)), 1);
#ifdef GGML_USE_OPENMP
#pragma omp parallel for num_threads(n_threads)
for (int64_t i01 = 0; i01 < ne01; i01++) {
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
to_float((const char *)x + i01*nb01, wplane + i01*ne00, ne00);
}
#else
for (int i = 1; i < n_threads; i++) {
const int64_t start = i*ne01/n_threads;
const int64_t end = (i + 1)*ne01/n_threads;
const int64_t start = (i + 0) * ne01/n_threads;
const int64_t end = (i + 1) * ne01/n_threads;
if (start < end) {
ctx->tasks.push_back(std::async(std::launch::async, [=]() {
buft_ctx->tasks.push_back(std::async(std::launch::async, [=]() {
for (int64_t i01 = start; i01 < end; i01++) {
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
to_float((const char *)x + i01*nb01, wplane + i01*ne00, ne00);
}
}));
}
@ -99,7 +172,7 @@ static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct gg
const int64_t start = 0;
const int64_t end = ne01/n_threads;
for (int64_t i01 = start; i01 < end; i01++) {
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
to_float((const char *)x + i01*nb01, wplane + i01*ne00, ne00);
}
}
#endif
@ -108,143 +181,157 @@ static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct gg
#ifndef GGML_USE_OPENMP
// wait for all tasks to finish
for (auto & task : ctx->tasks) {
for (auto & task : buft_ctx->tasks) {
task.get();
}
ctx->tasks.clear();
buft_ctx->tasks.clear();
#endif
}
#if defined(OPENBLAS_VERSION)
openblas_set_num_threads(ctx->n_threads);
#endif
#if defined(GGML_BLAS_USE_BLIS)
bli_thread_set_num_threads(ctx->n_threads);
#endif
#if defined(GGML_BLAS_USE_NVPL)
nvpl_blas_set_num_threads(ctx->n_threads);
#endif
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
if (type != GGML_TYPE_F32) {
x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
}
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne1, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
}
}
GGML_UNUSED(nb00);
}
static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
static void ggml_backend_blas_buffer_get_tensor(
ggml_backend_buffer_t buffer,
const ggml_tensor * tensor,
void * data,
size_t offset,
size_t size) {
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(tensor);
memcpy(data, (const char *)tensor->data + offset, size);
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne3 == ne13);
GGML_ASSERT(ne03 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
// GGML_ASSERT(nb0 <= nb1);
// GGML_ASSERT(nb1 <= nb2);
// GGML_ASSERT(nb2 <= nb3);
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
// src0: (k,n)
// src1: (k,m)
// dst: (m,n)
//
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
// Also expressed as (major,minor)
// a: (m,k): so src1 transposed
// b: (k,n): so src0
// c: (m,n)
//
// However, if ggml_is_transposed(src1) is true, then
// src1->data already contains a transposed version, so sgemm mustn't
// transpose it further.
int n = src0->ne[0];
int k = src0->ne[1];
int m = src1->ne[0];
CBLAS_TRANSPOSE transposeA;
int lda;
if (!ggml_is_transposed(src1)) {
transposeA = CblasTrans;
lda = m;
} else {
transposeA = CblasNoTrans;
lda = k;
}
float * a = (float *) ((char *) src1->data);
float * b = (float *) ((char *) src0->data);
float * c = (float *) ((char *) dst->data);
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
GGML_UNUSED(ctx);
GGML_UNUSED(buffer);
}
// backend interface
static void ggml_backend_blas_buffer_clear(
ggml_backend_buffer_t buffer,
uint8_t value) {
GGML_ASSERT(buffer);
ggml_backend_blas_buffer_context * ctx = (ggml_backend_blas_buffer_context *)buffer->context;
memset(ctx->data, value, ctx->size);
}
static void ggml_backend_blas_buffer_reset(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
ggml_backend_blas_buffer_context * ctx = (ggml_backend_blas_buffer_context *)buffer->context;
for (auto * extra : ctx->buffers) {
ggml_aligned_free(extra->data, extra->size);
delete extra;
}
ctx->buffers.clear();
}
static const ggml_backend_buffer_i ggml_backend_blas_buffer_i = {
/* .free_buffer = */ ggml_backend_blas_buffer_free_buffer,
/* .get_base = */ ggml_backend_blas_buffer_get_base,
/* .init_tensor = */ ggml_backend_blas_buffer_init_tensor,
/* .memset_tensor = */ ggml_backend_blas_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_blas_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_blas_buffer_get_tensor,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_blas_buffer_clear,
/* .reset = */ ggml_backend_blas_buffer_reset,
};
// BLAS backend buffer type
static const char * ggml_backend_blas_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_BLAS_NAME;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_blas_buffer_type_alloc_buffer(
ggml_backend_buffer_type_t buft,
size_t size) {
void * data = ggml_aligned_malloc(size);
if (data == nullptr) {
GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n", __func__, size);
return NULL;
}
ggml_backend_blas_buffer_context * ctx = new ggml_backend_blas_buffer_context;
ctx->data = data;
ctx->size = size;
return ggml_backend_buffer_init(buft, ggml_backend_blas_buffer_i, ctx, size);
}
static size_t ggml_backend_blas_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return TENSOR_ALIGNMENT;
GGML_UNUSED(buft);
}
static bool ggml_backend_blas_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_t ggml_backend_blas_buffer_type(void) {
static ggml_backend_blas_buffer_type_context buft_ctx = {
/* .n_threads = */ (int)std::thread::hardware_concurrency(),
#ifndef GGML_USE_OPENMP
/* .tasks = */ std::vector<std::future<void>>(),
#endif
};
static ggml_backend_buffer_type ggml_backend_blas_buffer_type = {
/* .iface = */ {
/* .get_name = */ ggml_backend_blas_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_blas_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_blas_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_blas_buffer_type_is_host,
},
/* .device = */ NULL,
/* .context = */ &buft_ctx,
};
return &ggml_backend_blas_buffer_type;
}
static const char * ggml_backend_blas_get_name(ggml_backend_t backend) {
return "BLAS";
return GGML_BLAS_NAME;
GGML_UNUSED(backend);
}
static void ggml_backend_blas_free(ggml_backend_t backend) {
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
delete ctx;
delete backend;
}
static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
static ggml_status ggml_backend_blas_graph_compute(
ggml_backend_t backend,
ggml_cgraph * cgraph) {
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
ggml_tensor * node = cgraph->nodes[i];
if (ggml_op_is_empty(node->op)) {
continue;
}
switch (node->op) {
case GGML_OP_MUL_MAT:
ggml_backend_blas_mul_mat(ctx, node);
break;
{
ggml_blas_compute_forward_mul_mat(ctx, node);
} break;
case GGML_OP_OUT_PROD:
ggml_backend_blas_out_prod(ctx, node);
break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
break;
{
ggml_blas_compute_forward_out_prod(ctx, node);
} break;
default:
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
@ -256,21 +343,21 @@ static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend,
GGML_UNUSED(backend);
}
static struct ggml_backend_i blas_backend_i = {
/* .get_name = */ ggml_backend_blas_get_name,
/* .free = */ ggml_backend_blas_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_blas_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .graph_optimize = */ NULL,
static const ggml_backend_i ggml_backend_blas_i = {
/* .get_name = */ ggml_backend_blas_get_name,
/* .free = */ ggml_backend_blas_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_blas_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .graph_optimize = */ NULL,
};
static ggml_guid_t ggml_backend_blas_guid(void) {
@ -280,10 +367,15 @@ static ggml_guid_t ggml_backend_blas_guid(void) {
ggml_backend_t ggml_backend_blas_init(void) {
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
if (ctx == NULL) {
return NULL;
}
ggml_backend_t backend = new ggml_backend {
ctx->n_threads = GGML_DEFAULT_N_THREADS;
ggml_backend_t blas_backend = new ggml_backend {
/* .guid = */ ggml_backend_blas_guid(),
/* .iface = */ blas_backend_i,
/* .iface = */ ggml_backend_blas_i,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_blas_reg(), 0),
/* .context = */ ctx,
};
@ -298,24 +390,39 @@ ggml_backend_t ggml_backend_blas_init(void) {
GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
#endif
return backend;
if (blas_backend == NULL) {
delete ctx;
return NULL;
}
return blas_backend;
}
bool ggml_backend_is_blas(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
}
void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
GGML_ASSERT(ggml_backend_is_blas(backend_blas));
void ggml_backend_blas_set_n_threads(ggml_backend_t backend, int n_threads) {
GGML_ASSERT(ggml_backend_is_blas(backend));
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
ctx->n_threads = n_threads;
#if defined(OPENBLAS_VERSION)
openblas_set_num_threads(ctx->n_threads);
#endif
#if defined(GGML_BLAS_USE_BLIS)
bli_thread_set_num_threads(ctx->n_threads);
#endif
#if defined(GGML_BLAS_USE_NVPL)
nvpl_blas_set_num_threads(ctx->n_threads);
#endif
}
// device interface
static const char * ggml_backend_blas_device_get_name(ggml_backend_dev_t dev) {
return "BLAS";
return GGML_BLAS_NAME;
GGML_UNUSED(dev);
}
@ -332,14 +439,13 @@ static const char * ggml_backend_blas_device_get_description(ggml_backend_dev_t
#elif defined(OPENBLAS_VERSION)
return "OpenBLAS";
#else
return "BLAS";
return GGML_BLAS_NAME;
#endif
GGML_UNUSED(dev);
}
static void ggml_backend_blas_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
// TODO
*free = 0;
*total = 0;
@ -352,7 +458,7 @@ static enum ggml_backend_dev_type ggml_backend_blas_device_get_type(ggml_backend
GGML_UNUSED(dev);
}
static void ggml_backend_blas_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
static void ggml_backend_blas_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
props->name = ggml_backend_blas_device_get_name(dev);
props->description = ggml_backend_blas_device_get_description(dev);
props->type = ggml_backend_blas_device_get_type(dev);
@ -360,7 +466,7 @@ static void ggml_backend_blas_device_get_props(ggml_backend_dev_t dev, struct gg
props->caps = {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ true,
/* .buffer_from_host_ptr = */ false,
/* .events = */ false,
};
}
@ -373,75 +479,63 @@ static ggml_backend_t ggml_backend_blas_device_init_backend(ggml_backend_dev_t d
}
static ggml_backend_buffer_type_t ggml_backend_blas_device_get_buffer_type(ggml_backend_dev_t dev) {
return ggml_backend_cpu_buffer_type();
return ggml_backend_blas_buffer_type();
GGML_UNUSED(dev);
}
static ggml_backend_buffer_t ggml_backend_blas_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
static bool ggml_backend_blas_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_UNUSED(dev);
GGML_UNUSED(max_tensor_size);
}
static bool ggml_backend_blas_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
return true;
if (ggml_op_is_empty(dst->op)) {
return true;
}
switch (dst->op) {
case GGML_OP_MUL_MAT:
{
// BLAS usually is only faster for large matrices
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = op->ne[0];
const int64_t ne1 = op->ne[1];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal value
const int64_t min_batch = 32;
const int64_t min_batch = 1024;
return ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
src1->type == GGML_TYPE_F32 &&
(ne0 >= min_batch && ne1 >= min_batch && ne10 >= min_batch) &&
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
return ggml_is_contiguous(src0)
&& ggml_is_contiguous(src1)
&& src1->type == GGML_TYPE_F32
// NOTE: llama-bench creates views that somehow does not go through init_tensor
// this prevents the uninitialized views from being used in BLAS
&& src0->view_src == nullptr && src1->view_src == nullptr
&& (ne0 >= min_batch && ne1 >= min_batch && ne10 >= min_batch)
&& (src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
}
case GGML_OP_OUT_PROD:
return op->src[0]->type == GGML_TYPE_F32 &&
op->src[1]->type == GGML_TYPE_F32 &&
ggml_is_matrix(src0) &&
ggml_is_matrix(src1) &&
ggml_is_contiguous(src0) &&
(ggml_is_contiguous(src1) || ggml_is_transposed(src1)) &&
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
{
return src0->type == GGML_TYPE_F32
&& src1->type == GGML_TYPE_F32
&& ggml_is_matrix(src0)
&& ggml_is_matrix(src1)
&& ggml_is_contiguous(src0)
&& (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
}
default:
return false;
}
GGML_UNUSED(dev);
}
static bool ggml_backend_blas_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return ggml_backend_buft_is_host(buft);
return buft->iface.get_name == ggml_backend_blas_buffer_type_get_name;
GGML_UNUSED(dev);
}
static const struct ggml_backend_device_i ggml_backend_blas_device_i = {
static const ggml_backend_device_i ggml_backend_blas_device_i = {
/* .get_name = */ ggml_backend_blas_device_get_name,
/* .get_description = */ ggml_backend_blas_device_get_description,
/* .get_memory = */ ggml_backend_blas_device_get_memory,
@ -450,7 +544,7 @@ static const struct ggml_backend_device_i ggml_backend_blas_device_i = {
/* .init_backend = */ ggml_backend_blas_device_init_backend,
/* .get_buffer_type = */ ggml_backend_blas_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_blas_device_buffer_from_host_ptr,
/* .buffer_from_host_ptr = */ NULL,
/* .supports_op = */ ggml_backend_blas_device_supports_op,
/* .supports_buft = */ ggml_backend_blas_device_supports_buft,
/* .offload_op = */ NULL,
@ -459,10 +553,10 @@ static const struct ggml_backend_device_i ggml_backend_blas_device_i = {
/* .event_synchronize = */ NULL,
};
// backend reg interface
// BLAS backend - backend (reg)
static const char * ggml_backend_blas_reg_get_name(ggml_backend_reg_t reg) {
return "BLAS";
return GGML_BLAS_NAME;
GGML_UNUSED(reg);
}
@ -476,29 +570,27 @@ static size_t ggml_backend_blas_reg_get_device_count(ggml_backend_reg_t reg) {
static ggml_backend_dev_t ggml_backend_blas_reg_get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
static ggml_backend_blas_device_context ctx;
static ggml_backend_device ggml_backend_blas_device = {
/* .iface = */ ggml_backend_blas_device_i,
/* .reg = */ reg,
/* .context = */ nullptr,
/* .context = */ &ctx,
};
return &ggml_backend_blas_device;
GGML_UNUSED(reg);
GGML_UNUSED(index);
}
static void * ggml_backend_blas_get_proc_address(ggml_backend_reg_t reg, const char * name) {
if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) {
if (strcmp(name, "ggml_backend_set_n_threads") == 0) {
return (void *)ggml_backend_blas_set_n_threads;
}
return NULL;
return nullptr;
GGML_UNUSED(reg);
GGML_UNUSED(name);
}
static const struct ggml_backend_reg_i ggml_backend_blas_reg_i = {
static const ggml_backend_reg_i ggml_backend_blas_reg_i = {
/* .get_name = */ ggml_backend_blas_reg_get_name,
/* .get_device_count = */ ggml_backend_blas_reg_get_device_count,
/* .get_device = */ ggml_backend_blas_reg_get_device,
@ -506,8 +598,8 @@ static const struct ggml_backend_reg_i ggml_backend_blas_reg_i = {
};
ggml_backend_reg_t ggml_backend_blas_reg(void) {
static struct ggml_backend_reg ggml_backend_blas_reg = {
/* .api_version = */ GGML_BACKEND_API_VERSION,
static ggml_backend_reg ggml_backend_blas_reg = {
/* .api_version = */ GGML_BLAS_VERSION,
/* .iface = */ ggml_backend_blas_reg_i,
/* .context = */ NULL,
};

View File

@ -0,0 +1,59 @@
#include "ggml.h"
#include "mmf.hpp"
void ggml_blas_mul_mat_f(
const ggml_backend_blas_context * ctx,
const ggml_tensor * src0,
const ggml_tensor * src1,
ggml_tensor * dst) {
GGML_TENSOR_BINARY_OP_LOCALS
const ggml_type type = src0->type;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
const int64_t ne_plane = ne01*ne00;
const ggml_backend_blas_buffer * extra = (ggml_backend_blas_buffer *)src0->extra;
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
// switch to dequantized F32 data
if (type != GGML_TYPE_F32) {
x = (float *)extra->data + i02*ne_plane + i03*ne02*ne_plane;
}
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne1, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
}
}
GGML_UNUSED(ctx);
}

View File

@ -0,0 +1,9 @@
#pragma once
#include "common.hpp"
void ggml_blas_mul_mat_f(
const ggml_backend_blas_context * ctx,
const ggml_tensor * src0,
const ggml_tensor * src1,
ggml_tensor * dst);

View File

@ -0,0 +1,65 @@
#include "ggml.h"
#include "out-prod.hpp"
void ggml_blas_out_prod_f(
const ggml_backend_blas_context * ctx,
const ggml_tensor * src0,
const ggml_tensor * src1,
ggml_tensor * dst) {
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne3 == ne13);
GGML_ASSERT(ne03 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
// GGML_ASSERT(nb0 <= nb1);
// GGML_ASSERT(nb1 <= nb2);
// GGML_ASSERT(nb2 <= nb3);
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
// src0: (k,n)
// src1: (k,m)
// dst: (m,n)
//
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
// Also expressed as (major,minor)
// a: (m,k): so src1 transposed
// b: (k,n): so src0
// c: (m,n)
//
// However, if ggml_is_transposed(src1) is true, then
// src1->data already contains a transposed version, so sgemm mustn't
// transpose it further.
int n = src0->ne[0];
int k = src0->ne[1];
int m = src1->ne[0];
CBLAS_TRANSPOSE transposeA;
int lda;
if (!ggml_is_transposed(src1)) {
transposeA = CblasTrans;
lda = m;
} else {
transposeA = CblasNoTrans;
lda = k;
}
float * a = (float *) ((char *) src1->data);
float * b = (float *) ((char *) src0->data);
float * c = (float *) ((char *) dst->data);
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
GGML_UNUSED(ctx);
}

View File

@ -0,0 +1,9 @@
#pragma once
#include "common.hpp"
void ggml_blas_out_prod_f(
const ggml_backend_blas_context * ctx,
const ggml_tensor * src0,
const ggml_tensor * src1,
ggml_tensor * dst);

View File

@ -1169,6 +1169,9 @@ struct test_case {
std::vector<ggml_tensor *> sentinels;
// Track weight tensors for separate buffer allocation with GGML_BACKEND_BUFFER_USAGE_WEIGHTS
std::vector<ggml_tensor *> weight_tensors;
std::string current_op_name;
void add_sentinel(ggml_context * ctx) {
@ -1247,6 +1250,8 @@ struct test_case {
const char * op_names_filter,
printer * output_printer) {
mode = MODE_TEST;
weight_tensors.clear();
sentinels.clear();
ggml_init_params params = {
/* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
@ -1297,10 +1302,35 @@ struct test_case {
// post-graph sentinel
add_sentinel(ctx);
// allocate
// allocate weight tensors in a separate buffer with GGML_BACKEND_BUFFER_USAGE_WEIGHTS
ggml_backend_buffer_t weights_buf = nullptr;
if (!weight_tensors.empty()) {
// Calculate total size needed for weight tensors
size_t weight_size = 0;
for (ggml_tensor * wt : weight_tensors) {
weight_size += ggml_backend_buft_get_alloc_size(ggml_backend_get_default_buffer_type(backend1), wt);
}
weight_size = GGML_PAD(weight_size, ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend1)));
weights_buf = ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend1), weight_size);
if (weights_buf == NULL) {
printf("failed to allocate weight tensors [%s] ", ggml_backend_name(backend1));
ggml_free(ctx);
return test_status_t::FAIL;
}
ggml_backend_buffer_set_usage(weights_buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
// Allocate each weight tensor in the weights buffer
ggml_tallocr weights_talloc = ggml_tallocr_new(weights_buf);
for (ggml_tensor * wt : weight_tensors) {
ggml_tallocr_alloc(&weights_talloc, wt);
}
}
// allocate remaining tensors
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
if (buf == NULL) {
if (buf == NULL && weights_buf == NULL) {
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
ggml_free(ctx);
return test_status_t::FAIL;
@ -1400,6 +1430,9 @@ struct test_case {
run_whole_graph() ? fused_nodes_to_verify.data() : nullptr,
fused_nodes_to_verify.size());
if (weights_buf) {
ggml_backend_buffer_free(weights_buf);
}
ggml_backend_buffer_free(buf);
ggml_free(ctx);
@ -1419,6 +1452,7 @@ struct test_case {
bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
mode = MODE_PERF;
weight_tensors.clear();
static const size_t graph_nodes = 8192;
@ -1447,10 +1481,34 @@ struct test_case {
return true;
}
// allocate
// allocate weight tensors in a separate buffer with GGML_BACKEND_BUFFER_USAGE_WEIGHTS
ggml_backend_buffer_ptr weights_buf(nullptr); // smart ptr
if (!weight_tensors.empty()) {
// Calculate total size needed for weight tensors
size_t weight_size = 0;
for (ggml_tensor * wt : weight_tensors) {
weight_size += ggml_backend_buft_get_alloc_size(ggml_backend_get_default_buffer_type(backend), wt);
}
weight_size = GGML_PAD(weight_size, ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend)));
weights_buf.reset(ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), weight_size));
if (weights_buf == NULL) {
printf("failed to allocate weight tensors\n");
return false;
}
ggml_backend_buffer_set_usage(weights_buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
// Allocate each weight tensor in the weights buffer
ggml_tallocr weights_talloc = ggml_tallocr_new(weights_buf.get());
for (ggml_tensor * wt : weight_tensors) {
ggml_tallocr_alloc(&weights_talloc, wt);
}
}
// allocate remaining tensors
ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
if (buf == NULL) {
if (buf == NULL && weights_buf == NULL) {
printf("failed to allocate tensors\n");
return false;
}
@ -1549,6 +1607,7 @@ struct test_case {
bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
mode = MODE_SUPPORT;
weight_tensors.clear();
static const size_t graph_nodes = 8192;
@ -1584,6 +1643,7 @@ struct test_case {
bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
mode = MODE_GRAD;
weight_tensors.clear();
const std::vector<float> expect = grad_expect();
ggml_init_params params = {
@ -1694,9 +1754,35 @@ struct test_case {
return true;
}
// allocate
// allocate weight tensors in a separate buffer with GGML_BACKEND_BUFFER_USAGE_WEIGHTS
ggml_backend_buffer_ptr weights_buf(nullptr); // smart ptr
if (!weight_tensors.empty()) {
// Calculate total size needed for weight tensors
size_t weight_size = 0;
for (ggml_tensor * wt : weight_tensors) {
weight_size += ggml_backend_buft_get_alloc_size(ggml_backend_get_default_buffer_type(backend), wt);
}
weight_size = GGML_PAD(weight_size, ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend)));
weights_buf.reset(ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), weight_size));
if (weights_buf == NULL) {
test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
info.set_error("weight allocation", "");
output_printer->print_operation(info);
return false;
}
ggml_backend_buffer_set_usage(weights_buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
// Allocate each weight tensor in the weights buffer
ggml_tallocr weights_talloc = ggml_tallocr_new(weights_buf.get());
for (ggml_tensor * wt : weight_tensors) {
ggml_tallocr_alloc(&weights_talloc, wt);
}
}
// allocate remaining tensors
ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
if (buf == NULL) {
if (buf == NULL && weights_buf == NULL) {
test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
info.set_error("allocation", "");
output_printer->print_operation(info);
@ -3662,6 +3748,7 @@ struct test_mul_mat : public test_case {
a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
weight_tensors.push_back(a); // Track weight tensor for GGML_BACKEND_BUFFER_USAGE_WEIGHTS
if (!ggml_is_quantized(type_a)) {
if (bs[1] == 1 && nr[1] == 1) {
ggml_set_param(a);
@ -3679,6 +3766,7 @@ struct test_mul_mat : public test_case {
const int64_t k_physical = k_v == 0 ? k : k_v;
a = ggml_new_tensor_4d(ctx, type_a, k_physical, m, bs[0], bs[1]);
b = ggml_new_tensor_4d(ctx, type_b, k_physical, n, bs[0]*nr[0], bs[1]*nr[1]);
weight_tensors.push_back(a); // Track weight tensor for GGML_BACKEND_BUFFER_USAGE_WEIGHTS
if (!ggml_is_quantized(type_a)) {
if (bs[1] == 1 && nr[1] == 1) {
@ -3772,6 +3860,7 @@ struct test_mul_mat_id : public test_case {
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
ggml_set_name(as, "as");
weight_tensors.push_back(as); // Track weight tensor for GGML_BACKEND_BUFFER_USAGE_WEIGHTS
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
ggml_set_name(ids, "ids");
@ -3832,6 +3921,7 @@ struct test_mul_mat_id_fusion : public test_case {
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
ggml_set_name(as, "as");
weight_tensors.push_back(as); // Track weight tensor for GGML_BACKEND_BUFFER_USAGE_WEIGHTS
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
ggml_set_name(ids, "ids");
@ -3848,6 +3938,7 @@ struct test_mul_mat_id_fusion : public test_case {
for (uint32_t i = 1; i < o; ++i) {
ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
weight_tensors.push_back(a2); // Track weight tensor for GGML_BACKEND_BUFFER_USAGE_WEIGHTS
ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
ggml_set_name(out2, "out2");
out = ggml_add(ctx, out, out2);