vulkan : support conv-2d with large output size (#17685)
This commit is contained in:
parent
fd57b24c0f
commit
e15cd06a94
|
|
@ -353,10 +353,17 @@ enum vk_conv_shapes {
|
|||
CONV_SHAPE_COUNT,
|
||||
};
|
||||
|
||||
uint32_t conv_shapes_wg_denoms[][3] = {
|
||||
{ 128, 128, 1 },
|
||||
{ 64, 32, 1 },
|
||||
{ 32, 256, 1 },
|
||||
struct vk_conv_block_size {
|
||||
uint32_t K;
|
||||
uint32_t NPQ;
|
||||
uint32_t CRS;
|
||||
};
|
||||
|
||||
vk_conv_block_size vk_conv_block_sizes[CONV_SHAPE_COUNT] = {
|
||||
// K NPQ CRS
|
||||
{ 128, 128, 16 }, // CONV_SHAPE_128x128
|
||||
{ 64, 32, 32 }, // CONV_SHAPE_64x32
|
||||
{ 32, 256, 16 }, // CONV_SHAPE_32x256
|
||||
};
|
||||
|
||||
enum dmmv_wg_sizes {
|
||||
|
|
@ -1344,20 +1351,11 @@ struct vk_op_conv2d_push_constants {
|
|||
uint32_t Cin;
|
||||
uint32_t N;
|
||||
|
||||
uint32_t KW;
|
||||
uint32_t KH;
|
||||
uint32_t W;
|
||||
uint32_t H;
|
||||
uint32_t OW;
|
||||
uint32_t OH;
|
||||
|
||||
uint32_t s0;
|
||||
uint32_t s1;
|
||||
uint32_t p0;
|
||||
uint32_t p1;
|
||||
uint32_t d0;
|
||||
uint32_t d1;
|
||||
|
||||
uint32_t nb01;
|
||||
uint32_t nb02;
|
||||
uint32_t nb03;
|
||||
|
|
@ -1381,48 +1379,6 @@ template <> void init_pushconst_fastdiv(vk_op_conv2d_push_constants &p) {
|
|||
init_fastdiv_values(p.OW*p.OH, p.OWOHmp, p.OWOHL);
|
||||
}
|
||||
|
||||
struct vk_op_conv_transpose_2d_push_constants {
|
||||
uint32_t Cout;
|
||||
uint32_t Cin;
|
||||
uint32_t N;
|
||||
|
||||
uint32_t KW;
|
||||
uint32_t KH;
|
||||
uint32_t W;
|
||||
uint32_t H;
|
||||
uint32_t OW;
|
||||
uint32_t OH;
|
||||
|
||||
uint32_t s0;
|
||||
uint32_t s1;
|
||||
uint32_t p0;
|
||||
uint32_t p1;
|
||||
uint32_t d0;
|
||||
uint32_t d1;
|
||||
|
||||
uint32_t nb01;
|
||||
uint32_t nb02;
|
||||
uint32_t nb03;
|
||||
|
||||
uint32_t nb11;
|
||||
uint32_t nb12;
|
||||
uint32_t nb13;
|
||||
|
||||
uint32_t nb1;
|
||||
uint32_t nb2;
|
||||
uint32_t nb3;
|
||||
|
||||
// init_fastdiv_values constants for dividing by OW, OW*OH
|
||||
uint32_t OWmp; uint32_t OWL;
|
||||
uint32_t OWOHmp; uint32_t OWOHL;
|
||||
};
|
||||
|
||||
template <> void init_pushconst_fastdiv(vk_op_conv_transpose_2d_push_constants &p) {
|
||||
// Compute magic values to divide by OW, OW*OH
|
||||
init_fastdiv_values(p.OW, p.OWmp, p.OWL);
|
||||
init_fastdiv_values(p.OW*p.OH, p.OWOHmp, p.OWOHL);
|
||||
}
|
||||
|
||||
struct vk_op_conv2d_dw_push_constants {
|
||||
uint32_t ne;
|
||||
uint32_t batches;
|
||||
|
|
@ -4126,12 +4082,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
// conv2d, conv_transpose_2d
|
||||
for (uint32_t s = 0; s < CONV_SHAPE_COUNT; ++s) {
|
||||
uint32_t conv2d_WG_SIZE = 256;
|
||||
uint32_t conv2d_BS_K = 128;
|
||||
uint32_t conv2d_BS_CRS = 16;
|
||||
uint32_t use_collectives = 0; // Enables subgroup ops for preventing the re-calculation of indices.
|
||||
uint32_t conv2d_BS_NPQ = 128;
|
||||
uint32_t conv2d_TS_K = 8;
|
||||
uint32_t conv2d_TS_K = (s == CONV_SHAPE_64x32) ? 4 : 8;
|
||||
uint32_t conv2d_SHMEM_PAD = 4;
|
||||
vk_conv_block_size conv2d_BS = vk_conv_block_sizes[s];
|
||||
bool conv2d_UNROLL = true;
|
||||
|
||||
#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
|
||||
|
|
@ -4145,29 +4099,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
conv2d_UNROLL = false;
|
||||
} else if (device->vendor_id == VK_VENDOR_ID_AMD) {
|
||||
conv2d_SHMEM_PAD = device->architecture == vk_device_architecture::AMD_GCN ? 1 : 4;
|
||||
}
|
||||
|
||||
switch (s) {
|
||||
default:
|
||||
case CONV_SHAPE_128x128:
|
||||
conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_128x128][0];
|
||||
conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_128x128][1];
|
||||
conv2d_BS_CRS = 16;
|
||||
if (device->vendor_id == VK_VENDOR_ID_AMD && device->architecture != vk_device_architecture::AMD_GCN) {
|
||||
if (s == CONV_SHAPE_128x128 && device->architecture != vk_device_architecture::AMD_GCN) {
|
||||
conv2d_UNROLL = false;
|
||||
}
|
||||
break;
|
||||
case CONV_SHAPE_64x32:
|
||||
conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_64x32][0];
|
||||
conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_64x32][1];
|
||||
conv2d_BS_CRS = 32;
|
||||
conv2d_TS_K = 4;
|
||||
break;
|
||||
case CONV_SHAPE_32x256:
|
||||
conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_32x256][0];
|
||||
conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_32x256][1];
|
||||
conv2d_BS_CRS = 16;
|
||||
break;
|
||||
}
|
||||
|
||||
// Use collectives on pre-Turing NVIDIA GPUs and GCN AMD cards, which had slower integer math.
|
||||
|
|
@ -4181,22 +4115,22 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
allow_collectives_nv &&
|
||||
allow_collectives_amd) {
|
||||
use_collectives = 1;
|
||||
conv2d_BS_CRS = std::min(
|
||||
conv2d_BS.CRS = std::min(
|
||||
device->subgroup_size,
|
||||
conv2d_BS_CRS); // CRS block size should be capped at subgroup size for correctness when shuffle is used.
|
||||
conv2d_BS.CRS); // CRS block size should be capped at subgroup size for correctness when shuffle is used.
|
||||
}
|
||||
|
||||
uint32_t conv2d_shmem_req =
|
||||
(conv2d_BS_K * (conv2d_BS_CRS + conv2d_SHMEM_PAD) + conv2d_BS_CRS * (conv2d_BS_NPQ + conv2d_SHMEM_PAD)) * sizeof(float);
|
||||
(conv2d_BS.K * (conv2d_BS.CRS + conv2d_SHMEM_PAD) + conv2d_BS.CRS * (conv2d_BS.NPQ + conv2d_SHMEM_PAD)) * sizeof(float);
|
||||
if (device->properties.limits.maxComputeSharedMemorySize < conv2d_shmem_req) {
|
||||
conv2d_BS_CRS = 8;
|
||||
conv2d_BS.CRS = 8;
|
||||
if (use_collectives) {
|
||||
conv2d_BS_CRS = std::min(device->subgroup_size, conv2d_BS_CRS);
|
||||
conv2d_BS.CRS = std::min(device->subgroup_size, conv2d_BS.CRS);
|
||||
}
|
||||
}
|
||||
|
||||
std::array<uint32_t, 3> wg_denoms = { conv2d_BS_K, conv2d_BS_NPQ, 1 };
|
||||
std::vector<uint32_t> spec_constants = { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives, conv2d_SHMEM_PAD };
|
||||
std::array<uint32_t, 3> wg_denoms = { conv2d_BS.K, 1, 1 };
|
||||
std::vector<uint32_t> spec_constants = { conv2d_WG_SIZE, conv2d_BS.K, conv2d_BS.CRS, conv2d_BS.NPQ, conv2d_TS_K, use_collectives, conv2d_SHMEM_PAD };
|
||||
|
||||
#define CREATE_CONV(name, type_suffix, spv_suffix) \
|
||||
for (auto &c : device->pipeline_##name##type_suffix[s]) { \
|
||||
|
|
@ -4213,15 +4147,13 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
ggml_vk_create_pipeline( \
|
||||
device, c.second, #name #type_suffix, \
|
||||
name##type_suffix##spv_suffix##_len, name##type_suffix##spv_suffix##_data, "main", 3, \
|
||||
sizeof(vk_op_##name##_push_constants), wg_denoms, spec_constants_cpy, 1, true, use_collectives); \
|
||||
sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants_cpy, 1, true, use_collectives); \
|
||||
}
|
||||
#define CREATE_CONVS(spv_suffix) \
|
||||
CREATE_CONV(conv2d, _f32, spv_suffix) \
|
||||
CREATE_CONV(conv2d, _f16_f32, spv_suffix) \
|
||||
if (device->properties.limits.maxPushConstantsSize >= sizeof(vk_op_conv_transpose_2d_push_constants)) { \
|
||||
CREATE_CONV(conv_transpose_2d, _f32, spv_suffix) \
|
||||
CREATE_CONV(conv_transpose_2d, _f16_f32, spv_suffix) \
|
||||
}
|
||||
CREATE_CONV(conv_transpose_2d, _f16_f32, spv_suffix)
|
||||
#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
|
||||
if (device->coopmat2) {
|
||||
CREATE_CONVS(_cm2)
|
||||
|
|
@ -8284,59 +8216,23 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
}
|
||||
}
|
||||
|
||||
static std::array<uint32_t, 3> ggml_vk_get_conv_elements(const ggml_tensor *dst) {
|
||||
const ggml_tensor *src0 = dst->src[0];
|
||||
const ggml_tensor *src1 = dst->src[1];
|
||||
|
||||
// src0 - kernel: [KW, KH, Cin, Cout]
|
||||
// src1 - input: [W, H, Cin, N]
|
||||
// dst - result: [OW, OH, Cout, N]
|
||||
|
||||
// Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
|
||||
auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
|
||||
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
|
||||
static vk_conv_shapes ggml_vk_conv_select_shape(ggml_backend_vk_context * ctx, uint32_t K, uint32_t NPQ) {
|
||||
auto n_tiles = [&](vk_conv_shapes s) {
|
||||
return CEIL_DIV(K, vk_conv_block_sizes[s].K)
|
||||
* CEIL_DIV(NPQ, vk_conv_block_sizes[s].NPQ);
|
||||
};
|
||||
// parallelize in {OW/BS_K, OH/BS_NPQ, 1}
|
||||
int64_t W = src1->ne[0];
|
||||
int64_t H = src1->ne[1];
|
||||
int64_t KW = src0->ne[0];
|
||||
int64_t KH = src0->ne[1];
|
||||
int64_t Cout = src0->ne[3];
|
||||
int64_t N = src1->ne[3];
|
||||
int64_t OH = calc_conv_output_size(H, KH, dst->op_params[1], dst->op_params[3], dst->op_params[5]);
|
||||
int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], dst->op_params[2], dst->op_params[4]);
|
||||
int64_t NPQ = N * OW * OH;
|
||||
|
||||
// Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
|
||||
std::array<uint32_t, 3> elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 };
|
||||
return elements;
|
||||
// We can't query number of shader cores on Intel, use 32 as a placeholder
|
||||
// so small convolutions will still choose a smaller tile.
|
||||
const uint32_t shader_core_count = ctx->device->shader_core_count > 0 ? ctx->device->shader_core_count : 32;
|
||||
|
||||
if (K > 64 && n_tiles(CONV_SHAPE_128x128) >= shader_core_count * 2) {
|
||||
return CONV_SHAPE_128x128;
|
||||
} else if (K <= 32 && n_tiles(CONV_SHAPE_32x256) >= shader_core_count * 2) {
|
||||
return CONV_SHAPE_32x256;
|
||||
} else {
|
||||
return CONV_SHAPE_64x32;
|
||||
}
|
||||
|
||||
static std::array<uint32_t, 3> ggml_vk_get_conv_transpose_2d_elements(const ggml_tensor *dst) {
|
||||
const ggml_tensor *src0 = dst->src[0];
|
||||
const ggml_tensor *src1 = dst->src[1];
|
||||
|
||||
// src0 - kernel: [KW, KH, Cout, Cin]
|
||||
// src1 - input: [W, H, Cin, N]
|
||||
// dst - result: [OW, OH, Cout, N]
|
||||
|
||||
auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
|
||||
return (ins - 1) * s - 2 * p + (ks - 1) * d + 1;
|
||||
};
|
||||
// parallelize in {OW/BS_K, OH/BS_NPQ, 1}
|
||||
int64_t W = src1->ne[0];
|
||||
int64_t H = src1->ne[1];
|
||||
int64_t KW = src0->ne[0];
|
||||
int64_t KH = src0->ne[1];
|
||||
int64_t Cout = src0->ne[2];
|
||||
int64_t N = src1->ne[3];
|
||||
int64_t OH = calc_conv_output_size(H, KH, dst->op_params[0], 0, 1);
|
||||
int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], 0, 1);
|
||||
int64_t NPQ = N * OW * OH;
|
||||
|
||||
// Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
|
||||
std::array<uint32_t, 3> elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 };
|
||||
return elements;
|
||||
}
|
||||
|
||||
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * dst, ggml_op op) {
|
||||
|
|
@ -8799,39 +8695,20 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||
return nullptr;
|
||||
case GGML_OP_CONV_2D:
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
|
||||
ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
||||
std::array<uint32_t, 3> elements{};
|
||||
if (op == GGML_OP_CONV_2D) elements = ggml_vk_get_conv_elements(dst);
|
||||
else if (op == GGML_OP_CONV_TRANSPOSE_2D) elements = ggml_vk_get_conv_transpose_2d_elements(dst);
|
||||
vk_conv_shapes shape;
|
||||
|
||||
uint32_t tiles[CONV_SHAPE_COUNT];
|
||||
for (uint32_t i = 0; i < CONV_SHAPE_COUNT; ++i) {
|
||||
tiles[i] = CEIL_DIV(elements[0], conv_shapes_wg_denoms[i][0]) * CEIL_DIV(elements[1], conv_shapes_wg_denoms[i][1]);
|
||||
}
|
||||
|
||||
// We can't query number of shader cores on Intel, use 32 as a placeholder
|
||||
// so small convolutions will still choose a smaller tile.
|
||||
const uint32_t shader_core_count = ctx->device->shader_core_count > 0 ? ctx->device->shader_core_count : 32;
|
||||
|
||||
if (elements[0] > 64 && tiles[CONV_SHAPE_128x128] >= shader_core_count * 2) {
|
||||
shape = CONV_SHAPE_128x128;
|
||||
} else if (elements[0] <= 32 && tiles[CONV_SHAPE_32x256] >= shader_core_count * 2) {
|
||||
shape = CONV_SHAPE_32x256;
|
||||
} else {
|
||||
shape = CONV_SHAPE_64x32;
|
||||
}
|
||||
|
||||
uint32_t KW = static_cast<uint32_t>(src0->ne[0]);
|
||||
uint32_t KH = static_cast<uint32_t>(src0->ne[1]);
|
||||
uint32_t s0 = static_cast<uint32_t>(dst->op_params[0]);
|
||||
uint32_t s1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[1]) : static_cast<uint32_t>(dst->op_params[0]);
|
||||
uint32_t p0 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[2]) : 0;
|
||||
uint32_t p1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[3]) : 0;
|
||||
uint32_t d0 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[4]) : 1;
|
||||
uint32_t d1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[5]) : 1;
|
||||
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
uint32_t K = dst->ne[2]; // Cout
|
||||
uint32_t NPQ = dst->ne[3] * dst->ne[1] * dst->ne[0]; // N * OH * OW
|
||||
vk_conv_shapes shape = ggml_vk_conv_select_shape(ctx, K, NPQ);
|
||||
|
||||
bool transpose = dst->op == GGML_OP_CONV_TRANSPOSE_2D;
|
||||
uint32_t KW = (uint32_t)src0->ne[0];
|
||||
uint32_t KH = (uint32_t)src0->ne[1];
|
||||
uint32_t s0 = (uint32_t)(ggml_get_op_params_i32(dst, 0));
|
||||
uint32_t s1 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 1) : s0;
|
||||
uint32_t p0 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 2) : 0;
|
||||
uint32_t p1 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 3) : 0;
|
||||
uint32_t d0 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 4) : 1;
|
||||
uint32_t d1 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 5) : 1;
|
||||
vk_conv2d_pipeline_state conv2d_pipeline_state(s0, s1, p0, p1, d0, d1, KW, KH);
|
||||
|
||||
std::map<vk_conv2d_pipeline_state, vk_pipeline> *pipelines = nullptr;
|
||||
|
|
@ -9150,13 +9027,21 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
elements = { N * OC * OH * OW, 1, 1};
|
||||
} break;
|
||||
case GGML_OP_CONV_2D:
|
||||
{
|
||||
elements = ggml_vk_get_conv_elements(dst);
|
||||
} break;
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
{
|
||||
elements = ggml_vk_get_conv_transpose_2d_elements(dst);
|
||||
} break;
|
||||
if constexpr (std::is_same_v<PC, vk_op_conv2d_push_constants>) {
|
||||
const uint32_t NPQ = pc.N * pc.OH * pc.OW;
|
||||
const vk_conv_shapes shape = ggml_vk_conv_select_shape(ctx, pc.Cout, NPQ);
|
||||
const uint32_t NPQ_blocks = CEIL_DIV(NPQ, vk_conv_block_sizes[shape].NPQ);
|
||||
|
||||
elements = { pc.Cout, NPQ_blocks, 1 };
|
||||
if (elements[1] > 512) {
|
||||
elements[2] = CEIL_DIV(elements[1], 512);
|
||||
elements[1] = 512;
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("invalid push constant type for CONV_2D");
|
||||
}
|
||||
break;
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_DIV:
|
||||
|
|
@ -10707,30 +10592,24 @@ static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx,
|
|||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(nb00 == sizeof(float) || nb00 == sizeof(ggml_fp16_t));
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
|
||||
bool transpose = dst->op == GGML_OP_CONV_TRANSPOSE_2D;
|
||||
|
||||
vk_op_conv2d_push_constants p{};
|
||||
p.Cout = static_cast<uint32_t>(ne03);
|
||||
p.Cin = static_cast<uint32_t>(ne02);
|
||||
p.Cout = static_cast<uint32_t>(!transpose ? ne03 : ne02);
|
||||
p.Cin = static_cast<uint32_t>(!transpose ? ne02 : ne03);
|
||||
p.N = static_cast<uint32_t>(ne13);
|
||||
GGML_ASSERT(p.Cout == ne2);
|
||||
GGML_ASSERT(p.Cin == ne12);
|
||||
|
||||
p.KW = static_cast<uint32_t>(ne00);
|
||||
p.KH = static_cast<uint32_t>(ne01);
|
||||
p.W = static_cast<uint32_t>(ne10);
|
||||
p.H = static_cast<uint32_t>(ne11);
|
||||
p.OW = static_cast<uint32_t>(ne0);
|
||||
p.OH = static_cast<uint32_t>(ne1);
|
||||
|
||||
p.s0 = static_cast<uint32_t>(dst->op_params[0]);
|
||||
p.s1 = static_cast<uint32_t>(dst->op_params[1]);
|
||||
p.p0 = static_cast<uint32_t>(dst->op_params[2]);
|
||||
p.p1 = static_cast<uint32_t>(dst->op_params[3]);
|
||||
p.d0 = static_cast<uint32_t>(dst->op_params[4]);
|
||||
p.d1 = static_cast<uint32_t>(dst->op_params[5]);
|
||||
|
||||
p.nb01 = static_cast<uint32_t>(nb01 / nb00);
|
||||
p.nb02 = static_cast<uint32_t>(nb02 / nb00);
|
||||
p.nb03 = static_cast<uint32_t>(nb03 / nb00);
|
||||
|
|
@ -10743,59 +10622,7 @@ static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx,
|
|||
p.nb2 = static_cast<uint32_t>(nb2 / nb0);
|
||||
p.nb3 = static_cast<uint32_t>(nb3 / nb0);
|
||||
|
||||
GGML_ASSERT(ne03 == ne2);
|
||||
GGML_ASSERT(ne02 == ne12);
|
||||
|
||||
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_2D, std::move(p));
|
||||
}
|
||||
|
||||
static void ggml_vk_conv_transpose_2d(ggml_backend_vk_context * ctx, vk_context & subctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(nb00 == sizeof(float) || nb00 == sizeof(ggml_fp16_t));
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
|
||||
vk_op_conv_transpose_2d_push_constants p{};
|
||||
p.Cout = static_cast<uint32_t>(ne02);
|
||||
p.Cin = static_cast<uint32_t>(ne03);
|
||||
p.N = static_cast<uint32_t>(ne13);
|
||||
|
||||
p.KW = static_cast<uint32_t>(ne00);
|
||||
p.KH = static_cast<uint32_t>(ne01);
|
||||
p.W = static_cast<uint32_t>(ne10);
|
||||
p.H = static_cast<uint32_t>(ne11);
|
||||
p.OW = static_cast<uint32_t>(ne0);
|
||||
p.OH = static_cast<uint32_t>(ne1);
|
||||
|
||||
p.s0 = static_cast<uint32_t>(dst->op_params[0]);
|
||||
p.s1 = static_cast<uint32_t>(dst->op_params[0]);
|
||||
p.p0 = 0;
|
||||
p.p1 = 0;
|
||||
p.d0 = 1;
|
||||
p.d1 = 1;
|
||||
|
||||
p.nb01 = static_cast<uint32_t>(nb01 / nb00);
|
||||
p.nb02 = static_cast<uint32_t>(nb02 / nb00);
|
||||
p.nb03 = static_cast<uint32_t>(nb03 / nb00);
|
||||
|
||||
p.nb11 = static_cast<uint32_t>(nb11 / nb10);
|
||||
p.nb12 = static_cast<uint32_t>(nb12 / nb10);
|
||||
p.nb13 = static_cast<uint32_t>(nb13 / nb10);
|
||||
|
||||
p.nb1 = static_cast<uint32_t>(nb1 / nb0);
|
||||
p.nb2 = static_cast<uint32_t>(nb2 / nb0);
|
||||
p.nb3 = static_cast<uint32_t>(nb3 / nb0);
|
||||
|
||||
GGML_ASSERT(ne02 == ne2);
|
||||
GGML_ASSERT(ne03 == ne12);
|
||||
|
||||
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_TRANSPOSE_2D, std::move(p));
|
||||
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, dst->op, std::move(p));
|
||||
}
|
||||
|
||||
static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
|
|
@ -12166,11 +11993,8 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
|
||||
break;
|
||||
case GGML_OP_CONV_2D:
|
||||
ggml_vk_conv_2d(ctx, compute_ctx, src0, src1, node);
|
||||
|
||||
break;
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
ggml_vk_conv_transpose_2d(ctx, compute_ctx, src0, src1, node);
|
||||
ggml_vk_conv_2d(ctx, compute_ctx, src0, src1, node);
|
||||
|
||||
break;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
|
|
@ -14279,13 +14103,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
case GGML_OP_CONV_2D:
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
{
|
||||
// Op is disabled for Apple because it segfaults at pipeline create time on MoltenVK
|
||||
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
||||
const vk_device& device = ggml_vk_get_device(ctx->device);
|
||||
if (op->op == GGML_OP_CONV_TRANSPOSE_2D &&
|
||||
device->properties.limits.maxPushConstantsSize < sizeof(vk_op_conv_transpose_2d_push_constants)) {
|
||||
return false;
|
||||
}
|
||||
// Channel-contiguous format is not supported yet.
|
||||
return ((op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
|
||||
op->src[1]->type == GGML_TYPE_F32 &&
|
||||
|
|
|
|||
|
|
@ -32,22 +32,12 @@ layout(push_constant) uniform parameter {
|
|||
uint32_t Cin;
|
||||
uint32_t N;
|
||||
|
||||
// Tensor spatial sizes: kernel, input, output
|
||||
uint32_t KW;
|
||||
uint32_t KH;
|
||||
// Tensor spatial sizes: input, output
|
||||
uint32_t W;
|
||||
uint32_t H;
|
||||
uint32_t OW;
|
||||
uint32_t OH;
|
||||
|
||||
// Parameters: stride, padding, dilation - 0=y, 1=x
|
||||
uint32_t s0;
|
||||
uint32_t s1;
|
||||
uint32_t p0;
|
||||
uint32_t p1;
|
||||
uint32_t d0;
|
||||
uint32_t d1;
|
||||
|
||||
// Strides in elements
|
||||
uint32_t nb01;
|
||||
uint32_t nb02;
|
||||
|
|
@ -77,13 +67,14 @@ layout(constant_id = 3) const uint BS_NPQ = 128;
|
|||
layout(constant_id = 4) const uint TS_K = 8;
|
||||
layout(constant_id = 5) const uint use_collectives = 1;
|
||||
layout(constant_id = 6) const uint SHMEM_PAD = 4;
|
||||
|
||||
// Stride, padding, dilation
|
||||
layout(constant_id = 7) const uint s0 = 1;
|
||||
layout(constant_id = 8) const uint s1 = 1;
|
||||
layout(constant_id = 9) const uint p0 = 0;
|
||||
layout(constant_id = 10) const uint p1 = 0;
|
||||
layout(constant_id = 11) const uint d0 = 1;
|
||||
layout(constant_id = 12) const uint d1 = 1;
|
||||
// Kernel spatial sizes
|
||||
layout(constant_id = 13) const uint KW = 1;
|
||||
layout(constant_id = 14) const uint KH = 1;
|
||||
|
||||
|
|
@ -138,7 +129,7 @@ P,Q=OH,OW
|
|||
*/
|
||||
|
||||
uint32_t B_idx_K = gl_WorkGroupID.x;
|
||||
uint32_t B_idx_NPQ = gl_WorkGroupID.y;
|
||||
uint32_t B_idx_NPQ = gl_WorkGroupID.y + gl_WorkGroupID.z * 512;
|
||||
|
||||
uint32_t T_y = tid / NT_NPQ;
|
||||
uint32_t T_x = tid % NT_NPQ;
|
||||
|
|
@ -178,6 +169,10 @@ ACC_TYPE perElemOpStore(const in uint32_t r, const in uint32_t c, const in ACC_T
|
|||
#endif
|
||||
|
||||
void main() {
|
||||
if (B_idx_NPQ * BS_NPQ >= NPQ) {
|
||||
return;
|
||||
}
|
||||
|
||||
#ifdef COOPMAT2
|
||||
coopmat<ACC_TYPE, gl_ScopeWorkgroup, BS_K, BS_NPQ, gl_MatrixUseAccumulator> matC;
|
||||
matC = coopmat<ACC_TYPE, gl_ScopeWorkgroup, BS_K, BS_NPQ, gl_MatrixUseAccumulator>(0.0);
|
||||
|
|
|
|||
|
|
@ -6982,6 +6982,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||
|
||||
test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
|
||||
test_cases.emplace_back(new test_conv_transpose_2d({129, 63, 35, 1}, {3, 3, 48, 35}, 1));
|
||||
|
||||
test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
|
||||
test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
|
||||
|
|
@ -7897,6 +7898,8 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
|||
{ 58, 3, 64, 32, 8 },
|
||||
// A deep layer of a ConvNet, several images in the batch
|
||||
{ 16, 3, 512, 128, 8 },
|
||||
// High resolution output (large NPQ)
|
||||
{1536, 3, 64, 32, 1 },
|
||||
};
|
||||
|
||||
for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
||||
|
|
|
|||
Loading…
Reference in New Issue