vulkan : support conv-2d with large output size (#17685)

This commit is contained in:
Acly 2025-12-05 21:46:39 +01:00 committed by GitHub
parent fd57b24c0f
commit e15cd06a94
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 84 additions and 269 deletions

View File

@ -353,10 +353,17 @@ enum vk_conv_shapes {
CONV_SHAPE_COUNT, CONV_SHAPE_COUNT,
}; };
uint32_t conv_shapes_wg_denoms[][3] = { struct vk_conv_block_size {
{ 128, 128, 1 }, uint32_t K;
{ 64, 32, 1 }, uint32_t NPQ;
{ 32, 256, 1 }, uint32_t CRS;
};
vk_conv_block_size vk_conv_block_sizes[CONV_SHAPE_COUNT] = {
// K NPQ CRS
{ 128, 128, 16 }, // CONV_SHAPE_128x128
{ 64, 32, 32 }, // CONV_SHAPE_64x32
{ 32, 256, 16 }, // CONV_SHAPE_32x256
}; };
enum dmmv_wg_sizes { enum dmmv_wg_sizes {
@ -1344,20 +1351,11 @@ struct vk_op_conv2d_push_constants {
uint32_t Cin; uint32_t Cin;
uint32_t N; uint32_t N;
uint32_t KW;
uint32_t KH;
uint32_t W; uint32_t W;
uint32_t H; uint32_t H;
uint32_t OW; uint32_t OW;
uint32_t OH; uint32_t OH;
uint32_t s0;
uint32_t s1;
uint32_t p0;
uint32_t p1;
uint32_t d0;
uint32_t d1;
uint32_t nb01; uint32_t nb01;
uint32_t nb02; uint32_t nb02;
uint32_t nb03; uint32_t nb03;
@ -1381,48 +1379,6 @@ template <> void init_pushconst_fastdiv(vk_op_conv2d_push_constants &p) {
init_fastdiv_values(p.OW*p.OH, p.OWOHmp, p.OWOHL); init_fastdiv_values(p.OW*p.OH, p.OWOHmp, p.OWOHL);
} }
struct vk_op_conv_transpose_2d_push_constants {
uint32_t Cout;
uint32_t Cin;
uint32_t N;
uint32_t KW;
uint32_t KH;
uint32_t W;
uint32_t H;
uint32_t OW;
uint32_t OH;
uint32_t s0;
uint32_t s1;
uint32_t p0;
uint32_t p1;
uint32_t d0;
uint32_t d1;
uint32_t nb01;
uint32_t nb02;
uint32_t nb03;
uint32_t nb11;
uint32_t nb12;
uint32_t nb13;
uint32_t nb1;
uint32_t nb2;
uint32_t nb3;
// init_fastdiv_values constants for dividing by OW, OW*OH
uint32_t OWmp; uint32_t OWL;
uint32_t OWOHmp; uint32_t OWOHL;
};
template <> void init_pushconst_fastdiv(vk_op_conv_transpose_2d_push_constants &p) {
// Compute magic values to divide by OW, OW*OH
init_fastdiv_values(p.OW, p.OWmp, p.OWL);
init_fastdiv_values(p.OW*p.OH, p.OWOHmp, p.OWOHL);
}
struct vk_op_conv2d_dw_push_constants { struct vk_op_conv2d_dw_push_constants {
uint32_t ne; uint32_t ne;
uint32_t batches; uint32_t batches;
@ -4126,12 +4082,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
// conv2d, conv_transpose_2d // conv2d, conv_transpose_2d
for (uint32_t s = 0; s < CONV_SHAPE_COUNT; ++s) { for (uint32_t s = 0; s < CONV_SHAPE_COUNT; ++s) {
uint32_t conv2d_WG_SIZE = 256; uint32_t conv2d_WG_SIZE = 256;
uint32_t conv2d_BS_K = 128;
uint32_t conv2d_BS_CRS = 16;
uint32_t use_collectives = 0; // Enables subgroup ops for preventing the re-calculation of indices. uint32_t use_collectives = 0; // Enables subgroup ops for preventing the re-calculation of indices.
uint32_t conv2d_BS_NPQ = 128; uint32_t conv2d_TS_K = (s == CONV_SHAPE_64x32) ? 4 : 8;
uint32_t conv2d_TS_K = 8;
uint32_t conv2d_SHMEM_PAD = 4; uint32_t conv2d_SHMEM_PAD = 4;
vk_conv_block_size conv2d_BS = vk_conv_block_sizes[s];
bool conv2d_UNROLL = true; bool conv2d_UNROLL = true;
#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
@ -4145,29 +4099,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
conv2d_UNROLL = false; conv2d_UNROLL = false;
} else if (device->vendor_id == VK_VENDOR_ID_AMD) { } else if (device->vendor_id == VK_VENDOR_ID_AMD) {
conv2d_SHMEM_PAD = device->architecture == vk_device_architecture::AMD_GCN ? 1 : 4; conv2d_SHMEM_PAD = device->architecture == vk_device_architecture::AMD_GCN ? 1 : 4;
} if (s == CONV_SHAPE_128x128 && device->architecture != vk_device_architecture::AMD_GCN) {
switch (s) {
default:
case CONV_SHAPE_128x128:
conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_128x128][0];
conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_128x128][1];
conv2d_BS_CRS = 16;
if (device->vendor_id == VK_VENDOR_ID_AMD && device->architecture != vk_device_architecture::AMD_GCN) {
conv2d_UNROLL = false; conv2d_UNROLL = false;
} }
break;
case CONV_SHAPE_64x32:
conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_64x32][0];
conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_64x32][1];
conv2d_BS_CRS = 32;
conv2d_TS_K = 4;
break;
case CONV_SHAPE_32x256:
conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_32x256][0];
conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_32x256][1];
conv2d_BS_CRS = 16;
break;
} }
// Use collectives on pre-Turing NVIDIA GPUs and GCN AMD cards, which had slower integer math. // Use collectives on pre-Turing NVIDIA GPUs and GCN AMD cards, which had slower integer math.
@ -4181,22 +4115,22 @@ static void ggml_vk_load_shaders(vk_device& device) {
allow_collectives_nv && allow_collectives_nv &&
allow_collectives_amd) { allow_collectives_amd) {
use_collectives = 1; use_collectives = 1;
conv2d_BS_CRS = std::min( conv2d_BS.CRS = std::min(
device->subgroup_size, device->subgroup_size,
conv2d_BS_CRS); // CRS block size should be capped at subgroup size for correctness when shuffle is used. conv2d_BS.CRS); // CRS block size should be capped at subgroup size for correctness when shuffle is used.
} }
uint32_t conv2d_shmem_req = uint32_t conv2d_shmem_req =
(conv2d_BS_K * (conv2d_BS_CRS + conv2d_SHMEM_PAD) + conv2d_BS_CRS * (conv2d_BS_NPQ + conv2d_SHMEM_PAD)) * sizeof(float); (conv2d_BS.K * (conv2d_BS.CRS + conv2d_SHMEM_PAD) + conv2d_BS.CRS * (conv2d_BS.NPQ + conv2d_SHMEM_PAD)) * sizeof(float);
if (device->properties.limits.maxComputeSharedMemorySize < conv2d_shmem_req) { if (device->properties.limits.maxComputeSharedMemorySize < conv2d_shmem_req) {
conv2d_BS_CRS = 8; conv2d_BS.CRS = 8;
if (use_collectives) { if (use_collectives) {
conv2d_BS_CRS = std::min(device->subgroup_size, conv2d_BS_CRS); conv2d_BS.CRS = std::min(device->subgroup_size, conv2d_BS.CRS);
} }
} }
std::array<uint32_t, 3> wg_denoms = { conv2d_BS_K, conv2d_BS_NPQ, 1 }; std::array<uint32_t, 3> wg_denoms = { conv2d_BS.K, 1, 1 };
std::vector<uint32_t> spec_constants = { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives, conv2d_SHMEM_PAD }; std::vector<uint32_t> spec_constants = { conv2d_WG_SIZE, conv2d_BS.K, conv2d_BS.CRS, conv2d_BS.NPQ, conv2d_TS_K, use_collectives, conv2d_SHMEM_PAD };
#define CREATE_CONV(name, type_suffix, spv_suffix) \ #define CREATE_CONV(name, type_suffix, spv_suffix) \
for (auto &c : device->pipeline_##name##type_suffix[s]) { \ for (auto &c : device->pipeline_##name##type_suffix[s]) { \
@ -4213,15 +4147,13 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline( \ ggml_vk_create_pipeline( \
device, c.second, #name #type_suffix, \ device, c.second, #name #type_suffix, \
name##type_suffix##spv_suffix##_len, name##type_suffix##spv_suffix##_data, "main", 3, \ name##type_suffix##spv_suffix##_len, name##type_suffix##spv_suffix##_data, "main", 3, \
sizeof(vk_op_##name##_push_constants), wg_denoms, spec_constants_cpy, 1, true, use_collectives); \ sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants_cpy, 1, true, use_collectives); \
} }
#define CREATE_CONVS(spv_suffix) \ #define CREATE_CONVS(spv_suffix) \
CREATE_CONV(conv2d, _f32, spv_suffix) \ CREATE_CONV(conv2d, _f32, spv_suffix) \
CREATE_CONV(conv2d, _f16_f32, spv_suffix) \ CREATE_CONV(conv2d, _f16_f32, spv_suffix) \
if (device->properties.limits.maxPushConstantsSize >= sizeof(vk_op_conv_transpose_2d_push_constants)) { \
CREATE_CONV(conv_transpose_2d, _f32, spv_suffix) \ CREATE_CONV(conv_transpose_2d, _f32, spv_suffix) \
CREATE_CONV(conv_transpose_2d, _f16_f32, spv_suffix) \ CREATE_CONV(conv_transpose_2d, _f16_f32, spv_suffix)
}
#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
if (device->coopmat2) { if (device->coopmat2) {
CREATE_CONVS(_cm2) CREATE_CONVS(_cm2)
@ -8284,59 +8216,23 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
} }
} }
static std::array<uint32_t, 3> ggml_vk_get_conv_elements(const ggml_tensor *dst) { static vk_conv_shapes ggml_vk_conv_select_shape(ggml_backend_vk_context * ctx, uint32_t K, uint32_t NPQ) {
const ggml_tensor *src0 = dst->src[0]; auto n_tiles = [&](vk_conv_shapes s) {
const ggml_tensor *src1 = dst->src[1]; return CEIL_DIV(K, vk_conv_block_sizes[s].K)
* CEIL_DIV(NPQ, vk_conv_block_sizes[s].NPQ);
// src0 - kernel: [KW, KH, Cin, Cout]
// src1 - input: [W, H, Cin, N]
// dst - result: [OW, OH, Cout, N]
// Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
}; };
// parallelize in {OW/BS_K, OH/BS_NPQ, 1}
int64_t W = src1->ne[0];
int64_t H = src1->ne[1];
int64_t KW = src0->ne[0];
int64_t KH = src0->ne[1];
int64_t Cout = src0->ne[3];
int64_t N = src1->ne[3];
int64_t OH = calc_conv_output_size(H, KH, dst->op_params[1], dst->op_params[3], dst->op_params[5]);
int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], dst->op_params[2], dst->op_params[4]);
int64_t NPQ = N * OW * OH;
// Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups // We can't query number of shader cores on Intel, use 32 as a placeholder
std::array<uint32_t, 3> elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 }; // so small convolutions will still choose a smaller tile.
return elements; const uint32_t shader_core_count = ctx->device->shader_core_count > 0 ? ctx->device->shader_core_count : 32;
}
static std::array<uint32_t, 3> ggml_vk_get_conv_transpose_2d_elements(const ggml_tensor *dst) { if (K > 64 && n_tiles(CONV_SHAPE_128x128) >= shader_core_count * 2) {
const ggml_tensor *src0 = dst->src[0]; return CONV_SHAPE_128x128;
const ggml_tensor *src1 = dst->src[1]; } else if (K <= 32 && n_tiles(CONV_SHAPE_32x256) >= shader_core_count * 2) {
return CONV_SHAPE_32x256;
// src0 - kernel: [KW, KH, Cout, Cin] } else {
// src1 - input: [W, H, Cin, N] return CONV_SHAPE_64x32;
// dst - result: [OW, OH, Cout, N] }
auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
return (ins - 1) * s - 2 * p + (ks - 1) * d + 1;
};
// parallelize in {OW/BS_K, OH/BS_NPQ, 1}
int64_t W = src1->ne[0];
int64_t H = src1->ne[1];
int64_t KW = src0->ne[0];
int64_t KH = src0->ne[1];
int64_t Cout = src0->ne[2];
int64_t N = src1->ne[3];
int64_t OH = calc_conv_output_size(H, KH, dst->op_params[0], 0, 1);
int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], 0, 1);
int64_t NPQ = N * OW * OH;
// Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
std::array<uint32_t, 3> elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 };
return elements;
} }
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * dst, ggml_op op) { static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * dst, ggml_op op) {
@ -8799,39 +8695,20 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return nullptr; return nullptr;
case GGML_OP_CONV_2D: case GGML_OP_CONV_2D:
case GGML_OP_CONV_TRANSPOSE_2D: case GGML_OP_CONV_TRANSPOSE_2D:
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) { uint32_t K = dst->ne[2]; // Cout
std::array<uint32_t, 3> elements{}; uint32_t NPQ = dst->ne[3] * dst->ne[1] * dst->ne[0]; // N * OH * OW
if (op == GGML_OP_CONV_2D) elements = ggml_vk_get_conv_elements(dst); vk_conv_shapes shape = ggml_vk_conv_select_shape(ctx, K, NPQ);
else if (op == GGML_OP_CONV_TRANSPOSE_2D) elements = ggml_vk_get_conv_transpose_2d_elements(dst);
vk_conv_shapes shape;
uint32_t tiles[CONV_SHAPE_COUNT];
for (uint32_t i = 0; i < CONV_SHAPE_COUNT; ++i) {
tiles[i] = CEIL_DIV(elements[0], conv_shapes_wg_denoms[i][0]) * CEIL_DIV(elements[1], conv_shapes_wg_denoms[i][1]);
}
// We can't query number of shader cores on Intel, use 32 as a placeholder
// so small convolutions will still choose a smaller tile.
const uint32_t shader_core_count = ctx->device->shader_core_count > 0 ? ctx->device->shader_core_count : 32;
if (elements[0] > 64 && tiles[CONV_SHAPE_128x128] >= shader_core_count * 2) {
shape = CONV_SHAPE_128x128;
} else if (elements[0] <= 32 && tiles[CONV_SHAPE_32x256] >= shader_core_count * 2) {
shape = CONV_SHAPE_32x256;
} else {
shape = CONV_SHAPE_64x32;
}
uint32_t KW = static_cast<uint32_t>(src0->ne[0]);
uint32_t KH = static_cast<uint32_t>(src0->ne[1]);
uint32_t s0 = static_cast<uint32_t>(dst->op_params[0]);
uint32_t s1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[1]) : static_cast<uint32_t>(dst->op_params[0]);
uint32_t p0 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[2]) : 0;
uint32_t p1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[3]) : 0;
uint32_t d0 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[4]) : 1;
uint32_t d1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[5]) : 1;
bool transpose = dst->op == GGML_OP_CONV_TRANSPOSE_2D;
uint32_t KW = (uint32_t)src0->ne[0];
uint32_t KH = (uint32_t)src0->ne[1];
uint32_t s0 = (uint32_t)(ggml_get_op_params_i32(dst, 0));
uint32_t s1 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 1) : s0;
uint32_t p0 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 2) : 0;
uint32_t p1 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 3) : 0;
uint32_t d0 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 4) : 1;
uint32_t d1 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 5) : 1;
vk_conv2d_pipeline_state conv2d_pipeline_state(s0, s1, p0, p1, d0, d1, KW, KH); vk_conv2d_pipeline_state conv2d_pipeline_state(s0, s1, p0, p1, d0, d1, KW, KH);
std::map<vk_conv2d_pipeline_state, vk_pipeline> *pipelines = nullptr; std::map<vk_conv2d_pipeline_state, vk_pipeline> *pipelines = nullptr;
@ -9150,13 +9027,21 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
elements = { N * OC * OH * OW, 1, 1}; elements = { N * OC * OH * OW, 1, 1};
} break; } break;
case GGML_OP_CONV_2D: case GGML_OP_CONV_2D:
{
elements = ggml_vk_get_conv_elements(dst);
} break;
case GGML_OP_CONV_TRANSPOSE_2D: case GGML_OP_CONV_TRANSPOSE_2D:
{ if constexpr (std::is_same_v<PC, vk_op_conv2d_push_constants>) {
elements = ggml_vk_get_conv_transpose_2d_elements(dst); const uint32_t NPQ = pc.N * pc.OH * pc.OW;
} break; const vk_conv_shapes shape = ggml_vk_conv_select_shape(ctx, pc.Cout, NPQ);
const uint32_t NPQ_blocks = CEIL_DIV(NPQ, vk_conv_block_sizes[shape].NPQ);
elements = { pc.Cout, NPQ_blocks, 1 };
if (elements[1] > 512) {
elements[2] = CEIL_DIV(elements[1], 512);
elements[1] = 512;
}
} else {
GGML_ABORT("invalid push constant type for CONV_2D");
}
break;
case GGML_OP_ADD: case GGML_OP_ADD:
case GGML_OP_SUB: case GGML_OP_SUB:
case GGML_OP_DIV: case GGML_OP_DIV:
@ -10707,30 +10592,24 @@ static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx,
GGML_ASSERT(dst->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(nb00 == sizeof(float) || nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb00 == sizeof(float) || nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float)); GGML_ASSERT(nb10 == sizeof(float));
GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 == sizeof(float));
bool transpose = dst->op == GGML_OP_CONV_TRANSPOSE_2D;
vk_op_conv2d_push_constants p{}; vk_op_conv2d_push_constants p{};
p.Cout = static_cast<uint32_t>(ne03); p.Cout = static_cast<uint32_t>(!transpose ? ne03 : ne02);
p.Cin = static_cast<uint32_t>(ne02); p.Cin = static_cast<uint32_t>(!transpose ? ne02 : ne03);
p.N = static_cast<uint32_t>(ne13); p.N = static_cast<uint32_t>(ne13);
GGML_ASSERT(p.Cout == ne2);
GGML_ASSERT(p.Cin == ne12);
p.KW = static_cast<uint32_t>(ne00);
p.KH = static_cast<uint32_t>(ne01);
p.W = static_cast<uint32_t>(ne10); p.W = static_cast<uint32_t>(ne10);
p.H = static_cast<uint32_t>(ne11); p.H = static_cast<uint32_t>(ne11);
p.OW = static_cast<uint32_t>(ne0); p.OW = static_cast<uint32_t>(ne0);
p.OH = static_cast<uint32_t>(ne1); p.OH = static_cast<uint32_t>(ne1);
p.s0 = static_cast<uint32_t>(dst->op_params[0]);
p.s1 = static_cast<uint32_t>(dst->op_params[1]);
p.p0 = static_cast<uint32_t>(dst->op_params[2]);
p.p1 = static_cast<uint32_t>(dst->op_params[3]);
p.d0 = static_cast<uint32_t>(dst->op_params[4]);
p.d1 = static_cast<uint32_t>(dst->op_params[5]);
p.nb01 = static_cast<uint32_t>(nb01 / nb00); p.nb01 = static_cast<uint32_t>(nb01 / nb00);
p.nb02 = static_cast<uint32_t>(nb02 / nb00); p.nb02 = static_cast<uint32_t>(nb02 / nb00);
p.nb03 = static_cast<uint32_t>(nb03 / nb00); p.nb03 = static_cast<uint32_t>(nb03 / nb00);
@ -10743,59 +10622,7 @@ static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx,
p.nb2 = static_cast<uint32_t>(nb2 / nb0); p.nb2 = static_cast<uint32_t>(nb2 / nb0);
p.nb3 = static_cast<uint32_t>(nb3 / nb0); p.nb3 = static_cast<uint32_t>(nb3 / nb0);
GGML_ASSERT(ne03 == ne2); ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, dst->op, std::move(p));
GGML_ASSERT(ne02 == ne12);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_2D, std::move(p));
}
static void ggml_vk_conv_transpose_2d(ggml_backend_vk_context * ctx, vk_context & subctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(nb00 == sizeof(float) || nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
GGML_ASSERT(nb0 == sizeof(float));
vk_op_conv_transpose_2d_push_constants p{};
p.Cout = static_cast<uint32_t>(ne02);
p.Cin = static_cast<uint32_t>(ne03);
p.N = static_cast<uint32_t>(ne13);
p.KW = static_cast<uint32_t>(ne00);
p.KH = static_cast<uint32_t>(ne01);
p.W = static_cast<uint32_t>(ne10);
p.H = static_cast<uint32_t>(ne11);
p.OW = static_cast<uint32_t>(ne0);
p.OH = static_cast<uint32_t>(ne1);
p.s0 = static_cast<uint32_t>(dst->op_params[0]);
p.s1 = static_cast<uint32_t>(dst->op_params[0]);
p.p0 = 0;
p.p1 = 0;
p.d0 = 1;
p.d1 = 1;
p.nb01 = static_cast<uint32_t>(nb01 / nb00);
p.nb02 = static_cast<uint32_t>(nb02 / nb00);
p.nb03 = static_cast<uint32_t>(nb03 / nb00);
p.nb11 = static_cast<uint32_t>(nb11 / nb10);
p.nb12 = static_cast<uint32_t>(nb12 / nb10);
p.nb13 = static_cast<uint32_t>(nb13 / nb10);
p.nb1 = static_cast<uint32_t>(nb1 / nb0);
p.nb2 = static_cast<uint32_t>(nb2 / nb0);
p.nb3 = static_cast<uint32_t>(nb3 / nb0);
GGML_ASSERT(ne02 == ne2);
GGML_ASSERT(ne03 == ne12);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_TRANSPOSE_2D, std::move(p));
} }
static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -12166,11 +11993,8 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
break; break;
case GGML_OP_CONV_2D: case GGML_OP_CONV_2D:
ggml_vk_conv_2d(ctx, compute_ctx, src0, src1, node);
break;
case GGML_OP_CONV_TRANSPOSE_2D: case GGML_OP_CONV_TRANSPOSE_2D:
ggml_vk_conv_transpose_2d(ctx, compute_ctx, src0, src1, node); ggml_vk_conv_2d(ctx, compute_ctx, src0, src1, node);
break; break;
case GGML_OP_CONV_2D_DW: case GGML_OP_CONV_2D_DW:
@ -14279,13 +14103,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_CONV_2D: case GGML_OP_CONV_2D:
case GGML_OP_CONV_TRANSPOSE_2D: case GGML_OP_CONV_TRANSPOSE_2D:
{ {
// Op is disabled for Apple because it segfaults at pipeline create time on MoltenVK
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
if (op->op == GGML_OP_CONV_TRANSPOSE_2D &&
device->properties.limits.maxPushConstantsSize < sizeof(vk_op_conv_transpose_2d_push_constants)) {
return false;
}
// Channel-contiguous format is not supported yet. // Channel-contiguous format is not supported yet.
return ((op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) && return ((op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
op->src[1]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 &&

View File

@ -32,22 +32,12 @@ layout(push_constant) uniform parameter {
uint32_t Cin; uint32_t Cin;
uint32_t N; uint32_t N;
// Tensor spatial sizes: kernel, input, output // Tensor spatial sizes: input, output
uint32_t KW;
uint32_t KH;
uint32_t W; uint32_t W;
uint32_t H; uint32_t H;
uint32_t OW; uint32_t OW;
uint32_t OH; uint32_t OH;
// Parameters: stride, padding, dilation - 0=y, 1=x
uint32_t s0;
uint32_t s1;
uint32_t p0;
uint32_t p1;
uint32_t d0;
uint32_t d1;
// Strides in elements // Strides in elements
uint32_t nb01; uint32_t nb01;
uint32_t nb02; uint32_t nb02;
@ -77,13 +67,14 @@ layout(constant_id = 3) const uint BS_NPQ = 128;
layout(constant_id = 4) const uint TS_K = 8; layout(constant_id = 4) const uint TS_K = 8;
layout(constant_id = 5) const uint use_collectives = 1; layout(constant_id = 5) const uint use_collectives = 1;
layout(constant_id = 6) const uint SHMEM_PAD = 4; layout(constant_id = 6) const uint SHMEM_PAD = 4;
// Stride, padding, dilation
layout(constant_id = 7) const uint s0 = 1; layout(constant_id = 7) const uint s0 = 1;
layout(constant_id = 8) const uint s1 = 1; layout(constant_id = 8) const uint s1 = 1;
layout(constant_id = 9) const uint p0 = 0; layout(constant_id = 9) const uint p0 = 0;
layout(constant_id = 10) const uint p1 = 0; layout(constant_id = 10) const uint p1 = 0;
layout(constant_id = 11) const uint d0 = 1; layout(constant_id = 11) const uint d0 = 1;
layout(constant_id = 12) const uint d1 = 1; layout(constant_id = 12) const uint d1 = 1;
// Kernel spatial sizes
layout(constant_id = 13) const uint KW = 1; layout(constant_id = 13) const uint KW = 1;
layout(constant_id = 14) const uint KH = 1; layout(constant_id = 14) const uint KH = 1;
@ -138,7 +129,7 @@ P,Q=OH,OW
*/ */
uint32_t B_idx_K = gl_WorkGroupID.x; uint32_t B_idx_K = gl_WorkGroupID.x;
uint32_t B_idx_NPQ = gl_WorkGroupID.y; uint32_t B_idx_NPQ = gl_WorkGroupID.y + gl_WorkGroupID.z * 512;
uint32_t T_y = tid / NT_NPQ; uint32_t T_y = tid / NT_NPQ;
uint32_t T_x = tid % NT_NPQ; uint32_t T_x = tid % NT_NPQ;
@ -178,6 +169,10 @@ ACC_TYPE perElemOpStore(const in uint32_t r, const in uint32_t c, const in ACC_T
#endif #endif
void main() { void main() {
if (B_idx_NPQ * BS_NPQ >= NPQ) {
return;
}
#ifdef COOPMAT2 #ifdef COOPMAT2
coopmat<ACC_TYPE, gl_ScopeWorkgroup, BS_K, BS_NPQ, gl_MatrixUseAccumulator> matC; coopmat<ACC_TYPE, gl_ScopeWorkgroup, BS_K, BS_NPQ, gl_MatrixUseAccumulator> matC;
matC = coopmat<ACC_TYPE, gl_ScopeWorkgroup, BS_K, BS_NPQ, gl_MatrixUseAccumulator>(0.0); matC = coopmat<ACC_TYPE, gl_ScopeWorkgroup, BS_K, BS_NPQ, gl_MatrixUseAccumulator>(0.0);

View File

@ -6982,6 +6982,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1)); test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2)); test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
test_cases.emplace_back(new test_conv_transpose_2d({129, 63, 35, 1}, {3, 3, 48, 35}, 1));
test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1})); test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1})); test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
@ -7897,6 +7898,8 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
{ 58, 3, 64, 32, 8 }, { 58, 3, 64, 32, 8 },
// A deep layer of a ConvNet, several images in the batch // A deep layer of a ConvNet, several images in the batch
{ 16, 3, 512, 128, 8 }, { 16, 3, 512, 128, 8 },
// High resolution output (large NPQ)
{1536, 3, 64, 32, 1 },
}; };
for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) { for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {