llama : parameter conversion and loading fixes for PLaMo2 variants (#16075)
* Fix to use hidden_size_per_head * Fix num heads * Fix array * Fix loading weights * Support old GGUF converted by the previous version of llama.cpp * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Move shared parameter definitions to the outside of loop * Not calculating n_embd_head_k,v by n_embd / n_head --------- Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit is contained in:
parent
1fe4e38cc2
commit
ded67b9444
|
|
@ -4250,7 +4250,8 @@ class Plamo2Model(TextModel):
|
||||||
# This logic matches modeling_plamo.py's is_mamba function
|
# This logic matches modeling_plamo.py's is_mamba function
|
||||||
mamba_step = hparams.get("mamba_step", 2)
|
mamba_step = hparams.get("mamba_step", 2)
|
||||||
mamba_enabled = hparams.get("mamba_enabled", True)
|
mamba_enabled = hparams.get("mamba_enabled", True)
|
||||||
mamba_layers = []
|
num_key_value_heads = []
|
||||||
|
num_attention_heads = []
|
||||||
|
|
||||||
if mamba_enabled:
|
if mamba_enabled:
|
||||||
for i in range(block_count):
|
for i in range(block_count):
|
||||||
|
|
@ -4260,17 +4261,21 @@ class Plamo2Model(TextModel):
|
||||||
else:
|
else:
|
||||||
is_mamba = (i % mamba_step) != (mamba_step // 2)
|
is_mamba = (i % mamba_step) != (mamba_step // 2)
|
||||||
if is_mamba:
|
if is_mamba:
|
||||||
mamba_layers.append(0)
|
num_key_value_heads.append(0)
|
||||||
|
num_attention_heads.append(0)
|
||||||
else:
|
else:
|
||||||
mamba_layers.append(hparams.get("num_key_value_heads", 4))
|
num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
|
||||||
|
num_attention_heads.append(hparams.get("num_attention_heads", 32))
|
||||||
|
|
||||||
if mamba_layers:
|
if num_key_value_heads and num_attention_heads:
|
||||||
self.gguf_writer.add_head_count_kv(mamba_layers)
|
self.gguf_writer.add_head_count_kv(num_key_value_heads)
|
||||||
|
self.gguf_writer.add_head_count(num_attention_heads)
|
||||||
|
|
||||||
self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
|
self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
|
||||||
self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
|
self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
|
||||||
|
self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
|
||||||
|
self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
|
||||||
self.gguf_writer.add_block_count(block_count)
|
self.gguf_writer.add_block_count(block_count)
|
||||||
self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
|
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
|
self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
|
||||||
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
|
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -42,7 +42,7 @@ struct llama_hparams {
|
||||||
uint32_t n_embd;
|
uint32_t n_embd;
|
||||||
uint32_t n_embd_features = 0;
|
uint32_t n_embd_features = 0;
|
||||||
uint32_t n_layer;
|
uint32_t n_layer;
|
||||||
int32_t n_layer_kv_from_start = -1; // if non-negative, the first n_layer_kv_from_start layers have KV cache
|
int32_t n_layer_kv_from_start = -1; // if non-negative, the first n_layer_kv_from_start layers have KV cache
|
||||||
uint32_t n_rot;
|
uint32_t n_rot;
|
||||||
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
||||||
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
||||||
|
|
|
||||||
|
|
@ -1084,7 +1084,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
default: type = LLM_TYPE_UNKNOWN;
|
default: type = LLM_TYPE_UNKNOWN;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Load attention parameters
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
|
||||||
} break;
|
} break;
|
||||||
case LLM_ARCH_GPT2:
|
case LLM_ARCH_GPT2:
|
||||||
{
|
{
|
||||||
|
|
@ -3392,17 +3396,17 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||||
} break;
|
} break;
|
||||||
case LLM_ARCH_PLAMO2:
|
case LLM_ARCH_PLAMO2:
|
||||||
{
|
{
|
||||||
|
// mamba parameters
|
||||||
const uint32_t d_conv = hparams.ssm_d_conv;
|
const uint32_t d_conv = hparams.ssm_d_conv;
|
||||||
const uint32_t d_state = hparams.ssm_d_state;
|
const uint32_t d_state = hparams.ssm_d_state;
|
||||||
const uint32_t num_heads = hparams.ssm_dt_rank;
|
const uint32_t num_heads = hparams.ssm_dt_rank;
|
||||||
const uint32_t intermediate_size = hparams.ssm_d_inner;
|
const uint32_t intermediate_size = hparams.ssm_d_inner;
|
||||||
const uint32_t head_dim = intermediate_size / num_heads;
|
|
||||||
const uint32_t qk_dim = head_dim;
|
|
||||||
const uint32_t v_dim = head_dim;
|
|
||||||
const int64_t num_attention_heads = hparams.n_head();
|
|
||||||
const int64_t q_num_heads = num_attention_heads;
|
|
||||||
const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
|
const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
|
||||||
|
|
||||||
|
// attention parameters
|
||||||
|
const uint32_t qk_dim = hparams.n_embd_head_k;
|
||||||
|
const uint32_t v_dim = hparams.n_embd_head_v;
|
||||||
|
|
||||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||||
|
|
||||||
// output
|
// output
|
||||||
|
|
@ -3436,6 +3440,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||||
layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
|
layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
|
||||||
layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
|
layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
|
||||||
} else {
|
} else {
|
||||||
|
const int64_t num_attention_heads = hparams.n_head(i);
|
||||||
|
const int64_t q_num_heads = num_attention_heads;
|
||||||
const int64_t num_key_value_heads = hparams.n_head_kv(i);
|
const int64_t num_key_value_heads = hparams.n_head_kv(i);
|
||||||
const int64_t k_num_heads = num_key_value_heads;
|
const int64_t k_num_heads = num_key_value_heads;
|
||||||
const int64_t v_num_heads = num_key_value_heads;
|
const int64_t v_num_heads = num_key_value_heads;
|
||||||
|
|
@ -3444,8 +3450,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||||
const int64_t v_proj_dim = v_num_heads * v_dim;
|
const int64_t v_proj_dim = v_num_heads * v_dim;
|
||||||
|
|
||||||
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
|
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
|
||||||
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {head_dim, num_attention_heads}, 0);
|
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {qk_dim, num_attention_heads}, 0);
|
||||||
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {head_dim, k_num_heads}, 0);
|
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {qk_dim, k_num_heads}, 0);
|
||||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
|
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -17611,6 +17617,7 @@ private:
|
||||||
const int64_t n_embd_head_q = hparams.n_embd_head_k;
|
const int64_t n_embd_head_q = hparams.n_embd_head_k;
|
||||||
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||||
const int64_t n_embd_head_v = hparams.n_embd_head_v;
|
const int64_t n_embd_head_v = hparams.n_embd_head_v;
|
||||||
|
int32_t n_head = hparams.n_head(il);
|
||||||
int32_t n_head_kv = hparams.n_head_kv(il);
|
int32_t n_head_kv = hparams.n_head_kv(il);
|
||||||
|
|
||||||
const int64_t q_offset = 0;
|
const int64_t q_offset = 0;
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue