diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index 08383edb40..8ed875f9ef 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -2142,6 +2142,26 @@ static bool ggml_cuda_should_fuse_mul_mat_vec_f(const ggml_tensor * tensor) { return use_mul_mat_vec_f; } +static bool ggml_cuda_should_use_mmvq(ggml_type type, int cc, int64_t ncols_dst) { + if (ncols_dst > MMVQ_MAX_BATCH_SIZE) { + return false; + } + + if (GGML_CUDA_CC_IS_RDNA4(cc)) { + switch (type) { + case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ3_S: + return ncols_dst <= 4; + default: + break; + } + } + + return true; +} + static bool ggml_cuda_should_fuse_mul_mat_vec_q(const ggml_tensor * tensor) { ggml_tensor * src0 = tensor->src[0]; ggml_tensor * src1 = tensor->src[1]; @@ -2151,11 +2171,11 @@ static bool ggml_cuda_should_fuse_mul_mat_vec_q(const ggml_tensor * tensor) { ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) && src0->view_src; + const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear && src1->type == GGML_TYPE_F32 && - dst->type == GGML_TYPE_F32 && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE; + dst->type == GGML_TYPE_F32 && ggml_cuda_should_use_mmvq(src0->type, cc, src1->ne[1]); // fusion is not universally faster on Pascal - const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; if (cc <= GGML_CUDA_CC_PASCAL) { return false; } @@ -2212,6 +2232,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor const int cc = ggml_cuda_info().devices[id].cc; const int warp_size = ggml_cuda_info().devices[id].warp_size; + use_mul_mat_vec_q = use_mul_mat_vec_q && ggml_cuda_should_use_mmvq(src0->type, cc, src1->ne[1]); use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1], /*n_experts=*/0); use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false); use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]); @@ -2220,6 +2241,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor } else { const int cc = ggml_cuda_info().devices[ctx.device].cc; const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size; + use_mul_mat_vec_q = use_mul_mat_vec_q && ggml_cuda_should_use_mmvq(src0->type, cc, src1->ne[1]); use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1], /*n_experts=*/0); use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false); use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]); diff --git a/ggml/src/ggml-cuda/mmq.cu b/ggml/src/ggml-cuda/mmq.cu index 9a69f41d15..fa39790504 100644 --- a/ggml/src/ggml-cuda/mmq.cu +++ b/ggml/src/ggml-cuda/mmq.cu @@ -356,8 +356,42 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11, int64_t } } - // For RDNA4 MMQ is consistently faster than dequantization + hipBLAS: - // https://github.com/ggml-org/llama.cpp/pull/18537#issuecomment-3706422301 + if (GGML_CUDA_CC_IS_RDNA4(cc)){ + // if (n_experts >= 64) { + // return true; + // } + switch (type) { + case GGML_TYPE_IQ2_S: + case GGML_TYPE_Q6_K: + return ne11 <= 128; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_MXFP4: + return true; + case GGML_TYPE_Q5_K: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_Q4_K: + return ne11 <= 256; + case GGML_TYPE_Q8_0: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + return ne11 <= 512; + + default: + return false; + + } + + return false; + } return true; }