Adjust size calculation and change fallback value to 0.0f

This commit is contained in:
Ed Addario 2025-10-28 21:35:35 +00:00
parent 683ef8dfb7
commit dc4a04b5c5
No known key found for this signature in database
GPG Key ID: E7875815A3230993
1 changed files with 31 additions and 25 deletions

View File

@ -170,43 +170,43 @@ static std::vector<float> compute_tensor_averages(const Stats & tstats) {
} }
static bool compute_vector_statistics(std::vector<tensor_statistics> & tstats, const std::string & name, const Stats & e) { static bool compute_vector_statistics(std::vector<tensor_statistics> & tstats, const std::string & name, const Stats & e) {
if (e.values.size() % e.counts.size() != 0) { const size_t n_mat = e.counts.size();
LOG_ERR("%s: activation size mismatch for tensor %s (%zu vs %zu)\n", __func__, name.c_str(), e.counts.size(), e.values.size()); const size_t len = e.activations.empty() ? e.values.size() : e.activations.size();
return false;
} if (n_mat == 0) {
if (e.counts.empty()) {
LOG_ERR("%s: there are no activations for tensor %s. The imatrix may be suboptimal\n", __func__, name.c_str()); LOG_ERR("%s: there are no activations for tensor %s. The imatrix may be suboptimal\n", __func__, name.c_str());
return false; return false;
} }
const int n_mat = e.counts.size(); if (len == 0 || (len % n_mat) != 0) {
const int row_size = e.values.size() / n_mat; LOG_ERR("%s: activation size mismatch for tensor %s (len=%zu, counts=%zu)\n", __func__, name.c_str(), len, n_mat);
return false;
}
const int row_size = (int)(len / n_mat);
std::vector<float> activations; std::vector<float> activations;
activations.reserve(len);
if (e.activations.empty()) { if (e.activations.empty()) {
activations.reserve(e.values.size()); for (size_t i = 0; i < n_mat; ++i) {
const auto c = (float)e.counts[i];
for (int i = 0; i < n_mat; ++i) {
const float c = (float)e.counts[i];
const size_t off = i * row_size; const size_t off = i * row_size;
for (int j = 0; j < row_size; ++j) { for (int j = 0; j < row_size; ++j) {
if (c <= 0.0f) { if (c <= 0.0f) {
activations.push_back(1.0f); // same as legacy activations.push_back(0.0f);
} else { } else {
activations.push_back(e.values[off + j] / c); activations.push_back(e.values[off + j] / c);
} }
} }
} }
} else { } else {
activations.reserve(e.activations.size()); for (size_t i = 0; i < n_mat; ++i) {
const auto c = (float)e.counts[i];
for (int i = 0; i < n_mat; ++i) {
const float c = (float)e.counts[i];
const size_t off = i * row_size; const size_t off = i * row_size;
for (int j = 0; j < row_size; ++j) { for (int j = 0; j < row_size; ++j) {
if (c <= 0.0f) { if (c <= 0.0f) {
activations.push_back(1.0f); // same as legacy activations.push_back(0.0f);
} else { } else {
activations.push_back(e.activations[off + j] / c); activations.push_back(e.activations[off + j] / c);
} }
@ -214,6 +214,11 @@ static bool compute_vector_statistics(std::vector<tensor_statistics> & tstats, c
} }
} }
if (activations.empty()) {
LOG_ERR("%s: computed empty activation vector for tensor %s\n", __func__, name.c_str());
return false;
}
const float sum = std::accumulate(activations.begin(), activations.end(), 0.0f); const float sum = std::accumulate(activations.begin(), activations.end(), 0.0f);
const float max = * std::max_element(activations.begin(), activations.end()); const float max = * std::max_element(activations.begin(), activations.end());
const float min = * std::min_element(activations.begin(), activations.end()); const float min = * std::min_element(activations.begin(), activations.end());
@ -221,28 +226,29 @@ static bool compute_vector_statistics(std::vector<tensor_statistics> & tstats, c
const float sqr_sum = std::inner_product(activations.begin(), activations.end(), activations.begin(), 0.0f); const float sqr_sum = std::inner_product(activations.begin(), activations.end(), activations.begin(), 0.0f);
const float variance = sqr_sum / activations.size() - mean * mean; const float variance = sqr_sum / activations.size() - mean * mean;
const float std_deviation = std::sqrt(std::max(0.0f, variance)); const float std_deviation = std::sqrt(std::max(0.0f, variance));
float entropy = 0;
float entropy = 0.0f;
if (e.activations.empty()) { if (e.activations.empty()) {
if (sum > 0) { // classic entropy on normalized activations distribution
if (sum > 0.0f) {
for (const auto act : activations) { for (const auto act : activations) {
const float p = act / sum; const float p = act / sum;
if (p > 0) { entropy -= p * std::log2(p); } if (p > 0.0f) { entropy -= p * std::log2(p); }
} }
} }
} else { } else {
float div = 0.0; // entropy on normalized squared weights
float div = 0.0f;
std::vector<float> weights(activations.size()); std::vector<float> weights(activations.size());
for (size_t i = 0; i < activations.size(); ++i) { for (size_t i = 0; i < activations.size(); ++i) {
const float w = activations[i] * activations[i]; const float w = activations[i] * activations[i];
weights[i] = w; weights[i] = w;
div += w; div += w;
} }
if (div > 0.0f) {
if (div > 0.0) { for (const float w : weights) {
for (float w : weights) {
const float p = w / div; const float p = w / div;
if (p > 0.0) { entropy -= p * std::log2(p); } if (p > 0.0f) { entropy -= p * std::log2(p); }
} }
} }
} }