convert: support Mistral 3 Large MoE (#17730)

* convert: support Mistral 3 Large MoE

* filter out vision tensors, add missing keys

* handle vocab

* add temperature_length

* fix mscale_all_dim

* clean up

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* fix

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit is contained in:
Xuan-Son Nguyen 2025-12-06 10:49:33 +01:00 committed by GitHub
parent c6c5e85979
commit dbc15a7967
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 188 additions and 83 deletions

View File

@ -1524,6 +1524,79 @@ class TextModel(ModelBase):
special_vocab._set_special_token("bos", 151643) special_vocab._set_special_token("bos", 151643)
special_vocab.add_to_gguf(self.gguf_writer) special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_mistral(self):
if not _mistral_common_installed:
raise ImportError(_mistral_import_error_msg)
vocab = MistralVocab(self.dir_model)
logger.info(
f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
)
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
tokens = []
scores = []
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size, (
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
)
if vocab.tokenizer_type == MistralTokenizerType.tekken:
self.gguf_writer.add_tokenizer_pre("tekken")
self.gguf_writer.add_token_merges(
vocab.extract_vocab_merges_from_model()
)
logger.info(
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
)
self.gguf_writer.add_bos_token_id(vocab.bos_id)
self.gguf_writer.add_eos_token_id(vocab.eos_id)
self.gguf_writer.add_unk_token_id(vocab.unk_id)
self.gguf_writer.add_pad_token_id(vocab.pad_id)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_vocab_size(vocab.vocab_size)
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(False)
local_template_file_path = self.dir_model / "chat_template.jinja"
if self.is_mistral_format and local_template_file_path.is_file():
# Ministral-3 and other new Mistral models come with chat templates.
# ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
logger.info("Using an existing Mistral local chat template.")
with open(local_template_file_path, "r", encoding="utf-8") as f:
template = f.read()
elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
template_dir = Path(__file__).parent / "models/templates/"
# Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
if self.is_mistral_format:
logger.info(
"Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
"Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
)
template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
else:
logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
template = None
if template is not None:
self.gguf_writer.add_chat_template(template)
class MmprojModel(ModelBase): class MmprojModel(ModelBase):
model_type = ModelType.MMPROJ model_type = ModelType.MMPROJ
@ -2294,79 +2367,6 @@ class LlamaModel(TextModel):
if self.hf_arch == "VLlama3ForCausalLM": if self.hf_arch == "VLlama3ForCausalLM":
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32) self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
def _set_vocab_mistral(self):
if not _mistral_common_installed:
raise ImportError(_mistral_import_error_msg)
vocab = MistralVocab(self.dir_model)
logger.info(
f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
)
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
tokens = []
scores = []
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size, (
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
)
if vocab.tokenizer_type == MistralTokenizerType.tekken:
self.gguf_writer.add_tokenizer_pre("tekken")
self.gguf_writer.add_token_merges(
vocab.extract_vocab_merges_from_model()
)
logger.info(
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
)
self.gguf_writer.add_bos_token_id(vocab.bos_id)
self.gguf_writer.add_eos_token_id(vocab.eos_id)
self.gguf_writer.add_unk_token_id(vocab.unk_id)
self.gguf_writer.add_pad_token_id(vocab.pad_id)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_vocab_size(vocab.vocab_size)
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(False)
local_template_file_path = self.dir_model / "chat_template.jinja"
if self.is_mistral_format and local_template_file_path.is_file():
# Ministral-3 and other new Mistral models come with chat templates.
# ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
logger.info("Using an existing Mistral local chat template.")
with open(local_template_file_path, "r", encoding="utf-8") as f:
template = f.read()
elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
template_dir = Path(__file__).parent / "models/templates/"
# Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
if self.is_mistral_format:
logger.info(
"Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
"Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
)
template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
else:
logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
template = None
if template is not None:
self.gguf_writer.add_chat_template(template)
def set_vocab(self): def set_vocab(self):
if self.is_mistral_format: if self.is_mistral_format:
return self._set_vocab_mistral() return self._set_vocab_mistral()
@ -9924,17 +9924,109 @@ class MistralModel(LlamaModel):
def set_gguf_parameters(self): def set_gguf_parameters(self):
super().set_gguf_parameters() super().set_gguf_parameters()
if "yarn" in self.hparams: MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
yarn_params = self.hparams["yarn"]
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
self.gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
if "llama_4_scaling" in self.hparams: @staticmethod
self.gguf_writer.add_attn_temperature_scale(self.hparams["llama_4_scaling"]["beta"]) def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
if "yarn" in hparams:
yarn_params = hparams["yarn"]
gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
if "llama_4_scaling" in hparams:
gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
class MistralMoeModel(DeepseekV2Model):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
model_name = "Mistral"
hf_arch = ""
is_mistral_format = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
logger.info("Using MistralMoeModel")
# remap hparams from Mistral MoE format to DeepseekV2 format
# we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
# ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
config = self.hparams
# Mistral key -> HF key
config_mapping = {
"dim": "hidden_size",
"norm_eps": "rms_norm_eps",
"n_kv_heads": "num_key_value_heads",
"n_layers": "num_hidden_layers",
"n_heads": "num_attention_heads",
"hidden_dim": "intermediate_size",
}
# HF key -> (Mistral key, default value)
top_level_mapping_with_default = {
"model_type": ("model_type", "transformer"),
"hidden_act": ("activation", "silu"),
"tie_word_embeddings": ("tied_embeddings", False),
"max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
"max_position_embeddings": ("max_position_embeddings", 128_000),
}
# mapping top-level keys
for key, new_key in config_mapping.items():
if key in config:
config[new_key] = config[key]
for new_key, (key, default_value) in top_level_mapping_with_default.items():
config[new_key] = config.get(key, default_value)
# mapping MoE-specific keys
moe_config_map = {
"route_every_n": "moe_layer_freq",
"first_k_dense_replace": "first_k_dense_replace",
"num_experts_per_tok": "num_experts_per_tok",
"num_experts": "n_routed_experts",
"expert_hidden_dim": "moe_intermediate_size",
"routed_scale": "routed_scaling_factor",
"num_shared_experts": "n_shared_experts",
"num_expert_groups": "n_group",
"num_expert_groups_per_tok": "topk_group",
}
moe = config["moe"]
for key, new_key in moe_config_map.items():
if key in moe:
config[new_key] = moe[key]
# provide missing values
config["topk_method"] = None
config["norm_topk_prob"] = True
config["scoring_func"] = "softmax"
def set_vocab(self):
self._set_vocab_mistral()
def set_gguf_parameters(self):
super().set_gguf_parameters()
MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
yarn_params = self.hparams["yarn"]
self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
return []
# rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
if name.endswith(".qscale_act"):
name = name.replace(".qscale_act", ".input_scale")
if name.endswith(".qscale_weight"):
name = name.replace(".qscale_weight", ".weight_scale")
if ".wkv_b." in name:
name = name.replace(".wkv_b.", ".kv_b_proj.")
if ".experts." in name:
name = name.replace(".experts.", ".mlp.experts.")
name = name.replace(".w1.", ".gate_proj.")
name = name.replace(".w2.", ".down_proj.")
name = name.replace(".w3.", ".up_proj.")
name = "model." + name
return super().modify_tensors(data_torch, name, bid)
class PixtralModel(LlavaVisionModel): class PixtralModel(LlavaVisionModel):
@ -10490,6 +10582,8 @@ def main() -> None:
elif args.mmproj: elif args.mmproj:
assert hparams.get("vision_encoder") is not None, "This model does not support multimodal" assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
model_class = PixtralModel model_class = PixtralModel
elif "moe" in hparams:
model_class = MistralMoeModel
else: else:
model_class = MistralModel model_class = MistralModel

View File

@ -376,6 +376,7 @@ class TensorNameMap:
"model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
"model.layers.{bid}.feed_forward.gate", # lfm2moe "model.layers.{bid}.feed_forward.gate", # lfm2moe
"model.layers.{bid}.mlp.router.gate", # afmoe "model.layers.{bid}.mlp.router.gate", # afmoe
"layers.{bid}.gate", # mistral-large
), ),
MODEL_TENSOR.FFN_GATE_INP_SHEXP: ( MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
@ -450,6 +451,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4 "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
"model.layers.{bid}.feed_forward.down_proj", "model.layers.{bid}.feed_forward.down_proj",
"model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
"layers.{bid}.shared_experts.w3", # mistral-large
), ),
MODEL_TENSOR.FFN_UP_CHEXP: ( MODEL_TENSOR.FFN_UP_CHEXP: (
@ -496,6 +498,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2 "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
"model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4 "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
"model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
"layers.{bid}.shared_experts.w1", # mistral-large
), ),
MODEL_TENSOR.FFN_GATE_CHEXP: ( MODEL_TENSOR.FFN_GATE_CHEXP: (
@ -557,6 +560,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4 "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
"model.layers.{bid}.shared_mlp.output_linear", # granitemoe "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
"model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
"layers.{bid}.shared_experts.w2", # mistral-large
), ),
MODEL_TENSOR.FFN_DOWN_CHEXP: ( MODEL_TENSOR.FFN_DOWN_CHEXP: (
@ -924,14 +928,17 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_Q_A: ( MODEL_TENSOR.ATTN_Q_A: (
"model.layers.{bid}.self_attn.q_a_proj", # deepseek2 "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
"layers.{bid}.attention.wq_a", # mistral-large
), ),
MODEL_TENSOR.ATTN_Q_B: ( MODEL_TENSOR.ATTN_Q_B: (
"model.layers.{bid}.self_attn.q_b_proj", # deepseek2 "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
"layers.{bid}.attention.wq_b", # mistral-large
), ),
MODEL_TENSOR.ATTN_KV_A_MQA: ( MODEL_TENSOR.ATTN_KV_A_MQA: (
"model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2 "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
"layers.{bid}.attention.wkv_a_with_mqa", # mistral-large
), ),
MODEL_TENSOR.ATTN_KV_B: ( MODEL_TENSOR.ATTN_KV_B: (
@ -940,18 +947,22 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_K_B: ( MODEL_TENSOR.ATTN_K_B: (
"model.layers.{bid}.self_attn.k_b_proj", # deepseek2 "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
"layers.{bid}.attention.k_b_proj", # mistral-large
), ),
MODEL_TENSOR.ATTN_V_B: ( MODEL_TENSOR.ATTN_V_B: (
"model.layers.{bid}.self_attn.v_b_proj", # deepseek2 "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
"layers.{bid}.attention.v_b_proj", # mistral-large
), ),
MODEL_TENSOR.ATTN_Q_A_NORM: ( MODEL_TENSOR.ATTN_Q_A_NORM: (
"model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2 "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
"layers.{bid}.attention.q_a_norm", # mistral-large
), ),
MODEL_TENSOR.ATTN_KV_A_NORM: ( MODEL_TENSOR.ATTN_KV_A_NORM: (
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2 "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
"layers.{bid}.attention.kv_a_norm", # mistral-large
), ),
MODEL_TENSOR.ATTN_SUB_NORM: ( MODEL_TENSOR.ATTN_SUB_NORM: (