loaded now
This commit is contained in:
parent
64184c1236
commit
d8a465650c
|
|
@ -8705,6 +8705,8 @@ class GlmMoeDsaModel(DeepseekV2Model):
|
|||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
self.gguf_writer.add_leading_dense_block_count(3) # TODO: not to hard-code this for future models
|
||||
|
||||
rope_dim = self.hparams["qk_rope_head_dim"]
|
||||
partial_rotary_factor = self.hparams.get("partial_rotary_factor", 1.0)
|
||||
self.gguf_writer.add_rope_dimension_count(int(rope_dim * partial_rotary_factor))
|
||||
|
|
|
|||
|
|
@ -223,6 +223,9 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|||
{ LLM_KV_ATTENTION_TEMPERATURE_SCALE, "%s.attention.temperature_scale" },
|
||||
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
|
||||
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
|
||||
{ LLM_KV_ATTENTION_INDEXER_HEAD_COUNT, "%s.attention.indexer.head_count" },
|
||||
{ LLM_KV_ATTENTION_INDEXER_KEY_LENGTH, "%s.attention.indexer.key_length" },
|
||||
{ LLM_KV_ATTENTION_INDEXER_TOP_K, "%s.attention.indexer.top_k" },
|
||||
|
||||
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
||||
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
|
||||
|
|
|
|||
|
|
@ -227,6 +227,9 @@ enum llm_kv {
|
|||
LLM_KV_ATTENTION_TEMPERATURE_SCALE,
|
||||
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
|
||||
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
|
||||
LLM_KV_ATTENTION_INDEXER_HEAD_COUNT,
|
||||
LLM_KV_ATTENTION_INDEXER_KEY_LENGTH,
|
||||
LLM_KV_ATTENTION_INDEXER_TOP_K,
|
||||
|
||||
LLM_KV_ROPE_DIMENSION_COUNT,
|
||||
LLM_KV_ROPE_DIMENSION_SECTIONS,
|
||||
|
|
|
|||
|
|
@ -194,6 +194,11 @@ struct llama_hparams {
|
|||
std::array<float, LLAMA_MAX_LAYERS> xielu_beta;
|
||||
std::array<float, LLAMA_MAX_LAYERS> xielu_eps;
|
||||
|
||||
// DSA (deepseek sparse attention)
|
||||
uint32_t indexer_n_head = 0;
|
||||
uint32_t indexer_head_size = 0;
|
||||
uint32_t indexer_top_k = 0;
|
||||
|
||||
// qwen3vl deepstack
|
||||
uint32_t n_deepstack_layers = 0;
|
||||
|
||||
|
|
|
|||
|
|
@ -1842,6 +1842,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
||||
|
||||
// DSA parameters
|
||||
ml.get_key(LLM_KV_ATTENTION_INDEXER_HEAD_COUNT, hparams.indexer_n_head);
|
||||
ml.get_key(LLM_KV_ATTENTION_INDEXER_KEY_LENGTH, hparams.indexer_head_size);
|
||||
ml.get_key(LLM_KV_ATTENTION_INDEXER_TOP_K, hparams.indexer_top_k);
|
||||
|
||||
// Expert gating function (GLM-4.5 uses sigmoid)
|
||||
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
|
||||
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
|
||||
|
|
@ -5503,7 +5508,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
int flags = 0;
|
||||
if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
|
||||
// skip all tensors in the NextN layers
|
||||
flags |= TENSOR_SKIP;
|
||||
// TODO @ngxson : TENSOR_NOT_REQUIRED was a hack, need to remove it later
|
||||
flags |= TENSOR_SKIP | TENSOR_NOT_REQUIRED;
|
||||
}
|
||||
|
||||
auto & layer = layers[i];
|
||||
|
|
@ -5526,12 +5532,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);
|
||||
|
||||
// DSA indexer
|
||||
layer.indexer_k_norm = create_tensor(tn(LLM_TENSOR_INDEXER_K_NORM, "weight", i), {n_embd_head_k}, flags);
|
||||
layer.indexer_k_norm_b = create_tensor(tn(LLM_TENSOR_INDEXER_K_NORM, "bias", i), {n_embd_head_k}, flags);
|
||||
layer.indexer_proj = create_tensor(tn(LLM_TENSOR_INDEXER_PROJ, "weight", i), {n_embd, n_head}, flags);
|
||||
layer.indexer_attn_k = create_tensor(tn(LLM_TENSOR_INDEXER_ATTN_K, "weight", i), {n_embd, n_embd_head_k}, flags);
|
||||
layer.indexer_attn_q_b = create_tensor(tn(LLM_TENSOR_INDEXER_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, flags);
|
||||
|
||||
layer.indexer_k_norm = create_tensor(tn(LLM_TENSOR_INDEXER_K_NORM, "weight", i), {hparams.indexer_head_size}, flags);
|
||||
layer.indexer_k_norm_b = create_tensor(tn(LLM_TENSOR_INDEXER_K_NORM, "bias", i), {hparams.indexer_head_size}, flags);
|
||||
layer.indexer_proj = create_tensor(tn(LLM_TENSOR_INDEXER_PROJ, "weight", i), {n_embd, hparams.indexer_n_head}, flags);
|
||||
layer.indexer_attn_k = create_tensor(tn(LLM_TENSOR_INDEXER_ATTN_K, "weight", i), {n_embd, hparams.indexer_head_size}, flags);
|
||||
layer.indexer_attn_q_b = create_tensor(tn(LLM_TENSOR_INDEXER_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.indexer_n_head * hparams.indexer_head_size}, flags);
|
||||
if (i < (int) hparams.n_layer_dense_lead) {
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, flags);
|
||||
|
|
|
|||
Loading…
Reference in New Issue