Merge remote-tracking branch 'upstream/master' into cuda_graph_plan

This commit is contained in:
Xiangyan Sun 2025-10-23 09:23:01 -07:00
commit d6e97a00d7
172 changed files with 21595 additions and 3130 deletions

View File

@ -1305,6 +1305,81 @@ jobs:
cd examples/llama.android cd examples/llama.android
./gradlew build --no-daemon ./gradlew build --no-daemon
android-ndk-build:
runs-on: ubuntu-latest
env:
OPENCL_VERSION: 2025.07.22
strategy:
matrix:
include:
- build: 'arm64-cpu'
defines: '-D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF -D GGML_OPENMP=OFF'
- build: 'arm64-snapdragon'
defines: '--preset arm64-android-snapdragon-release'
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Install OpenCL Headers and Libs
id: install_opencl
if: ${{ matrix.build == 'arm64-snapdragon' }}
run: |
mkdir opencl
curl -L -o opencl/clhpp.tar.gz https://github.com/KhronosGroup/OpenCL-CLHPP/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
curl -L -o opencl/headers.tar.gz https://github.com/KhronosGroup/OpenCL-Headers/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
curl -L -o opencl/icd-loader.tar.gz https://github.com/KhronosGroup/OpenCL-ICD-Loader/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
tar -xaf opencl/headers.tar.gz -C opencl
tar -xaf opencl/clhpp.tar.gz -C opencl
tar -xaf opencl/icd-loader.tar.gz -C opencl
sudo cp -r opencl/OpenCL-Headers-${OPENCL_VERSION}/CL ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
sudo cp -r opencl/OpenCL-CLHPP-${OPENCL_VERSION}/include/CL/* ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include/CL
cd opencl/OpenCL-ICD-Loader-${OPENCL_VERSION}
cmake -B build -G Ninja -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -DOPENCL_ICD_LOADER_HEADERS_DIR=${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=31 -DANDROID_STL=c++_shared
cmake --build build
sudo cp build/libOpenCL.so ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
rm -rf opencl
- name: Install Hexagon SDK
id: install_hexsdk
if: ${{ matrix.build == 'arm64-snapdragon' }}
env:
HEXSDK_VER: 6.4.0.2
HEXTLS_VER: 19.0.04
run: |
curl -L -o hex-sdk.tar.gz https://github.com/snapdragon-toolchain/hexagon-sdk/releases/download/v$HEXSDK_VER/hexagon-sdk-v$HEXSDK_VER-amd64-lnx.tar.xz
mkdir hex-sdk
tar -xaf hex-sdk.tar.gz -C hex-sdk
ls -l hex-sdk
sudo mv hex-sdk /opt/hexagon
echo "HEXAGON_SDK_ROOT=/opt/hexagon/$HEXSDK_VER" >> "$GITHUB_ENV"
echo "HEXAGON_TOOLS_ROOT=/opt/hexagon/$HEXSDK_VER/tools/HEXAGON_Tools/$HEXTLS_VER" >> "$GITHUB_ENV"
echo "DEFAULT_HLOS_ARCH=64" >> "$GITHUB_ENV"
echo "DEFAULT_TOOLS_VARIANT=toolv19" >> "$GITHUB_ENV"
echo "DEFAULT_NO_QURT_INC=0" >> "$GITHUB_ENV"
echo "DEFAULT_DSP_ARCH=v73" >> "$GITHUB_ENV"
- name: Update CMake presets
id: update_presets
if: ${{ matrix.build == 'arm64-snapdragon' }}
run: |
cp docs/backend/hexagon/CMakeUserPresets.json .
- name: Build
id: ndk_build
run: |
cmake ${{ matrix.defines }} -B build
cmake --build build
cmake --install build --prefix pkg-adb/llama.cpp
- name: Test
id: cmake_test
run: |
echo "FIXME: test on devices"
openEuler-latest-cmake-cann: openEuler-latest-cmake-cann:
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }} if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
defaults: defaults:

View File

@ -134,6 +134,8 @@ jobs:
include: include:
- build: 'x64' - build: 'x64'
os: ubuntu-22.04 os: ubuntu-22.04
- build: 's390x-z15' # z15 because our CI runners are on z15
os: ubuntu-22.04-s390x
# GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm # GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm
# - build: 'arm64' # - build: 'arm64'
# os: ubuntu-22.04-arm # os: ubuntu-22.04-arm

View File

@ -3,10 +3,12 @@ name: Update Operations Documentation
on: on:
push: push:
paths: paths:
- 'docs/ops.md'
- 'docs/ops/**' - 'docs/ops/**'
- 'scripts/create_ops_docs.py' - 'scripts/create_ops_docs.py'
pull_request: pull_request:
paths: paths:
- 'docs/ops.md'
- 'docs/ops/**' - 'docs/ops/**'
- 'scripts/create_ops_docs.py' - 'scripts/create_ops_docs.py'

View File

@ -55,7 +55,7 @@
/ggml/src/ggml-cuda/common.cuh @slaren /ggml/src/ggml-cuda/common.cuh @slaren
/ggml/src/ggml-cuda/fattn* @JohannesGaessler /ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/ggml-cuda.cu @slaren /ggml/src/ggml-cuda/ggml-cuda.cu @slaren
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler /ggml/src/ggml-cuda/mmf.* @JohannesGaessler @am17an
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler /ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler /ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler /ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
@ -65,6 +65,7 @@
/ggml/src/ggml-impl.h @ggerganov @slaren /ggml/src/ggml-impl.h @ggerganov @slaren
/ggml/src/ggml-metal/ @ggerganov /ggml/src/ggml-metal/ @ggerganov
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky /ggml/src/ggml-opencl/ @lhez @max-krasnyansky
/ggml/src/ggml-hexagon/ @max-krasnyansky
/ggml/src/ggml-opt.cpp @JohannesGaessler /ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/ggml-quants.* @ggerganov /ggml/src/ggml-quants.* @ggerganov
/ggml/src/ggml-rpc/ @rgerganov /ggml/src/ggml-rpc/ @rgerganov

View File

@ -138,6 +138,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32) - [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
- [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38) - [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38)
- [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7) - [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7)
- [x] [BailingMoeV2 (Ring/Ling 2.0) models](https://huggingface.co/collections/inclusionAI/ling-v2-68bf1dd2fc34c306c1fa6f86)
#### Multimodal #### Multimodal
@ -187,6 +188,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift) - Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama) - Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi) - Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
- Go (no CGo needed): [hybridgroup/yzma](https://github.com/hybridgroup/yzma)
</details> </details>
@ -278,6 +280,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [IBM zDNN](docs/backend/zDNN.md) | IBM Z & LinuxONE | | [IBM zDNN](docs/backend/zDNN.md) | IBM Z & LinuxONE |
| [WebGPU [In Progress]](docs/build.md#webgpu) | All | | [WebGPU [In Progress]](docs/build.md#webgpu) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All | | [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
| [Hexagon [In Progress]](docs/backend/hexagon/README.md) | Snapdragon |
## Obtaining and quantizing models ## Obtaining and quantizing models

View File

@ -75,7 +75,7 @@ if [ ! -z ${GG_BUILD_ROCM} ]; then
exit 1 exit 1
fi fi
CMAKE_EXTRA="${CMAKE_EXTRA} -DAMDGPU_TARGETS=${GG_BUILD_AMDGPU_TARGETS}" CMAKE_EXTRA="${CMAKE_EXTRA} -DGPU_TARGETS=${GG_BUILD_AMDGPU_TARGETS}"
fi fi
if [ ! -z ${GG_BUILD_SYCL} ]; then if [ ! -z ${GG_BUILD_SYCL} ]; then

View File

@ -1760,7 +1760,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP})); ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
add_opt(common_arg( add_opt(common_arg(
{"-t", "--threads"}, "N", {"-t", "--threads"}, "N",
string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads), string_format("number of CPU threads to use during generation (default: %d)", params.cpuparams.n_threads),
[](common_params & params, int value) { [](common_params & params, int value) {
params.cpuparams.n_threads = value; params.cpuparams.n_threads = value;
if (params.cpuparams.n_threads <= 0) { if (params.cpuparams.n_threads <= 0) {
@ -3435,7 +3435,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) { [](common_params & params) {
params.use_jinja = true; params.use_jinja = true;
} }
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA")); ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_JINJA"));
add_opt(common_arg( add_opt(common_arg(
{"--reasoning-format"}, "FORMAT", {"--reasoning-format"}, "FORMAT",
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n" "controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"

View File

@ -41,9 +41,9 @@ static std::string build_repetition(const std::string & item_rule, int min_items
return result; return result;
} }
static void _build_min_max_int(int min_value, int max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) { static void _build_min_max_int(int64_t min_value, int64_t max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) {
auto has_min = min_value != std::numeric_limits<int>::min(); auto has_min = min_value != std::numeric_limits<int64_t>::min();
auto has_max = max_value != std::numeric_limits<int>::max(); auto has_max = max_value != std::numeric_limits<int64_t>::max();
auto digit_range = [&](char from, char to) { auto digit_range = [&](char from, char to) {
out << "["; out << "[";
@ -159,7 +159,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
if (has_min) { if (has_min) {
if (min_value < 0) { if (min_value < 0) {
out << "\"-\" ("; out << "\"-\" (";
_build_min_max_int(std::numeric_limits<int>::min(), -min_value, out, decimals_left, /* top_level= */ false); _build_min_max_int(std::numeric_limits<int64_t>::min(), -min_value, out, decimals_left, /* top_level= */ false);
out << ") | [0] | [1-9] "; out << ") | [0] | [1-9] ";
more_digits(0, decimals_left - 1); more_digits(0, decimals_left - 1);
} else if (min_value == 0) { } else if (min_value == 0) {
@ -194,7 +194,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
} }
digit_range(c, c); digit_range(c, c);
out << " ("; out << " (";
_build_min_max_int(std::stoi(min_s.substr(1)), std::numeric_limits<int>::max(), out, less_decimals, /* top_level= */ false); _build_min_max_int(std::stoll(min_s.substr(1)), std::numeric_limits<int64_t>::max(), out, less_decimals, /* top_level= */ false);
out << ")"; out << ")";
if (c < '9') { if (c < '9') {
out << " | "; out << " | ";
@ -216,7 +216,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
_build_min_max_int(0, max_value, out, decimals_left, /* top_level= */ true); _build_min_max_int(0, max_value, out, decimals_left, /* top_level= */ true);
} else { } else {
out << "\"-\" ("; out << "\"-\" (";
_build_min_max_int(-max_value, std::numeric_limits<int>::max(), out, decimals_left, /* top_level= */ false); _build_min_max_int(-max_value, std::numeric_limits<int64_t>::max(), out, decimals_left, /* top_level= */ false);
out << ")"; out << ")";
} }
return; return;
@ -925,17 +925,17 @@ public:
int max_len = schema.contains("maxLength") ? schema["maxLength"].get<int>() : std::numeric_limits<int>::max(); int max_len = schema.contains("maxLength") ? schema["maxLength"].get<int>() : std::numeric_limits<int>::max();
return _add_rule(rule_name, "\"\\\"\" " + build_repetition(char_rule, min_len, max_len) + " \"\\\"\" space"); return _add_rule(rule_name, "\"\\\"\" " + build_repetition(char_rule, min_len, max_len) + " \"\\\"\" space");
} else if (schema_type == "integer" && (schema.contains("minimum") || schema.contains("exclusiveMinimum") || schema.contains("maximum") || schema.contains("exclusiveMaximum"))) { } else if (schema_type == "integer" && (schema.contains("minimum") || schema.contains("exclusiveMinimum") || schema.contains("maximum") || schema.contains("exclusiveMaximum"))) {
int min_value = std::numeric_limits<int>::min(); int64_t min_value = std::numeric_limits<int64_t>::min();
int max_value = std::numeric_limits<int>::max(); int64_t max_value = std::numeric_limits<int64_t>::max();
if (schema.contains("minimum")) { if (schema.contains("minimum")) {
min_value = schema["minimum"].get<int>(); min_value = schema["minimum"].get<int64_t>();
} else if (schema.contains("exclusiveMinimum")) { } else if (schema.contains("exclusiveMinimum")) {
min_value = schema["exclusiveMinimum"].get<int>() + 1; min_value = schema["exclusiveMinimum"].get<int64_t>() + 1;
} }
if (schema.contains("maximum")) { if (schema.contains("maximum")) {
max_value = schema["maximum"].get<int>(); max_value = schema["maximum"].get<int64_t>();
} else if (schema.contains("exclusiveMaximum")) { } else if (schema.contains("exclusiveMaximum")) {
max_value = schema["exclusiveMaximum"].get<int>() - 1; max_value = schema["exclusiveMaximum"].get<int64_t>() - 1;
} }
std::stringstream out; std::stringstream out;
out << "("; out << "(";

View File

@ -29,12 +29,29 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf import gguf
from gguf.vocab import MistralTokenizerType, MistralVocab from gguf.vocab import MistralTokenizerType, MistralVocab
from mistral_common.tokens.tokenizers.base import TokenizerVersion
from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN, DATASET_STD try:
from mistral_common.tokens.tokenizers.tekken import Tekkenizer from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
from mistral_common.tokens.tokenizers.sentencepiece import ( from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
SentencePieceTokenizer, from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
) from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
SentencePieceTokenizer,
)
_mistral_common_installed = True
_mistral_import_error_msg = ""
except ImportError:
_MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
_MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
_mistral_common_installed = False
TokenizerVersion = None
Tekkenizer = None
SentencePieceTokenizer = None
_mistral_import_error_msg = (
"Mistral format requires `mistral-common` to be installed. Please run "
"`pip install mistral-common[image,audio]` to install it."
)
logger = logging.getLogger("hf-to-gguf") logger = logging.getLogger("hf-to-gguf")
@ -107,6 +124,9 @@ class ModelBase:
type(self) is MmprojModel: type(self) is MmprojModel:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated") raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
if self.is_mistral_format and not _mistral_common_installed:
raise ImportError(_mistral_import_error_msg)
self.dir_model = dir_model self.dir_model = dir_model
self.ftype = ftype self.ftype = ftype
self.fname_out = fname_out self.fname_out = fname_out
@ -892,8 +912,8 @@ class TextModel(ModelBase):
# ref: https://huggingface.co/JetBrains/Mellum-4b-base # ref: https://huggingface.co/JetBrains/Mellum-4b-base
res = "mellum" res = "mellum"
if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206": if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
# ref: https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
res = "llada-moe" res = "bailingmoe2"
if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e": if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
# ref: https://huggingface.co/ibm-granite/granite-docling-258M # ref: https://huggingface.co/ibm-granite/granite-docling-258M
res = "granite-docling" res = "granite-docling"
@ -1363,8 +1383,8 @@ class MmprojModel(ModelBase):
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"])) self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
# preprocessor config # preprocessor config
image_mean = DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"] image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
image_std = DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"] image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
self.gguf_writer.add_vision_image_mean(image_mean) self.gguf_writer.add_vision_image_mean(image_mean)
self.gguf_writer.add_vision_image_std(image_std) self.gguf_writer.add_vision_image_std(image_std)
@ -2033,6 +2053,9 @@ class LlamaModel(TextModel):
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32) self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
def _set_vocab_mistral(self): def _set_vocab_mistral(self):
if not _mistral_common_installed:
raise ImportError(_mistral_import_error_msg)
vocab = MistralVocab(self.dir_model) vocab = MistralVocab(self.dir_model)
logger.info( logger.info(
f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}." f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
@ -8055,6 +8078,103 @@ class BailingMoeModel(TextModel):
raise ValueError(f"Unprocessed experts: {experts}") raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("BailingMoeV2ForCausalLM")
class BailingMoeV2Model(TextModel):
model_arch = gguf.MODEL_ARCH.BAILINGMOE2
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
else:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
self.gguf_writer.add_expert_count(hparams["num_experts"])
self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
self.gguf_writer.add_expert_group_count(hparams["n_group"])
self.gguf_writer.add_expert_group_used_count(hparams["topk_group"])
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
if hparams["score_function"] == "sigmoid":
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
elif hparams["score_function"] == "softmax":
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
else:
raise ValueError(f"Unsupported score_function value: {hparams['score_function']}")
if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
self.gguf_writer.add_nextn_predict_layers(nextn_layers)
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if "mlp.experts" in name:
n_experts = self.hparams["num_experts"]
assert bid is not None
tensors: list[tuple[str, Tensor]] = []
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
if name.endswith(".expert_bias"):
name = name.replace(".expert_bias", ".expert_bias.bias")
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM") @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
class GroveMoeModel(TextModel): class GroveMoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.GROVEMOE model_arch = gguf.MODEL_ARCH.GROVEMOE
@ -9115,7 +9235,7 @@ class MistralModel(LlamaModel):
@staticmethod @staticmethod
def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool): def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
assert TokenizerVersion is not None, "mistral_common is not installed" assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), ( assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}" f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
) )
@ -9497,6 +9617,8 @@ def main() -> None:
fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-") fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
is_mistral_format = args.mistral_format is_mistral_format = args.mistral_format
if is_mistral_format and not _mistral_common_installed:
raise ImportError(_mistral_import_error_msg)
disable_mistral_community_chat_template = args.disable_mistral_community_chat_template disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
with torch.inference_mode(): with torch.inference_mode():

View File

@ -139,7 +139,7 @@ models = [
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"}, {"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", }, {"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
{"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", }, {"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
{"name": "llada-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base", }, {"name": "bailingmoe2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-mini-base-2.0", },
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", }, {"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
] ]

View File

@ -0,0 +1,49 @@
{
"version": 4,
"configurePresets": [
{
"name": "arm64-android-snapdragon",
"hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x86_64", "strategy": "external" },
"cacheVariables": {
"ANDROID_ABI": "arm64-v8a",
"ANDROID_PLATFORM": "android-31",
"CMAKE_TOOLCHAIN_FILE": "$env{ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake",
"CMAKE_C_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
"CMAKE_CXX_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
"CMAKE_C_FLAGS_RELEASE": "-O3 -DNDEBUG",
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"PREBUILT_LIB_DIR": "android_aarch64",
"GGML_OPENMP": "OFF",
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"LLAMA_CURL": "OFF"
}
},
{
"name": "arm64-windows-snapdragon",
"inherits": [ "base", "arm64-windows-llvm" ],
"cacheVariables": {
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"PREBUILT_LIB_DIR": "windows_aarch64",
"GGML_OPENMP": "OFF",
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"LLAMA_CURL": "OFF"
}
},
{ "name": "arm64-android-snapdragon-debug" , "inherits": [ "base", "arm64-android-snapdragon", "debug" ] },
{ "name": "arm64-android-snapdragon-release", "inherits": [ "base", "arm64-android-snapdragon", "release" ] },
{ "name": "arm64-windows-snapdragon-debug" , "inherits": [ "base", "arm64-windows-snapdragon", "debug" ] },
{ "name": "arm64-windows-snapdragon-release", "inherits": [ "base", "arm64-windows-snapdragon", "release" ] }
]
}

View File

@ -0,0 +1,239 @@
# Snapdragon-based Android devices
## How to Build
The easiest way to build llama.cpp for a Snapdragon-based Android device is using the toolchain Docker image (see github.com/snapdragon-toolchain).
This image includes Android NDK, OpenCL SDK, Hexagon SDK, CMake, etc.
This method works on Linux, macOS, and Windows. macOS and Windows users should install Docker Desktop.
```
~/src/llama.cpp$ docker run -it -u $(id -u):$(id -g) --volume $(pwd):/workspace --platform linux/amd64 ghcr.io/snapdragon-toolchain/arm64-android:v0.3
[d]/> cd /workspace
```
The rest of the Android build process assumes that you're running inside the toolchain container.
Let's build llama.cpp with CPU, OpenCL, and Hexagon backends via CMake presets:
```
[d]/workspace> cp docs/backend/hexagon/CMakeUserPresets.json .
[d]/workspace> cmake --preset arm64-android-snapdragon-release -B build-snapdragon
Preset CMake variables:
ANDROID_ABI="arm64-v8a"
...
CMAKE_TOOLCHAIN_FILE="/opt/android-ndk-r28b/build/cmake/android.toolchain.cmake"
GGML_HEXAGON="ON"
GGML_OPENCL="ON"
GGML_OPENMP="OFF"
HEXAGON_SDK_ROOT="/opt/hexagon/6.4.0.2"
...
-- Including OpenCL backend
-- Including Hexagon backend
...
-- Build files have been written to: /workspace/build-snapdragon
[d]/workspace> cmake --build build-snapdragon
...
[144/356] Performing build step for 'htp-v73'
[1/16] Generating htp_iface_skel.c, htp_iface_stub.c, htp_iface.h
[2/16] Building C object CMakeFiles/ggml-htp-v73.dir/hvx-sigmoid.c.obj
[3/16] Building C object CMakeFiles/ggml-htp-v73.dir/htp-dma.c.obj
[4/16] Building C object CMakeFiles/ggml-htp-v73.dir/worker-pool.c.obj
...
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v73.so
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v75.so
...
```
To generate an installable "package" simply use cmake --install:
```
[d]/workspace> cmake --install build-snapdragon --prefix pkg-adb/llama.cpp
-- Install configuration: "Release"
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-cpu.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-opencl.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-hexagon.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v73.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v75.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v79.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v81.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml.so
...
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-bench
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-cli
...
```
## How to Install
For this step, your device needs to be configured for on-device development.
Please see https://developer.android.com/studio/debug/dev-options for details.
Once ADB is enabled, use `adb push` to install `pkg-snapdragon` on the device.
**Note that the toolchain Docker image doesn't have ADB and doesn't set up the ADB bridge. Please use native ADB on the host.**
```
~/src/llama.cpp$ adb push pkg-adb/llama.cpp /data/local/tmp/
pkg-adb/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
pkg-adb/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
pkg-adb/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
102 files pushed, 0 skipped. 186.9 MB/s (963151597 bytes in 4.914s)
```
At this point, you should also install some models:
```
~/src/llama.cpp$ wget https://huggingface.co/bartowski/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q4_0.gguf
...
2025-10-11 12:04:52 (10.7 MB/s) - Llama-3.2-1B-Instruct-Q4_0.gguf saved [773025920/773025920]
~/src/llama.cpp$ adb push Llama-3.2-1B-Instruct-Q4_0.gguf /data/local/tmp/gguf
Llama-3.2-1B-Instruct-Q4_0.gguf: 1 file pushed, 0 skipped. 38.3 MB/s (773025920 bytes in 19.250s)
```
## How to Run
The easiest way to run llama.cpp cli tools is using provided wrapper scripts that properly set up all required environment variables.
llama.cpp supports three backends on Snapdragon-based devices: CPU, Adreno GPU (GPUOpenCL), and Hexagon NPU (HTP0-4).
You can select which backend to run the model on using the `D=` variable, which maps to the `--device` option.
Hexagon NPU behaves as a "GPU" device when it comes to `-ngl` and other offload-related options.
Here are some examples of running various llama.cpp tools via ADB.
Simple question for Llama-3.2-1B
```
~/src/llama.cpp$ M=Llama-3.2-1B-Instruct-Q4_0.gguf D=HTP0 ./scripts/snapdragon/adb/run-cli.sh -no-cnv -p "what is the most popular cookie in the world?"
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v79
ggml-hex: allocating new session: HTP0
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb4000072c7955e50
...
load_tensors: offloading output layer to GPU
load_tensors: offloaded 17/17 layers to GPU
load_tensors: CPU model buffer size = 225.49 MiB
load_tensors: HTP0 model buffer size = 0.26 MiB
load_tensors: HTP0-REPACK model buffer size = 504.00 MiB
...
I hope this helps you understand the world's most popular cookies! [end of text]
...
llama_perf_sampler_print: sampling time = 30.08 ms / 487 runs ( 0.06 ms per token, 16191.77 tokens per second)
llama_perf_context_print: load time = 617.94 ms
llama_perf_context_print: prompt eval time = 80.76 ms / 11 tokens ( 7.34 ms per token, 136.21 tokens per second)
llama_perf_context_print: eval time = 9210.59 ms / 475 runs ( 19.39 ms per token, 51.57 tokens per second)
llama_perf_context_print: total time = 9454.92 ms / 486 tokens
llama_perf_context_print: graphs reused = 473
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - Host | 439 = 225 + 136 + 77 |
llama_memory_breakdown_print: | - HTP0-REPACK | 504 = 504 + 0 + 0 |
```
Summary request for OLMoE-1B-7B. This is a large model that requires two HTP sessions/devices
```
~/src/llama.cpp$ M=OLMoE-1B-7B-0125-Instruct-Q4_0.gguf NDEV=2 D=HTP0,HTP1 ./scripts/snapdragon/adb/run-cli.sh -f surfing.txt -no-cnv
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v81
ggml-hex: allocating new session: HTP0
ggml-hex: allocating new session: HTP1
...
load_tensors: offloading output layer to GPU
load_tensors: offloaded 17/17 layers to GPU
load_tensors: CPU model buffer size = 143.86 MiB
load_tensors: HTP1 model buffer size = 0.23 MiB
load_tensors: HTP1-REPACK model buffer size = 1575.00 MiB
load_tensors: HTP0 model buffer size = 0.28 MiB
load_tensors: HTP0-REPACK model buffer size = 2025.00 MiB
...
llama_context: CPU output buffer size = 0.19 MiB
llama_kv_cache: HTP1 KV buffer size = 238.00 MiB
llama_kv_cache: HTP0 KV buffer size = 306.00 MiB
llama_kv_cache: size = 544.00 MiB ( 8192 cells, 16 layers, 1/1 seqs), K (q8_0): 272.00 MiB, V (q8_0): 272.00 MiB
llama_context: HTP0 compute buffer size = 15.00 MiB
llama_context: HTP1 compute buffer size = 15.00 MiB
llama_context: CPU compute buffer size = 24.56 MiB
...
llama_perf_context_print: prompt eval time = 1730.57 ms / 212 tokens ( 8.16 ms per token, 122.50 tokens per second)
llama_perf_context_print: eval time = 5624.75 ms / 257 runs ( 21.89 ms per token, 45.69 tokens per second)
llama_perf_context_print: total time = 7377.33 ms / 469 tokens
llama_perf_context_print: graphs reused = 255
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - Host | 742 = 144 + 544 + 54 |
llama_memory_breakdown_print: | - HTP1-REPACK | 1575 = 1575 + 0 + 0 |
llama_memory_breakdown_print: | - HTP0-REPACK | 2025 = 2025 + 0 + 0 |
```
Op test for MUL_MAT
```
~/src/llama.cpp$ HB=0 ./scripts/snapdragon/adb/run-tool.sh test-backend-ops -b HTP0 -o MUL_MAT
...
Backend 2/3: HTP0
Device description: Hexagon
Device memory: 2048 MB (2048 MB free)
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=1,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=2,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=3,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
~/src/llama.cpp-hexagon$ M=Llama-3.2-1B-Instruct-Q4_0.gguf ./scripts/snapdragon/adb/run-bench.sh -p 128 -n 64
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v79
ggml-hex: allocating new session: HTP0
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb400007d4b231090
| model | size | params | backend | ngl | threads | n_batch | mmap | test | t/s |
| ---------------| ---------: | -----: | ---------- | --: | ------: | ------: | ---: | ----: | ------------: |
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | pp128 | 169.42 ± 1.75 |
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | tg64 | 51.54 ± 1.13 |
build: 6a8cf8914 (6733)
```
## Environment variables
- `GGML_HEXAGON_NDEV=1`
Controls the number of devices/sessions to allocate. The default is 1.
Most quantized models under 4B fit into a single session; an 8B model needs two, and a 20B model needs four.
- `GGML_HEXAGON_NHVX=0`
Controls the number of HVX hardware threads to use. The default is all (actual number varies depending on the hardware version).
- `GGML_HEXAGON_HOSTBUF=1`
Controls whether the Hexagon backend allocates host buffers. By default, all buffers except for REPACK are host buffers.
This option is required for testing Ops that require REPACK buffers (MUL_MAT and MUL_MAT_ID).
- `GGML_HEXAGON_VERBOSE=1`
Enables verbose logging of Ops from the backend. Example output:
```
ggml-hex: HTP0 graph-compute n_nodes 2
ggml-hex: HTP0 matmul : blk.27.ffn_up.weight x ffn_norm-27 -> ffn_up-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x1
ggml-hex: HTP0 matmul : blk.27.ffn_gate.weight x ffn_norm-27 -> ffn_gate-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x3
ggml-hex: HTP0 graph-compute n_nodes 1
ggml-hex: HTP0 matmul : blk.27.ffn_down.weight x ffn_gate_par-27 -> ffn_out-27 : 8192:3072 x 8192:1 -> 3072:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x0
ggml-hex: HTP0 get-tensor result_output : data 0x7592487000 offset 0 size 513024
```
- `GGML_HEXAGON_PROFILE=1`
Generates a host-side profile for the ggml-hexagon Ops.
- `GGML_HEXAGON_OPMASK=0x0`
Allows enabling specific stages of the processing pipeline:
- `0x1` Enable Op Queue (i.e., queuing Ops into NPU)
- `0x2` Enable Dynamic Quantizer (if needed for the Op)
- `0x4` Enable Op Compute (MUL_MAT, etc.)
Examples:
`GGML_HEXAGON_OPMASK=0x1 llama-cli ...` - Ops are enqueued but NPU-side processing is stubbed out
`GGML_HEXAGON_OPMASK=0x3 llama-cli ...` - NPU performs dynamic quantization and skips the rest
`GGML_HEXAGON_OPMASK=0x7 llama-cli ...` - Full queuing and processing of Ops (default)

View File

@ -0,0 +1,109 @@
# Hexagon backend developer details
## Backend libraries
The Hexagon backend consist of two parts:
- `libggml-hexagon`
This is the regular CPU-side GGML backend library, either shared or statically linked
- `libggml-htp-vNN`
This is the NPU-side (HTP stands for Hexagon Tensor Processor) shared library that contains the Op dispatcher and kernels.
The correct library is selected automatically at runtime based on the HW version.
Here is an example of the build artifacts
```
~/src/llama.cpp$ ls -l pkg-adb/llama.cpp/lib/libggml*
pkg-adb/llama.cpp/lib/libggml-base.so
pkg-adb/llama.cpp/lib/libggml-cpu.so
pkg-adb/llama.cpp/lib/libggml-hexagon.so <<< CPU library
pkg-adb/llama.cpp/lib/libggml-htp-v73.so <<< HTP op/kernels for Hexagon v73
pkg-adb/llama.cpp/lib/libggml-htp-v75.so
pkg-adb/llama.cpp/lib/libggml-htp-v79.so
pkg-adb/llama.cpp/lib/libggml-htp-v81.so
```
## Memory buffers
Hexagon NPU backend takes advantage of the Snapdragon's unified memory model where all buffers are fully accessible by the CPU and GPU.
The NPU does have a dedicated tightly-coupled memory called VTCM but that memory is used only for intermediate data (e.g. dynamically
quantized tensors) or temporary data (chunks of the weight tensors fetched via DMA).
Please note that currently the Hexagon backend does not implement SET/GET_ROWS Ops because there is no advantage in offloading those
to the NPU at this point.
The backend does allocates non-host buffers for the tensors with datatypes that require repacking: Q4_0, Q8_0, MXFP4.
From the MMU perspective these buffers are still regular buffers (normal access by the CPU) they are marked as non-host simply to force
the repacking.
## Large model handling
Hexagon NPU session (aka Process Domain (PD) in the Hexagon docs) is limited to a memory mapping of around 3.5GB.
In llama.cpp/GGML the Hexagon session is mapped to a single GGML backend device (HTP0, HTP1, etc).
In order to map models larger than 3.5GB we need to allocate multiple devices and split the model.
For this we're taking advantage of the llama.cpp/GGML multi-GPU layer-splitting support.
Each Hexagon device behaves like a GPU from the offload and model splitting perspective.
Here is an example of running GPT-OSS-20B model on a newer Snapdragon device with 16GB of DDR.
```
M=gpt-oss-20b-Q4_0.gguf NDEV=4 D=HTP0,HTP1,HTP2,HTP3 P=surfing.txt scripts/snapdragon/adb/run-cli.sh -no-cnv -f surfing.txt -n 32
...
LD_LIBRARY_PATH=/data/local/tmp/llama.cpp/lib
ADSP_LIBRARY_PATH=/data/local/tmp/llama.cpp/lib
GGML_HEXAGON_NDEV=4 ./bin/llama-cli --no-mmap -m /data/local/tmp/llama.cpp/../gguf/gpt-oss-20b-Q4_0.gguf
-t 4 --ctx-size 8192 --batch-size 128 -ctk q8_0 -ctv q8_0 -fa on -ngl 99 --device HTP0,HTP1,HTP2,HTP3 -no-cnv -f surfing.txt
...
llama_model_loader: - type f32: 289 tensors
llama_model_loader: - type q4_0: 96 tensors
llama_model_loader: - type q8_0: 2 tensors
llama_model_loader: - type mxfp4: 72 tensors
...
load_tensors: offloaded 25/25 layers to GPU
load_tensors: CPU model buffer size = 1182.09 MiB
load_tensors: HTP1 model buffer size = 6.64 MiB
load_tensors: HTP1-REPACK model buffer size = 2505.94 MiB
load_tensors: HTP3 model buffer size = 5.55 MiB
load_tensors: HTP3-REPACK model buffer size = 2088.28 MiB
load_tensors: HTP0 model buffer size = 7.75 MiB
load_tensors: HTP0-REPACK model buffer size = 2923.59 MiB
load_tensors: HTP2 model buffer size = 6.64 MiB
load_tensors: HTP2-REPACK model buffer size = 2505.94 MiB
...
llama_context: n_ctx_per_seq (8192) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context: CPU output buffer size = 0.77 MiB
llama_kv_cache_iswa: creating non-SWA KV cache, size = 8192 cells
llama_kv_cache: HTP1 KV buffer size = 25.50 MiB
llama_kv_cache: HTP3 KV buffer size = 25.50 MiB
llama_kv_cache: HTP0 KV buffer size = 25.50 MiB
llama_kv_cache: HTP2 KV buffer size = 25.50 MiB
llama_kv_cache: size = 102.00 MiB ( 8192 cells, 12 layers, 1/1 seqs), K (q8_0): 51.00 MiB, V (q8_0): 51.00 MiB
llama_kv_cache_iswa: creating SWA KV cache, size = 256 cells
llama_kv_cache: HTP1 KV buffer size = 0.80 MiB
llama_kv_cache: HTP3 KV buffer size = 0.53 MiB
llama_kv_cache: HTP0 KV buffer size = 1.06 MiB
llama_kv_cache: HTP2 KV buffer size = 0.80 MiB
llama_kv_cache: size = 3.19 MiB ( 256 cells, 12 layers, 1/1 seqs), K (q8_0): 1.59 MiB, V (q8_0): 1.59 MiB
llama_context: HTP0 compute buffer size = 16.06 MiB
llama_context: HTP1 compute buffer size = 16.06 MiB
llama_context: HTP2 compute buffer size = 16.06 MiB
llama_context: HTP3 compute buffer size = 16.06 MiB
llama_context: CPU compute buffer size = 98.19 MiB
...
llama_perf_context_print: prompt eval time = 3843.67 ms / 197 tokens ( 19.51 ms per token, 51.25 tokens per second)
llama_perf_context_print: eval time = 1686.13 ms / 31 runs ( 54.39 ms per token, 18.39 tokens per second)
llama_perf_context_print: total time = 6266.30 ms / 228 tokens
llama_perf_context_print: graphs reused = 30
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP2 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP3 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - Host | 1476 = 1208 + 105 + 162 |
llama_memory_breakdown_print: | - HTP1-REPACK | 2505 = 2505 + 0 + 0 |
llama_memory_breakdown_print: | - HTP3-REPACK | 2088 = 2088 + 0 + 0 |
llama_memory_breakdown_print: | - HTP0-REPACK | 2923 = 2923 + 0 + 0 |
llama_memory_breakdown_print: | - HTP2-REPACK | 2505 = 2505 + 0 + 0 |
```

View File

@ -22,7 +22,7 @@ Legend:
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| CEIL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ | | CEIL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | | CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ | | CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ | | CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
@ -42,7 +42,7 @@ Legend:
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | | ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | | EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | | FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| FLOOR | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ | | FLOOR | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | | GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | | GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | | GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
@ -72,7 +72,7 @@ Legend:
| OPT_STEP_SGD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | OPT_STEP_SGD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | | OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ | | PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | | ❌ | ❌ | | PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | | REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | | RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
@ -84,7 +84,7 @@ Legend:
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | | ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | | ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| ROUND | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ | | ROUND | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
@ -100,8 +100,8 @@ Legend:
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | | SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | | SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ | ❌ | | SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ❌ | | SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ❌ | | SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | | STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | | SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | | SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
@ -111,6 +111,6 @@ Legend:
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ | | TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| TOPK_MOE | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | | TOPK_MOE | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ | | TRUNC | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ | | UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| XIELU | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | XIELU | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |

View File

@ -31,6 +31,14 @@
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","XIELU","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
"SYCL0","XIELU","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","TRUNC","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","ABS","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","ABS","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","SGN","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","SGN","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
@ -95,6 +103,14 @@
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","XIELU","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
"SYCL0","XIELU","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","TRUNC","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","ABS","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","ABS","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","SGN","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","SGN","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
@ -9363,8 +9379,8 @@
"SYCL0","ACC","type=f32,ne_a=[256,17,1,1],ne_b=[256,16,1,1]","support","1","yes","SYCL" "SYCL0","ACC","type=f32,ne_a=[256,17,1,1],ne_b=[256,16,1,1]","support","1","yes","SYCL"
"SYCL0","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1","support","1","yes","SYCL" "SYCL0","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1","support","1","yes","SYCL"
"SYCL0","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0","support","1","yes","SYCL" "SYCL0","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0","support","1","yes","SYCL"
"SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","0","no","SYCL" "SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","0","yes","SYCL"
"SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","0","no","SYCL" "SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","0","yes","SYCL"
"SYCL0","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","0","no","SYCL" "SYCL0","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","0","no","SYCL"
"SYCL0","ARANGE","type=f32,start=0.000000,stop=10.000000,step=1.000000","support","0","no","SYCL" "SYCL0","ARANGE","type=f32,start=0.000000,stop=10.000000,step=1.000000","support","0","no","SYCL"
"SYCL0","TIMESTEP_EMBEDDING","type=f32,ne_a=[2,1,1,1],dim=320,max_period=10000","support","1","yes","SYCL" "SYCL0","TIMESTEP_EMBEDDING","type=f32,ne_a=[2,1,1,1],dim=320,max_period=10000","support","1","yes","SYCL"

Can't render this file because it is too large.

View File

@ -3263,27 +3263,27 @@
"Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=0","support","1","yes","Vulkan" "Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=0","support","1","yes","Vulkan"
"Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=1","support","1","yes","Vulkan" "Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=1","support","1","yes","Vulkan"
"Vulkan0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Vulkan" "Vulkan0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" "Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" "Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" "Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=1,n_seqs=1","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=1,n_seqs=1","support","1","yes","Vulkan"
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=1","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=1","support","1","yes","Vulkan"
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"

Can't render this file because it is too large.

View File

@ -251,6 +251,8 @@ option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adr
set (GGML_OPENCL_TARGET_VERSION "300" CACHE STRING set (GGML_OPENCL_TARGET_VERSION "300" CACHE STRING
"gmml: OpenCL API version to target") "gmml: OpenCL API version to target")
option(GGML_HEXAGON "ggml: enable Hexagon backend" OFF)
# toolchain for vulkan-shaders-gen # toolchain for vulkan-shaders-gen
set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen") set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen")

View File

@ -0,0 +1,19 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
// backend API
GGML_BACKEND_API ggml_backend_t ggml_backend_hexagon_init(void);
GGML_BACKEND_API bool ggml_backend_is_hexagon(ggml_backend_t backend);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_hexagon_reg(void);
#ifdef __cplusplus
}
#endif

View File

@ -21,8 +21,7 @@ GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const c
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total); GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total);
GGML_BACKEND_API void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir, GGML_BACKEND_API void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
size_t n_threads, size_t n_devices, size_t n_threads, size_t n_devices, ggml_backend_dev_t * devices);
ggml_backend_dev_t * devices, size_t * free_mem, size_t * total_mem);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void); GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint); GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint);

View File

@ -307,6 +307,10 @@ function(ggml_add_cpu_backend_variant tag_name)
foreach (feat ${ARGN}) foreach (feat ${ARGN})
set(GGML_INTERNAL_${feat} ON) set(GGML_INTERNAL_${feat} ON)
endforeach() endforeach()
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
foreach (feat ${ARGN})
set(GGML_INTERNAL_${feat} ON)
endforeach()
endif() endif()
ggml_add_cpu_backend_variant_impl(${tag_name}) ggml_add_cpu_backend_variant_impl(${tag_name})
@ -371,6 +375,14 @@ if (GGML_CPU_ALL_VARIANTS)
else() else()
message(FATAL_ERROR "Unsupported PowerPC target OS: ${CMAKE_SYSTEM_NAME}") message(FATAL_ERROR "Unsupported PowerPC target OS: ${CMAKE_SYSTEM_NAME}")
endif() endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
ggml_add_cpu_backend_variant(s390x_z15 Z15 VXE)
# ggml_add_cpu_backend_variant(s390x_z16 Z16 VXE)
# ggml_add_cpu_backend_variant(s390x_z17 Z17 VXE)
else()
message(FATAL_ERROR "Unsupported s390x target OS: ${CMAKE_SYSTEM_NAME}")
endif()
else() else()
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}") message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
endif() endif()
@ -390,6 +402,7 @@ ggml_add_backend(Vulkan)
ggml_add_backend(WebGPU) ggml_add_backend(WebGPU)
ggml_add_backend(zDNN) ggml_add_backend(zDNN)
ggml_add_backend(OpenCL) ggml_add_backend(OpenCL)
ggml_add_backend(Hexagon)
foreach (target ggml-base ggml) foreach (target ggml-base ggml)
target_include_directories(${target} PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/../include> $<INSTALL_INTERFACE:include>) target_include_directories(${target} PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/../include> $<INSTALL_INTERFACE:include>)

View File

@ -598,6 +598,26 @@ static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor
return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated; return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated;
} }
// free the extra space at the end if the new tensor is smaller
static void ggml_gallocr_free_extra_space(ggml_gallocr_t galloc, struct ggml_tensor * node, struct ggml_tensor * parent) {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
size_t parent_size = ggml_backend_buft_get_alloc_size(galloc->bufts[p_hn->buffer_id], parent);
size_t node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
GGML_ASSERT(parent_size >= node_size);
if (parent_size > node_size) {
struct ggml_dyn_tallocr * p_alloc = galloc->buf_tallocs[p_hn->buffer_id];
struct buffer_address p_addr = p_hn->addr;
p_addr.offset += node_size;
size_t extra_size = parent_size - node_size;
AT_PRINTF("freeing extra %zu bytes from parent %s for %s\n", extra_size, parent->name, node->name);
ggml_dyn_tallocr_free_tensor(p_alloc, p_addr, extra_size, parent);
}
}
static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
GGML_ASSERT(buffer_id >= 0); GGML_ASSERT(buffer_id >= 0);
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
@ -643,6 +663,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
hn->addr = p_hn->addr; hn->addr = p_hn->addr;
p_hn->allocated = false; // avoid freeing the parent p_hn->allocated = false; // avoid freeing the parent
view_src_hn->allocated = false; view_src_hn->allocated = false;
ggml_gallocr_free_extra_space(galloc, node, view_src);
return; return;
} }
} else { } else {
@ -650,6 +671,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
hn->buffer_id = p_hn->buffer_id; hn->buffer_id = p_hn->buffer_id;
hn->addr = p_hn->addr; hn->addr = p_hn->addr;
p_hn->allocated = false; // avoid freeing the parent p_hn->allocated = false; // avoid freeing the parent
ggml_gallocr_free_extra_space(galloc, node, parent);
return; return;
} }
} }

View File

@ -57,6 +57,10 @@
#include "ggml-opencl.h" #include "ggml-opencl.h"
#endif #endif
#ifdef GGML_USE_HEXAGON
#include "ggml-hexagon.h"
#endif
#ifdef GGML_USE_BLAS #ifdef GGML_USE_BLAS
#include "ggml-blas.h" #include "ggml-blas.h"
#endif #endif
@ -199,6 +203,9 @@ struct ggml_backend_registry {
#ifdef GGML_USE_OPENCL #ifdef GGML_USE_OPENCL
register_backend(ggml_backend_opencl_reg()); register_backend(ggml_backend_opencl_reg());
#endif #endif
#ifdef GGML_USE_HEXAGON
register_backend(ggml_backend_hexagon_reg());
#endif
#ifdef GGML_USE_CANN #ifdef GGML_USE_CANN
register_backend(ggml_backend_cann_reg()); register_backend(ggml_backend_cann_reg());
#endif #endif
@ -598,6 +605,7 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
ggml_backend_load_best("sycl", silent, dir_path); ggml_backend_load_best("sycl", silent, dir_path);
ggml_backend_load_best("vulkan", silent, dir_path); ggml_backend_load_best("vulkan", silent, dir_path);
ggml_backend_load_best("opencl", silent, dir_path); ggml_backend_load_best("opencl", silent, dir_path);
ggml_backend_load_best("hexagon", silent, dir_path);
ggml_backend_load_best("musa", silent, dir_path); ggml_backend_load_best("musa", silent, dir_path);
ggml_backend_load_best("cpu", silent, dir_path); ggml_backend_load_best("cpu", silent, dir_path);
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend // check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend

89
ggml/src/ggml-cann/acl_tensor.cpp Executable file → Normal file
View File

@ -51,28 +51,31 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
return ACL_DT_UNDEFINED; return ACL_DT_UNDEFINED;
} }
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne, aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
size_t* nb, int64_t dims, aclFormat format, int64_t * ne,
size_t offset) { size_t * nb,
int64_t dims,
aclFormat format,
size_t offset) {
// If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be // If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
// added. // added.
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2]; int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
if (ne == nullptr) { if (ne == nullptr) {
for (int i = 0; i < GGML_MAX_DIMS; i++) { for (int i = 0; i < GGML_MAX_DIMS; i++) {
acl_ne[i] = tensor->ne[i]; acl_ne[i] = tensor->ne[i];
// The step size of acl is in elements. // The step size of acl is in elements.
acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor); acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
} }
} else { } else {
// With bcast // With bcast
for (int i = 0; i < dims; i++) { for (int i = 0; i < dims; i++) {
acl_ne[i] = ne[i]; acl_ne[i] = ne[i];
acl_stride[i] = nb[i] / ggml_element_size(tensor); acl_stride[i] = nb[i] / ggml_element_size(tensor);
} }
} }
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims); int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
int64_t acl_storage_len = 1; int64_t acl_storage_len = 1;
for (int i = 0; i < final_dims; i++) { for (int i = 0; i < final_dims; i++) {
acl_storage_len += (acl_ne[i] - 1) * acl_stride[i]; acl_storage_len += (acl_ne[i] - 1) * acl_stride[i];
@ -84,15 +87,13 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
std::reverse(acl_ne, acl_ne + final_dims); std::reverse(acl_ne, acl_ne + final_dims);
std::reverse(acl_stride, acl_stride + final_dims); std::reverse(acl_stride, acl_stride + final_dims);
aclTensor* acl_tensor = aclCreateTensor( aclTensor * acl_tensor = aclCreateTensor(acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride, elem_offset, format, &acl_storage_len, 1, tensor->data);
elem_offset, format, &acl_storage_len, 1,
tensor->data);
return acl_tensor; return acl_tensor;
} }
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) { bool ggml_cann_need_bcast(const ggml_tensor * t0, const ggml_tensor * t1) {
for (int i = 0; i < GGML_MAX_DIMS; i++) { for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) { if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
return true; return true;
@ -101,15 +102,16 @@ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
return false; return false;
} }
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, int64_t ggml_cann_get_bcast_shape(const ggml_tensor * src0,
const ggml_tensor* src1, const ggml_tensor * src1,
int64_t* bcast_src0_ne, int64_t * bcast_src0_ne,
int64_t* bcast_src1_ne, size_t* bcast_src0_nb, int64_t * bcast_src1_ne,
size_t* bcast_src1_nb) { size_t * bcast_src0_nb,
size_t * bcast_src1_nb) {
GGML_ASSERT(ggml_can_repeat(src1, src0)); GGML_ASSERT(ggml_can_repeat(src1, src0));
int bcast_dim_cnt = 0; int bcast_dim_cnt = 0;
for (int i = 0; i < GGML_MAX_DIMS; i++) { for (int i = 0; i < GGML_MAX_DIMS; i++) {
int64_t nr = src0->ne[i] / src1->ne[i]; int64_t nr = src0->ne[i] / src1->ne[i];
bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr; bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
bcast_src1_ne[bcast_dim_cnt] = src1->ne[i]; bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
bcast_src0_nb[bcast_dim_cnt] = src0->nb[i]; bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
@ -119,21 +121,26 @@ int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
// Need to add an extra dim. // Need to add an extra dim.
bcast_src0_ne[bcast_dim_cnt] = nr; bcast_src0_ne[bcast_dim_cnt] = nr;
bcast_src1_ne[bcast_dim_cnt] = 1; bcast_src1_ne[bcast_dim_cnt] = 1;
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] * bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] * bcast_src0_ne[bcast_dim_cnt - 1];
bcast_src0_ne[bcast_dim_cnt - 1]; bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] * bcast_src1_ne[bcast_dim_cnt - 1];
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
bcast_src1_ne[bcast_dim_cnt - 1];
bcast_dim_cnt++; bcast_dim_cnt++;
} }
} }
return bcast_dim_cnt; return bcast_dim_cnt;
} }
int64_t ggml_cann_get_mulmat_bcast_shape( int64_t ggml_cann_get_mulmat_bcast_shape(const int64_t * input_ne,
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne, const int64_t * weight_ne,
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb, const int64_t * dst_ne,
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne, const size_t * input_nb,
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) { const size_t * weight_nb,
const size_t * dst_nb,
int64_t * bcast_input_ne,
int64_t * bcast_weight_ne,
int64_t * bcast_dst_ne,
size_t * bcast_input_nb,
size_t * bcast_weight_nb,
size_t * bcast_dst_nb) {
// input and dst shoule in same shape, except first two dims. // input and dst shoule in same shape, except first two dims.
GGML_ASSERT(input_ne[2] == dst_ne[2]); GGML_ASSERT(input_ne[2] == dst_ne[2]);
GGML_ASSERT(input_ne[3] == dst_ne[3]); GGML_ASSERT(input_ne[3] == dst_ne[3]);
@ -148,34 +155,30 @@ int64_t ggml_cann_get_mulmat_bcast_shape(
// Do not use bcast in the first two dimensions because we only support // Do not use bcast in the first two dimensions because we only support
// the bcast batch dimension. Just copy them. // the bcast batch dimension. Just copy them.
if (i < 2 || nr == 1) { if (i < 2 || nr == 1) {
bcast_input_ne[bcast_dim_cnt] = input_ne[i]; bcast_input_ne[bcast_dim_cnt] = input_ne[i];
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i]; bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i]; bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
bcast_input_nb[bcast_dim_cnt] = input_nb[i]; bcast_input_nb[bcast_dim_cnt] = input_nb[i];
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i]; bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i]; bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
bcast_dim_cnt++; bcast_dim_cnt++;
} else { } else {
// Need to add an extra dim. // Need to add an extra dim.
bcast_input_ne[bcast_dim_cnt] = nr; bcast_input_ne[bcast_dim_cnt] = nr;
bcast_dst_ne[bcast_dim_cnt] = nr; bcast_dst_ne[bcast_dim_cnt] = nr;
bcast_weight_ne[bcast_dim_cnt] = 1; bcast_weight_ne[bcast_dim_cnt] = 1;
bcast_input_nb[bcast_dim_cnt] = input_nb[i]; bcast_input_nb[bcast_dim_cnt] = input_nb[i];
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i]; bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i]; bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
bcast_dim_cnt++; bcast_dim_cnt++;
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr; bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr; bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i]; bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] * bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] * bcast_input_ne[bcast_dim_cnt - 1];
bcast_input_ne[bcast_dim_cnt - 1]; bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] * bcast_dst_ne[bcast_dim_cnt - 1];
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] * bcast_weight_nb[bcast_dim_cnt] = bcast_weight_nb[bcast_dim_cnt - 1] * bcast_weight_ne[bcast_dim_cnt - 1];
bcast_dst_ne[bcast_dim_cnt - 1];
bcast_weight_nb[bcast_dim_cnt] =
bcast_weight_nb[bcast_dim_cnt - 1] *
bcast_weight_ne[bcast_dim_cnt - 1];
bcast_dim_cnt++; bcast_dim_cnt++;
} }
} }

97
ggml/src/ggml-cann/acl_tensor.h Executable file → Normal file
View File

@ -62,10 +62,12 @@ aclDataType ggml_cann_type_mapping(ggml_type type);
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0. * @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
* @return Pointer to the created ACL tensor. * @return Pointer to the created ACL tensor.
*/ */
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = nullptr, aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
size_t* nb = nullptr, int64_t dims = 0, int64_t * ne = nullptr,
aclFormat format = ACL_FORMAT_ND, size_t * nb = nullptr,
size_t offset = 0); int64_t dims = 0,
aclFormat format = ACL_FORMAT_ND,
size_t offset = 0);
/** /**
* @brief Template for creating an ACL tensor from provided parameters. typename TYPE * @brief Template for creating an ACL tensor from provided parameters. typename TYPE
@ -87,12 +89,15 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = null
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0. * @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
* @return Pointer to the created ACL tensor. * @return Pointer to the created ACL tensor.
*/ */
template<typename TYPE> template <typename TYPE>
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype, aclTensor * ggml_cann_create_tensor(void * data_ptr,
TYPE type_size, int64_t* ne, TYPE* nb, aclDataType dtype,
int64_t dims, TYPE type_size,
aclFormat format = ACL_FORMAT_ND, int64_t * ne,
size_t offset = 0) { TYPE * nb,
int64_t dims,
aclFormat format = ACL_FORMAT_ND,
size_t offset = 0) {
int64_t tmp_ne[GGML_MAX_DIMS * 2]; int64_t tmp_ne[GGML_MAX_DIMS * 2];
int64_t tmp_stride[GGML_MAX_DIMS * 2]; int64_t tmp_stride[GGML_MAX_DIMS * 2];
@ -109,9 +114,8 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
std::reverse(tmp_ne, tmp_ne + dims); std::reverse(tmp_ne, tmp_ne + dims);
std::reverse(tmp_stride, tmp_stride + dims); std::reverse(tmp_stride, tmp_stride + dims);
aclTensor* acl_tensor = aclTensor * acl_tensor =
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size, aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size, format, &acl_storage_len, 1, data_ptr);
format, &acl_storage_len, 1, data_ptr);
return acl_tensor; return acl_tensor;
} }
@ -132,7 +136,7 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
* to 1. If such a dimension is found, broadcasting is required to align t1 * to 1. If such a dimension is found, broadcasting is required to align t1
* with t0 for element-wise operations. * with t0 for element-wise operations.
*/ */
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1); bool ggml_cann_need_bcast(const ggml_tensor * t0, const ggml_tensor * t1);
/** /**
* @brief Computes broadcast shapes and strides for two ggml_tensors. * @brief Computes broadcast shapes and strides for two ggml_tensors.
@ -187,19 +191,21 @@ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
* dim1 in a inserted dim, should add nb for dim1, * dim1 in a inserted dim, should add nb for dim1,
* and all other nb moves to next in order. * and all other nb moves to next in order.
*/ */
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* src1, int64_t ggml_cann_get_bcast_shape(const ggml_tensor * src0,
int64_t* bcast_ne_src0, int64_t* bcast_ne_src1, const ggml_tensor * src1,
size_t* bcast_nb_src0, size_t* bcast_nb_src1); int64_t * bcast_ne_src0,
int64_t * bcast_ne_src1,
size_t * bcast_nb_src0,
size_t * bcast_nb_src1);
// Bcast macro to avoid duplicate code. // Bcast macro to avoid duplicate code.
#define BCAST_SHAPE(src0, src1) \ #define BCAST_SHAPE(src0, src1) \
int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \ int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \ int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \ size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \ size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
int64_t bcast_dims = ggml_cann_get_bcast_shape( \ int64_t bcast_dims = ggml_cann_get_bcast_shape(src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, \
src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, bcast_##src0##_nb, \ bcast_##src0##_nb, bcast_##src1##_nb);
bcast_##src1##_nb);
#define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims #define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
@ -233,26 +239,31 @@ int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* sr
* before cast dim. * before cast dim.
* @sa ggml_cann_get_bcast_shape * @sa ggml_cann_get_bcast_shape
*/ */
int64_t ggml_cann_get_mulmat_bcast_shape( int64_t ggml_cann_get_mulmat_bcast_shape(const int64_t * input_ne,
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne, const int64_t * weight_ne,
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb, const int64_t * dst_ne,
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne, const size_t * input_nb,
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb); const size_t * weight_nb,
const size_t * dst_nb,
int64_t * bcast_input_ne,
int64_t * bcast_weight_ne,
int64_t * bcast_dst_ne,
size_t * bcast_input_nb,
size_t * bcast_weight_nb,
size_t * bcast_dst_nb);
// Bcast macro to avoid duplicate code. // Bcast macro to avoid duplicate code.
#define BCAST_MUL_MAT_SHAPE(input, weight, dst) \ #define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \ int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \ int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \ int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \ size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \ size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \ size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \ int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, \ input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, bcast_##input##_ne, bcast_##weight##_ne, \
bcast_##input##_ne, bcast_##weight##_ne, bcast_##dst##_ne, \ bcast_##dst##_ne, bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
#define BCAST_MUL_MAT_PARAM(tensor) \ #define BCAST_MUL_MAT_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
#endif // CANN_ACL_TENSOR_H #endif // CANN_ACL_TENSOR_H

2508
ggml/src/ggml-cann/aclnn_ops.cpp Executable file → Normal file

File diff suppressed because it is too large Load Diff

401
ggml/src/ggml-cann/aclnn_ops.h Executable file → Normal file
View File

@ -62,7 +62,7 @@
* @param dst The ggml tensor representing the destination, which op is * @param dst The ggml tensor representing the destination, which op is
* GGML_OP_REPEAT and specifies the desired dimensions. * GGML_OP_REPEAT and specifies the desired dimensions.
*/ */
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_repeat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN * @brief Applies the Leaky ReLU activation function to a tensor using the CANN
@ -82,7 +82,7 @@ void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result of the Leaky ReLU * @param dst The destination tensor where the result of the Leaky ReLU
* activation is stored, which op is `GGML_OP_LEAKY_RELU` * activation is stored, which op is `GGML_OP_LEAKY_RELU`
*/ */
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_leaky_relu(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Concatenates multiple tensors along a specified dimension using the * @brief Concatenates multiple tensors along a specified dimension using the
@ -97,7 +97,7 @@ void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @attention tensorList length should be 2 and the dimension using for concat * @attention tensorList length should be 2 and the dimension using for concat
* default to 1. * default to 1.
*/ */
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_concat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Generates a sequence of evenly spaced values within a specified * @brief Generates a sequence of evenly spaced values within a specified
@ -113,7 +113,7 @@ void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* `start`, 'stop' and 'step' are in dst->op_params and dst->op is * `start`, 'stop' and 'step' are in dst->op_params and dst->op is
* `GGML_OP_ARANGE`. * `GGML_OP_ARANGE`.
*/ */
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_arange(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Applies a clamp operation to the elements of a ggml tensor using the * @brief Applies a clamp operation to the elements of a ggml tensor using the
@ -131,7 +131,7 @@ void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the clamped values will be stored. * @param dst The destination tensor where the clamped values will be stored.
* dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params. * dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params.
*/ */
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_clamp(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Scales the elements of a ggml tensor by a constant factor using the * @brief Scales the elements of a ggml tensor by a constant factor using the
@ -148,7 +148,7 @@ void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the scaled values will be stored. * @param dst The destination tensor where the scaled values will be stored.
* dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params. * dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params.
*/ */
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_scale(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Sorts the elements of a ggml tensor and returns the indices that * @brief Sorts the elements of a ggml tensor and returns the indices that
@ -163,7 +163,7 @@ void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the sorted indices will be stored. * @param dst The destination tensor where the sorted indices will be stored.
* dst->op is `GGML_OP_ARGSORT`. * dst->op is `GGML_OP_ARGSORT`.
*/ */
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_argsort(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Computes the Layer Normalization for a ggml tensor using the CANN * @brief Computes the Layer Normalization for a ggml tensor using the CANN
@ -185,7 +185,7 @@ void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the normalized values will be stored. * @param dst The destination tensor where the normalized values will be stored.
* @attention `Var` defaults to dst->ne[0]. * @attention `Var` defaults to dst->ne[0].
*/ */
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Computes the Group Normalization for a ggml tensor using the CANN * @brief Computes the Group Normalization for a ggml tensor using the CANN
@ -209,7 +209,7 @@ void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* *
* @attention eps defaults to 1e-6f. * @attention eps defaults to 1e-6f.
*/ */
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_group_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Computes the accumulation of tensors using the CANN backend. * @brief Computes the accumulation of tensors using the CANN backend.
@ -228,7 +228,7 @@ void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the accumulated values will be stored. * @param dst The destination tensor where the accumulated values will be stored.
* `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`. * `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`.
*/ */
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_acc(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Computes the sum of elements along the last dimension of a ggml tensor * @brief Computes the sum of elements along the last dimension of a ggml tensor
@ -244,7 +244,7 @@ void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* *
* @attention `reduce_dims` defaults to 3, which means the last dimension. * @attention `reduce_dims` defaults to 3, which means the last dimension.
*/ */
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_sum_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Computes the sum of elements in a ggml tensor. * @brief Computes the sum of elements in a ggml tensor.
@ -258,7 +258,7 @@ void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* *
*/ */
void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_sum(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using * @brief Upsamples a ggml tensor using nearest neighbor interpolation using
@ -274,8 +274,7 @@ void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the upsampled values will be stored. * @param dst The destination tensor where the upsampled values will be stored.
* dst->op is `GGML_OP_UPSCALE`. * dst->op is `GGML_OP_UPSCALE`.
*/ */
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx, void ggml_cann_upsample_nearest2d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
ggml_tensor* dst);
/** /**
* @brief Pads a ggml tensor to match the dimensions of the destination tensor * @brief Pads a ggml tensor to match the dimensions of the destination tensor
@ -290,7 +289,7 @@ void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
* @param dst The destination tensor, which specifies the target dimensions for * @param dst The destination tensor, which specifies the target dimensions for
* padding. dst->op is `GGML_OP_PAD`. * padding. dst->op is `GGML_OP_PAD`.
*/ */
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_pad(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Executes a 2D pooling operation on a ggml tensor using the CANN * @brief Executes a 2D pooling operation on a ggml tensor using the CANN
@ -307,7 +306,7 @@ void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor on which the pooling operation is to be * @param dst The destination tensor on which the pooling operation is to be
* performed. dst->op is `GGML_OP_POOL_2D`. * performed. dst->op is `GGML_OP_POOL_2D`.
*/ */
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_pool2d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Duplicates a ggml tensor using the CANN backend. * @brief Duplicates a ggml tensor using the CANN backend.
@ -326,7 +325,7 @@ void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* different shape and dst is no-contiguous. * different shape and dst is no-contiguous.
* @note: This func need to simplify. * @note: This func need to simplify.
*/ */
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_dup(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor * @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor
@ -348,7 +347,7 @@ void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the normalized values will be stored. * @param dst The destination tensor where the normalized values will be stored.
* dst->op is `GGML_OP_RMS_NORM`. * dst->op is `GGML_OP_RMS_NORM`.
*/ */
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_rms_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Applies a diagonal mask to the tensor with a specified value. * @brief Applies a diagonal mask to the tensor with a specified value.
@ -363,7 +362,7 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* `GGML_OP_DIAG_MASK` * `GGML_OP_DIAG_MASK`
* @param value The value to use for masking. * @param value The value to use for masking.
*/ */
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value); void ggml_cann_diag_mask(ggml_backend_cann_context & ctx, ggml_tensor * dst, float value);
/** /**
* @brief Performs an image-to-column transformation on the input tensor. * @brief Performs an image-to-column transformation on the input tensor.
@ -378,7 +377,7 @@ void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float
* @param dst The destination tensor that stores the result of the operation. * @param dst The destination tensor that stores the result of the operation.
* dst->op is `GGML_OP_IM2COL`. * dst->op is `GGML_OP_IM2COL`.
*/ */
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_im2col(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Computes time step embeddings using sine and cosine functions. * @brief Computes time step embeddings using sine and cosine functions.
@ -392,10 +391,10 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result of the embedding operation * @param dst The destination tensor where the result of the embedding operation
* will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`. * will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`.
*/ */
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_timestep_embedding(ggml_backend_cann_context & ctx, ggml_tensor * dst);
// @see ggml_cann_dup. // @see ggml_cann_dup.
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_cpy(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Computes the softmax activation with optional masking. * @brief Computes the softmax activation with optional masking.
@ -417,7 +416,7 @@ void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result will be stored. dst->op is * @param dst The destination tensor where the result will be stored. dst->op is
* `GGML_OP_SOFTMAX`. * `GGML_OP_SOFTMAX`.
*/ */
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_softmax(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Extracts specific rows from a tensor based on indices. * @brief Extracts specific rows from a tensor based on indices.
@ -429,7 +428,7 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param ctx The backend CANN context for executing operations. * @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the extracted rows will be stored. * @param dst The destination tensor where the extracted rows will be stored.
*/ */
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_get_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Writes specific rows into a tensor at positions specified by indices. * @brief Writes specific rows into a tensor at positions specified by indices.
@ -441,7 +440,7 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param ctx The backend CANN context for executing operations. * @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the specified rows will be updated. * @param dst The destination tensor where the specified rows will be updated.
*/ */
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_set_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Executes matrix multiplication for the given tensor. * @brief Executes matrix multiplication for the given tensor.
@ -454,7 +453,7 @@ void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor for storing the result of the matrix * @param dst The destination tensor for storing the result of the matrix
* multiplication. dst->op is `GGML_OP_MUL_MAT`. * multiplication. dst->op is `GGML_OP_MUL_MAT`.
*/ */
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_mul_mat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Applies Rotary Positional Embedding (RoPE) to the input tensor. * @brief Applies Rotary Positional Embedding (RoPE) to the input tensor.
@ -477,7 +476,7 @@ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @note The function currently does not support cases where the freq_scale is * @note The function currently does not support cases where the freq_scale is
* not equal 1. * not equal 1.
*/ */
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Computes the index of the maximum value along the specified dimension * @brief Computes the index of the maximum value along the specified dimension
@ -492,7 +491,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the indices of the maximum values will * @param dst The destination tensor where the indices of the maximum values will
* be stored. dst->op is `GGML_OP_ARGMAX`. * be stored. dst->op is `GGML_OP_ARGMAX`.
*/ */
void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_argmax(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Adds two tensors element-wise and stores the result in a destination * @brief Adds two tensors element-wise and stores the result in a destination
@ -509,8 +508,10 @@ void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param acl_src1 The second source tensor. * @param acl_src1 The second source tensor.
* @param acl_dst The destination tensor where the result will be stored. * @param acl_dst The destination tensor where the result will be stored.
*/ */
void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0, void aclnn_add(ggml_backend_cann_context & ctx,
aclTensor* acl_src1, aclTensor* acl_dst = nullptr); aclTensor * acl_src0,
aclTensor * acl_src1,
aclTensor * acl_dst = nullptr);
/** /**
* @brief Sub two tensors element-wise and stores the result in a destination * @brief Sub two tensors element-wise and stores the result in a destination
@ -527,8 +528,10 @@ void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
* @param acl_src1 The second source tensor. * @param acl_src1 The second source tensor.
* @param acl_dst The destination tensor where the result will be stored. * @param acl_dst The destination tensor where the result will be stored.
*/ */
void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0, void aclnn_sub(ggml_backend_cann_context & ctx,
aclTensor* acl_src1, aclTensor* acl_dst = nullptr); aclTensor * acl_src0,
aclTensor * acl_src1,
aclTensor * acl_dst = nullptr);
/** /**
* @brief Performs element-wise multiplication of two tensors and stores the * @brief Performs element-wise multiplication of two tensors and stores the
@ -546,8 +549,10 @@ void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
* @param acl_other The second tensor for element-wise multiplication. * @param acl_other The second tensor for element-wise multiplication.
* @param acl_dst The destination tensor where the result will be stored. * @param acl_dst The destination tensor where the result will be stored.
*/ */
void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src, void aclnn_mul(ggml_backend_cann_context & ctx,
aclTensor* acl_other, aclTensor* acl_dst = nullptr); aclTensor * acl_src,
aclTensor * acl_other,
aclTensor * acl_dst = nullptr);
/** /**
* @brief Matrix division, optionally in-place. * @brief Matrix division, optionally in-place.
@ -567,8 +572,10 @@ void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
* @param inplace Flag indicating whether to perform the operation in-place on * @param inplace Flag indicating whether to perform the operation in-place on
* `acl_src`. * `acl_src`.
*/ */
void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src, void aclnn_div(ggml_backend_cann_context & ctx,
aclTensor* acl_other, aclTensor* acl_dst = nullptr); aclTensor * acl_src,
aclTensor * acl_other,
aclTensor * acl_dst = nullptr);
/** /**
* @brief Applies element-wise cosine function to the elements of a tensor. * @brief Applies element-wise cosine function to the elements of a tensor.
@ -584,8 +591,7 @@ void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src,
* @param acl_dst The destination tensor where the cosine results will be * @param acl_dst The destination tensor where the cosine results will be
* stored. * stored.
*/ */
void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src, void aclnn_cos(ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst);
aclTensor* acl_dst);
/** /**
* @brief Applies element-wise sine function to the elements of a tensor. * @brief Applies element-wise sine function to the elements of a tensor.
@ -602,8 +608,7 @@ void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
* @param acl_src The source tensor on which the sine function will be applied. * @param acl_src The source tensor on which the sine function will be applied.
* @param acl_dst The destination tensor where the sine results will be stored. * @param acl_dst The destination tensor where the sine results will be stored.
*/ */
void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src, void aclnn_sin(ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst);
aclTensor* acl_dst);
/** /**
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one * @brief Prepares broadcast-compatible ACL tensors for two input tensors and one
@ -621,8 +626,12 @@ void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1. * @param acl_src1 Output pointer to the created ACL tensor corresponding to src1.
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst. * @param acl_dst Output pointer to the created ACL tensor corresponding to dst.
*/ */
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, void bcast_shape(ggml_tensor * src0,
aclTensor ** acl_src0, aclTensor ** acl_src1, aclTensor ** acl_dst); ggml_tensor * src1,
ggml_tensor * dst,
aclTensor ** acl_src0,
aclTensor ** acl_src1,
aclTensor ** acl_dst);
/** /**
* @brief Computes the 1D transposed convolution (deconvolution) of a ggml * @brief Computes the 1D transposed convolution (deconvolution) of a ggml
@ -637,7 +646,7 @@ void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst,
* @param dst The destination tensor where the transposed convolution result * @param dst The destination tensor where the transposed convolution result
* will be stored. dst->op is `GGML_OP_CONV_TRANSPOSE_1D`. * will be stored. dst->op is `GGML_OP_CONV_TRANSPOSE_1D`.
*/ */
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_conv_transpose_1d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Applies the ELU (Exponential Linear Unit) activation to a ggml tensor * @brief Applies the ELU (Exponential Linear Unit) activation to a ggml tensor
@ -662,7 +671,7 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds
* @param dst The destination tensor where the ELU-activated result will be stored. * @param dst The destination tensor where the ELU-activated result will be stored.
* dst->op is expected to be `GGML_OP_ELU`. * dst->op is expected to be `GGML_OP_ELU`.
*/ */
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_elu(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Computes the mean of a ggml tensor element-wise using the CANN backend. * @brief Computes the mean of a ggml tensor element-wise using the CANN backend.
@ -677,7 +686,7 @@ void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the mean result will be stored. * @param dst The destination tensor where the mean result will be stored.
* dst->op is expected to be `GGML_OP_MEAN`. * dst->op is expected to be `GGML_OP_MEAN`.
*/ */
void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_mean(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Applies 1D reflect padding to a ggml tensor using the CANN backend. * @brief Applies 1D reflect padding to a ggml tensor using the CANN backend.
@ -692,7 +701,7 @@ void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the padded result will be stored. * @param dst The destination tensor where the padded result will be stored.
* dst->op is expected to be `GGML_OP_PAD_REFLECT_1D`. * dst->op is expected to be `GGML_OP_PAD_REFLECT_1D`.
*/ */
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_pad_reflect_1d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Counts the number of equal elements in two ggml tensors using the CANN backend. * @brief Counts the number of equal elements in two ggml tensors using the CANN backend.
@ -708,7 +717,7 @@ void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result will be stored. * @param dst The destination tensor where the result will be stored.
* dst->op is expected to be `GGML_OP_COUNT_EQUAL`. * dst->op is expected to be `GGML_OP_COUNT_EQUAL`.
*/ */
void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_count_equal(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Applies the Step activation function to a ggml tensor using the CANN backend. * @brief Applies the Step activation function to a ggml tensor using the CANN backend.
@ -723,7 +732,7 @@ void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result will be stored. * @param dst The destination tensor where the result will be stored.
* dst->op is expected to be `GGML_OP_STEP`. * dst->op is expected to be `GGML_OP_STEP`.
*/ */
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_step(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Performs the Flash Attention extended operator using the CANN backend. * @brief Performs the Flash Attention extended operator using the CANN backend.
@ -738,59 +747,46 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result will be stored. * @param dst The destination tensor where the result will be stored.
* dst->op is expected to be `GGML_OP_FLASH_ATTN_EXT`. * dst->op is expected to be `GGML_OP_FLASH_ATTN_EXT`.
*/ */
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_flash_attn_ext(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/* /*
* @brief A generic wrapper for ACL resources with custom deleter support. * @brief A generic wrapper for ACL resources with custom deleter support.
*/ */
using any_acl_resource = std::unique_ptr<void, std::function<void(void*)>>; using any_acl_resource = std::unique_ptr<void, std::function<void(void *)>>;
/** /**
* @brief Trait structure used to define how to destroy a given ACL resource type. * @brief Trait structure used to define how to destroy a given ACL resource type.
* *
* @tparam T ACL resource type. * @tparam T ACL resource type.
*/ */
template<typename T> template <typename T> struct acl_resource_traits;
struct acl_resource_traits;
/** /**
* @brief Specialization for aclTensor, defines how to destroy an aclTensor resource. * @brief Specialization for aclTensor, defines how to destroy an aclTensor resource.
*/ */
template<> template <> struct acl_resource_traits<aclTensor> {
struct acl_resource_traits<aclTensor> { static void destroy(void * p) { ACL_CHECK(aclDestroyTensor(static_cast<aclTensor *>(p))); }
static void destroy(void* p) {
ACL_CHECK(aclDestroyTensor(static_cast<aclTensor*>(p)));
}
}; };
/** /**
* @brief Specialization for aclIntArray, defines how to destroy an aclIntArray resource. * @brief Specialization for aclIntArray, defines how to destroy an aclIntArray resource.
*/ */
template<> template <> struct acl_resource_traits<aclIntArray> {
struct acl_resource_traits<aclIntArray> { static void destroy(void * p) { ACL_CHECK(aclDestroyIntArray(static_cast<aclIntArray *>(p))); }
static void destroy(void* p) {
ACL_CHECK(aclDestroyIntArray(static_cast<aclIntArray*>(p)));
}
}; };
/** /**
* @brief Specialization for aclScalar, defines how to destroy an aclScalar resource. * @brief Specialization for aclScalar, defines how to destroy an aclScalar resource.
*/ */
template<> template <> struct acl_resource_traits<aclScalar> {
struct acl_resource_traits<aclScalar> { static void destroy(void * p) { ACL_CHECK(aclDestroyScalar(static_cast<aclScalar *>(p))); }
static void destroy(void* p) {
ACL_CHECK(aclDestroyScalar(static_cast<aclScalar*>(p)));
}
}; };
/** /**
* @brief Specialization for aclTensorList, defines how to destroy an aclTensorList resource. * @brief Specialization for aclTensorList, defines how to destroy an aclTensorList resource.
*/ */
template<> template <> struct acl_resource_traits<aclTensorList> {
struct acl_resource_traits<aclTensorList> { static void destroy(void * p) { ACL_CHECK(aclDestroyTensorList(static_cast<aclTensorList *>(p))); }
static void destroy(void* p) {
ACL_CHECK(aclDestroyTensorList(static_cast<aclTensorList*>(p)));
}
}; };
/** /**
@ -800,14 +796,8 @@ struct acl_resource_traits<aclTensorList> {
* @param ptr Raw pointer to ACL resource. * @param ptr Raw pointer to ACL resource.
* @return any_acl_resource Smart pointer that handles destruction. * @return any_acl_resource Smart pointer that handles destruction.
*/ */
template<typename T> template <typename T> any_acl_resource make_acl_resource(T * ptr) {
any_acl_resource make_acl_resource(T* ptr) { return any_acl_resource(static_cast<void *>(ptr), [](void * p) { acl_resource_traits<T>::destroy(p); });
return any_acl_resource(
static_cast<void*>(ptr),
[](void* p) {
acl_resource_traits<T>::destroy(p);
}
);
} }
/** /**
@ -817,8 +807,7 @@ any_acl_resource make_acl_resource(T* ptr) {
* @param vec Target vector to hold ACL resources. * @param vec Target vector to hold ACL resources.
* @param args Raw pointers to ACL resources. * @param args Raw pointers to ACL resources.
*/ */
template<typename... Args> template <typename... Args> void register_acl_resources(std::vector<any_acl_resource> & vec, Args *... args) {
void register_acl_resources(std::vector<any_acl_resource>& vec, Args*... args) {
(vec.emplace_back(make_acl_resource(args)), ...); (vec.emplace_back(make_acl_resource(args)), ...);
} }
@ -826,39 +815,36 @@ void register_acl_resources(std::vector<any_acl_resource>& vec, Args*... args) {
* @brief Task class that wraps the execution of an aclnn function call. * @brief Task class that wraps the execution of an aclnn function call.
*/ */
class aclnn_task : public cann_task { class aclnn_task : public cann_task {
public: public:
aclnn_task(aclnn_func_t aclnn_func, void * workspace_addr, aclnn_task(aclnn_func_t aclnn_func,
uint64_t workspace_size, aclOpExecutor * executor, void * workspace_addr,
aclrtStream stream) : uint64_t workspace_size,
aclnn_func_(aclnn_func), aclOpExecutor * executor,
workspace_addr_(workspace_addr), aclrtStream stream) :
workspace_size_(workspace_size), aclnn_func_(aclnn_func),
executor_(executor), workspace_addr_(workspace_addr),
stream_(stream) {} workspace_size_(workspace_size),
virtual void run_task() override { executor_(executor),
ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_)); stream_(stream) {}
}
private: virtual void run_task() override { ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_)); }
aclnn_func_t aclnn_func_; private:
void * workspace_addr_; aclnn_func_t aclnn_func_;
uint64_t workspace_size_; void * workspace_addr_;
aclOpExecutor * executor_; uint64_t workspace_size_;
aclrtStream stream_; aclOpExecutor * executor_;
aclrtStream stream_;
}; };
/** /**
* @brief Task class that releases ACL resources after usage. * @brief Task class that releases ACL resources after usage.
*/ */
class release_resource_task : public cann_task { class release_resource_task : public cann_task {
public: public:
release_resource_task(std::vector<any_acl_resource>&& resources){ release_resource_task(std::vector<any_acl_resource> && resources) { resource_ = std::move(resources); }
resource_ = std::move(resources);
}
virtual void run_task() override { virtual void run_task() override { resource_.clear(); }
resource_.clear(); private:
}
private:
std::vector<any_acl_resource> resource_; std::vector<any_acl_resource> resource_;
}; };
@ -866,38 +852,40 @@ private:
* @brief Task class for performing asynchronous memory copy operations. * @brief Task class for performing asynchronous memory copy operations.
*/ */
class async_memcpy_task : public cann_task { class async_memcpy_task : public cann_task {
public: public:
async_memcpy_task(void* dst, const void* src, size_t size, async_memcpy_task(void * dst, const void * src, size_t size, aclrtMemcpyKind kind, aclrtStream stream) :
aclrtMemcpyKind kind, aclrtStream stream) dst_(dst),
: dst_(dst), src_(src), size_(size), kind_(kind), stream_(stream) {} src_(src),
size_(size),
kind_(kind),
stream_(stream) {}
virtual void run_task() override { virtual void run_task() override { ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_)); }
ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_)); private:
} void * dst_;
private: const void * src_;
void* dst_; size_t size_;
const void* src_;
size_t size_;
aclrtMemcpyKind kind_; aclrtMemcpyKind kind_;
aclrtStream stream_; aclrtStream stream_;
}; };
/** /**
* @brief Task class for performing asynchronous memory set operations. * @brief Task class for performing asynchronous memory set operations.
*/ */
class async_memset_task : public cann_task { class async_memset_task : public cann_task {
public: public:
async_memset_task(void* buffer, size_t size, int32_t value, aclrtStream stream) async_memset_task(void * buffer, size_t size, int32_t value, aclrtStream stream) :
: buffer_(buffer), size_(size), value_(value), stream_(stream) {} buffer_(buffer),
size_(size),
value_(value),
stream_(stream) {}
virtual void run_task() override { virtual void run_task() override { ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_)); }
ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_)); private:
} void * buffer_;
private: size_t size_;
void* buffer_; int32_t value_;
size_t size_; aclrtStream stream_;
int32_t value_;
aclrtStream stream_;
}; };
/** /**
@ -918,25 +906,24 @@ class async_memset_task : public cann_task {
* same stream are executed in queue order. * same stream are executed in queue order.
*/ */
#define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \ #define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \
do { \ do { \
uint64_t workspaceSize = 0; \ uint64_t workspaceSize = 0; \
aclOpExecutor * executor; \ aclOpExecutor * executor; \
void * workspaceAddr = nullptr; \ void * workspaceAddr = nullptr; \
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor));\ ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor)); \
/* workspace should alloced in main thread to keep malloc order when using vmm. */ \ /* workspace should alloced in main thread to keep malloc order when using vmm. */ \
if (workspaceSize > 0) { \ if (workspaceSize > 0) { \
ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \ ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \
workspaceAddr = workspace_allocator.get(); \ workspaceAddr = workspace_allocator.get(); \
} \ } \
if (CTX.async_mode) { \ if (CTX.async_mode) { \
auto task = \ auto task = \
std::make_unique<aclnn_task>(aclnn##OP_NAME, workspaceAddr, workspaceSize, \ std::make_unique<aclnn_task>(aclnn##OP_NAME, workspaceAddr, workspaceSize, executor, CTX.stream()); \
executor, CTX.stream()); \ CTX.task_queue.submit_task(std::move(task)); \
CTX.task_queue.submit_task(std::move(task)); \ } else { \
} else { \ ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream())); \
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream()));\ } \
} \
} while (0) } while (0)
/** /**
@ -947,11 +934,10 @@ class async_memset_task : public cann_task {
* @param ctx Backend context which manages task submission and async mode. * @param ctx Backend context which manages task submission and async mode.
* @param args Pointers to ACL resources to be released. * @param args Pointers to ACL resources to be released.
*/ */
template <typename... Args> template <typename... Args> void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) {
void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) {
std::vector<any_acl_resource> resources; std::vector<any_acl_resource> resources;
register_acl_resources(resources, std::forward<Args>(args)...); register_acl_resources(resources, std::forward<Args>(args)...);
if(ctx.async_mode) { if (ctx.async_mode) {
auto task = std::make_unique<release_resource_task>(std::move(resources)); auto task = std::make_unique<release_resource_task>(std::move(resources));
ctx.task_queue.submit_task(std::move(task)); ctx.task_queue.submit_task(std::move(task));
} }
@ -966,8 +952,11 @@ void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... arg
* @param len Size of memory to copy (in bytes). * @param len Size of memory to copy (in bytes).
* @param kind Type of memory copy (host-to-device, device-to-host, etc). * @param kind Type of memory copy (host-to-device, device-to-host, etc).
*/ */
inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst, inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx,
const void * src, size_t len, aclrtMemcpyKind kind) { void * dst,
const void * src,
size_t len,
aclrtMemcpyKind kind) {
if (ctx.async_mode) { if (ctx.async_mode) {
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx.stream()); auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx.stream());
ctx.task_queue.submit_task(std::move(task)); ctx.task_queue.submit_task(std::move(task));
@ -976,8 +965,11 @@ inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst,
} }
} }
inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst, inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx,
const void * src, size_t len, aclrtMemcpyKind kind) { void * dst,
const void * src,
size_t len,
aclrtMemcpyKind kind) {
if (ctx->async_mode) { if (ctx->async_mode) {
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx->stream()); auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx->stream());
ctx->task_queue.submit_task(std::move(task)); ctx->task_queue.submit_task(std::move(task));
@ -994,8 +986,7 @@ inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst,
* @param size Size of the memory buffer (in bytes). * @param size Size of the memory buffer (in bytes).
* @param value Value to set in the buffer. * @param value Value to set in the buffer.
*/ */
inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer, inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer, size_t size, int value) {
size_t size, int value) {
if (ctx.async_mode) { if (ctx.async_mode) {
auto task = std::make_unique<async_memset_task>(buffer, size, value, ctx.stream()); auto task = std::make_unique<async_memset_task>(buffer, size, value, ctx.stream());
ctx.task_queue.submit_task(std::move(task)); ctx.task_queue.submit_task(std::move(task));
@ -1029,7 +1020,7 @@ inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffe
* @param dst The destination tensor where the expert-weighted token outputs are stored. * @param dst The destination tensor where the expert-weighted token outputs are stored.
* Expected to be of shape [M, K, N, 1]. * Expected to be of shape [M, K, N, 1].
*/ */
void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst); void ggml_cann_mul_mat_id(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/** /**
* @brief Check whether a tensor is a weight tensor for matrix multiplication. * @brief Check whether a tensor is a weight tensor for matrix multiplication.
@ -1041,20 +1032,14 @@ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* *
* @param tensor Pointer to the target ggml_tensor object (const-qualified). * @param tensor Pointer to the target ggml_tensor object (const-qualified).
*/ */
static bool is_matmul_weight(const ggml_tensor* tensor) { static bool is_matmul_weight(const ggml_tensor * tensor) {
std::string name = ggml_get_name(tensor); std::string name = ggml_get_name(tensor);
static const std::unordered_set<std::string> weight_suffixes{ static const std::unordered_set<std::string> weight_suffixes{ "output.weight", "attn_q.weight",
"output.weight", "attn_k.weight", "attn_v.weight",
"attn_q.weight", "attn_output.weight", "ffn_gate.weight",
"attn_k.weight", "ffn_up.weight", "ffn_down.weight" };
"attn_v.weight",
"attn_output.weight",
"ffn_gate.weight",
"ffn_up.weight",
"ffn_down.weight"
};
for (const auto& suffix : weight_suffixes) { for (const auto & suffix : weight_suffixes) {
if (name.find(suffix) != std::string::npos) { if (name.find(suffix) != std::string::npos) {
return true; return true;
} }
@ -1078,14 +1063,13 @@ static bool is_matmul_weight(const ggml_tensor* tensor) {
* @param ctx The CANN backend context used to manage execution and resources. * @param ctx The CANN backend context used to manage execution and resources.
* @param dst The destination tensor. * @param dst The destination tensor.
*/ */
template <auto binary_op> template <auto binary_op> void ggml_cann_binary_op(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor * src0 = dst->src[0];
ggml_tensor* src0 = dst->src[0]; ggml_tensor * src1 = dst->src[1];
ggml_tensor* src1 = dst->src[1];
aclTensor* acl_src0; aclTensor * acl_src0;
aclTensor* acl_src1; aclTensor * acl_src1;
aclTensor* acl_dst; aclTensor * acl_dst;
// Need bcast // Need bcast
bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst); bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst);
@ -1094,7 +1078,6 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_cann_release_resources(ctx, acl_src0, acl_src1, acl_dst); ggml_cann_release_resources(ctx, acl_src0, acl_src1, acl_dst);
} }
/** /**
* @brief Applies a unary operation to an input tensor using the CANN backend. * @brief Applies a unary operation to an input tensor using the CANN backend.
* *
@ -1107,12 +1090,12 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
* @param ctx The CANN backend context for managing resources and execution. * @param ctx The CANN backend context for managing resources and execution.
* @param dst The destination tensor. Its src[0] is treated as the input tensor. * @param dst The destination tensor. Its src[0] is treated as the input tensor.
*/ */
template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)> template <void unary_op(ggml_backend_cann_context &, aclTensor *, aclTensor *)>
void ggml_cann_op_unary(ggml_backend_cann_context& ctx, ggml_tensor* dst) { void ggml_cann_op_unary(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor* src = dst->src[0]; ggml_tensor * src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor * acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst); aclTensor * acl_dst = ggml_cann_create_tensor(dst);
unary_op(ctx, acl_src, acl_dst); unary_op(ctx, acl_src, acl_dst);
ggml_cann_release_resources(ctx, acl_src, acl_dst); ggml_cann_release_resources(ctx, acl_src, acl_dst);
@ -1138,9 +1121,9 @@ template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
* *
* @see GGML_CANN_CALL_OP_UNARY * @see GGML_CANN_CALL_OP_UNARY
*/ */
void ggml_cann_op_unary( void ggml_cann_op_unary(std::function<void(ggml_backend_cann_context &, aclTensor *, aclTensor *)> unary_op,
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op, ggml_backend_cann_context & ctx,
ggml_backend_cann_context& ctx, ggml_tensor* dst); ggml_tensor * dst);
/** /**
* @brief Applies a gated (GLU-style) unary operation using the CANN backend. * @brief Applies a gated (GLU-style) unary operation using the CANN backend.
@ -1172,9 +1155,9 @@ void ggml_cann_op_unary(
* *
* @see GGML_CANN_CALL_OP_UNARY_GATED * @see GGML_CANN_CALL_OP_UNARY_GATED
*/ */
void ggml_cann_op_unary_gated( void ggml_cann_op_unary_gated(std::function<void(ggml_backend_cann_context &, aclTensor *, aclTensor *)> unary_op,
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op, ggml_backend_cann_context & ctx,
ggml_backend_cann_context& ctx, ggml_tensor* dst); ggml_tensor * dst);
/** /**
* @brief Helper macro to call a unary ACL operator via ggml_cann_op_unary. * @brief Helper macro to call a unary ACL operator via ggml_cann_op_unary.
@ -1197,16 +1180,13 @@ void ggml_cann_op_unary_gated(
* @see ggml_cann_op_unary * @see ggml_cann_op_unary
* @see GGML_CANN_CALL_ACLNN_OP * @see GGML_CANN_CALL_ACLNN_OP
*/ */
#define GGML_CANN_CALL_OP_UNARY(OP_NAME) \ #define GGML_CANN_CALL_OP_UNARY(OP_NAME) \
do { \ do { \
auto lambda = [](ggml_backend_cann_context& ctx, \ auto lambda = [](ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst) { \
aclTensor* acl_src, \ GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
aclTensor* acl_dst) { \ }; \
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \ ggml_cann_op_unary(lambda, ctx, dst); \
}; \ } while (0)
ggml_cann_op_unary(lambda, ctx, dst); \
} \
while (0)
/** /**
* @brief Helper macro to call a gated unary ACL operator via ggml_cann_op_unary_gated. * @brief Helper macro to call a gated unary ACL operator via ggml_cann_op_unary_gated.
@ -1229,15 +1209,12 @@ void ggml_cann_op_unary_gated(
* @see ggml_cann_op_unary_gated * @see ggml_cann_op_unary_gated
* @see GGML_CANN_CALL_ACLNN_OP * @see GGML_CANN_CALL_ACLNN_OP
*/ */
#define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \ #define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \
do { \ do { \
auto lambda = [](ggml_backend_cann_context& ctx, \ auto lambda = [](ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst) { \
aclTensor* acl_src, \ GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
aclTensor* acl_dst) { \ }; \
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \ ggml_cann_op_unary_gated(lambda, ctx, dst); \
}; \ } while (0)
ggml_cann_op_unary_gated(lambda, ctx, dst); \
} \
while (0)
#endif // CANN_ACLNN_OPS #endif // CANN_ACLNN_OPS

191
ggml/src/ggml-cann/common.h Executable file → Normal file
View File

@ -44,7 +44,7 @@
#include "../include/ggml.h" #include "../include/ggml.h"
#include "../ggml-impl.h" #include "../ggml-impl.h"
#define MATRIX_ROW_PADDING 512 #define MATRIX_ROW_PADDING 512
#define GGML_CANN_MAX_STREAMS 8 #define GGML_CANN_MAX_STREAMS 8
/** /**
@ -56,8 +56,7 @@
* @param line The line number at which the error occurred. * @param line The line number at which the error occurred.
* @param msg The error message. * @param msg The error message.
*/ */
[[noreturn]] void ggml_cann_error(const char* stmt, const char* func, [[noreturn]] void ggml_cann_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
const char* file, int line, const char* msg);
/** /**
* @brief Checks the result of a CANN function call and invokes the error * @brief Checks the result of a CANN function call and invokes the error
@ -89,25 +88,24 @@ struct ggml_cann_device_info {
* @brief Information about a single CANN device. * @brief Information about a single CANN device.
*/ */
struct cann_device_info { struct cann_device_info {
int cc; /**< Compute capability. */ int cc; /**< Compute capability. */
size_t smpb; /**< Maximum shared memory per block. */ size_t smpb; /**< Maximum shared memory per block. */
bool vmm; /**< Virtual memory support. */ bool vmm; /**< Virtual memory support. */
size_t vmm_granularity; /**< Granularity of virtual memory. */ size_t vmm_granularity; /**< Granularity of virtual memory. */
size_t total_vram; /**< Total video RAM available on the device. */ size_t total_vram; /**< Total video RAM available on the device. */
}; };
cann_device_info devices[GGML_CANN_MAX_DEVICES] = cann_device_info devices[GGML_CANN_MAX_DEVICES] = {}; /**< Array of CANN device information. */
{}; /**< Array of CANN device information. */
}; };
const ggml_cann_device_info& ggml_cann_info(); const ggml_cann_device_info & ggml_cann_info();
void ggml_cann_set_device(int32_t device); void ggml_cann_set_device(int32_t device);
int32_t ggml_cann_get_device(); int32_t ggml_cann_get_device();
std::optional<std::string> get_env(const std::string& name); std::optional<std::string> get_env(const std::string & name);
bool parse_bool(const std::string& value); bool parse_bool(const std::string & value);
int parse_integer(const std::string& value); int parse_integer(const std::string & value);
/** /**
* @brief Abstract base class for memory pools used by CANN. * @brief Abstract base class for memory pools used by CANN.
@ -126,7 +124,7 @@ struct ggml_cann_pool {
* will be stored. * will be stored.
* @return Pointer to the allocated memory block. * @return Pointer to the allocated memory block.
*/ */
virtual void* alloc(size_t size, size_t* actual_size) = 0; virtual void * alloc(size_t size, size_t * actual_size) = 0;
/** /**
* @brief Frees a previously allocated memory block. * @brief Frees a previously allocated memory block.
@ -136,16 +134,16 @@ struct ggml_cann_pool {
* @note Note that all CANN opertors are running async. Make sure memory is * @note Note that all CANN opertors are running async. Make sure memory is
* still avaiable before this operator finished. * still avaiable before this operator finished.
*/ */
virtual void free(void* ptr, size_t size) = 0; virtual void free(void * ptr, size_t size) = 0;
}; };
/** /**
* @brief RAII wrapper for managing memory allocations from a CANN memory pool. * @brief RAII wrapper for managing memory allocations from a CANN memory pool.
*/ */
struct ggml_cann_pool_alloc { struct ggml_cann_pool_alloc {
ggml_cann_pool* pool = nullptr; /**< Pointer to the memory pool. */ ggml_cann_pool * pool = nullptr; /**< Pointer to the memory pool. */
void* ptr = nullptr; /**< Pointer to the allocated memory block. */ void * ptr = nullptr; /**< Pointer to the allocated memory block. */
size_t actual_size = 0; /**< Actual size of the allocated memory block. */ size_t actual_size = 0; /**< Actual size of the allocated memory block. */
/** /**
* @brief Default constructor. * @brief Default constructor.
@ -156,16 +154,14 @@ struct ggml_cann_pool_alloc {
* @brief Constructor that initializes the memory pool. * @brief Constructor that initializes the memory pool.
* @param pool Reference to the memory pool. * @param pool Reference to the memory pool.
*/ */
explicit ggml_cann_pool_alloc(ggml_cann_pool& pool) : pool(&pool) {} explicit ggml_cann_pool_alloc(ggml_cann_pool & pool) : pool(&pool) {}
/** /**
* @brief Constructor that initializes the memory pool and allocates memory. * @brief Constructor that initializes the memory pool and allocates memory.
* @param pool Reference to the memory pool. * @param pool Reference to the memory pool.
* @param size Size of the memory block to allocate. * @param size Size of the memory block to allocate.
*/ */
ggml_cann_pool_alloc(ggml_cann_pool& pool, size_t size) : pool(&pool) { ggml_cann_pool_alloc(ggml_cann_pool & pool, size_t size) : pool(&pool) { alloc(size); }
alloc(size);
}
/** /**
* @brief Destructor that frees the allocated memory block. * @brief Destructor that frees the allocated memory block.
@ -181,7 +177,7 @@ struct ggml_cann_pool_alloc {
* @param size Size of the memory block to allocate. * @param size Size of the memory block to allocate.
* @return Pointer to the allocated memory block. * @return Pointer to the allocated memory block.
*/ */
void* alloc(size_t size) { void * alloc(size_t size) {
GGML_ASSERT(pool != nullptr); GGML_ASSERT(pool != nullptr);
GGML_ASSERT(ptr == nullptr); GGML_ASSERT(ptr == nullptr);
ptr = pool->alloc(size, &this->actual_size); ptr = pool->alloc(size, &this->actual_size);
@ -194,7 +190,7 @@ struct ggml_cann_pool_alloc {
* @param size Size of the memory block to allocate. * @param size Size of the memory block to allocate.
* @return Pointer to the allocated memory block. * @return Pointer to the allocated memory block.
*/ */
void* alloc(ggml_cann_pool& pool, size_t size) { void * alloc(ggml_cann_pool & pool, size_t size) {
this->pool = &pool; this->pool = &pool;
return alloc(size); return alloc(size);
} }
@ -203,25 +199,25 @@ struct ggml_cann_pool_alloc {
* @brief Gets the pointer to the allocated memory block. * @brief Gets the pointer to the allocated memory block.
* @return Pointer to the allocated memory block. * @return Pointer to the allocated memory block.
*/ */
void* get() { return ptr; } void * get() { return ptr; }
// Deleted copy constructor // Deleted copy constructor
ggml_cann_pool_alloc(const ggml_cann_pool_alloc&) = delete; ggml_cann_pool_alloc(const ggml_cann_pool_alloc &) = delete;
// Deleted move constructor // Deleted move constructor
ggml_cann_pool_alloc(ggml_cann_pool_alloc&&) = delete; ggml_cann_pool_alloc(ggml_cann_pool_alloc &&) = delete;
// Deleted copy assignment operator // Deleted copy assignment operator
ggml_cann_pool_alloc& operator=(const ggml_cann_pool_alloc&) = delete; ggml_cann_pool_alloc & operator=(const ggml_cann_pool_alloc &) = delete;
// Deleted move assignment operator // Deleted move assignment operator
ggml_cann_pool_alloc& operator=(ggml_cann_pool_alloc&&) = delete; ggml_cann_pool_alloc & operator=(ggml_cann_pool_alloc &&) = delete;
}; };
/** /**
* @brief Function pointer type for ACLNN operator calls. * @brief Function pointer type for ACLNN operator calls.
*/ */
using aclnn_func_t = aclnnStatus (*)(void*, uint64_t, aclOpExecutor*, aclrtStream); using aclnn_func_t = aclnnStatus (*)(void *, uint64_t, aclOpExecutor *, aclrtStream);
/** /**
* @brief Base class for all CANN tasks to be submitted to the task queue. * @brief Base class for all CANN tasks to be submitted to the task queue.
@ -229,7 +225,7 @@ using aclnn_func_t = aclnnStatus (*)(void*, uint64_t, aclOpExecutor*, aclrtStrea
* Users should override the run_task() method with actual task logic. * Users should override the run_task() method with actual task logic.
*/ */
class cann_task { class cann_task {
public: public:
virtual void run_task() {} virtual void run_task() {}
}; };
@ -237,16 +233,20 @@ public:
* @brief A lock-free ring-buffer based task queue for asynchronously executing cann_task instances. * @brief A lock-free ring-buffer based task queue for asynchronously executing cann_task instances.
*/ */
class cann_task_queue { class cann_task_queue {
public: public:
/** /**
* @brief Constructs a task queue with a fixed power-of-two capacity for a specific device. * @brief Constructs a task queue with a fixed power-of-two capacity for a specific device.
* *
* @param capacity Queue capacity. Must be a power of 2. * @param capacity Queue capacity. Must be a power of 2.
* @param device Target device ID (used for context setting). * @param device Target device ID (used for context setting).
*/ */
explicit cann_task_queue(size_t capacity, int32_t device) explicit cann_task_queue(size_t capacity, int32_t device) :
: buffer_(capacity), capacity_(capacity), head_(0), tail_(0), buffer_(capacity),
running_(false), device_(device) { capacity_(capacity),
head_(0),
tail_(0),
running_(false),
device_(device) {
GGML_ASSERT((capacity & (capacity - 1)) == 0 && "capacity must be power of 2"); GGML_ASSERT((capacity & (capacity - 1)) == 0 && "capacity must be power of 2");
mask_ = capacity_ - 1; mask_ = capacity_ - 1;
} }
@ -257,7 +257,7 @@ public:
* @param item Unique pointer to the task. * @param item Unique pointer to the task.
* @return true if the task was successfully enqueued, false if the queue was full. * @return true if the task was successfully enqueued, false if the queue was full.
*/ */
bool enqueue(std::unique_ptr<cann_task>&& item) { bool enqueue(std::unique_ptr<cann_task> && item) {
size_t next_tail = (tail_ + 1) & mask_; size_t next_tail = (tail_ + 1) & mask_;
if (next_tail == head_) { if (next_tail == head_) {
@ -276,17 +276,16 @@ public:
* *
* @param task Task to be submitted. * @param task Task to be submitted.
*/ */
void submit_task(std::unique_ptr<cann_task>&& task) { void submit_task(std::unique_ptr<cann_task> && task) {
while(!enqueue(std::move(task))) { while (!enqueue(std::move(task))) {
std::this_thread::yield(); std::this_thread::yield();
continue; continue;
} }
if (!running_) { if (!running_) {
running_ = true; running_ = true;
thread_ = std::thread(&cann_task_queue::execute, this); thread_ = std::thread(&cann_task_queue::execute, this);
} }
} }
/** /**
@ -309,7 +308,7 @@ public:
} }
} }
private: private:
/** /**
* @brief Worker thread function that continuously dequeues and executes tasks. * @brief Worker thread function that continuously dequeues and executes tasks.
*/ */
@ -317,7 +316,7 @@ private:
ggml_cann_set_device(device_); ggml_cann_set_device(device_);
while (running_) { while (running_) {
if(head_ == tail_) { if (head_ == tail_) {
std::this_thread::yield(); std::this_thread::yield();
continue; continue;
} }
@ -330,24 +329,24 @@ private:
} }
std::vector<std::unique_ptr<cann_task>> buffer_; std::vector<std::unique_ptr<cann_task>> buffer_;
const size_t capacity_; const size_t capacity_;
size_t mask_; size_t mask_;
size_t head_; size_t head_;
size_t tail_; size_t tail_;
bool running_; bool running_;
std::thread thread_; std::thread thread_;
int32_t device_; int32_t device_;
}; };
#ifdef USE_ACL_GRAPH #ifdef USE_ACL_GRAPH
struct ggml_graph_node_properties { struct ggml_graph_node_properties {
// dst tensor // dst tensor
void * node_address; void * node_address;
int64_t ne[GGML_MAX_DIMS]; int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS]; size_t nb[GGML_MAX_DIMS];
// src tensor // src tensor
void * src_address[GGML_MAX_SRC]; void * src_address[GGML_MAX_SRC];
int64_t src_ne[GGML_MAX_SRC][GGML_MAX_DIMS]; int64_t src_ne[GGML_MAX_SRC][GGML_MAX_DIMS];
size_t src_nb[GGML_MAX_SRC][GGML_MAX_DIMS]; size_t src_nb[GGML_MAX_SRC][GGML_MAX_DIMS];
@ -376,13 +375,11 @@ struct ggml_cann_graph {
* move existing graphs to the front (most recently used), and clear the cache. * move existing graphs to the front (most recently used), and clear the cache.
*/ */
struct ggml_cann_graph_lru_cache { struct ggml_cann_graph_lru_cache {
size_t capacity; /**< Maximum number of graphs in the cache. */ size_t capacity; /**< Maximum number of graphs in the cache. */
std::list<ggml_cann_graph*> cache_list; /**< List storing cached graphs as raw pointers. */ std::list<ggml_cann_graph *> cache_list; /**< List storing cached graphs as raw pointers. */
ggml_cann_graph_lru_cache() { ggml_cann_graph_lru_cache() { capacity = parse_integer(get_env("GGML_CANN_GRAPH_CACHE_CAPACITY").value_or("12")); }
capacity = parse_integer(get_env("GGML_CANN_GRAPH_CACHE_CAPACITY").value_or("12"));
}
/** /**
* @brief Push a new graph to the front of the cache. * @brief Push a new graph to the front of the cache.
@ -390,11 +387,11 @@ struct ggml_cann_graph_lru_cache {
* @param new_node Pointer to the new ggml_cann_graph to cache. * @param new_node Pointer to the new ggml_cann_graph to cache.
* Ownership is transferred to the cache (cache will delete it). * Ownership is transferred to the cache (cache will delete it).
*/ */
void push(ggml_cann_graph* new_node) { void push(ggml_cann_graph * new_node) {
if (cache_list.size() >= capacity) { if (cache_list.size() >= capacity) {
ggml_cann_graph* old = cache_list.back(); ggml_cann_graph * old = cache_list.back();
cache_list.pop_back(); cache_list.pop_back();
delete old; // free the old graph delete old; // free the old graph
} }
cache_list.push_front(new_node); cache_list.push_front(new_node);
} }
@ -403,7 +400,7 @@ struct ggml_cann_graph_lru_cache {
* @brief Move an existing graph to the front of the cache. * @brief Move an existing graph to the front of the cache.
* @param node Pointer to the ggml_cann_graph to move. * @param node Pointer to the ggml_cann_graph to move.
*/ */
void move_to_front(ggml_cann_graph* node) { void move_to_front(ggml_cann_graph * node) {
cache_list.remove(node); cache_list.remove(node);
cache_list.push_front(node); cache_list.push_front(node);
} }
@ -421,92 +418,89 @@ struct ggml_cann_graph_lru_cache {
/** /**
* @brief Destructor that clears the cache and frees all cached graphs. * @brief Destructor that clears the cache and frees all cached graphs.
*/ */
~ggml_cann_graph_lru_cache() { ~ggml_cann_graph_lru_cache() { clear(); }
clear();
}
}; };
#endif // USE_ACL_GRAPH #endif // USE_ACL_GRAPH
struct ggml_cann_rope_cache { struct ggml_cann_rope_cache {
~ggml_cann_rope_cache() { ~ggml_cann_rope_cache() {
if(theta_scale_cache != nullptr) { if (theta_scale_cache != nullptr) {
ACL_CHECK(aclrtFree(theta_scale_cache)); ACL_CHECK(aclrtFree(theta_scale_cache));
} }
if(sin_cache != nullptr) { if (sin_cache != nullptr) {
ACL_CHECK(aclrtFree(sin_cache)); ACL_CHECK(aclrtFree(sin_cache));
} }
if(cos_cache != nullptr) { if (cos_cache != nullptr) {
ACL_CHECK(aclrtFree(cos_cache)); ACL_CHECK(aclrtFree(cos_cache));
} }
} }
void* theta_scale_cache = nullptr; void * theta_scale_cache = nullptr;
int64_t theta_scale_length = 0; int64_t theta_scale_length = 0;
// sin/cos cache, used only to accelerate first layer on each device // sin/cos cache, used only to accelerate first layer on each device
void* sin_cache = nullptr; void * sin_cache = nullptr;
void* cos_cache = nullptr; void * cos_cache = nullptr;
int64_t position_length = 0; int64_t position_length = 0;
// Properties to check before reusing the sincos cache // Properties to check before reusing the sincos cache
bool cached = false; bool cached = false;
float ext_factor = 0.0f; float ext_factor = 0.0f;
float theta_scale = 0.0f; float theta_scale = 0.0f;
float freq_scale = 0.0f; float freq_scale = 0.0f;
float attn_factor = 0.0f; float attn_factor = 0.0f;
bool is_neox = false; bool is_neox = false;
}; };
struct ggml_cann_tensor_cache { struct ggml_cann_tensor_cache {
~ggml_cann_tensor_cache() { ~ggml_cann_tensor_cache() {
if(cache != nullptr) { if (cache != nullptr) {
ACL_CHECK(aclrtFree(cache)); ACL_CHECK(aclrtFree(cache));
} }
} }
void* cache = nullptr; void * cache = nullptr;
int64_t size = 0; int64_t size = 0;
}; };
/** /**
* @brief Context for managing CANN backend operations. * @brief Context for managing CANN backend operations.
*/ */
struct ggml_backend_cann_context { struct ggml_backend_cann_context {
int32_t device; /**< Device ID. */ int32_t device; /**< Device ID. */
std::string name; /**< Name of the device. */ std::string name; /**< Name of the device. */
std::string description; /**< Description of the device. */ std::string description; /**< Description of the device. */
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */ aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
#ifdef USE_ACL_GRAPH #ifdef USE_ACL_GRAPH
/// Cached CANN ACL graph used for executing the current ggml computation graph. /// Cached CANN ACL graph used for executing the current ggml computation graph.
ggml_cann_graph_lru_cache graph_lru_cache; ggml_cann_graph_lru_cache graph_lru_cache;
bool acl_graph_mode = true; bool acl_graph_mode = true;
#endif #endif
cann_task_queue task_queue; cann_task_queue task_queue;
bool async_mode; bool async_mode;
// Rope Cache // Rope Cache
ggml_cann_rope_cache rope_cache; ggml_cann_rope_cache rope_cache;
// Constant Pool // Constant Pool
ggml_cann_tensor_cache rms_norm_one_tensor_cache; ggml_cann_tensor_cache rms_norm_one_tensor_cache;
ggml_cann_tensor_cache rms_norm_zero_tensor_cache; ggml_cann_tensor_cache rms_norm_zero_tensor_cache;
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */ aclrtStream streams[GGML_CANN_MAX_STREAMS] = { nullptr }; /**< Array of streams for the device. */
/** /**
* @brief Constructor for initializing the context with a given device. * @brief Constructor for initializing the context with a given device.
* @param device Device ID. * @param device Device ID.
*/ */
explicit ggml_backend_cann_context(int device) explicit ggml_backend_cann_context(int device) :
: device(device), name("CANN" + std::to_string(device)), task_queue(1024, device) { device(device),
name("CANN" + std::to_string(device)),
task_queue(1024, device) {
ggml_cann_set_device(device); ggml_cann_set_device(device);
description = aclrtGetSocName(); description = aclrtGetSocName();
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or("")); async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__, GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__, device, async_mode ? "ON" : "OFF");
device, async_mode ? "ON" : "OFF");
#ifdef USE_ACL_GRAPH #ifdef USE_ACL_GRAPH
acl_graph_mode = parse_bool(get_env("GGML_CANN_ACL_GRAPH").value_or("on")); acl_graph_mode = parse_bool(get_env("GGML_CANN_ACL_GRAPH").value_or("on"));
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n", GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n", __func__, device, acl_graph_mode ? "GRAPH" : "EAGER",
__func__, device, acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
acl_graph_mode ? "GRAPH" : "EAGER",
acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
#endif #endif
} }
@ -549,8 +543,7 @@ struct ggml_backend_cann_context {
aclrtStream stream() { return stream(0); } aclrtStream stream() { return stream(0); }
// TODO: each stream should have a memory pool. // TODO: each stream should have a memory pool.
std::unique_ptr<ggml_cann_pool> std::unique_ptr<ggml_cann_pool> mem_pool; /**< Memory pool for the device. */
mem_pool; /**< Memory pool for the device. */
/** /**
* @brief Create a new memory pool for a given device. * @brief Create a new memory pool for a given device.
@ -563,7 +556,7 @@ struct ggml_backend_cann_context {
* @brief Get or create the memory pool for the context. * @brief Get or create the memory pool for the context.
* @return Reference to the memory pool. * @return Reference to the memory pool.
*/ */
ggml_cann_pool& pool() { ggml_cann_pool & pool() {
if (mem_pool == nullptr) { if (mem_pool == nullptr) {
mem_pool = new_pool_for_device(device); mem_pool = new_pool_for_device(device);
} }

1109
ggml/src/ggml-cann/ggml-cann.cpp Executable file → Normal file

File diff suppressed because it is too large Load Diff

View File

@ -466,29 +466,45 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d) list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x") elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
message(STATUS "s390x detected") message(STATUS "s390x detected")
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c) list(APPEND GGML_CPU_SOURCES
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS) ggml-cpu/arch/s390/quants.c)
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
# TODO: Separation to determine activation of VX/VXE/VXE2 # for native compilation
if (${S390X_M} MATCHES "8561|8562") if (GGML_NATIVE)
message(STATUS "z15 target") # check machine level to determine target
list(APPEND ARCH_FLAGS -march=z15) file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
elseif (${S390X_M} MATCHES "3931") string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
message(STATUS "z16 target")
list(APPEND ARCH_FLAGS -march=z16) # TODO: Separation to determine activation of VX/VXE/VXE2
elseif (${S390X_M} MATCHES "9175|9176") if (${S390X_M} MATCHES "8561|8562")
# NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version. message(STATUS "z15 target")
# binutils must also be updated to the latest for the -march=z17 flag to work. Otherwise, use -march=arch15. list(APPEND ARCH_FLAGS -march=z15)
message(STATUS "z17 target") elseif (${S390X_M} MATCHES "3931")
list(APPEND ARCH_FLAGS -march=arch15) message(STATUS "z16 target")
else() list(APPEND ARCH_FLAGS -march=z16)
message(STATUS "Unknown target") elseif (${S390X_M} MATCHES "9175|9176")
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.") # NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version.
list(APPEND ARCH_FLAGS -march=native -mtune=native) # binutils must also be updated to the latest for the -march=z17 flag to work. Otherwise, use -march=arch15.
message(STATUS "z17 target")
list(APPEND ARCH_FLAGS -march=arch15)
else()
message(STATUS "Unknown target")
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")
list(APPEND ARCH_FLAGS -march=native -mtune=native)
endif()
# for cross-compilation
elseif(GGML_CPU_ALL_VARIANTS)
# range through IBM z15 to z17
# NOTE: update when a new hardware level is released
foreach (ZHW RANGE 15 17)
if(DEFINED GGML_INTERNAL_Z${ZHW})
message(STATUS "z${ZHW} cross-compile target")
list(APPEND ARCH_FLAGS -march=z${ZHW})
endif()
endforeach()
endif() endif()
if (GGML_VXE) if (GGML_VXE OR GGML_INTERNAL_VXE)
message(STATUS "VX/VXE/VXE2 enabled") message(STATUS "VX/VXE/VXE2 enabled")
list(APPEND ARCH_FLAGS -mvx -mzvector) list(APPEND ARCH_FLAGS -mvx -mzvector)
list(APPEND ARCH_DEFINITIONS GGML_VXE) list(APPEND ARCH_DEFINITIONS GGML_VXE)

View File

@ -3567,13 +3567,17 @@ void ggml_cpu_init(void) {
#ifdef GGML_USE_OPENMP #ifdef GGML_USE_OPENMP
//if (!getenv("OMP_WAIT_POLICY")) { //if (!getenv("OMP_WAIT_POLICY")) {
// // set the wait policy to active, so that OpenMP threads don't sleep // // set the wait policy to active, so that OpenMP threads don't sleep
// putenv("OMP_WAIT_POLICY=active"); // setenv("OMP_WAIT_POLICY", "active", 0)
//} //}
if (!getenv("KMP_BLOCKTIME")) { if (!getenv("KMP_BLOCKTIME")) {
// set the time to wait before sleeping a thread // set the time to wait before sleeping a thread
// this is less aggressive than setting the wait policy to active, but should achieve similar results in most cases // this is less aggressive than setting the wait policy to active, but should achieve similar results in most cases
putenv("KMP_BLOCKTIME=200"); // 200ms #ifdef _WIN32
_putenv_s("KMP_BLOCKTIME", "200"); // 200ms
#else
setenv("KMP_BLOCKTIME", "200", 0); // 200ms
#endif
} }
#endif #endif
} }

View File

@ -485,8 +485,9 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS> class tensor_
int32_t start = ith * task_per_thread; int32_t start = ith * task_per_thread;
int32_t end = std::min((ith + 1) * task_per_thread, task_count); int32_t end = std::min((ith + 1) * task_per_thread, task_count);
for (int32_t compute_idx = start; compute_idx < end; compute_idx++) { for (int32_t compute_idx = start; compute_idx < end; compute_idx++) {
int32_t gemm_idx = compute_idx / block_size_m; int32_t gemm_idx = compute_idx / per_gemm_block_count_m;
int32_t m_idx = compute_idx % block_size_m * block_size_m; int32_t block_idx_in_gemm = compute_idx % per_gemm_block_count_m;
int32_t m_idx = block_idx_in_gemm * block_size_m;
const qnbitgemm_spacemit_ime_args & data = qnbitgemm_args[gemm_idx]; const qnbitgemm_spacemit_ime_args & data = qnbitgemm_args[gemm_idx];
int32_t rows_tobe_handled = (gemm_m - m_idx) > block_size_m ? block_size_m : (gemm_m - m_idx); int32_t rows_tobe_handled = (gemm_m - m_idx) > block_size_m ? block_size_m : (gemm_m - m_idx);

View File

@ -895,6 +895,7 @@ void launch_fattn(
const dim3 block_dim(warp_size, nwarps, 1); const dim3 block_dim(warp_size, nwarps, 1);
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy. int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared)); CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
GGML_ASSERT(max_blocks_per_sm > 0);
int parallel_blocks = max_blocks_per_sm; int parallel_blocks = max_blocks_per_sm;
dim3 blocks_num; dim3 blocks_num;

View File

@ -2822,18 +2822,15 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
#endif #endif
//TODO: remove special case once ggml_can_fuse can handle empty nodes //TODO: remove special case once ggml_can_fuse can handle empty nodes
std::initializer_list<enum ggml_op> topk_moe_ops = ggml_cuda_topk_moe_ops(false); std::initializer_list<enum ggml_op> topk_moe_ops =
std::initializer_list<enum ggml_op> topk_moe_ops_with_norm = ggml_cuda_topk_moe_ops(true); ggml_cuda_topk_moe_ops(/*with_norm*/ false, /*delayed_softmax=*/false);
std::initializer_list<enum ggml_op> topk_moe_ops_with_norm =
ggml_cuda_topk_moe_ops(/*with_norm=*/true, /*delayed_softmax=*/false);
std::initializer_list<enum ggml_op> topk_moe_ops_delayed_softmax =
ggml_cuda_topk_moe_ops(/*with_norm=*/false, /*delayed_softmax=*/true);
if (ops.size() == topk_moe_ops_with_norm.size() && std::equal(ops.begin(), ops.end(), topk_moe_ops_with_norm.begin())) { if (ops.size() == topk_moe_ops_with_norm.size() &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 8 })) {
if (node_idx + topk_moe_ops_with_norm.size() > (size_t)cgraph->n_nodes) {
return false;
}
for (size_t i = 0; i < topk_moe_ops_with_norm.size(); i++) {
if (cgraph->nodes[node_idx + i]->op != topk_moe_ops_with_norm.begin()[i]) return false;
}
ggml_tensor * softmax = cgraph->nodes[node_idx]; ggml_tensor * softmax = cgraph->nodes[node_idx];
ggml_tensor * weights = cgraph->nodes[node_idx+8]; ggml_tensor * weights = cgraph->nodes[node_idx+8];
@ -2842,16 +2839,8 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
} }
} }
if (ops.size() == topk_moe_ops.size() && std::equal(ops.begin(), ops.end(), topk_moe_ops.begin())) { if (ops.size() == topk_moe_ops.size() &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 4 })) {
if (node_idx + topk_moe_ops.size() > (size_t)cgraph->n_nodes) {
return false;
}
for (size_t i = 0; i < topk_moe_ops.size(); i++) {
if (cgraph->nodes[node_idx + i]->op != topk_moe_ops.begin()[i]) return false;
}
ggml_tensor * softmax = cgraph->nodes[node_idx]; ggml_tensor * softmax = cgraph->nodes[node_idx];
ggml_tensor * weights = cgraph->nodes[node_idx+4]; ggml_tensor * weights = cgraph->nodes[node_idx+4];
if (ggml_cuda_should_use_topk_moe(softmax, weights)) { if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
@ -2859,6 +2848,16 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
} }
} }
if (ops.size() == topk_moe_ops_delayed_softmax.size() &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 2, node_idx + 5 })) {
ggml_tensor * softmax = cgraph->nodes[node_idx + 4];
ggml_tensor * weights = cgraph->nodes[node_idx + 5];
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
return true;
}
}
if (!ggml_can_fuse(cgraph, node_idx, ops)) { if (!ggml_can_fuse(cgraph, node_idx, ops)) {
return false; return false;
} }
@ -2946,7 +2945,8 @@ static void evaluate_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cuda_
if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ true), {})) { if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ true), {})) {
ggml_tensor * weights = cgraph->nodes[i+8]; ggml_tensor * weights = cgraph->nodes[i+8];
ggml_tensor * selected_experts = cgraph->nodes[i+3]; ggml_tensor * selected_experts = cgraph->nodes[i+3];
ggml_cuda_op_topk_moe(*cuda_ctx, node, weights, selected_experts, /*with norm*/ true); ggml_cuda_op_topk_moe(*cuda_ctx, node->src[0], weights, selected_experts, /*with norm*/ true,
/*delayed softmax*/ false);
i += 8; i += 8;
continue; continue;
} }
@ -2954,11 +2954,23 @@ static void evaluate_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cuda_
if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ false), {})) { if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ false), {})) {
ggml_tensor * weights = cgraph->nodes[i+4]; ggml_tensor * weights = cgraph->nodes[i+4];
ggml_tensor * selected_experts = cgraph->nodes[i+3]; ggml_tensor * selected_experts = cgraph->nodes[i+3];
ggml_cuda_op_topk_moe(*cuda_ctx, node, weights, selected_experts, /*with norm*/ false); ggml_cuda_op_topk_moe(*cuda_ctx, node->src[0], weights, selected_experts, /*with norm*/ false,
/*delayed softmax*/ false);
i += 4; i += 4;
continue; continue;
} }
if (ggml_cuda_can_fuse(cgraph, i,
ggml_cuda_topk_moe_ops(/*with norm*/ false, /*delayed softmax*/ true), {})) {
ggml_tensor * weights = cgraph->nodes[i + 5];
ggml_tensor * ids = cgraph->nodes[i + 1];
ggml_cuda_op_topk_moe(*cuda_ctx, node->src[0], weights, ids, /*with norm*/ false,
/*delayed_softmax*/ true);
i += 5;
continue;
}
if (node->op == GGML_OP_ADD) { if (node->op == GGML_OP_ADD) {
int n_fuse = 0; int n_fuse = 0;
ggml_op ops[8]; ggml_op ops[8];

View File

@ -4,16 +4,61 @@
#include <initializer_list> #include <initializer_list>
// Warp-local softmax used for both the pre-top-k logits and the post-top-k delayed path.
template <int experts_per_thread, bool use_limit>
__device__ void softmax_warp_inplace(float (&vals)[experts_per_thread], const int limit, const int lane) {
float max_val = -INFINITY;
#pragma unroll
for (int i = 0; i < experts_per_thread; i++) {
const int idx = lane + i * WARP_SIZE;
const bool active = !use_limit || (idx < limit);
if (active) {
max_val = max(max_val, vals[i]);
}
}
max_val = warp_reduce_max(max_val);
float sum = 0.f;
#pragma unroll
for (int i = 0; i < experts_per_thread; i++) {
const int idx = lane + i * WARP_SIZE;
const bool active = !use_limit || (idx < limit);
if (active) {
const float val = expf(vals[i] - max_val);
vals[i] = val;
sum += val;
} else {
vals[i] = 0.f;
}
}
sum = warp_reduce_sum(sum);
const float inv_sum = 1.0f / sum;
#pragma unroll
for (int i = 0; i < experts_per_thread; i++) {
const int idx = lane + i * WARP_SIZE;
const bool active = !use_limit || (idx < limit);
if (active) {
vals[i] *= inv_sum;
}
}
}
/* /*
This kernel does the following: This kernel does the following:
1. softmax over the logits per token [n_experts, n_tokens] 1. optionally softmax over the logits per token [n_experts, n_tokens]
2. argmax reduce over the top-k (n_experts_used) logits 2. argmax reduce over the top-k (n_experts_used) logits
3. write weights + ids to global memory 3. write weights + ids to global memory
4. optionally normalize the weights 4. optionally normalize the weights or apply softmax over the selected logits
It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models
*/ */
template <int n_experts, bool with_norm> template <int n_experts, bool with_norm, bool delayed_softmax = false>
__launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float * logits, __launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float * logits,
float * weights, float * weights,
int32_t * ids, int32_t * ids,
@ -30,51 +75,30 @@ __launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float *
constexpr int experts_per_thread = (n_experts > WARP_SIZE) ? n_experts / WARP_SIZE : 1; constexpr int experts_per_thread = (n_experts > WARP_SIZE) ? n_experts / WARP_SIZE : 1;
float logits_r[experts_per_thread]; float wt[experts_per_thread];
#pragma unroll #pragma unroll
for (int i = 0; i < n_experts; i += WARP_SIZE) { for (int i = 0; i < n_experts; i += WARP_SIZE) {
const int expert = i + threadIdx.x; const int expert = i + threadIdx.x;
logits_r[i / WARP_SIZE] = n_experts % WARP_SIZE == 0 || expert < n_experts ? logits[expert] : -INFINITY; wt[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? logits[expert] : -INFINITY;
} }
float max_val = logits_r[0]; if constexpr (!delayed_softmax) {
softmax_warp_inplace<experts_per_thread, false>(wt, n_experts, threadIdx.x);
#pragma unroll
for (int i = 1; i < experts_per_thread; i++) {
const float val = logits_r[i];
max_val = max(val, max_val);
} }
max_val = warp_reduce_max(max_val); //at this point, each thread holds either a portion of the softmax distribution
//or the raw logits. We do the argmax reduce over n_expert_used, each time marking
float wt[experts_per_thread];
float tmp = 0.f;
#pragma unroll
for (int i = 0; i < experts_per_thread; i++) {
const float val = logits_r[i];
wt[i] = expf(val - max_val);
tmp += wt[i];
}
tmp = warp_reduce_sum(tmp);
const float inv_sum = 1.0f / tmp;
#pragma unroll
for (int i = 0; i < experts_per_thread; i++) {
wt[i] = wt[i] * inv_sum;
}
//at this point, each thread holds a portion of softmax,
//we do the argmax reduce over n_expert_used, each time marking
//the expert weight as -inf to exclude from the next iteration //the expert weight as -inf to exclude from the next iteration
float wt_sum = 0.f; float wt_sum = 0.f;
extern __shared__ float data_topk_shared[]; float output_weights[experts_per_thread];
float * wt_shared_ptr = data_topk_shared + threadIdx.y * n_expert_used;
#pragma unroll
for (int i = 0; i < experts_per_thread; i++) {
output_weights[i] = 0.f;
}
for (int k = 0; k < n_expert_used; k++) { for (int k = 0; k < n_expert_used; k++) {
float max_val = wt[0]; float max_val = wt[0];
@ -99,11 +123,14 @@ __launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float *
} }
} }
if ((k & (WARP_SIZE - 1)) == threadIdx.x) {
output_weights[k / WARP_SIZE] = max_val;
}
if ((max_expert & (WARP_SIZE - 1)) == threadIdx.x) { if ((max_expert & (WARP_SIZE - 1)) == threadIdx.x) {
wt[max_expert / WARP_SIZE] = -INFINITY; wt[max_expert / WARP_SIZE] = -INFINITY;
wt_shared_ptr[k] = max_val; ids[k] = max_expert;
ids[k] = max_expert;
if constexpr (with_norm) { if constexpr (with_norm) {
wt_sum += max_val; wt_sum += max_val;
} }
@ -114,17 +141,25 @@ __launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float *
wt_sum = warp_reduce_sum(wt_sum); wt_sum = warp_reduce_sum(wt_sum);
const float inv_sum = 1.0f / wt_sum; const float inv_sum = 1.0f / wt_sum;
for (int i = threadIdx.x; i < n_expert_used; i += WARP_SIZE) { for (int i = 0; i < experts_per_thread; i++) {
wt_shared_ptr[i] = wt_shared_ptr[i] * inv_sum; output_weights[i] *= inv_sum;
} }
} }
for (int i = threadIdx.x; i < n_expert_used; i += WARP_SIZE) { if constexpr (delayed_softmax) {
weights[i] = wt_shared_ptr[i]; softmax_warp_inplace<experts_per_thread, true>(output_weights, n_expert_used, threadIdx.x);
}
#pragma unroll
for (int i = 0; i < experts_per_thread; i++) {
const int idx = i * WARP_SIZE + threadIdx.x;
if (idx < n_expert_used) {
weights[idx] = output_weights[i];
}
} }
} }
template <bool with_norm> template <bool with_norm, bool delayed_softmax = false>
static void launch_topk_moe_cuda(ggml_backend_cuda_context & ctx, static void launch_topk_moe_cuda(ggml_backend_cuda_context & ctx,
const float * logits, const float * logits,
float * weights, float * weights,
@ -132,53 +167,53 @@ static void launch_topk_moe_cuda(ggml_backend_cuda_context & ctx,
const int n_rows, const int n_rows,
const int n_expert, const int n_expert,
const int n_expert_used) { const int n_expert_used) {
static_assert(!(with_norm && delayed_softmax), "delayed softmax is not supported with weight normalization");
const int rows_per_block = 4; const int rows_per_block = 4;
dim3 grid_dims((n_rows + rows_per_block - 1) / rows_per_block, 1, 1); dim3 grid_dims((n_rows + rows_per_block - 1) / rows_per_block, 1, 1);
dim3 block_dims(WARP_SIZE, rows_per_block, 1); dim3 block_dims(WARP_SIZE, rows_per_block, 1);
cudaStream_t stream = ctx.stream(); cudaStream_t stream = ctx.stream();
const int nbytes_shared = n_expert_used * rows_per_block * sizeof(float);
switch (n_expert) { switch (n_expert) {
case 1: case 1:
topk_moe_cuda<1, with_norm> topk_moe_cuda<1, with_norm, delayed_softmax>
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used); <<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break; break;
case 2: case 2:
topk_moe_cuda<2, with_norm> topk_moe_cuda<2, with_norm, delayed_softmax>
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used); <<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break; break;
case 4: case 4:
topk_moe_cuda<4, with_norm> topk_moe_cuda<4, with_norm, delayed_softmax>
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used); <<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break; break;
case 8: case 8:
topk_moe_cuda<8, with_norm> topk_moe_cuda<8, with_norm, delayed_softmax>
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used); <<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break; break;
case 16: case 16:
topk_moe_cuda<16, with_norm> topk_moe_cuda<16, with_norm, delayed_softmax>
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used); <<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break; break;
case 32: case 32:
topk_moe_cuda<32, with_norm> topk_moe_cuda<32, with_norm, delayed_softmax>
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used); <<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break; break;
case 64: case 64:
topk_moe_cuda<64, with_norm> topk_moe_cuda<64, with_norm, delayed_softmax>
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used); <<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break; break;
case 128: case 128:
topk_moe_cuda<128, with_norm> topk_moe_cuda<128, with_norm, delayed_softmax>
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used); <<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break; break;
case 256: case 256:
topk_moe_cuda<256, with_norm> topk_moe_cuda<256, with_norm, delayed_softmax>
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used); <<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break; break;
case 512: case 512:
topk_moe_cuda<512, with_norm> topk_moe_cuda<512, with_norm, delayed_softmax>
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used); <<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break; break;
default: default:
GGML_ASSERT(false && "fatal error"); GGML_ASSERT(false && "fatal error");
@ -190,7 +225,8 @@ void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
const ggml_tensor * logits, const ggml_tensor * logits,
ggml_tensor * weights, ggml_tensor * weights,
ggml_tensor * ids, ggml_tensor * ids,
const bool with_norm) { const bool with_norm,
const bool delayed_softmax) {
GGML_ASSERT(logits->type == GGML_TYPE_F32); GGML_ASSERT(logits->type == GGML_TYPE_F32);
GGML_ASSERT(weights->type == GGML_TYPE_F32); GGML_ASSERT(weights->type == GGML_TYPE_F32);
GGML_ASSERT(ids->type == GGML_TYPE_I32); GGML_ASSERT(ids->type == GGML_TYPE_I32);
@ -198,7 +234,7 @@ void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
const int n_experts = logits->ne[0]; const int n_experts = logits->ne[0];
const int n_rows = logits->ne[1]; const int n_rows = logits->ne[1];
const float * logits_d = (const float *) logits->src[0]->data; const float * logits_d = (const float *) logits->data;
float * weights_d = (float *) weights->data; float * weights_d = (float *) weights->data;
int32_t * ids_d = (int32_t *) ids->data; int32_t * ids_d = (int32_t *) ids->data;
@ -209,7 +245,11 @@ void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
if (with_norm) { if (with_norm) {
launch_topk_moe_cuda<true>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used); launch_topk_moe_cuda<true>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used);
} else { } else {
launch_topk_moe_cuda<false>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used); if (delayed_softmax) {
launch_topk_moe_cuda<false, true>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used);
} else {
launch_topk_moe_cuda<false, false>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used);
}
} }
} }
@ -242,7 +282,7 @@ bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tenso
return true; return true;
} }
std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool norm) { std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool norm, bool delayed_softmax) {
static std::initializer_list<enum ggml_op> norm_ops = { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT, static std::initializer_list<enum ggml_op> norm_ops = { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE, GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
GGML_OP_SUM_ROWS, GGML_OP_DIV, GGML_OP_RESHAPE }; GGML_OP_SUM_ROWS, GGML_OP_DIV, GGML_OP_RESHAPE };
@ -250,8 +290,19 @@ std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool norm) {
static std::initializer_list<enum ggml_op> no_norm_ops = { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT, static std::initializer_list<enum ggml_op> no_norm_ops = { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
GGML_OP_VIEW, GGML_OP_GET_ROWS }; GGML_OP_VIEW, GGML_OP_GET_ROWS };
static std::initializer_list<enum ggml_op> delayed_softmax_ops = { GGML_OP_ARGSORT, GGML_OP_VIEW,
GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
GGML_OP_SOFT_MAX, GGML_OP_RESHAPE };
GGML_ASSERT(!norm || !delayed_softmax);
if (delayed_softmax) {
return delayed_softmax_ops;
}
if (norm) { if (norm) {
return norm_ops; return norm_ops;
} }
return no_norm_ops; return no_norm_ops;
} }

View File

@ -6,9 +6,10 @@
void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx, void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
const ggml_tensor * logits, const ggml_tensor * logits,
ggml_tensor * weights, ggml_tensor * weights,
ggml_tensor * top_k, ggml_tensor * ids,
const bool with_norm); const bool with_norm,
const bool delayed_softmax = false);
bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tensor * weights); bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tensor * weights);
std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool with_norm); std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool with_norm, bool delayed_softmax = false);

View File

@ -0,0 +1,68 @@
include(${HEXAGON_SDK_ROOT}/build/cmake/hexagon_fun.cmake)
include(ExternalProject)
option(GGML_HEXAGON_HTP_DEBUG "ggml-hexagon: enable HTP debug output" OFF)
add_library(htp_iface OBJECT
${CMAKE_CURRENT_BINARY_DIR}/htp_iface_stub.c)
set_target_properties(htp_iface PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_include_directories(htp_iface PUBLIC
${HEXAGON_SDK_ROOT}/incs
${HEXAGON_SDK_ROOT}/incs/stddef
${HEXAGON_SDK_ROOT}/utils/examples
${CMAKE_CURRENT_SOURCE_DIR}/htp
${CMAKE_CURRENT_BINARY_DIR})
build_idl(htp/htp_iface.idl htp_iface)
if (CMAKE_SYSTEM_NAME MATCHES Android)
target_link_options(htp_iface PUBLIC -llog -ldl)
elseif (CMAKE_SYSTEM_NAME MATCHES Windows)
target_precompile_headers(htp_iface PUBLIC <sal.h>)
else()
target_link_options(htp_iface PUBLIC -ldl)
endif()
link_custom_library(htp_iface cdsprpc)
link_custom_library(htp_iface rpcmem)
set(TARGET_NAME ggml-hexagon)
ggml_add_backend_library(${TARGET_NAME}
ggml-hexagon.cpp htp-utils.c htp-utils.h ../../include/ggml-hexagon.h)
target_link_libraries(${TARGET_NAME} PRIVATE htp_iface)
target_include_directories(${TARGET_NAME} PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/htp ${CMAKE_CURRENT_BINARY_DIR})
# Build HTP bits
set(HTP_CMAKE_ARGS
-DCMAKE_TOOLCHAIN_FILE=${CMAKE_CURRENT_SOURCE_DIR}/htp/cmake-toolchain.cmake
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_INSTALL_LIBDIR=${CMAKE_CURRENT_BINARY_DIR}
-DHEXAGON_SDK_ROOT=$ENV{HEXAGON_SDK_ROOT}
-DHEXAGON_TOOLS_ROOT=$ENV{HEXAGON_TOOLS_ROOT}
-DHEXAGON_HTP_DEBUG=${GGML_HEXAGON_HTP_DEBUG})
ExternalProject_Add(htp-v73
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v73 -DPREBUILT_LIB_DIR="toolv19_v73")
ExternalProject_Add(htp-v75
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v75 -DPREBUILT_LIB_DIR="toolv19_v75")
ExternalProject_Add(htp-v79
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v79 -DPREBUILT_LIB_DIR="toolv19_v79")
ExternalProject_Add(htp-v81
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v81 -DPREBUILT_LIB_DIR="toolv19_v81")
# Install Hexagon skels required at runtime
install(FILES
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v73.so
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v75.so
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v79.so
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v81.so
TYPE LIB)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,448 @@
#pragma clang diagnostic ignored "-Wgnu-anonymous-struct"
#pragma clang diagnostic ignored "-Wmissing-prototypes"
#pragma clang diagnostic ignored "-Wsign-compare"
#define GGML_COMMON_IMPL_C
#include "ggml-backend-impl.h"
#include "ggml-common.h"
#include "ggml-hexagon.h"
#include "ggml-impl.h"
#include "htp-utils.h"
#include <domain.h>
#include <remote.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
domain * get_domain(int domain_id) {
int i = 0;
int size = sizeof(supported_domains) / sizeof(domain);
for (i = 0; i < size; i++) {
if (supported_domains[i].id == domain_id) {
return &supported_domains[i];
}
}
return NULL;
}
bool is_valid_domain_id(int domain_id, int compute_only) {
int i = 0;
int size = sizeof(supported_domains) / sizeof(domain);
if (compute_only) {
return is_CDSP(domain_id);
}
for (i = 0; i < size; i++) {
if (supported_domains[i].id == domain_id) {
return true;
}
}
return false;
}
int get_domains_info(char * domain_type, int * num_domains, fastrpc_domain ** domains_info) {
int nErr = AEE_SUCCESS;
int ss_info = 0;
if (domain_type != NULL) {
if (strcmp(domain_type, "LPASS") == 0) {
ss_info = FASTRPC_LPASS;
} else if (strcmp(domain_type, "HPASS") == 0) {
ss_info = FASTRPC_HPASS;
} else {
ss_info = FASTRPC_NSP;
}
}
system_req_payload req = { 0 };
req.id = FASTRPC_GET_DOMAINS;
req.sys.domains = NULL;
fastrpc_domain * domain = NULL;
if (ss_info != 0) {
req.sys.flags = DOMAINS_LIST_FLAGS_SET_TYPE(req.sys.flags, ss_info);
} else {
req.sys.flags = 0;
}
#ifdef _WIN32
nErr = AEE_EUNSUPPORTED;
goto bail;
#endif
if (remote_system_request) {
nErr = remote_system_request(&req);
if (nErr != AEE_SUCCESS) {
GGML_LOG_ERROR("Failure in remote_system_request call: %d.\n", nErr);
goto bail;
}
// Allocate memory for domain-info array
req.sys.max_domains = req.sys.num_domains;
if ((req.sys.domains = calloc(req.sys.num_domains, sizeof(fastrpc_domain))) == NULL) {
nErr = AEE_ENOMEMORY;
GGML_LOG_ERROR("Unable to allocate memory for req.sys.domains");
goto bail;
}
nErr = remote_system_request(&req);
if (nErr != AEE_SUCCESS) {
GGML_LOG_ERROR("Failure in remote_system_request call: %d.\n", nErr);
goto bail;
}
for (int i = 0; i < req.sys.num_domains; i++) {
// Verify that only requested type domains were returned
domain = &req.sys.domains[i];
if (domain->type != ss_info && domain_type != NULL) {
nErr = -1;
GGML_LOG_ERROR("Incorrect data received from remote_system_request.\n");
goto bail;
}
}
*domains_info = req.sys.domains;
*num_domains = req.sys.num_domains;
} else {
nErr = AEE_EUNSUPPORTED;
goto bail;
}
bail:
if (nErr && !req.sys.domains) {
free(req.sys.domains);
}
return nErr;
}
int get_effective_domain_id(char * domain_name, int session_id, int * effec_domain_id) {
int err = 0;
remote_rpc_effective_domain_id_t sess = { 0 };
sess.domain_name = domain_name;
sess.domain_name_len = strlen(domain_name);
sess.session_id = session_id;
err = remote_session_control(FASTRPC_GET_EFFECTIVE_DOMAIN_ID, &sess, sizeof(sess));
if (err) {
GGML_LOG_ERROR("Error 0x%x: failed to get effective domain id for %s, session id %d\n", err, sess.domain_name,
session_id);
return err;
}
*effec_domain_id = sess.effective_domain_id;
return err;
}
int get_dsp_support(int * domain) {
int nErr = AEE_SUCCESS;
*domain = CDSP_DOMAIN_ID; // DSP domain default value is CDSP_DOMAIN_ID
if (remote_handle_control) {
struct remote_dsp_capability dsp_capability_domain = { CDSP_DOMAIN_ID, DOMAIN_SUPPORT, 0 };
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_domain, sizeof(struct remote_dsp_capability));
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
goto bail;
}
if (dsp_capability_domain.capability == 0) {
dsp_capability_domain.domain = ADSP_DOMAIN_ID; // Check for ADSP support.
dsp_capability_domain.attribute_ID = DOMAIN_SUPPORT;
dsp_capability_domain.capability = 0;
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_domain,
sizeof(struct remote_dsp_capability));
if (dsp_capability_domain.capability) {
*domain = ADSP_DOMAIN_ID; // For targets like Agatti (not having cDSP), domain is ADSP_DOMAIN_ID
}
}
if (nErr != AEE_SUCCESS) {
GGML_LOG_ERROR("\nget_dsp_support failed with Error 0x%x\n", nErr);
goto bail;
}
} else {
nErr = AEE_EUNSUPPORTEDAPI;
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
}
bail:
return nErr;
}
int get_vtcm_info(int domain, uint32_t * capability, uint32_t attr) {
int nErr = AEE_SUCCESS;
*capability = 0;
if (attr == VTCM_PAGE || attr == VTCM_COUNT) {
} else {
nErr = AEE_EBADPARM;
GGML_LOG_ERROR("Unsupported attr. Only VTCM_PAGE and VTCM_COUNT supported\n");
goto bail;
}
if (remote_handle_control) {
if (domain == ADSP_DOMAIN_ID || domain == CDSP_DOMAIN_ID) {
/*
* Query the DSP for VTCM information
* Since the ADSP does not have a dedicated VTCM, we expect the output to be 0
*/
struct remote_dsp_capability dsp_capability_vtcm_dsp;
dsp_capability_vtcm_dsp.domain = (uint32_t) domain;
dsp_capability_vtcm_dsp.attribute_ID = attr;
dsp_capability_vtcm_dsp.capability = (uint32_t) 0;
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_vtcm_dsp,
sizeof(struct remote_dsp_capability));
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
GGML_LOG_ERROR("Running the usecase without checking the capability\n");
nErr = AEE_SUCCESS;
goto bail;
} else if (nErr == AEE_SUCCESS) {
*capability = dsp_capability_vtcm_dsp.capability;
} else {
GGML_LOG_ERROR("\nget_vtcm_info failed with Error 0x%x\n", nErr);
goto bail;
}
} else {
nErr = AEE_EUNSUPPORTED;
GGML_LOG_ERROR("Unsupported domain %d\n", domain);
goto bail;
}
} else {
nErr = AEE_EUNSUPPORTEDAPI;
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
}
bail:
return nErr;
}
bool is_unsignedpd_supported(int domain_id) {
int nErr = AEE_SUCCESS;
if (remote_handle_control) {
struct remote_dsp_capability dsp_capability_domain = { domain_id, UNSIGNED_PD_SUPPORT, 0 };
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_domain, sizeof(struct remote_dsp_capability));
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device. Falling back to signed pd.\n");
return false;
}
if (nErr) {
GGML_LOG_ERROR("\nERROR 0x%x: FastRPC Capability API failed. Falling back to signed pd.", nErr);
return false;
}
if (dsp_capability_domain.capability == 1) {
return true;
}
} else {
nErr = AEE_EUNSUPPORTEDAPI;
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device. Falling back to signed pd.\n");
return false;
}
return false;
}
bool get_unsignedpd_support(void) {
return is_unsignedpd_supported(CDSP_DOMAIN_ID);
}
bool is_async_fastrpc_supported(int domain) {
int nErr = AEE_SUCCESS;
if (remote_handle_control) {
if (domain == CDSP_DOMAIN_ID) {
/*
* Query the DSP for ASYNC_FASTRPC_SUPPORT information
* Async fastrpc is supported only on CDSP
*/
struct remote_dsp_capability dsp_capability_async_support;
dsp_capability_async_support.domain = (uint32_t) domain;
dsp_capability_async_support.attribute_ID = ASYNC_FASTRPC_SUPPORT;
dsp_capability_async_support.capability = (uint32_t) 0;
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_async_support,
sizeof(struct remote_dsp_capability));
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
GGML_LOG_ERROR("Running the usecase without checking the capability\n");
nErr = AEE_SUCCESS;
goto bail;
} else if (dsp_capability_async_support.capability == 1) {
return true;
}
if (nErr != AEE_SUCCESS) {
GGML_LOG_ERROR("\nis_async_fastrpc_supported failed with Error 0x%x\n", nErr);
goto bail;
}
} else {
nErr = AEE_EUNSUPPORTED;
GGML_LOG_ERROR("Async fastrpc is not supported on domain %d\n", domain);
goto bail;
}
} else {
nErr = AEE_EUNSUPPORTEDAPI;
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
}
bail:
return false;
}
bool is_status_notification_supported(int domain) {
int nErr = AEE_SUCCESS;
if (remote_handle_control) {
/*
* Query the DSP for STATUS_NOTIFICATION_SUPPORT information
* DSP User PD status notification Support
*/
struct remote_dsp_capability dsp_capability_status_notification_support;
dsp_capability_status_notification_support.domain = (uint32_t) domain;
dsp_capability_status_notification_support.attribute_ID = STATUS_NOTIFICATION_SUPPORT;
dsp_capability_status_notification_support.capability = (uint32_t) 0;
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_status_notification_support,
sizeof(struct remote_dsp_capability));
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
GGML_LOG_ERROR("Running the usecase without checking the capability\n");
nErr = AEE_SUCCESS;
goto bail;
} else if (dsp_capability_status_notification_support.capability == 1) {
return true;
}
if (nErr != AEE_SUCCESS) {
GGML_LOG_ERROR("\nis_status_notification_supported failed with Error 0x%x\n", nErr);
goto bail;
}
} else {
nErr = AEE_EUNSUPPORTEDAPI;
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
}
bail:
return false;
}
int get_hmx_support_info(int domain, uint32_t * capability, uint32_t attr) {
int nErr = AEE_SUCCESS;
*capability = 0;
if (attr != HMX_SUPPORT_SPATIAL && attr != HMX_SUPPORT_DEPTH) {
nErr = AEE_EBADPARM;
GGML_LOG_ERROR("Unsupported attr. Only HMX_SUPPORT_SPATIAL and HMX_SUPPORT_DEPTH supported\n");
goto bail;
}
if (remote_handle_control) {
if (domain == CDSP_DOMAIN_ID) {
/*
* Query the DSP for HMX SUPPORT information
* HMX is supported on CDSP only
*/
struct remote_dsp_capability dsp_capability_hmx_dsp;
dsp_capability_hmx_dsp.domain = (uint32_t) domain;
dsp_capability_hmx_dsp.attribute_ID = attr;
dsp_capability_hmx_dsp.capability = (uint32_t) 0;
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_hmx_dsp,
sizeof(struct remote_dsp_capability));
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
GGML_LOG_ERROR("Running the usecase without checking the capability\n");
nErr = AEE_SUCCESS;
goto bail;
} else if (nErr == AEE_SUCCESS) {
*capability = dsp_capability_hmx_dsp.capability;
} else {
GGML_LOG_ERROR("\nget_hmx_support_info failed with Error 0x%x\n", nErr);
goto bail;
}
} else {
nErr = AEE_EUNSUPPORTED;
GGML_LOG_ERROR("HMX support is not there for domain %d\n", domain);
goto bail;
}
} else {
nErr = AEE_EUNSUPPORTEDAPI;
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
}
bail:
return nErr;
}
int get_hex_arch_ver(int domain, int * arch) {
if (!remote_handle_control) {
GGML_LOG_ERROR("ggml-hex: remote_handle_control is not supported on this device\n");
return AEE_EUNSUPPORTEDAPI;
}
struct remote_dsp_capability arch_ver;
arch_ver.domain = (uint32_t) domain;
arch_ver.attribute_ID = ARCH_VER;
arch_ver.capability = (uint32_t) 0;
int err = remote_handle_control(DSPRPC_GET_DSP_INFO, &arch_ver, sizeof(arch_ver));
if ((err & 0xff) == (AEE_EUNSUPPORTEDAPI & 0xff)) {
GGML_LOG_ERROR("ggml-hex: FastRPC capability API is not supported on this device\n");
return AEE_EUNSUPPORTEDAPI;
}
if (err != AEE_SUCCESS) {
GGML_LOG_ERROR("ggml-hex: FastRPC capability query failed (err %d)\n", err);
return err;
}
switch (arch_ver.capability & 0xff) {
case 0x73:
*arch = 73;
return 0;
case 0x75:
*arch = 75;
return 0;
case 0x79:
*arch = 79;
return 0;
case 0x81:
*arch = 81;
return 0;
}
return -1;
}
int get_hvx_support_info(int domain, uint32_t * capability, uint32_t attr) {
int nErr = AEE_SUCCESS;
*capability = 0;
if (remote_handle_control) {
if (domain == CDSP_DOMAIN_ID) {
/*
* Query the DSP for HVX SUPPORT information
* HVX is supported on CDSP only
*/
struct remote_dsp_capability dsp_capability_hvx_dsp;
dsp_capability_hvx_dsp.domain = (uint32_t) domain;
dsp_capability_hvx_dsp.attribute_ID = attr;
dsp_capability_hvx_dsp.capability = (uint32_t) 0;
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_hvx_dsp,
sizeof(struct remote_dsp_capability));
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
GGML_LOG_ERROR("Running the usecase without checking the capability\n");
nErr = AEE_SUCCESS;
goto bail;
} else if (nErr == AEE_SUCCESS) {
*capability = dsp_capability_hvx_dsp.capability;
} else {
GGML_LOG_ERROR("\nget_hvx_support_info failed with Error 0x%x\n", nErr);
goto bail;
}
} else {
nErr = AEE_EUNSUPPORTED;
GGML_LOG_ERROR("HVX support is not available on domain %d\n", domain);
goto bail;
}
} else {
nErr = AEE_EUNSUPPORTEDAPI;
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
}
bail:
return nErr;
}

View File

@ -0,0 +1,219 @@
#ifndef HTP_UTILS_H
#define HTP_UTILS_H
#ifdef __cplusplus
extern "C" {
#endif
#include <AEEStdErr.h>
#include <inttypes.h>
#include <remote.h>
#include <stdbool.h>
/* Offset to differentiate HLOS and Hexagon error codes.
Stores the value of AEE_EOFFSET for Hexagon. */
#ifndef DSP_OFFSET
# define DSP_OFFSET 0x80000400
#endif
/* Errno for connection reset by peer. */
#ifndef ECONNRESET
# ifdef __hexagon__
# define ECONNRESET 104
# endif
#endif
/* Abstraction of different OS specific sleep APIs.
SLEEP accepts input in seconds. */
#ifndef SLEEP
# ifdef __hexagon__
# define SLEEP(x) \
{ /* Do nothing for simulator. */ \
}
# else
# ifdef _WINDOWS
# define SLEEP(x) Sleep(1000 * x) /* Sleep accepts input in milliseconds. */
# else
# define SLEEP(x) sleep(x) /* sleep accepts input in seconds. */
# endif
# endif
#endif
/* Include windows specific header files. */
#ifdef _WINDOWS
# include <sysinfoapi.h>
# include <windows.h>
# define _CRT_SECURE_NO_WARNINGS 1
# define _WINSOCK_DEPRECATED_NO_WARNINGS 1
/* Including this file for custom implementation of getopt function. */
# include "getopt_custom.h"
#endif
/* Includes and defines for all HLOS except windows */
#if !defined(__hexagon__) && !defined(_WINDOWS)
# include "unistd.h"
# include <sys/time.h>
#endif
/* Includes and defines for Hexagon and all HLOS except Windows. */
#if !defined(_WINDOWS)
/* Weak reference to remote symbol for compilation. */
# pragma weak remote_session_control
# pragma weak remote_handle_control
# pragma weak remote_handle64_control
# pragma weak fastrpc_mmap
# pragma weak fastrpc_munmap
#endif
#if !defined(_WINDOWS)
# pragma weak remote_system_request
#endif
/**
* Wrapper for FastRPC Capability API: query DSP support.
*
* @param[out] domain pointer to supported domain.
* @return 0 if query is successful.
* non-zero if error, return value points to the error.
*/
int get_dsp_support(int * domain);
/**
* Wrapper for FastRPC Capability API: query VTCM information.
*
* @param[in] domain value of domain in the queried.
* @param[out] capability capability value of the attribute queried.
* @param[in] attr value of the attribute to the queried.
* @return 0 if query is successful.
* non-zero if error, return value points to the error.
*/
int get_vtcm_info(int domain, uint32_t * capability, uint32_t attr);
/**
* Wrapper for FastRPC Capability API: query unsigned pd support on CDSP domain.
*
* @return true if unsigned pd is supported.
* false if unsigned pd is not supported, capability query failed.
*/
bool get_unsignedpd_support(void);
/**
* Wrapper for FastRPC Capability API: query unsigned pd support.
*
* @param[in] domain value of domain in the queried.
* @return true if unsigned pd is supported.
* false if unsigned pd is not supported, capability query failed.
*/
bool is_unsignedpd_supported(int domain_id);
/**
* is_valid_domain_id API: query a domain id is valid.
*
* @param[in] domain value of domain in the queried.
* @param[in] compute_only value of domain is only compared with CDSP domains supported by the target when enabled.
* @return true if value of domain is valid.
* false if value of domain is not valid.
*/
bool is_valid_domain_id(int domain_id, int compute_only);
/**
* get_domain API: get domain struct from domain value.
*
* @param[in] domain value of a domain
* @return Returns domain struct of the domain if it is supported or else
* returns NULL.
*
*/
domain * get_domain(int domain_id);
/**
* get_domains_info API: get information for all the domains available on the device
*
* @param[in] domain_type pointer to domain type
* @param[in] num_domains pointer to number of domains
* @param[in] domains_info pointer to save discovered domains information.
* @return 0 if query is successful.
* non-zero if error, return value points to the error.
*
* It is user's responsibility to free the memory used to store the domains info whose address is present in domains_info before closing the application.
*
*/
int get_domains_info(char * domain_type, int * num_domains, fastrpc_domain ** domains_info);
/**
* get_effective_domain_id API: get effective domain id for given session id
*
* @param[in] domain_name pointer to domain name
* @param[in] session_id
* @param[in] effec_domain_id pointer to save obtained effective domain id.
* @return 0 if query is successful.
* non-zero if error, return value points to the error.
*
*/
int get_effective_domain_id(char * domain_name, int session_id, int * effec_domain_id);
/**
* is_async_fastrpc_supported API: query a domain id has async fastrpc supported or not
*
* @param[in] domain_id value of a domain
* @return Returns true or false stating support of Async FastRPC
*
*/
bool is_async_fastrpc_supported(int domain_id);
/**
* is_status_notification_supported API: query the DSP for STATUS_NOTIFICATION_SUPPORT information
*
* @param[in] domain_id value of a domain
* @return Returns true or false stating status notification support information
*
*/
bool is_status_notification_supported(int domain_id);
/**
* get_hmx_support_info API: query the DSP for HMX SUPPORT information
*
* @param[in] domain_id value of a domain
* @param[out] capability capability value of the attribute queried.
* @param[in] attr value of the attribute to the queried.
* @return 0 if query is successful.
* non-zero if error, return value points to the error.
*
*/
int get_hmx_support_info(int domain, uint32_t * capability, uint32_t attr);
/**
* get_hex_arch_ver API: query the Hexagon processor architecture version information
*
* @param[in] domain_id value of a domain
* @param[out] Arch version (73, 75, ...)
* @return 0 if query is successful.
* non-zero if error, return value points to the error.
*
*/
int get_hex_arch_ver(int domain, int * arch);
/**
* get_hvx_support_info API: query the DSP for HVX SUPPORT information
*
* @param[in] domain_id value of a domain
* @param[out] capability capability value of the attribute queried.
* @param[in] attr value of the attribute to the queried.
* @return 0 if query is successful.
* non-zero if error, return value points to the error.
*
*/
int get_hvx_support_info(int domain, uint32_t * capability, uint32_t attr);
#ifdef __cplusplus
}
#endif
#endif //DSP_CAPABILITIES_UTILS_H

View File

@ -0,0 +1,40 @@
cmake_minimum_required(VERSION 3.22.2)
project(ggml-htp C CXX ASM)
include(${HEXAGON_SDK_ROOT}/build/cmake/hexagon_fun.cmake)
include_directories(
${HEXAGON_SDK_ROOT}/incs
${HEXAGON_SDK_ROOT}/incs/stddef
${CMAKE_CURRENT_SOURCE_DIR}/../..
${CMAKE_CURRENT_SOURCE_DIR}/..
${CMAKE_CURRENT_SOURCE_DIR}
${CMAKE_CURRENT_BINARY_DIR})
set(HTP_LIB ggml-htp-${DSP_VERSION})
add_library(${HTP_LIB} SHARED
main.c
htp_iface_skel.c
worker-pool.c
htp-dma.c
hvx-sigmoid.c
hvx-inverse.c
hvx-exp.c
hvx-utils.c
matmul-ops.c
binary-ops.c
unary-ops.c
softmax-ops.c
act-ops.c
rope-ops.c
)
target_compile_definitions(${HTP_LIB} PRIVATE
$<IF:$<BOOL:${HEXAGON_HTP_DEBUG}>,HTP_DEBUG=1,NDEBUG=1>)
build_idl(htp_iface.idl ${HTP_LIB})
set_target_properties(${HTP_LIB} PROPERTIES EXPORT_COMPILE_COMMANDS ON)
install(TARGETS ${HTP_LIB})

View File

@ -0,0 +1,448 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#ifdef HTP_DEBUG
# define FARF_HIGH 1
#endif
#include <HAP_farf.h>
#include <HAP_mem.h>
#include <HAP_perf.h>
#include <HAP_ps.h>
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <qurt_thread.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-dma.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "hvx-utils.h"
#include "ops-utils.h"
#define htp_act_preamble3 \
const uint32_t ne00 = src0->ne[0]; \
const uint32_t ne01 = src0->ne[1]; \
const uint32_t ne02 = src0->ne[2]; \
const uint32_t ne03 = src0->ne[3]; \
\
const uint32_t ne10 = src1->ne[0]; \
const uint32_t ne11 = src1->ne[1]; \
const uint32_t ne12 = src1->ne[2]; \
const uint32_t ne13 = src1->ne[3]; \
\
const uint32_t ne0 = dst->ne[0]; \
const uint32_t ne1 = dst->ne[1]; \
const uint32_t ne2 = dst->ne[2]; \
const uint32_t ne3 = dst->ne[3]; \
\
const uint32_t nb00 = src0->nb[0]; \
const uint32_t nb01 = src0->nb[1]; \
const uint32_t nb02 = src0->nb[2]; \
const uint32_t nb03 = src0->nb[3]; \
\
const uint32_t nb10 = src1->nb[0]; \
const uint32_t nb11 = src1->nb[1]; \
const uint32_t nb12 = src1->nb[2]; \
const uint32_t nb13 = src1->nb[3]; \
\
const uint32_t nb0 = dst->nb[0]; \
const uint32_t nb1 = dst->nb[1]; \
const uint32_t nb2 = dst->nb[2]; \
const uint32_t nb3 = dst->nb[3];
#define htp_act_preamble2 \
const uint32_t ne00 = src0->ne[0]; \
const uint32_t ne01 = src0->ne[1]; \
const uint32_t ne02 = src0->ne[2]; \
const uint32_t ne03 = src0->ne[3]; \
\
const uint32_t ne0 = dst->ne[0]; \
const uint32_t ne1 = dst->ne[1]; \
const uint32_t ne2 = dst->ne[2]; \
const uint32_t ne3 = dst->ne[3]; \
\
const uint32_t nb00 = src0->nb[0]; \
const uint32_t nb01 = src0->nb[1]; \
const uint32_t nb02 = src0->nb[2]; \
const uint32_t nb03 = src0->nb[3]; \
\
const uint32_t nb0 = dst->nb[0]; \
const uint32_t nb1 = dst->nb[1]; \
const uint32_t nb2 = dst->nb[2]; \
const uint32_t nb3 = dst->nb[3];
static void glu_swiglu_fp32_per_thread(const struct htp_tensor * src0,
const struct htp_tensor * src1,
struct htp_tensor * dst,
const int32_t * op_params,
struct htp_spad * src0_spad,
struct htp_spad * src1_spad,
struct htp_spad * dst_spad,
uint32_t nth,
uint32_t ith,
uint32_t src0_nrows_per_thread) {
htp_act_preamble3;
size_t src0_row_size = nb01;
size_t src1_row_size = nb11;
size_t dst_row_size = nb1;
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
// no work for this thread
if (src0_start_row >= src0_end_row) {
return;
}
uint64_t t1, t2;
t1 = HAP_perf_get_qtimer_count();
int is_aligned = 1;
int opt_path = 0;
if (!htp_is_aligned((void *) src0->data, VLEN) || !htp_is_aligned((void *) dst->data, VLEN)) {
is_aligned = 0;
FARF(HIGH, "swiglu-f32: unaligned addresses in elementwise op, possibly slower execution\n");
}
if ((1 == is_aligned) && !(nb01 & (VLEN - 1))) {
opt_path = 1;
}
const uint8_t * restrict data_src0 = (const uint8_t *) src0->data;
const uint8_t * restrict data_src1 = (const uint8_t *) src1->data;
uint8_t * restrict data_dst = (uint8_t *) dst->data;
bool src1_valid = src1->ne[0];
if (!src1_valid) {
data_src1 = data_src0;
src1_row_size = src0_row_size;
}
uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_row_size);
uint8_t * restrict src1_spad_data = src1_spad->data + (ith * src1_row_size);
uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_row_size);
const int32_t swapped = op_params[1];
const int nc = (src1_valid) ? ne0 : ne0 / 2;
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size));
const float * restrict src1 = (float *) (data_src1 + (ir * src1_row_size));
float * restrict dst = (float *) (data_dst + (ir * dst_row_size));
if (ir + 1 < src0_end_row) {
htp_l2fetch(src0 + src0_row_size, 1, src0_row_size, src0_row_size);
}
if (!src1_valid) {
src0 += swapped ? nc : 0;
src1 += swapped ? 0 : nc;
}
if (1 == opt_path) {
hvx_fast_sigmoid_f32((const uint8_t *) src0, (uint8_t *) src0_spad_data, nc);
hvx_mul_mul_f32_opt((const uint8_t *) src0, (const uint8_t *) src0_spad_data, (const uint8_t *) src1,
(uint8_t *) dst, nc);
} else {
hvx_exp_f32((const uint8_t *) src0, src0_spad_data, nc, true);
hvx_add_scalar_f32(src0_spad_data, 1.0, src1_spad_data, nc);
hvx_inverse_f32(src1_spad_data, src0_spad_data, nc);
hvx_mul_f32((const uint8_t *) src0, src0_spad_data, dst_spad_data, nc);
hvx_mul_f32(dst_spad_data, (const uint8_t *) src1, (uint8_t *) dst, nc);
}
}
t2 = HAP_perf_get_qtimer_count();
FARF(HIGH, "swiglu-f32 %d/%d/%d: %ux%ux%ux%u (%u:%u) x %ux%ux%ux%u -> %ux%ux%ux%u usec %u\n", ith, nth, opt_path,
ne00, ne01, ne02, ne03, src0_start_row, src0_end_row, ne10, ne11, ne12, ne13, ne0, ne1, ne2, ne3,
(unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static void glu_swiglu_oai_fp32_per_thread(const struct htp_tensor * src0,
const struct htp_tensor * src1,
struct htp_tensor * dst,
const int32_t * op_params,
struct htp_spad * src0_spad,
struct htp_spad * src1_spad,
struct htp_spad * dst_spad,
uint32_t nth,
uint32_t ith,
uint32_t src0_nrows_per_thread) {
htp_act_preamble3;
uint64_t t1, t2;
t1 = HAP_perf_get_qtimer_count();
const size_t src0_row_size = nb01;
const size_t src1_row_size = nb11;
const size_t dst_row_size = nb1;
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
// no work for this thread
if (src0_start_row >= src0_end_row) {
return;
}
if (!htp_is_aligned((void *) src0->data, VLEN) || !htp_is_aligned((void *) dst->data, VLEN)) {
FARF(HIGH, "act-f32: unaligned addresses in activations op, possibly slower execution\n");
}
const uint8_t * restrict data_src0 = (const uint8_t *) src0->data;
const uint8_t * restrict data_src1 = (const uint8_t *) src1->data;
uint8_t * restrict data_dst = (uint8_t *) dst->data;
bool src1_valid = src1->ne[0];
if (!src1_valid) {
data_src1 = data_src0;
}
uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_row_size);
uint8_t * restrict src1_spad_data = src1_spad->data + (ith * src1_row_size);
uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_row_size);
const int32_t swapped = op_params[1];
const float alpha = ((const float *) (op_params))[2];
const float limit = ((const float *) (op_params))[3];
const int nc = (src1_valid) ? ne0 : ne0 / 2;
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size));
const float * restrict src1 = (float *) (data_src1 + (ir * src1_row_size));
float * restrict dst = (float *) (data_dst + (ir * dst_row_size));
if (ir + 1 < src0_end_row) {
htp_l2fetch(src0 + src0_row_size, 1, src0_row_size, src0_row_size);
}
if (!src1) {
src0 += swapped ? nc : 0;
src1 += swapped ? 0 : nc;
}
// x (src0_spad_data) = std::min(src0_p[k], limit);
hvx_min_scalar_f32((const uint8_t *) src0, limit, src0_spad_data, nc);
// y1 (src1_spad_data) = std::clamp(src1_p[k], -limit, limit);
hvx_clamp_scalar_f32((const uint8_t *) src1, limit, limit, src1_spad_data, nc);
// y (src1_spad_data) = y1 + 1.f
hvx_add_scalar_f32(src1_spad_data, 1.0, src1_spad_data, nc);
// x1 (dst_spad_data) = alpha * (x)
hvx_mul_scalar_f32(src0_spad_data, alpha, dst_spad_data, nc);
// x2 (dst_spad_data) = expf(-x1)
hvx_exp_f32(dst_spad_data, dst_spad_data, nc, true);
// x3 (dst_spad_data) = x2 + 1.f
hvx_add_scalar_f32(dst_spad_data, 1.0, dst_spad_data, nc);
// x4 (dst_spad_data) = 1 / x3
hvx_inverse_f32(dst_spad_data, dst_spad_data, nc);
// out_glu(dst_spad_data) = x * x4
hvx_mul_f32(src0_spad_data, dst_spad_data, dst_spad_data, nc);
// out = out_glu * (y + 1.f);
hvx_mul_f32(dst_spad_data, src1_spad_data, (uint8_t *) dst, nc);
}
t2 = HAP_perf_get_qtimer_count();
FARF(HIGH, "swiglu-f32 %d/%d: %ux%ux%ux%u (%u:%u) x %ux%ux%ux%u -> %ux%ux%ux%u usec %u\n", ith, nth, src0->ne[0],
src0->ne[1], src0->ne[2], src0->ne[3], src0_start_row, src0_end_row, src1->ne[0], src1->ne[1], src1->ne[2],
src1->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], (unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static void unary_silu_fp32_per_thread(const struct htp_tensor * src0,
struct htp_tensor * dst,
const int32_t * op_params,
struct htp_spad * src0_spad,
struct htp_spad * dst_spad,
uint32_t nth,
uint32_t ith,
uint32_t src0_nrows_per_thread) {
htp_act_preamble2;
uint64_t t1, t2;
t1 = HAP_perf_get_qtimer_count();
const size_t src0_row_size = nb01;
const size_t dst_row_size = nb1;
const uint32_t src0_nrows = ne01 * ne02 * ne03;
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
// no work for this thread
if (src0_start_row >= src0_end_row) {
return;
}
int is_aligned = 1;
int opt_path = 0;
if (!htp_is_aligned((void *) src0->data, VLEN) || !htp_is_aligned((void *) dst->data, VLEN)) {
is_aligned = 0;
FARF(HIGH, "silu-f32: unaligned addresses in elementwise op, possibly slower execution\n");
}
if ((1 == is_aligned) && !(nb01 & (VLEN - 1))) {
opt_path = 1;
}
const uint8_t * restrict data_src0 = (const uint8_t *) src0->data;
uint8_t * restrict data_dst = (uint8_t *) dst->data;
uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_row_size);
uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_row_size);
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size));
float * restrict dst = (float *) (data_dst + (ir * dst_row_size));
if (ir + 1 < src0_end_row) {
htp_l2fetch(src0 + src0_row_size, 1, src0_row_size, src0_row_size);
}
if (1 == opt_path) {
hvx_fast_sigmoid_f32((const uint8_t *) src0, (uint8_t *) src0_spad_data, ne0);
hvx_mul_f32_opt((const uint8_t *) src0, src0_spad_data, (uint8_t *) dst, ne0);
} else {
hvx_exp_f32((const uint8_t *) src0, src0_spad_data, ne0, true);
hvx_add_scalar_f32(src0_spad_data, 1.0, dst_spad_data, ne0);
hvx_inverse_f32(dst_spad_data, src0_spad_data, ne0);
hvx_mul_f32((const uint8_t *) src0, src0_spad_data, (uint8_t *) dst, ne0);
}
}
t2 = HAP_perf_get_qtimer_count();
FARF(HIGH, "silu-f32 %d/%d/%d: %ux%ux%ux%u (%u:%u) -> %ux%ux%ux%u usec %u\n", ith, nth, opt_path, ne00, ne01, ne02,
ne03, src0_start_row, src0_end_row, ne0, ne1, ne2, ne3, (unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static void unary_silu_fp32(unsigned int n, unsigned int i, void * data) {
struct htp_ops_context * octx = (struct htp_ops_context *) data;
unary_silu_fp32_per_thread(&octx->src0, &octx->dst, octx->op_params, &octx->src0_spad, &octx->dst_spad, n, i,
octx->src0_nrows_per_thread);
}
static void glu_swiglu_fp32(unsigned int n, unsigned int i, void * data) {
struct htp_ops_context * octx = (struct htp_ops_context *) data;
glu_swiglu_fp32_per_thread(&octx->src0, &octx->src1, &octx->dst, octx->op_params, &octx->src0_spad,
&octx->src1_spad, &octx->dst_spad, n, i, octx->src0_nrows_per_thread);
}
static void glu_swiglu_oai_fp32(unsigned int n, unsigned int i, void * data) {
struct htp_ops_context * octx = (struct htp_ops_context *) data;
glu_swiglu_oai_fp32_per_thread(&octx->src0, &octx->src1, &octx->dst, octx->op_params, &octx->src0_spad,
&octx->src1_spad, &octx->dst_spad, n, i, octx->src0_nrows_per_thread);
}
static int execute_op_activations_fp32(struct htp_ops_context * octx) {
int err = HTP_STATUS_OK;
const struct htp_tensor * src0 = &octx->src0;
const struct htp_tensor * src1 = &octx->src1;
struct htp_tensor * dst = &octx->dst;
if (((src0->ne[0] * SIZEOF_FP32) != src0->nb[1]) || ((dst->ne[0] * SIZEOF_FP32) != dst->nb[1])) {
FARF(ERROR, "Non-contiguous tensors are not supported at this time \n");
return HTP_STATUS_NO_SUPPORT;
}
worker_callback_t act_op_func;
const char * op_type = NULL;
switch (octx->op) {
case HTP_OP_UNARY_SILU:
act_op_func = unary_silu_fp32;
op_type = "silu-f32";
break;
case HTP_OP_GLU_SWIGLU:
act_op_func = glu_swiglu_fp32;
op_type = "swiglu-f32";
break;
case HTP_OP_GLU_SWIGLU_OAI:
act_op_func = glu_swiglu_oai_fp32;
op_type = "swiglu-oai-f32";
break;
default:
FARF(ERROR, "Unsupported activations Op %u\n", octx->op);
return HTP_STATUS_NO_SUPPORT;
}
const uint32_t n_threads = octx->n_threads;
const uint32_t src0_nrows = src0->ne[1] * src0->ne[2] * src0->ne[3];
const size_t src0_row_size = src0->nb[1];
const size_t src1_row_size = src1->ne[0] ? src1->nb[1] : src0->nb[1];
const size_t dst_row_size = dst->nb[1];
// VTCM scratchpads for all tensors
// N rows per thread, padded to HVX vector size
octx->dst_spad.size = htp_round_up(dst_row_size, 128) * octx->n_threads;
octx->src0_spad.size = htp_round_up(src0_row_size, 128) * octx->n_threads;
octx->src1_spad.size = htp_round_up(src1_row_size, 128) * octx->n_threads;
size_t spad_size = octx->src0_spad.size + octx->src1_spad.size + octx->dst_spad.size;
if (src1->ne[0]) {
FARF(HIGH,
"%s: %ux%ux%ux%u x %ux%ux%ux%u -> %ux%ux%ux%u : src0-spad-size %u src1-spad-size %u dst-spad-size %u\n",
op_type, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], src1->ne[0], src1->ne[1], src1->ne[2],
src1->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], octx->src0_spad.size, octx->src1_spad.size,
octx->dst_spad.size);
} else {
FARF(HIGH, "%s: %ux%ux%ux%u -> %ux%ux%ux%u : src0-spad-size %u src1-spad-size %u dst-spad-size %u\n", op_type,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
octx->src0_spad.size, octx->src1_spad.size, octx->dst_spad.size);
}
// Make sure the reserved vtcm size is sufficient
if (octx->ctx->vtcm_size < spad_size) {
FARF(ERROR, "act-%s : current VTCM reservation %zu is too small, needed %zu\n", op_type, octx->ctx->vtcm_size,
spad_size);
return HTP_STATUS_VTCM_TOO_SMALL;
}
octx->src0_spad.data = octx->ctx->vtcm_base;
octx->src1_spad.data = octx->src0_spad.data + octx->src0_spad.size;
octx->dst_spad.data = octx->src1_spad.data + octx->src1_spad.size;
if (!(octx->flags & HTP_OPFLAGS_SKIP_COMPUTE)) {
uint32_t n_jobs = MIN(n_threads, src0_nrows);
octx->src0_nrows_per_thread = (src0_nrows + n_jobs - 1) / n_jobs;
worker_pool_run_func(octx->ctx->worker_pool, act_op_func, octx, n_jobs);
}
return err;
}
int op_activations(struct htp_ops_context * octx) {
int err = HTP_STATUS_OK;
switch (octx->src0.type) {
case HTP_TYPE_F32:
err = execute_op_activations_fp32(octx);
break;
default:
err = HTP_STATUS_NO_SUPPORT;
break;
}
return err;
}

View File

@ -0,0 +1,344 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#ifdef HTP_DEBUG
# define FARF_HIGH 1
#endif
#include <HAP_farf.h>
#include <HAP_mem.h>
#include <HAP_perf.h>
#include <HAP_ps.h>
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <qurt_thread.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-dma.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "hvx-utils.h"
#include "ops-utils.h"
typedef void (*hvx_elemwise_f32_func)(const uint8_t * src0,
const uint8_t * src1,
uint8_t * data_dst,
const int num_elems);
static hvx_elemwise_f32_func func_table_HVX[] = { hvx_mul_f32, hvx_add_f32, hvx_sub_f32 };
static hvx_elemwise_f32_func func_table_HVX_opt[] = { hvx_mul_f32_opt, hvx_add_f32_opt, hvx_sub_f32_opt };
#define htp_binary_preamble \
const uint32_t ne00 = src0->ne[0]; \
const uint32_t ne01 = src0->ne[1]; \
const uint32_t ne02 = src0->ne[2]; \
const uint32_t ne03 = src0->ne[3]; \
\
const uint32_t ne10 = src1->ne[0]; \
const uint32_t ne11 = src1->ne[1]; \
const uint32_t ne12 = src1->ne[2]; \
const uint32_t ne13 = src1->ne[3]; \
\
const uint32_t ne0 = dst->ne[0]; \
const uint32_t ne1 = dst->ne[1]; \
const uint32_t ne2 = dst->ne[2]; \
const uint32_t ne3 = dst->ne[3]; \
\
const uint32_t nb00 = src0->nb[0]; \
const uint32_t nb01 = src0->nb[1]; \
const uint32_t nb02 = src0->nb[2]; \
const uint32_t nb03 = src0->nb[3]; \
\
const uint32_t nb10 = src1->nb[0]; \
const uint32_t nb11 = src1->nb[1]; \
const uint32_t nb12 = src1->nb[2]; \
const uint32_t nb13 = src1->nb[3]; \
\
const uint32_t nb0 = dst->nb[0]; \
const uint32_t nb1 = dst->nb[1]; \
const uint32_t nb2 = dst->nb[2]; \
const uint32_t nb3 = dst->nb[3];
static void binary_job_f32_per_thread(const struct htp_tensor * src0,
const struct htp_tensor * src1,
struct htp_tensor * dst,
uint8_t * spad_data,
uint32_t nth,
uint32_t ith,
uint32_t src0_nrows_per_thread,
enum htp_op op) {
htp_binary_preamble;
const size_t src0_row_size = nb01;
const size_t src1_row_size = nb11;
const size_t dst_row_size = nb1;
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
const uint32_t src1_nrows = ne11 * ne12 * ne13; // src1 rows
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
// no work for this thread
if (src0_start_row >= src0_end_row) {
return;
}
uint64_t t1, t2;
t1 = HAP_perf_get_qtimer_count();
int is_aligned = 1;
int opt_path = 0;
if ((0 == htp_is_aligned((void *) src0->data, VLEN)) || (0 == htp_is_aligned((void *) src1->data, VLEN)) ||
(0 == htp_is_aligned((void *) dst->data, VLEN))) {
FARF(HIGH, "binary-f32: unaligned addresses in elementwise op, possibly slower execution\n");
is_aligned = 0;
}
if ((1 == is_aligned) && !(nb01 & (VLEN - 1))) {
opt_path = 1;
}
hvx_elemwise_f32_func func_HVX = (1 == opt_path) ? func_table_HVX_opt[op] : func_table_HVX[op];
uint8_t * restrict spad_data_th = spad_data + (ith * src0_row_size);
const uint32_t nr0 = ne00 / ne10;
const uint8_t * restrict src0_ptr = (const uint8_t *) src0->data + (src0_start_row * src0_row_size);
uint8_t * restrict dst_ptr = (uint8_t *) dst->data + (src0_start_row * dst_row_size);
const uint8_t * restrict data_src1 = (const uint8_t *) src1->data;
const uint8_t * restrict src1_ptr = NULL;
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
src1_ptr = data_src1 + (ir % src1_nrows) * src1_row_size;
if (ir + 1 < src0_end_row) {
htp_l2fetch(src0_ptr + ne00, 1, src0_row_size, src0_row_size);
if (src1_row_size == src0_row_size) {
htp_l2fetch(src1_ptr, 1, src1_row_size, src1_row_size);
}
}
if (nr0 > 1) {
if ((1 == is_aligned) && (nr0 == ne00)) {
hvx_bcast_fp32_a(spad_data_th, *(float *) src1_ptr, nr0);
} else {
for (uint32_t r = 0; r < nr0; r++) {
memcpy(spad_data_th + r * nb11, (const uint8_t *) src1_ptr, nb11);
}
}
func_HVX((const uint8_t *) src0_ptr, (const uint8_t *) spad_data_th, (uint8_t *) dst_ptr, ne00);
} else {
func_HVX((const uint8_t *) src0_ptr, (const uint8_t *) src1_ptr, (uint8_t *) dst_ptr, ne00);
}
src0_ptr += src0_row_size;
dst_ptr += dst_row_size;
}
t2 = HAP_perf_get_qtimer_count();
FARF(HIGH, "binary-f32 %d/%d/%d: %ux%ux%ux%u (%u:%u) x %ux%ux%ux%u -> %ux%ux%ux%u usec %u\n", ith, nth, opt_path,
ne00, ne01, ne02, ne03, src0_start_row, src0_end_row, ne10, ne11, ne12, ne13, ne0, ne1, ne2, ne3,
(unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static void binary_add_id_job_f32_per_thread(const struct htp_tensor * src0,
const struct htp_tensor * src1,
const struct htp_tensor * src2,
struct htp_tensor * dst,
uint8_t * spad_data,
uint32_t nth,
uint32_t ith,
uint32_t src0_nrows_per_thread,
hvx_elemwise_f32_func func_HVX) {
htp_binary_preamble;
const size_t src0_row_size = nb01;
const size_t src1_row_size = nb11;
const size_t dst_row_size = nb1;
const uint32_t ne02_ne01 = ne02 * ne01;
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
// no work for this thread
if (src0_start_row >= src0_end_row) {
return;
}
uint64_t t1, t2;
t1 = HAP_perf_get_qtimer_count();
if ((0 == htp_is_aligned((void *) src0->data, VLEN)) || (0 == htp_is_aligned((void *) src1->data, VLEN)) ||
(0 == htp_is_aligned((void *) dst->data, VLEN))) {
FARF(HIGH, "add-id-f32: unaligned addresses, possibly slower execution\n");
}
const uint8_t * restrict data_src0 = (const uint8_t *) src0->data;
const uint8_t * restrict data_src1 = (const uint8_t *) src1->data;
uint8_t * restrict data_dst = (uint8_t *) dst->data;
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
// src0 indices
const uint32_t i03 = ir / ne02_ne01;
const uint32_t i02 = (ir - i03 * ne02_ne01) / ne01;
const uint32_t i01 = (ir - i03 * ne02_ne01 - i02 * ne01);
// src1 indices
const int i11 = *(int32_t *) ((char *) src2->data + i01 * src2->nb[0] + i02 * src2->nb[1]);
assert(i11 >= 0 && i11 < ne11);
float * restrict dst_ptr = (float *) (data_dst + i03 * nb3 + i02 * nb2 + i01 * nb1);
const float * restrict src0_ptr = (const float *) (data_src0 + i03 * nb03 + i02 * nb02 + i01 * nb01);
const float * restrict src1_ptr = (const float *) (data_src1 + 0 + 0 + i11 * nb11);
if (ir + 1 < src0_end_row) {
htp_l2fetch(src0_ptr + ne00, 1, src0_row_size, src0_row_size);
if (src1_row_size == src0_row_size) {
htp_l2fetch(src1_ptr + ne10, 1, src1_row_size, src1_row_size);
}
}
const uint32_t nr0 = ne00 / ne10;
if (nr0 > 1) {
for (uint32_t r = 0; r < nr0; r++) {
memcpy(spad_data + r * nb10, (const uint8_t *) src1_ptr, nb10);
}
func_HVX((const uint8_t *) src0_ptr, (const uint8_t *) spad_data, (uint8_t *) dst_ptr, ne00);
} else {
func_HVX((const uint8_t *) src0_ptr, (const uint8_t *) src1_ptr, (uint8_t *) dst_ptr, ne00);
}
}
t2 = HAP_perf_get_qtimer_count();
FARF(HIGH, "add-id-f32 %d/%d: %ux%ux%ux%u (%u:%u) x %ux%ux%ux%u (%ux%ux%ux%u) -> %ux%ux%ux%u usec %u\n", ith, nth,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], src0_start_row, src0_end_row, src1->ne[0], src1->ne[1],
src1->ne[2], src1->ne[3], src2->ne[0], src2->ne[1], src2->ne[2], src2->ne[3], dst->ne[0], dst->ne[1],
dst->ne[2], dst->ne[3], (unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static void binary_job_dispatcher_f32(unsigned int n, unsigned int i, void * data) {
struct htp_ops_context * octx = (struct htp_ops_context *) data;
switch (octx->op) {
case HTP_OP_MUL:
case HTP_OP_ADD:
case HTP_OP_SUB:
binary_job_f32_per_thread(&octx->src0, &octx->src1, &octx->dst, octx->src1_spad.data, n, i,
octx->src0_nrows_per_thread, octx->op);
break;
case HTP_OP_ADD_ID:
binary_add_id_job_f32_per_thread(&octx->src0, &octx->src1, &octx->src2, &octx->dst, octx->src0_spad.data, n,
i, octx->src0_nrows_per_thread, hvx_add_f32);
break;
default:
FARF(ERROR, "Unknown Binary Op %u", octx->op);
break;
}
}
static int execute_op_binary_f32(struct htp_ops_context * octx) {
int err = HTP_STATUS_OK;
const struct htp_tensor * src0 = &octx->src0;
const struct htp_tensor * src1 = &octx->src1;
struct htp_tensor * dst = &octx->dst;
worker_callback_t binary_op_func;
const char * op_type = NULL;
switch (octx->op) {
case HTP_OP_MUL:
binary_op_func = binary_job_dispatcher_f32;
op_type = "mul-f32";
break;
case HTP_OP_ADD:
binary_op_func = binary_job_dispatcher_f32;
op_type = "add-f32";
break;
case HTP_OP_SUB:
binary_op_func = binary_job_dispatcher_f32;
op_type = "sub-f32";
break;
case HTP_OP_ADD_ID:
binary_op_func = binary_job_dispatcher_f32;
op_type = "add-id-f32";
break;
default:
FARF(ERROR, "Unsupported binary-Op %u\n", octx->op);
return HTP_STATUS_NO_SUPPORT;
}
const int n_threads = octx->n_threads;
const uint32_t src0_nrows = src0->ne[1] * src0->ne[2] * src0->ne[3];
const size_t src0_row_size = src0->nb[1];
const size_t src1_row_size = src1->nb[1];
const size_t dst_row_size = dst->nb[1];
// VTCM scratchpads for all tensors
octx->dst_spad.size = htp_round_up(dst_row_size, 128) * n_threads;
octx->src0_spad.size = htp_round_up(src0_row_size, 128) * n_threads;
octx->src1_spad.size = htp_round_up(src1_row_size, 128) * n_threads;
size_t spad_size = octx->src0_spad.size + octx->src1_spad.size + octx->dst_spad.size;
FARF(HIGH,
"%s: (%ux%ux%ux%u) * (%ux%ux%ux%u) -> (%ux%ux%ux%u) : src0-spad-size %u src1-spad-size %u dst-spad-size %u\n",
op_type, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], src1->ne[0], src1->ne[1], src1->ne[2],
src1->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], octx->src0_spad.size, octx->src1_spad.size,
octx->dst_spad.size);
// Make sure the reserved vtcm size is sufficient
if (octx->ctx->vtcm_size < spad_size) {
FARF(ERROR, "binary-%s : current VTCM reservation %zu is too small, needed %zu\n", op_type,
octx->ctx->vtcm_size, spad_size);
return HTP_STATUS_VTCM_TOO_SMALL;
}
octx->src0_spad.data = octx->ctx->vtcm_base;
octx->src1_spad.data = octx->src0_spad.data + octx->src0_spad.size;
octx->dst_spad.data = octx->src1_spad.data + octx->src1_spad.size;
if (!(octx->flags & HTP_OPFLAGS_SKIP_COMPUTE)) {
uint32_t n_jobs = MIN(n_threads, src0_nrows);
octx->src0_nrows_per_thread = (src0_nrows + n_jobs - 1) / n_jobs;
worker_pool_run_func(octx->ctx->worker_pool, binary_op_func, octx, n_jobs);
}
return err;
}
int op_binary(struct htp_ops_context * octx) {
int err = HTP_STATUS_OK;
switch (octx->src0.type) {
case HTP_TYPE_F32:
err = execute_op_binary_f32(octx);
break;
default:
err = HTP_STATUS_NO_SUPPORT;
break;
}
return err;
}

View File

@ -0,0 +1,157 @@
if (HEXAGON_TOOLCHAIN_INCLUDED)
return()
endif()
set(HEXAGON_TOOLCHAIN_INCLUDED true)
#Cross Compiling for Hexagon
set(HEXAGON TRUE)
set(CMAKE_SYSTEM_NAME QURT)
set(CMAKE_SYSTEM_PROCESSOR Hexagon)
set(CMAKE_SYSTEM_VERSION "1") #${HEXAGON_PLATFORM_LEVEL})
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
set(CUSTOM_RUNELF_PATH "")
#To fix backward compatibility with EAI addon.
if (NOT HEXAGON_SDK_ROOT)
set(HEXAGON_SDK_ROOT $ENV{HEXAGON_SDK_ROOT})
endif()
if (NOT HEXAGON_TOOLS_ROOT)
if (DEFINED ENV{HEXAGON_TOOLS_ROOT})
set(HEXAGON_TOOLS_ROOT $ENV{HEXAGON_TOOLS_ROOT})
endif()
if(NOT HEXAGON_TOOLS_ROOT)
set(HEXAGON_TOOLS_ROOT $ENV{DEFAULT_HEXAGON_TOOLS_ROOT})
endif()
endif()
file(TO_CMAKE_PATH "${HEXAGON_TOOLS_ROOT}" HEXAGON_TOOLS_ROOT)
file(TO_CMAKE_PATH "${HEXAGON_SDK_ROOT}" HEXAGON_SDK_ROOT)
#Get the Binary extension of the Hexagon Toolchain
if(CMAKE_HOST_SYSTEM_NAME STREQUAL Windows)
set(HEXAGON_TOOLCHAIN_SUFFIX .exe)
endif()
message(DEBUG "CMAKE_HOST_SYSTEM_NAME:${CMAKE_HOST_SYSTEM_NAME}")
include(${HEXAGON_SDK_ROOT}/build/cmake/hexagon_arch.cmake)
set(HEXAGON_TOOLCHAIN ${HEXAGON_TOOLS_ROOT})
set(HEXAGON_LIB_DIR "${HEXAGON_TOOLCHAIN}/Tools/target/hexagon/lib")
set(HEXAGON_ISS_DIR ${HEXAGON_TOOLCHAIN}/Tools/lib/iss)
set(CMAKE_TRY_COMPILE_PLATFORM_VARIABLES
HEXAGON_SDK_ROOT
HEXAGON_TOOLS_ROOT
)
#QURT Related includes and linker flags
set(V_ARCH ${HEXAGON_ARCH})
set(_QURT_INSTALL_DIR "${HEXAGON_SDK_ROOT}/rtos/qurt/ADSP${V_ARCH}MP${V_ARCH_EXTN}")
set(_QURT_INSTALL_DIR "${HEXAGON_SDK_ROOT}/rtos/qurt/compute${V_ARCH}${V_ARCH_EXTN}")
if( ${TREE} MATCHES PAKMAN )
set(_QURT_INSTALL_DIR "${QURT_IMAGE_DIR}/compute${V_ARCH}${V_ARCH_EXTN}")
endif()
message(DEBUG "_QURT_INSTALL_DIR:${_QURT_INSTALL_DIR}")
set(RTOS_DIR ${_QURT_INSTALL_DIR})
set(QCC_DIR "${HEXAGON_QCC_DIR}/${V_ARCH}/G0")
set(TARGET_DIR "${HEXAGON_LIB_DIR}/${V_ARCH}/G0")
include_directories(
${_QURT_INSTALL_DIR}/include
${_QURT_INSTALL_DIR}/include/qurt
${_QURT_INSTALL_DIR}/include/posix
)
set(QURT_START_LINK_LIBS)
set(QURT_START_LINK_LIBS
"${TARGET_DIR}/init.o"
"${RTOS_DIR}/lib/crt1.o"
"${RTOS_DIR}/lib/debugmon.o"
"${RTOS_DIR}/lib/libqurt.a"
"${TARGET_DIR}/libc.a"
"${TARGET_DIR}/libqcc.a"
"${TARGET_DIR}/libhexagon.a"
"${RTOS_DIR}/lib/libqurtcfs.a"
"${RTOS_DIR}/lib/libtimer_island.a"
"${RTOS_DIR}/lib/libtimer_main.a"
"${RTOS_DIR}/lib/libposix.a"
)
STRING(REPLACE ";" " " QURT_START_LINK_LIBS "${QURT_START_LINK_LIBS}")
set(QURT_END_LINK_LIBS
${TARGET_DIR}/fini.o
)
#Non QURT related includes and linker flags
set(TARGET_DIR_NOOS "${HEXAGON_TOOLCHAIN}/Tools/target/hexagon/lib/${HEXAGON_ARCH}")
if (NOT NO_WRAP_MEM_API)
set(WRAP_MALLOC -Wl,--wrap=malloc)
set(WRAP_CALLOC -Wl,--wrap=calloc)
set(WRAP_FREE -Wl,--wrap=free)
set(WRAP_REALLOC -Wl,--wrap=realloc)
set(WRAP_MEMALIGN -Wl,--wrap=memalign)
endif()
set(PIC_SHARED_LD_FLAGS
-mcpu=${V_ARCH} -m${V_ARCH} -mhvx=${V_ARCH}
-G0
-fpic
-Wl,-Bsymbolic
-Wl,-L${TARGET_DIR_NOOS}/G0/pic
-Wl,-L${HEXAGON_TOOLCHAIN}/Tools/target/hexagon/lib/
-Wl,--no-threads ${WRAP_MALLOC} ${WRAP_CALLOC} ${WRAP_FREE} ${WRAP_REALLOC} ${WRAP_MEMALIGN}
-shared
"-o <TARGET> <SONAME_FLAG><TARGET_SONAME>"
"<LINK_FLAGS>"
-Wl,--start-group
"<OBJECTS>"
"<LINK_LIBRARIES>"
-Wl,--end-group
-lc
)
STRING(REPLACE ";" " " PIC_SHARED_LD_FLAGS "${PIC_SHARED_LD_FLAGS}")
set(HEXAGON_PIC_SHARED_LINK_OPTIONS "${PIC_SHARED_LD_FLAGS}")
#System include paths
include_directories(SYSTEM ${HEXAGON_SDK_ROOT}/incs)
include_directories(SYSTEM ${HEXAGON_SDK_ROOT}/incs/stddef)
include_directories(SYSTEM ${HEXAGON_SDK_ROOT}/ipc/fastrpc/incs)
#LLVM toolchain setup
#Compiler paths, options and architecture
set(CMAKE_C_COMPILER ${HEXAGON_TOOLCHAIN}/Tools/bin/hexagon-clang${HEXAGON_TOOLCHAIN_SUFFIX})
set(CMAKE_CXX_COMPILER ${HEXAGON_TOOLCHAIN}/Tools/bin/hexagon-clang++${HEXAGON_TOOLCHAIN_SUFFIX})
set(CMAKE_AR ${HEXAGON_TOOLCHAIN}/Tools/bin/hexagon-ar${HEXAGON_TOOLCHAIN_SUFFIX})
set(CMAKE_ASM_COMPILER ${HEXAGON_TOOLCHAIN}/Tools/bin/hexagon-clang++${HEXAGON_TOOLCHAIN_SUFFIX})
set(HEXAGON_LINKER ${CMAKE_C_COMPILER})
set(CMAKE_PREFIX_PATH ${HEXAGON_TOOLCHAIN}/Tools/target/hexagon)
set(CMAKE_SHARED_LIBRARY_SONAME_C_FLAG "-Wl,-soname,")
set(CMAKE_SHARED_LIBRARY_SONAME_CXX_FLAG "-Wl,-soname,")
#Compiler Options
set(COMMON_FLAGS "-mcpu=hexagon${V_ARCH} -m${V_ARCH} -mhvx=${V_ARCH} -fvectorize -Wall -Werror -fno-zero-initialized-in-bss -G0 -fdata-sections -fpic ${XQF_ARGS}")
set(CMAKE_CXX_FLAGS_DEBUG "${COMMON_FLAGS} -O0 -D_DEBUG -g")
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${COMMON_FLAGS} -O3 -g")
set(CMAKE_CXX_FLAGS_RELEASE "${COMMON_FLAGS} -O3")
set(CMAKE_C_FLAGS_DEBUG "${COMMON_FLAGS} -O0 -D_DEBUG -g")
set(CMAKE_C_FLAGS_RELWITHDEBINFO "${COMMON_FLAGS} -O3 -g")
set(CMAKE_C_FLAGS_RELEASE "${COMMON_FLAGS} -O3")
set(CMAKE_ASM_FLAGS_DEBUG "${COMMON_FLAGS} ${CMAKE_CXX_FLAGS_DEBUG}")
set(CMAKE_ASM_FLAGS_RELEASE "${COMMON_FLAGS} ${CMAKE_CXX_FLAGS_RELEASE}")
set(CMAKE_ASM_FLAGS_RELWITHDEBINFO "${COMMON_FLAGS} ${CMAKE_CXX_FLAGS_RELWITHDEBINFO}" )
#Linker Options
set(CMAKE_C_CREATE_SHARED_LIBRARY "${HEXAGON_LINKER} ${HEXAGON_PIC_SHARED_LINK_OPTIONS}")
set(CMAKE_CXX_CREATE_SHARED_LIBRARY "${HEXAGON_LINKER} ${HEXAGON_PIC_SHARED_LINK_OPTIONS}")

View File

@ -0,0 +1,40 @@
#ifndef HTP_CTX_H
#define HTP_CTX_H
#include "htp-dma.h"
#include "worker-pool.h"
#include <assert.h>
#include <dspqueue.h>
#include <stdatomic.h>
#include <stdint.h>
#define HTP_MAX_NTHREADS 10
// FIXME: move these into matmul-ops
#define HTP_SPAD_SRC0_NROWS 16
#define HTP_SPAD_SRC1_NROWS 16
#define HTP_SPAD_DST_NROWS 2
// Main context for htp DSP backend
struct htp_context {
dspqueue_t queue;
dma_queue * dma[HTP_MAX_NTHREADS];
worker_pool_context_t worker_pool;
uint32_t n_threads;
int thread_id;
int thread_prio;
uint8_t * vtcm_base;
size_t vtcm_size;
uint32_t vtcm_rctx;
atomic_bool vtcm_valid;
atomic_bool vtcm_inuse;
atomic_bool vtcm_needs_release;
uint32_t opmask;
};
#endif /* HTP_CTX_H */

View File

@ -0,0 +1,69 @@
#include "htp-dma.h"
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#pragma clang diagnostic ignored "-Wunused-function"
static inline uint32_t pow2_ceil(uint32_t x) {
if (x <= 1) {
return 1;
}
int p = 2;
x--;
while (x >>= 1) {
p <<= 1;
}
return p;
}
dma_queue * dma_queue_create(size_t capacity) {
dma_queue * q = (dma_queue *) memalign(32, sizeof(dma_queue));
if (q == NULL) {
FARF(ERROR, "%s: failed to allocate DMA queue\n", __FUNCTION__);
return NULL;
}
capacity = pow2_ceil(capacity);
memset(q, 0, sizeof(dma_queue));
q->capacity = capacity;
q->idx_mask = capacity - 1;
q->desc = (hexagon_udma_descriptor_type1_t *) memalign(64, capacity * sizeof(hexagon_udma_descriptor_type1_t));
memset(q->desc, 0, capacity * sizeof(hexagon_udma_descriptor_type1_t));
q->dst = (void **) memalign(4, capacity * sizeof(void *));
memset(q->dst, 0, capacity * sizeof(void *));
q->tail = &q->desc[capacity - 1];
if (!q->desc && !q->dst) {
FARF(ERROR, "%s: failed to allocate DMA queue items\n", __FUNCTION__);
return NULL;
}
FARF(HIGH, "dma-queue: capacity %u\n", capacity);
return q;
}
void dma_queue_delete(dma_queue * q) {
if (!q) {
return;
}
free(q->desc);
free(q->dst);
free(q);
}
void dma_queue_flush(dma_queue * q) {
while (1) {
uint32_t s = dmwait() & 0x3;
if (s == HEXAGON_UDMA_DM0_STATUS_IDLE) {
break;
}
}
q->tail = NULL;
}

View File

@ -0,0 +1,119 @@
#ifndef HTP_DMA_H
#define HTP_DMA_H
#include <HAP_farf.h>
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <stdbool.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
hexagon_udma_descriptor_type1_t * desc; // descriptor pointers
hexagon_udma_descriptor_type1_t * tail; // tail pointer
void ** dst; // dst pointers
uint32_t push_idx;
uint32_t pop_idx;
uint32_t capacity;
uint32_t idx_mask;
} dma_queue;
dma_queue * dma_queue_create(size_t capacity);
void dma_queue_delete(dma_queue * q);
void dma_queue_flush(dma_queue * q);
// TODO: technically we don't need these and could use Q6_dmstart/wait/etc instead
// but those do not seem to always compiler properly.
static inline void dmstart(void * next) {
asm volatile(" release(%0):at" : : "r"(next));
asm volatile(" dmstart(%0)" : : "r"(next));
}
static inline void dmlink(void * cur, void * next) {
asm volatile(" release(%0):at" : : "r"(next));
asm volatile(" dmlink(%0, %1)" : : "r"(cur), "r"(next));
}
static inline unsigned int dmpoll(void) {
unsigned int ret = 0;
asm volatile(" %0 = dmpoll" : "=r"(ret) : : "memory");
return ret;
}
static inline unsigned int dmwait(void) {
unsigned int ret = 0;
asm volatile(" %0 = dmwait" : "=r"(ret) : : "memory");
return ret;
}
static inline bool dma_queue_push(dma_queue * q,
void * dst,
const void * src,
size_t dst_row_size,
size_t src_row_size,
size_t nrows) {
if (((q->push_idx + 1) & q->idx_mask) == q->pop_idx) {
return false;
}
hexagon_udma_descriptor_type1_t * desc = &q->desc[q->push_idx];
desc->next = NULL;
desc->length = 0;
desc->desctype = HEXAGON_UDMA_DESC_DESCTYPE_TYPE1;
desc->dstbypass = 1;
desc->srcbypass = 1;
desc->order = 0;
desc->dstate = HEXAGON_UDMA_DESC_DSTATE_INCOMPLETE;
desc->src = (void *) src;
desc->dst = (void *) dst;
desc->allocation = 0;
desc->padding = 0;
desc->roiwidth = src_row_size;
desc->roiheight = nrows;
desc->srcstride = src_row_size;
desc->dststride = dst_row_size;
desc->srcwidthoffset = 0;
desc->dstwidthoffset = 0;
q->dst[q->push_idx] = dst;
dmlink(q->tail, desc);
q->tail = desc;
// FARF(ERROR, "dma-push: i %u len %u dst %p src %p\n", q->push_idx, len, dst, src);
q->push_idx = (q->push_idx + 1) & q->idx_mask;
return true;
}
static inline uint8_t * dma_queue_pop(dma_queue * q) {
if (q->push_idx == q->pop_idx) {
return NULL;
}
hexagon_udma_descriptor_type1_t * desc = &q->desc[q->pop_idx];
// Wait for desc to complete
while (1) {
dmpoll();
if (desc->dstate == HEXAGON_UDMA_DESC_DSTATE_COMPLETE) {
break;
}
// FARF(ERROR, "dma-pop: waiting for DMA : %u\n", q->pop_idx);
}
uint8_t * dst = (uint8_t *) q->dst[q->pop_idx];
// FARF(ERROR, "dma-pop: i %u dst %p\n", q->pop_idx, dst);
q->pop_idx = (q->pop_idx + 1) & q->idx_mask;
return dst;
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* HTP_DMA_H */

View File

@ -0,0 +1,156 @@
#ifndef HTP_MSG_H
#define HTP_MSG_H
#include <assert.h>
// ggml-common.h must be included prio to this header
// Mask to enable various stages of the Ops.
// Used for debugging and profiling.
enum {
HTP_OPMASK_QUEUE = (1 << 0), // Enable Queueing (ie calls into the DSP)
HTP_OPMASK_QUANTIZE = (1 << 1), // Enable Quantize
HTP_OPMASK_COMPUTE = (1 << 2), // Enable Compute
};
// Op flags
enum {
HTP_OPFLAGS_SKIP_QUANTIZE = (1 << 0), // Skip dynamic quantization (reuse quantized tensors)
HTP_OPFLAGS_SKIP_COMPUTE = (1 << 1), // Skip actual computation (used for profiling)
HTP_OPFLAGS_EARLY_WAKEUP = (1 << 2) // Send early wakeup notification
};
enum htp_status {
HTP_STATUS_OK = 1,
HTP_STATUS_INTERNAL_ERR = 2,
HTP_STATUS_NO_SUPPORT = 3,
HTP_STATUS_INVAL_PARAMS = 4,
HTP_STATUS_VTCM_TOO_SMALL = 5,
};
// The values must match the ggml_type.
// Duplicated here because we can't include full ggml.h in the htp build.
// We have some static_asserts in the cpp code to ensure things are in sync.
enum htp_data_type {
HTP_TYPE_F32 = 0,
HTP_TYPE_F16 = 1,
HTP_TYPE_Q4_0 = 2,
HTP_TYPE_Q8_0 = 8,
HTP_TYPE_MXFP4 = 39,
HTP_TYPE_COUNT
};
// These values are manually translated over to HTP
// !!!! DO NOT ALTER THE ORDER OF THE FIRST FOUR ENUMS !!!!
enum htp_op {
HTP_OP_MUL = 0,
HTP_OP_ADD = 1,
HTP_OP_SUB = 2,
HTP_OP_DIV = 3,
HTP_OP_MUL_MAT = 4,
HTP_OP_MUL_MAT_ID = 5,
HTP_OP_RMS_NORM = 6,
HTP_OP_UNARY_SILU = 7,
HTP_OP_GLU_SWIGLU = 8,
HTP_OP_GLU_SWIGLU_OAI = 9,
HTP_OP_SOFTMAX = 10,
HTP_OP_ADD_ID = 11,
HTP_OP_ROPE = 12,
INVALID
};
static inline size_t htp_type_block_size(uint32_t t) {
switch (t) {
case HTP_TYPE_F32:
return 1;
case HTP_TYPE_F16:
return 1;
case HTP_TYPE_Q4_0:
return QK4_0;
case HTP_TYPE_Q8_0:
return QK8_0;
case HTP_TYPE_MXFP4:
return QK_MXFP4;
default:
assert(0 && "unsupported HTP data type");
}
return 0;
}
static inline size_t htp_type_nbytes(uint32_t t) {
switch (t) {
case HTP_TYPE_F32:
return 4;
case HTP_TYPE_F16:
return 2;
case HTP_TYPE_Q4_0:
return sizeof(block_q4_0);
case HTP_TYPE_Q8_0:
return sizeof(block_q8_0);
case HTP_TYPE_MXFP4:
return sizeof(block_mxfp4);
default:
assert(0 && "unsupported HTP data type");
}
return 0;
}
static const char * htp_type_name(uint32_t t) {
switch (t) {
case HTP_TYPE_F32:
return "fp32";
case HTP_TYPE_F16:
return "fp16";
case HTP_TYPE_Q4_0:
return "q4_0";
case HTP_TYPE_Q8_0:
return "q8_0";
case HTP_TYPE_MXFP4:
return "mxfp4";
}
return 0;
}
// Internal types
#define QK_Q4_0x4x2 256 // 4x Q4_0 blocks packed with next 4x Q4_0 blocks (size in bytes 128)
#define QK_Q8_0x4x2 256 // 4x Q8_0 blocks concat with next 4x Q8_0 blocks
#define QK_MXFP4x4x2 256 // 4x MXFP4 blocks concat with next 4x MXFP4 blocks
#define HTP_MAX_DIMS 4
struct htp_tensor {
uint32_t data; // Buffer offset in the messages, and data pointer on the NSP
uint32_t type; // Data type
uint32_t ne[HTP_MAX_DIMS]; // Number of elements
uint32_t nb[HTP_MAX_DIMS]; // Stride in bytes (see ggml.h ggml_tensor)
};
#define HTP_MAX_OP_PARAMS 64
struct htp_general_req {
uint32_t op; // GGML/HTP Op
int32_t op_params[HTP_MAX_OP_PARAMS / sizeof(int32_t)];
// Params for the op, e.g. epsilon of RMS norm
uint32_t flags; // Request flags
struct htp_tensor src0; // Input0 tensor
struct htp_tensor src1; // Input1 tensor
struct htp_tensor src2; // Input2 tensor
struct htp_tensor dst; // Output tensor
// should be multiple of 64 bytes (cacheline)
};
struct htp_general_rsp {
uint32_t op; // GGML/HTP Op
uint32_t status; // HTP_STATUS_...
uint32_t prof_usecs; // Number of usec per request
uint32_t prof_cycles; // Number of cycles per request
uint32_t prof_pkts; // Number of instruction packets per request
uint8_t unused[44]; // Pad to 64 bytes
};
#define HTP_MAX_MESSAGE_SIZE sizeof(struct htp_general_req)
#define HTP_MAX_PACKET_BUFFERS 4
#endif /* HTP_MSG_H */

View File

@ -0,0 +1,53 @@
#ifndef HTP_OPS_H
#define HTP_OPS_H
#include "htp-ctx.h"
#include "htp-msg.h"
#include "worker-pool.h"
#include <assert.h>
#include <stdint.h>
// ggml-common.h must be included prior to this header
struct htp_spad {
uint8_t * data;
size_t size;
size_t size_per_thread;
};
struct htp_ops_context {
struct htp_context * ctx;
enum htp_op op;
int32_t op_params[HTP_MAX_OP_PARAMS / sizeof(int32_t)];
struct htp_tensor src0;
struct htp_tensor src1;
struct htp_tensor src2;
struct htp_tensor dst;
struct htp_spad src0_spad;
struct htp_spad src1_spad;
struct htp_spad src2_spad;
struct htp_spad dst_spad;
worker_pool_context_t * wpool; // worker pool
uint32_t n_threads; // num threads
uint32_t src0_nrows_per_thread;
uint32_t src1_nrows_per_thread;
uint32_t flags;
};
int op_matmul(struct htp_ops_context * octx);
int op_matmul_id(struct htp_ops_context * octx);
int op_binary(struct htp_ops_context * octx);
int op_unary(struct htp_ops_context * octx);
int op_activations(struct htp_ops_context * octx);
int op_softmax(struct htp_ops_context * octx);
int op_add_id(struct htp_ops_context * octx);
int op_rope(struct htp_ops_context * octx);
#endif /* HTP_OPS_H */

View File

@ -0,0 +1,16 @@
// FastRPC IDL interface for GGML HTP
#ifndef HTP_IDL
#define HTP_IDL
#include "AEEStdDef.idl"
#include "remote.idl"
interface htp_iface : remote_handle64 {
AEEResult start(in uint32 sess_id, in uint64 dsp_queue_id, in uint32 n_hvx);
AEEResult stop();
AEEResult enable_etm();
AEEResult disable_etm();
};
#endif /* HTP_IDL */

View File

@ -0,0 +1,80 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-dma.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "hvx-utils.h"
#include "ops-utils.h"
void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems, bool negate) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_exp_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
// assert((0 == unaligned_addr) || (0 == num_elems_whole));
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_exp_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector vec_out = Q6_V_vzero();
if (0 == unaligned_loop) {
HVX_Vector * p_vec_in1 = (HVX_Vector *) src;
HVX_Vector * p_vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(*p_vec_in1++);
*p_vec_out++ = hvx_vec_exp_fp32(neg_vec_in);
} else {
*p_vec_out++ = hvx_vec_exp_fp32(*p_vec_in1++);
}
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(in);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32(neg_vec_in);
} else {
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32(in);
}
}
}
if (left_over > 0) {
const float * srcf = (float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(in);
vec_out = hvx_vec_exp_fp32(neg_vec_in);
} else {
vec_out = hvx_vec_exp_fp32(in);
}
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, vec_out);
}
}

View File

@ -0,0 +1,60 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-dma.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "hvx-utils.h"
#include "ops-utils.h"
void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_inverse_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
// assert((0 == unaligned_addr) || (0 == num_elems_whole));
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_inverse_f32: unaligned loop in hvx op, possibly slower execution\n");
}
if (0 == unaligned_loop) {
HVX_Vector * p_vec_in = (HVX_Vector *) src;
HVX_Vector * p_vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
*p_vec_out++ = hvx_vec_inverse_fp32(*p_vec_in++);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_inverse_fp32(in);
}
}
if (left_over > 0) {
const float * srcf = (float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = hvx_vec_inverse_fp32(in);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, out);
}
}

View File

@ -0,0 +1,49 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-dma.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "hvx-utils.h"
#include "ops-utils.h"
#if 0
// Reference algo used in hvx-utils
static void fast_sigmoid_f32(const float* restrict src, float* restrict dst, const int num_elems)
{
const float c1 = 0.03138777;
const float c2 = 0.276281267;
const float c_log2f = 1.442695022;
int32_t store_ints[32];
float store_floats[3][32];
for (int i = 0; i < num_elems; i++)
{
float v = src0[i];
v *= c_log2f*0.5;
int intPart = (int)v;
float x = (v - intPart);
float xx = x * x;
float v1 = c_log2f + c2 * xx;
float v2 = x + xx * c1 * x;
float v3 = (v2 + v1);
*((int*)&v3) += intPart << 24;
float v4 = v2 - v1;
float v5 = v3 - v4;
float res = v3 / v5;
dst[i] = res;
}
}
#endif

View File

@ -0,0 +1,947 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#ifdef HTP_DEBUG
# define FARF_HIGH 1
#endif
#include <HAP_farf.h>
#include <HAP_mem.h>
#include <HAP_perf.h>
#include <HAP_ps.h>
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "hvx-utils.h"
#define htp_binary_ops_preamble \
int step_of_4 = num_elems >> 7; \
int step_of_2 = (num_elems - step_of_4 * VLEN_FP32 * 4) >> 6; \
int step_of_1 = (num_elems - step_of_4 * VLEN_FP32 * 4 - step_of_2 * VLEN_FP32 * 2) >> 5; \
int remaining = num_elems - step_of_4 * VLEN_FP32 * 4 - step_of_2 * VLEN_FP32 * 2 - step_of_1 * VLEN_FP32; \
\
const uint8_t * restrict src0_curr = src0; \
const uint8_t * restrict src1_curr = src1; \
uint8_t * restrict dst_curr = dst;
void hvx_mul_f32(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src0, VLEN)) || (0 == htp_is_aligned((void *) src1, VLEN)) ||
(0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_mul_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_mul_f32: unaligned loop in hvx op, possibly slower execution\n");
}
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src0;
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1++, *vec_in2++);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in1 = *(HVX_UVector *) (src0 + i * SIZEOF_FP32);
HVX_Vector in2 = *(HVX_UVector *) (src1 + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in1, in2);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * src0f = (const float *) src0 + num_elems_whole;
const float * src1f = (const float *) src1 + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in1 = *(HVX_UVector *) src0f;
HVX_Vector in2 = *(HVX_UVector *) src1f;
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in1, in2);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
void hvx_mul_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
htp_binary_ops_preamble;
for (int i = 0; i < step_of_4; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vmpy_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
HVX_Vector v3a = *(HVX_Vector *) (src0_curr + 2 * VLEN);
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(v2a, v2b);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
HVX_Vector v3b = *(HVX_Vector *) (src1_curr + 2 * VLEN);
HVX_Vector v4a = *(HVX_Vector *) (src0_curr + 3 * VLEN);
src0_curr += 4 * VLEN;
HVX_Vector v3 = Q6_Vqf32_vmpy_VsfVsf(v3a, v3b);
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
HVX_Vector v4b = *(HVX_Vector *) (src1_curr + 3 * VLEN);
*(HVX_Vector *) (dst_curr + 2 * VLEN) = Q6_Vsf_equals_Vqf32(v3);
HVX_Vector v4 = Q6_Vqf32_vmpy_VsfVsf(v4a, v4b);
src1_curr += 4 * VLEN;
*(HVX_Vector *) (dst_curr + 3 * VLEN) = Q6_Vsf_equals_Vqf32(v4);
dst_curr += 4 * VLEN;
}
for (int i = 0; i < step_of_2; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vmpy_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
src0_curr += 2 * VLEN;
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(v2a, v2b);
src1_curr += 2 * VLEN;
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
dst_curr += 2 * VLEN;
}
for (int i = 0; i < step_of_1; i++) {
HVX_Vector va = *(HVX_Vector *) src0_curr;
src0_curr += VLEN;
HVX_Vector vb = *(HVX_Vector *) src1_curr;
src1_curr += VLEN;
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(va, vb);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v);
dst_curr += VLEN;
}
if (remaining > 0) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*(HVX_Vector *) src0_curr, *(HVX_Vector *) src1_curr);
hvx_vec_store_u((void *) dst_curr, remaining * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(v));
}
}
void hvx_mul_mul_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
const uint8_t * restrict src2,
uint8_t * restrict dst,
const int num_elems) {
const uint8_t * restrict src0_curr = src0;
const uint8_t * restrict src1_curr = src1;
const uint8_t * restrict src2_curr = src2;
uint8_t * restrict dst_curr = dst;
int step_of_2 = num_elems >> 6;
int step_of_1 = (num_elems - step_of_2 * VLEN_FP32 * 2) >> 5;
int remaining = num_elems - step_of_2 * VLEN_FP32 * 2 - step_of_1 * VLEN_FP32;
for (int i = 0; i < step_of_2; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v1c = *(HVX_Vector *) src2_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1_ = Q6_Vqf32_vmpy_VsfVsf(v1a, v1b);
HVX_Vector v1 = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(v1_), v1c);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
HVX_Vector v2c = *(HVX_Vector *) (src2_curr + VLEN);
src0_curr += 2 * VLEN;
HVX_Vector v2_ = Q6_Vqf32_vmpy_VsfVsf(v2a, v2b);
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(v2_), v2c);
src1_curr += 2 * VLEN;
src2_curr += 2 * VLEN;
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
dst_curr += 2 * VLEN;
}
for (int i = 0; i < step_of_1; i++) {
HVX_Vector va = *(HVX_Vector *) src0_curr;
src0_curr += VLEN;
HVX_Vector vb = *(HVX_Vector *) src1_curr;
src1_curr += VLEN;
HVX_Vector vc = *(HVX_Vector *) src2_curr;
src2_curr += VLEN;
HVX_Vector v1 = Q6_Vqf32_vmpy_VsfVsf(va, vb);
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(v1), vc);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v2);
dst_curr += VLEN;
}
if (remaining > 0) {
HVX_Vector v1 = Q6_Vqf32_vmpy_VsfVsf(*(HVX_Vector *) src0_curr, *(HVX_Vector *) src1_curr);
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(v1), *(HVX_Vector *) src2_curr);
hvx_vec_store_u((void *) dst_curr, remaining * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(v2));
}
}
void hvx_add_f32(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src0, VLEN)) || (0 == htp_is_aligned((void *) src1, VLEN)) ||
(0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_add_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_add_f32: unaligned loop in hvx op, possibly slower execution\n");
}
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src0;
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(*vec_in1++, *vec_in2++);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in1 = *(HVX_UVector *) (src0 + i * SIZEOF_FP32);
HVX_Vector in2 = *(HVX_UVector *) (src1 + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in1, in2);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * src0f = (const float *) src0 + num_elems_whole;
const float * src1f = (const float *) src1 + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in1 = *(HVX_UVector *) src0f;
HVX_Vector in2 = *(HVX_UVector *) src1f;
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in1, in2);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
void hvx_add_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
htp_binary_ops_preamble;
for (int i = 0; i < step_of_4; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vadd_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
HVX_Vector v3a = *(HVX_Vector *) (src0_curr + 2 * VLEN);
HVX_Vector v2 = Q6_Vqf32_vadd_VsfVsf(v2a, v2b);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
HVX_Vector v3b = *(HVX_Vector *) (src1_curr + 2 * VLEN);
HVX_Vector v4a = *(HVX_Vector *) (src0_curr + 3 * VLEN);
src0_curr += 4 * VLEN;
HVX_Vector v3 = Q6_Vqf32_vadd_VsfVsf(v3a, v3b);
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
HVX_Vector v4b = *(HVX_Vector *) (src1_curr + 3 * VLEN);
*(HVX_Vector *) (dst_curr + 2 * VLEN) = Q6_Vsf_equals_Vqf32(v3);
HVX_Vector v4 = Q6_Vqf32_vadd_VsfVsf(v4a, v4b);
src1_curr += 4 * VLEN;
*(HVX_Vector *) (dst_curr + 3 * VLEN) = Q6_Vsf_equals_Vqf32(v4);
dst_curr += 4 * VLEN;
}
for (int i = 0; i < step_of_2; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vadd_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
src0_curr += 2 * VLEN;
HVX_Vector v2 = Q6_Vqf32_vadd_VsfVsf(v2a, v2b);
src1_curr += 2 * VLEN;
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
dst_curr += 2 * VLEN;
}
for (int i = 0; i < step_of_1; i++) {
HVX_Vector va = *(HVX_Vector *) src0_curr;
src0_curr += VLEN;
HVX_Vector vb = *(HVX_Vector *) src1_curr;
src1_curr += VLEN;
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(va, vb);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v);
dst_curr += VLEN;
}
if (remaining > 0) {
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(*(HVX_Vector *) src0_curr, *(HVX_Vector *) src1_curr);
hvx_vec_store_u((void *) dst_curr, remaining * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(v));
}
}
void hvx_add_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_add_scalar_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_add_scalar_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector val_vec = hvx_vec_splat_fp32(val);
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(*vec_in1++, val_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
void hvx_mul_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_mul_scalar_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_mul_scalar_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector val_vec = hvx_vec_splat_fp32(val);
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1++, val_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in, val_vec);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in, val_vec);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
void hvx_sub_f32(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src0, VLEN)) || (0 == htp_is_aligned((void *) src1, VLEN)) ||
(0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_sub_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_sub_f32: unaligned loop in hvx op, possibly slower execution\n");
}
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src0;
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vsub_VsfVsf(*vec_in1++, *vec_in2++);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in1 = *(HVX_UVector *) (src0 + i * SIZEOF_FP32);
HVX_Vector in2 = *(HVX_UVector *) (src1 + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vsub_VsfVsf(in1, in2);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * src0f = (const float *) src0 + num_elems_whole;
const float * src1f = (const float *) src1 + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in1 = *(HVX_UVector *) src0f;
HVX_Vector in2 = *(HVX_UVector *) src1f;
HVX_Vector out = Q6_Vqf32_vsub_VsfVsf(in1, in2);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
void hvx_sub_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
htp_binary_ops_preamble;
for (int i = 0; i < step_of_4; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vsub_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
HVX_Vector v3a = *(HVX_Vector *) (src0_curr + 2 * VLEN);
HVX_Vector v2 = Q6_Vqf32_vsub_VsfVsf(v2a, v2b);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
HVX_Vector v3b = *(HVX_Vector *) (src1_curr + 2 * VLEN);
HVX_Vector v4a = *(HVX_Vector *) (src0_curr + 3 * VLEN);
src0_curr += 4 * VLEN;
HVX_Vector v3 = Q6_Vqf32_vsub_VsfVsf(v3a, v3b);
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
HVX_Vector v4b = *(HVX_Vector *) (src1_curr + 3 * VLEN);
*(HVX_Vector *) (dst_curr + 2 * VLEN) = Q6_Vsf_equals_Vqf32(v3);
HVX_Vector v4 = Q6_Vqf32_vsub_VsfVsf(v4a, v4b);
src1_curr += 4 * VLEN;
*(HVX_Vector *) (dst_curr + 3 * VLEN) = Q6_Vsf_equals_Vqf32(v4);
dst_curr += 4 * VLEN;
}
for (int i = 0; i < step_of_2; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vsub_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
src0_curr += 2 * VLEN;
HVX_Vector v2 = Q6_Vqf32_vsub_VsfVsf(v2a, v2b);
src1_curr += 2 * VLEN;
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
dst_curr += 2 * VLEN;
}
for (int i = 0; i < step_of_1; i++) {
HVX_Vector va = *(HVX_Vector *) src0_curr;
src0_curr += VLEN;
HVX_Vector vb = *(HVX_Vector *) src1_curr;
src1_curr += VLEN;
HVX_Vector v = Q6_Vqf32_vsub_VsfVsf(va, vb);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v);
dst_curr += VLEN;
}
if (remaining > 0) {
HVX_Vector v = Q6_Vqf32_vsub_VsfVsf(*(HVX_Vector *) src0_curr, *(HVX_Vector *) src1_curr);
hvx_vec_store_u((void *) dst_curr, remaining * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(v));
}
}
void hvx_sub_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_sub_scalar_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_sub_scalar_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector val_vec = hvx_vec_splat_fp32(val);
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vsub_VsfVsf(*vec_in1++, val_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vsub_VsfVsf(in, val_vec);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = Q6_Vqf32_vsub_VsfVsf(in, val_vec);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
float hvx_sum_of_squares_f32(const uint8_t * restrict src, const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
if (0 == htp_is_aligned((void *) src, VLEN)) {
FARF(HIGH, "hvx_sum_of_squares_f32: unaligned address in hvx op, possibly slower execution\n");
}
assert((1 == htp_is_aligned((void *) src, VLEN)) || (0 == num_elems_whole));
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
HVX_Vector sum_vec_acc = Q6_V_vsplat_R(0x00000000);
HVX_Vector zero_vec = Q6_V_vsplat_R(0x00000000);
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1, *vec_in1);
sum_vec_acc = Q6_Vqf32_vadd_Vqf32Vqf32(sum_vec_acc, v);
vec_in1++;
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
HVX_Vector vec_left = *(HVX_UVector *) srcf;
HVX_Vector vec_left_sq = Q6_Vqf32_vmpy_VsfVsf(vec_left, vec_left);
HVX_Vector vec_tmp = Q6_V_valign_VVR(vec_left_sq, zero_vec, left_over * SIZEOF_FP32);
sum_vec_acc = Q6_Vqf32_vadd_Vqf32Vqf32(sum_vec_acc, vec_tmp);
}
HVX_Vector v = hvx_vec_qf32_reduce_sum(sum_vec_acc);
return hvx_vec_get_fp32(Q6_Vsf_equals_Vqf32(v));
}
float hvx_self_sum_f32(const uint8_t * restrict src, const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if (0 == htp_is_aligned((void *) src, VLEN)) {
FARF(HIGH, "hvx_self_sum_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_self_sum_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector sum_vec = Q6_V_vsplat_R(0x00000000);
HVX_Vector zero_vec = Q6_V_vsplat_R(0x00000000);
if (0 == unaligned_loop) {
HVX_Vector * vec_in = (HVX_Vector *) src;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
// sum_vec = Q6_Vqf32_vadd_Vqf32Vsf(sum_vec, *vec_in++);
sum_vec = Q6_Vqf32_vadd_VsfVsf(Q6_Vsf_equals_Vqf32(sum_vec), *vec_in++);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
sum_vec = Q6_Vqf32_vadd_VsfVsf(Q6_Vsf_equals_Vqf32(sum_vec), in);
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
HVX_Vector vec_left = *(HVX_UVector *) srcf;
HVX_Vector vec_tmp = Q6_V_valign_VVR(vec_left, zero_vec, left_over * SIZEOF_FP32);
// sum_vec = Q6_Vqf32_vadd_Vqf32Vsf(sum_vec, vec_tmp);
sum_vec = Q6_Vqf32_vadd_VsfVsf(Q6_Vsf_equals_Vqf32(sum_vec), vec_tmp);
}
HVX_Vector v = hvx_vec_qf32_reduce_sum(sum_vec);
return hvx_vec_get_fp32(Q6_Vsf_equals_Vqf32(v));
}
void hvx_scale_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems, const float scale) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_scale_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_scale_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector scale_vec = hvx_vec_splat_fp32(scale);
if (0 == unaligned_loop) {
HVX_Vector * vec_in1 = (HVX_Vector *) src;
HVX_Vector * vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1++, scale_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in, scale_vec);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in, scale_vec);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
float hvx_self_max_f32(const uint8_t * restrict src, const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if (0 == htp_is_aligned((void *) src, VLEN)) {
FARF(HIGH, "hvx_self_max_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_self_max_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector vec_max = hvx_vec_splat_fp32(((const float *) src)[0]);
HVX_Vector vec_first = hvx_vec_splat_fp32(((const float *) src)[0]);
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in = (HVX_Vector *) src;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
vec_max = Q6_Vsf_vmax_VsfVsf(vec_max, *vec_in++);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
vec_max = Q6_Vsf_vmax_VsfVsf(vec_max, in);
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector temp = Q6_V_valign_VVR(in, vec_first, left_over * SIZEOF_FP32);
vec_max = Q6_Vsf_vmax_VsfVsf(vec_max, temp);
}
HVX_Vector v = hvx_vec_reduce_max_fp32(vec_max);
return hvx_vec_get_fp32(v);
}
void hvx_min_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_min_scalar_f32: unaligned address in hvx op, possibly slower execution\n");
}
assert((1 == htp_is_aligned((void *) src, VLEN)) || (0 == num_elems_whole));
const float * src_f = (const float *) src;
HVX_Vector vec_min = Q6_V_vsplat_R(val);
HVX_Vector * restrict vec_in = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
vec_min = Q6_Vsf_vmin_VsfVsf(vec_min, *vec_in++);
*vec_out++ = Q6_Vsf_equals_Vqf32(vec_min);
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
vec_min = Q6_Vsf_vmin_VsfVsf(vec_min, in);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(vec_min));
}
}
void hvx_clamp_scalar_f32(const uint8_t * restrict src,
const float limit_left,
const float limit_right,
uint8_t * restrict dst,
const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_clamp_scalar_f32: unaligned address in hvx op, possibly slower execution\n");
}
assert((1 == htp_is_aligned((void *) src, VLEN)) || (0 == num_elems_whole));
HVX_Vector * restrict vec_in = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
HVX_Vector range_left = hvx_vec_splat_fp32(limit_left);
HVX_Vector range_right = hvx_vec_splat_fp32(limit_right);
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in_vec = *vec_in++;
HVX_Vector temp_v = in_vec;
HVX_VectorPred pred_cap_right = Q6_Q_vcmp_gt_VsfVsf(in_vec, range_right);
HVX_VectorPred pred_cap_left = Q6_Q_vcmp_gt_VsfVsf(range_left, in_vec);
in_vec = Q6_V_vmux_QVV(pred_cap_right, range_right, temp_v);
in_vec = Q6_V_vmux_QVV(pred_cap_left, range_left, temp_v);
*vec_out++ = Q6_Vsf_equals_Vqf32(in_vec);
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector temp_v = in;
HVX_VectorPred pred_cap_right = Q6_Q_vcmp_gt_VsfVsf(in, range_right);
HVX_VectorPred pred_cap_left = Q6_Q_vcmp_gt_VsfVsf(range_left, in);
in = Q6_V_vmux_QVV(pred_cap_right, range_right, temp_v);
in = Q6_V_vmux_QVV(pred_cap_left, range_left, temp_v);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(in));
}
}

View File

@ -0,0 +1,998 @@
#ifndef HVX_UTILS_H
#define HVX_UTILS_H
#include "ops-utils.h"
#include <stdbool.h>
#include <stdint.h>
#define SIZEOF_FP32 (4)
#define SIZEOF_FP16 (2)
#define VLEN (128)
#define VLEN_FP32 (VLEN / SIZEOF_FP32)
#define VLEN_FP16 (VLEN / SIZEOF_FP16)
static inline HVX_Vector hvx_vec_splat_fp32(float i) {
union {
float f;
int32_t i;
} fp32 = { .f = i };
return Q6_V_vsplat_R(fp32.i);
}
static inline void hvx_vec_store_u(void * addr, uint32_t n, HVX_Vector v) {
// Rotate as needed.
v = Q6_V_vlalign_VVR(v, v, (size_t) addr);
uint32_t left_off = (size_t) addr & 127;
uint32_t right_off = left_off + n;
HVX_VectorPred ql_not = Q6_Q_vsetq_R((size_t) addr);
HVX_VectorPred qr = Q6_Q_vsetq2_R(right_off);
if (right_off > 128) {
Q6_vmem_QRIV(qr, (HVX_Vector *) addr + 1, v);
// all 1's
qr = Q6_Q_vcmp_eq_VbVb(v, v);
}
ql_not = Q6_Q_or_QQn(ql_not, qr);
Q6_vmem_QnRIV(ql_not, (HVX_Vector *) addr, v);
}
static inline void hvx_vec_store_a(void * ptr, size_t n, HVX_Vector v) {
assert((unsigned long) ptr % 128 == 0);
HVX_VectorPred ql_not = Q6_Q_vsetq_R((size_t) ptr);
HVX_VectorPred qr = Q6_Q_vsetq2_R(n);
ql_not = Q6_Q_or_QQn(ql_not, qr);
Q6_vmem_QnRIV(ql_not, (HVX_Vector *) ptr, v);
}
static inline HVX_Vector hvx_vec_repl4(HVX_Vector v) {
// vdelta control to replicate first 4 bytes across all elements
static const uint8_t __attribute__((aligned(128))) repl[128] = {
0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x08, 0x08, 0x08, 0x08, 0x04, 0x04, 0x04, 0x04,
0x10, 0x10, 0x10, 0x10, 0x04, 0x04, 0x04, 0x04, 0x08, 0x08, 0x08, 0x08, 0x04, 0x04, 0x04, 0x04,
0x20, 0x20, 0x20, 0x20, 0x04, 0x04, 0x04, 0x04, 0x08, 0x08, 0x08, 0x08, 0x04, 0x04, 0x04, 0x04,
0x10, 0x10, 0x10, 0x10, 0x04, 0x04, 0x04, 0x04, 0x08, 0x08, 0x08, 0x08, 0x04, 0x04, 0x04, 0x04,
0x40, 0x40, 0x40, 0x40, 0x04, 0x04, 0x04, 0x04, 0x08, 0x08, 0x08, 0x08, 0x04, 0x04, 0x04, 0x04,
0x10, 0x10, 0x10, 0x10, 0x04, 0x04, 0x04, 0x04, 0x08, 0x08, 0x08, 0x08, 0x04, 0x04, 0x04, 0x04,
0x20, 0x20, 0x20, 0x20, 0x04, 0x04, 0x04, 0x04, 0x08, 0x08, 0x08, 0x08, 0x04, 0x04, 0x04, 0x04,
0x10, 0x10, 0x10, 0x10, 0x04, 0x04, 0x04, 0x04, 0x08, 0x08, 0x08, 0x08, 0x04, 0x04, 0x04, 0x04,
};
HVX_Vector ctrl = *(HVX_Vector *) repl;
return Q6_V_vdelta_VV(v, ctrl);
}
// copy n fp16 elements : source and destination are aligned to HVX Vector (128)
static inline void hvx_copy_fp16_aa(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
HVX_Vector * restrict vdst = (HVX_Vector *) dst;
HVX_Vector * restrict vsrc = (HVX_Vector *) src;
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src % 128 == 0);
uint32_t nvec = n / 64;
uint32_t nloe = n % 64;
uint32_t i = 0;
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
}
if (nloe) {
HVX_Vector v = vsrc[i];
hvx_vec_store_u((void *) &vdst[i], nloe * sizeof(__fp16), v);
}
}
// copy n fp16 elements : source is aligned, destination is potentially unaligned
static inline void hvx_copy_fp16_ua(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
HVX_UVector * restrict vdst = (HVX_UVector *) dst;
HVX_Vector * restrict vsrc = (HVX_Vector *) src;
assert((unsigned long) src % 128 == 0);
uint32_t nvec = n / 64;
uint32_t nloe = n % 64;
uint32_t i = 0;
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
}
if (nloe) {
HVX_Vector v = vsrc[i];
hvx_vec_store_u((void *) &vdst[i], nloe * sizeof(__fp16), v);
}
}
// copy n fp16 elements : source is aligned, destination is potentially unaligned
static inline void hvx_copy_fp16_au(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
HVX_Vector * restrict vdst = (HVX_Vector *) dst;
HVX_UVector * restrict vsrc = (HVX_UVector *) src;
assert((unsigned long) dst % 128 == 0);
uint32_t nvec = n / 64;
uint32_t nloe = n % 64;
uint32_t i = 0;
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
}
if (nloe) {
HVX_Vector v = vsrc[i];
hvx_vec_store_u((void *) &vdst[i], nloe * sizeof(__fp16), v);
}
}
// copy n fp32 elements : source and destination are aligned to HVX Vector (128)
static inline void hvx_copy_fp32_aa(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
HVX_Vector * restrict vdst = (HVX_Vector *) dst;
HVX_Vector * restrict vsrc = (HVX_Vector *) src;
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src % 128 == 0);
uint32_t nvec = n / 32;
uint32_t nloe = n % 32;
uint32_t i = 0;
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
}
if (nloe) {
HVX_Vector v = vsrc[i];
hvx_vec_store_u((void *) &vdst[i], nloe * sizeof(float), v);
}
}
// copy n fp32 elements : source is aligned, destination is unaligned
static inline void hvx_copy_fp32_ua(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
HVX_UVector * restrict vdst = (HVX_UVector *) dst;
HVX_Vector * restrict vsrc = (HVX_Vector *) src;
assert((unsigned long) src % 128 == 0);
uint32_t nvec = n / 32;
uint32_t nloe = n % 32;
uint32_t i = 0;
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
}
if (nloe) {
HVX_Vector v = vsrc[i];
hvx_vec_store_u((void *) &vdst[i], nloe * sizeof(float), v);
}
}
// copy n fp32 elements : source is unaligned, destination is aligned
static inline void hvx_copy_fp32_au(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
HVX_Vector * restrict vdst = (HVX_Vector *) dst;
HVX_UVector * restrict vsrc = (HVX_UVector *) src;
assert((unsigned long) dst % 128 == 0);
uint32_t nvec = n / 32;
uint32_t nloe = n % 32;
uint32_t i = 0;
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
}
if (nloe) {
HVX_Vector v = vsrc[i];
hvx_vec_store_u((void *) &vdst[i], nloe * sizeof(float), v);
}
}
// bcast 1 fp32 element from source to n fp32 elements in destination : destination is aligned
static inline void hvx_bcast_fp32_a(uint8_t * restrict dst, float elem, uint32_t n) {
HVX_Vector * restrict vdst = (HVX_Vector *) dst;
HVX_Vector velem = hvx_vec_splat_fp32(elem);
assert((unsigned long) dst % 128 == 0);
uint32_t nvec = n / 32;
uint32_t nloe = n % 32;
uint32_t i = 0;
#pragma unroll(4)
for (; i < nvec; i++) {
vdst[i] = velem;
}
if (nloe) {
hvx_vec_store_u((void *) &vdst[i], nloe * sizeof(float), velem);
}
}
static __attribute__((always_inline)) int32_t is_in_one_chunk(void * addr, uint32_t n, uint32_t chunk_size) {
uint32_t left_off = (size_t) addr & (chunk_size - 1);
uint32_t right_off = left_off + n;
return right_off <= chunk_size;
}
static void hvx_vec_dump_fp16_n(char * pref, HVX_Vector v, uint32_t n) {
union {
HVX_Vector v;
__fp16 d[64];
} u = { .v = v };
const uint32_t n0 = n / 16;
const uint32_t n1 = n % 16;
int i = 0;
for (; i < n0; i++) {
htp_dump_fp16_line(pref, u.d + (16 * i), 16);
}
if (n1) {
htp_dump_fp16_line(pref, u.d + (16 * i), n1);
}
}
static void hvx_vec_dump_fp16(char * pref, HVX_Vector v) {
hvx_vec_dump_fp16_n(pref, v, 64);
}
static void hvx_vec_dump_fp32_n(char * pref, HVX_Vector v, uint32_t n) {
union {
HVX_Vector v;
float d[32];
} u = { .v = v };
const uint32_t n0 = n / 16;
const uint32_t n1 = n % 16;
int i = 0;
for (; i < n0; i++) {
htp_dump_fp32_line(pref, u.d + (16 * i), 16);
}
if (n1) {
htp_dump_fp32_line(pref, u.d + (16 * i), n1);
}
}
static void hvx_vec_dump_fp32_hmt(char * pref, HVX_Vector v) {
union {
HVX_Vector v;
float d[32];
} u = { .v = v };
FARF(HIGH, "%s: %.6f %.6f %.6f %.6f ... %.6f %.6f %.6f %.6f ... %.6f %.6f %.6f %.6f\n", pref, u.d[0], u.d[1],
u.d[2], u.d[3], u.d[12], u.d[13], u.d[14], u.d[15], u.d[28], u.d[29], u.d[30], u.d[31]);
}
static void hvx_vec_dump_fp32(char * pref, HVX_Vector v) {
hvx_vec_dump_fp32_n(pref, v, 32);
}
static void hvx_vec_dump_int32(char * pref, HVX_Vector v) {
union {
HVX_Vector v;
int32_t d[32];
} u = { .v = v };
for (int i = 0; i < 32 / 16; i++) {
htp_dump_int32_line(pref, u.d + (16 * i), 16);
}
}
static void hvx_vec_dump_int32_hmt(char * pref, HVX_Vector v) {
union {
HVX_Vector v;
int32_t d[32];
} u = { .v = v };
FARF(HIGH, "%s: %d %d %d %d ... %d %d %d %d ... %d %d %d %d\n", pref, u.d[0], u.d[1], u.d[2], u.d[3], u.d[12],
u.d[13], u.d[14], u.d[15], u.d[28], u.d[29], u.d[30], u.d[31]);
}
static void hvx_vec_dump_int8_hmt(char * pref, HVX_Vector v) {
union {
HVX_Vector v;
int8_t d[128];
} u = { .v = v };
FARF(HIGH, "%s: %d %d %d %d ... %d %d %d %d ... %d %d %d %d\n", pref, u.d[0], u.d[1], u.d[2], u.d[3], u.d[60],
u.d[61], u.d[62], u.d[63], u.d[124], u.d[125], u.d[126], u.d[127]);
}
static void hvx_vec_dump_int8(char * pref, HVX_Vector v) {
union {
HVX_Vector v;
int8_t d[128];
} u = { .v = v };
for (int i = 0; i < 128 / 16; i++) {
htp_dump_int8_line(pref, u.d + (16 * i), 16);
}
}
static void hvx_vec_dump_uint8(char * pref, HVX_Vector v) {
union {
HVX_Vector v;
uint8_t d[128];
} u = { .v = v };
for (int i = 0; i < 128 / 16; i++) {
htp_dump_uint8_line(pref, u.d + (16 * i), 16);
}
}
static bool hvx_vec_eq(HVX_Vector v0, HVX_Vector v1, size_t n) {
typedef union {
HVX_Vector v;
int8_t d[128];
} U;
U u0 = { .v = v0 };
U u1 = { .v = v1 };
for (int i = 0; i < n; i++) {
if (u0.d[i] != u1.d[i]) {
return false;
}
}
return true;
}
static inline float hvx_vec_get_fp32(HVX_Vector v) {
float __attribute__((aligned(128))) x;
hvx_vec_store_a(&x, 4, v);
return x;
}
static inline HVX_Vector hvx_vec_int32_reduce_sum_n(HVX_Vector in, unsigned int n) {
unsigned int total = n * 4; // total vec nbytes
unsigned int width = 4; // int32
HVX_Vector sum = in, sum_t;
while (width < total) {
sum_t = Q6_V_vror_VR(sum, width); // rotate right
sum = Q6_Vw_vadd_VwVw(sum_t, sum); // elementwise sum
width = width << 1;
}
return sum;
}
static inline HVX_Vector hvx_vec_int32_reduce_sum(HVX_Vector in) {
return hvx_vec_int32_reduce_sum_n(in, 32);
}
static inline HVX_Vector hvx_vec_qf32_reduce_sum_n(HVX_Vector in, unsigned int n) {
unsigned int total = n * 4; // total vec nbytes
unsigned int width = 4; // fp32 nbytes
HVX_Vector sum = in, sum_t;
while (width < total) {
sum_t = Q6_V_vror_VR(Q6_Vsf_equals_Vqf32(sum), width); // rotate right
sum = Q6_Vqf32_vadd_Vqf32Vsf(sum, sum_t); // elementwise sum
width = width << 1;
}
return sum;
}
static inline HVX_Vector hvx_vec_qf32_reduce_sum(HVX_Vector in) {
return hvx_vec_qf32_reduce_sum_n(in, 32);
}
static inline HVX_Vector hvx_vec_fp32_reduce_sum_n(HVX_Vector in, unsigned int n) {
unsigned int total = n * 4; // total vec nbytes
unsigned int width = 4; // fp32 nbytes
HVX_Vector sum = in, sum_t;
while (width < total) {
sum_t = Q6_V_vror_VR(sum, width); // rotate right
sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_VsfVsf(sum, sum_t)); // elementwise sum
width = width << 1;
}
return sum;
}
static inline HVX_Vector hvx_vec_fp32_reduce_sum(HVX_Vector in) {
return hvx_vec_fp32_reduce_sum_n(in, 32);
}
static inline HVX_Vector hvx_vec_reduce_max_fp16(HVX_Vector in) {
unsigned total = 128; // total vec nbytes
unsigned width = 2; // fp16 nbytes
HVX_Vector _max = in, _max_t;
while (width < total) {
_max_t = Q6_V_vror_VR(_max, width); // rotate right
_max = Q6_Vhf_vmax_VhfVhf(_max_t, _max); // elementwise max
width = width << 1;
}
return _max;
}
static inline HVX_Vector hvx_vec_reduce_max2_fp16(HVX_Vector in, HVX_Vector _max) {
unsigned total = 128; // total vec nbytes
unsigned width = 2; // fp32 nbytes
HVX_Vector _max_t;
_max = Q6_Vhf_vmax_VhfVhf(in, _max);
while (width < total) {
_max_t = Q6_V_vror_VR(_max, width); // rotate right
_max = Q6_Vhf_vmax_VhfVhf(_max_t, _max); // elementwise max
width = width << 1;
}
return _max;
}
static inline HVX_Vector hvx_vec_reduce_max_fp32(HVX_Vector in) {
unsigned total = 128; // total vec nbytes
unsigned width = 4; // fp32 nbytes
HVX_Vector _max = in, _max_t;
while (width < total) {
_max_t = Q6_V_vror_VR(_max, width); // rotate right
_max = Q6_Vsf_vmax_VsfVsf(_max_t, _max); // elementwise max
width = width << 1;
}
return _max;
}
static inline HVX_Vector hvx_vec_reduce_max2_fp32(HVX_Vector in, HVX_Vector _max) {
unsigned total = 128; // total vec nbytes
unsigned width = 4; // fp32 nbytes
HVX_Vector _max_t;
_max = Q6_Vsf_vmax_VsfVsf(in, _max);
while (width < total) {
_max_t = Q6_V_vror_VR(_max, width); // rotate right
_max = Q6_Vsf_vmax_VsfVsf(_max_t, _max); // elementwise max
width = width << 1;
}
return _max;
}
static inline HVX_Vector hvx_vec_abs_fp16(HVX_Vector v) {
// abs by clearing the fp16 sign bit
HVX_Vector mask = Q6_Vh_vsplat_R(0x7fff);
return Q6_V_vand_VV(v, mask);
}
static inline HVX_Vector hvx_vec_neg_fp16(HVX_Vector v) {
// neg by setting the fp16 sign bit
HVX_Vector mask = Q6_Vh_vsplat_R(0x8000);
return Q6_V_vor_VV(v, mask);
}
static inline HVX_Vector hvx_vec_abs_fp32(HVX_Vector v) {
// abs by clearing the fp32 sign bit
HVX_Vector mask = Q6_V_vsplat_R(0x7fffffff);
return Q6_V_vand_VV(v, mask);
}
static inline HVX_Vector hvx_vec_neg_fp32(HVX_Vector v) {
#if __HTP_ARCH__ > 75
return Q6_Vsf_vfneg_Vsf(v);
#else
// neg by setting the fp32 sign bit
HVX_Vector mask = Q6_V_vsplat_R(0x80000000);
return Q6_V_vor_VV(v, mask);
#endif // __HTP_ARCH__ > 75
}
// ====================================================
// FUNCTION: 1/(x+1) y(0) = 1, y(0.5) = 0.6667, y(1) = 0.5
// Order:3; continuity: True; Ends forced: True
// Mode: unsigned; Result fractional bits: 14
// Peak Error: 1.1295e-04 Rms Error: 2.8410e-05 Mean Error: 1.1370e-05
// 32769 -32706 31252 -10589
// 32590 -30635 22793 -4493
// 32066 -27505 16481 -2348
// 31205 -24054 11849 -1306
static inline HVX_Vector hvx_vec_recip_xp1_O3_unsigned(HVX_Vector vx) {
// input is 0..0xffff representing 0.0 .. 1.0
HVX_Vector p;
p = Q6_Vh_vlut4_VuhPh(vx, 0xFAE6F6D4EE73D6A3ull);
p = Q6_Vh_vmpa_VhVhVuhPuh_sat(p, vx, 0x2E49406159097A14ull);
p = Q6_Vh_vmps_VhVhVuhPuh_sat(p, vx, 0x5DF66B7177AB7FC2ull);
p = Q6_Vh_vmpa_VhVhVuhPuh_sat(p, vx, 0x79E57D427F4E8001ull);
return p; // signed result, 14 fractional bits
}
// Find reciprocal of fp16.
// (1) first, convert to fp32, multiplying by 1.0; this is done to
// handle denormals. Ignoring sign and zero, result should be at
// least 5.9604645e-08 (32-bit code 0x33800000) and at most 131008 (0x47ffe000)
// (exponent in range [103,143])
// (2) extract the mantissa into 16-bit unsigned; find reciprocal using a fitted poly
// (3) put this, along with '253-exp' (exp from (1)) together to make an qf32
// (4) convert that to fp16
// (5) put sign back in. Also, if the original value (w/o sign) was <0x81, replace
// the result with the max value.
static inline HVX_Vector hvx_vec_inverse_fp16(HVX_Vector vals) {
HVX_Vector em_mask = Q6_Vh_vsplat_R(0x7FFF);
HVX_Vector avals = Q6_V_vand_VV(vals, em_mask);
HVX_VectorPred is_neg = Q6_Q_vcmp_gt_VhVh(avals, vals);
// is too small to 1/x ? for 'standard' fp16, this would be 0x101
HVX_VectorPred is_small = Q6_Q_vcmp_gt_VhVh(Q6_Vh_vsplat_R(0x101), avals);
HVX_VectorPair to_qf32 = Q6_Wqf32_vmpy_VhfVhf(avals, Q6_Vh_vsplat_R(0x3C00)); // *1.0
HVX_Vector to_f32_0 = Q6_Vsf_equals_Vqf32(Q6_V_lo_W(to_qf32));
HVX_Vector to_f32_1 = Q6_Vsf_equals_Vqf32(Q6_V_hi_W(to_qf32));
// bits 22..13 contain the mantissa now (w/o hidden bit); move to bit 14..5 of a 16-bit vector
HVX_Vector mant_u16 = Q6_Vh_vshuffo_VhVh(Q6_Vw_vasl_VwR(to_f32_1, 9), Q6_Vw_vasl_VwR(to_f32_0, 9));
// likewise extract the upper 16 from each, containing the exponents in range 103..142
HVX_Vector exp_u16 = Q6_Vh_vshuffo_VhVh(to_f32_1, to_f32_0);
//Get exponent in IEEE 32-bit representation
exp_u16 = Q6_Vuh_vlsr_VuhR(exp_u16, 7);
// so, mant_u16 contains an unbiased mantissa in upper 10 bits of each u16 lane
// We can consider it to be x-1.0, with 16 fractional bits, where 'x' is in range [1.0,2.0)
// Use poly to transform to 1/x, with 14 fractional bits
//
HVX_Vector rm = hvx_vec_recip_xp1_O3_unsigned(mant_u16);
HVX_Vector vcl0 = Q6_Vuh_vcl0_Vuh(rm); //count leading zeros
// Get mantissa for 16-bit represenation
HVX_Vector mant_recip = Q6_V_vand_VV(Q6_Vh_vasr_VhR(Q6_Vh_vasl_VhVh(rm, vcl0), 5), Q6_Vh_vsplat_R(0x03FF));
//Compute Reciprocal Exponent
HVX_Vector exp_recip =
Q6_Vh_vsub_VhVh(Q6_Vh_vsub_VhVh(Q6_Vh_vsplat_R(254), exp_u16), Q6_Vh_vsub_VhVh(vcl0, Q6_Vh_vsplat_R(1)));
//Convert it for 16-bit representation
exp_recip = Q6_Vh_vadd_VhVh_sat(Q6_Vh_vsub_VhVh(exp_recip, Q6_Vh_vsplat_R(127)), Q6_Vh_vsplat_R(15));
exp_recip = Q6_Vh_vasl_VhR(exp_recip, 10);
//Merge exponent and mantissa for reciprocal
HVX_Vector recip = Q6_V_vor_VV(exp_recip, mant_recip);
// map 'small' inputs to standard largest value 0x7bff
recip = Q6_V_vmux_QVV(is_small, Q6_Vh_vsplat_R(0x7bff), recip);
// add sign back
recip = Q6_V_vandor_VQR(recip, is_neg, 0x80008000);
return recip;
}
#define IEEE_VSF_EXPLEN (8)
#define IEEE_VSF_EXPBIAS (127)
#define IEEE_VSF_EXPMASK (0xFF)
#define IEEE_VSF_MANTLEN (23)
#define IEEE_VSF_MANTMASK (0x7FFFFF)
#define IEEE_VSF_MIMPMASK (0x800000)
static inline HVX_Vector hvx_vec_truncate_fp32(HVX_Vector in_vec) {
HVX_Vector mask_mant_v = Q6_V_vsplat_R(IEEE_VSF_MANTMASK);
HVX_Vector mask_impl_v = Q6_V_vsplat_R(IEEE_VSF_MIMPMASK);
HVX_Vector const_zero_v = Q6_V_vzero();
HVX_VectorPred q_negative = Q6_Q_vcmp_gt_VwVw(const_zero_v, in_vec);
HVX_Vector expval_v = in_vec >> IEEE_VSF_MANTLEN;
expval_v &= IEEE_VSF_EXPMASK;
expval_v -= IEEE_VSF_EXPBIAS;
// negative exp == fractional value
HVX_VectorPred q_negexp = Q6_Q_vcmp_gt_VwVw(const_zero_v, expval_v);
HVX_Vector rshift_v = IEEE_VSF_MANTLEN - expval_v; // fractional bits - exp shift
HVX_Vector mant_v = in_vec & mask_mant_v; // obtain mantissa
HVX_Vector vout = Q6_Vw_vadd_VwVw(mant_v, mask_impl_v); // add implicit 1.0
vout = Q6_Vw_vasr_VwVw(vout, rshift_v); // shift to obtain truncated integer
vout = Q6_V_vmux_QVV(q_negexp, const_zero_v, vout); // expval<0 -> 0
HVX_Vector neg_vout = -vout;
vout = Q6_V_vmux_QVV(q_negative, neg_vout, vout); // handle negatives
return (vout);
}
static inline HVX_Vector hvx_vec_floor_fp32(HVX_Vector in_vec) {
HVX_Vector mask_mant_v = Q6_V_vsplat_R(IEEE_VSF_MANTMASK);
HVX_Vector mask_impl_v = Q6_V_vsplat_R(IEEE_VSF_MIMPMASK);
HVX_Vector const_mnlen_v = Q6_V_vsplat_R(IEEE_VSF_MANTLEN);
HVX_Vector const_zero_v = Q6_V_vzero();
HVX_Vector const_negone_v = Q6_V_vsplat_R(0xbf800000); // -1 IEEE vsf
HVX_VectorPred q_negative = Q6_Q_vcmp_gt_VwVw(const_zero_v, in_vec);
HVX_Vector expval_v = in_vec >> IEEE_VSF_MANTLEN;
expval_v &= IEEE_VSF_EXPMASK;
expval_v -= IEEE_VSF_EXPBIAS;
HVX_VectorPred q_negexp = Q6_Q_vcmp_gt_VwVw(const_zero_v, expval_v);
HVX_VectorPred q_expltmn = Q6_Q_vcmp_gt_VwVw(const_mnlen_v, expval_v);
HVX_VectorPred q_negexp_pos = Q6_Q_vcmp_gtand_QVwVw(q_negexp, in_vec, const_zero_v);
HVX_VectorPred q_negexp_neg = Q6_Q_vcmp_gtand_QVwVw(q_negexp, const_zero_v, in_vec);
// if expval < 0 (q_negexp) // <0, floor is 0
// if vin > 0
// floor = 0
// if vin < 0
// floor = -1
// if expval < mant_len (q_expltmn) // >0, but fraction may exist
// get sign (q_negative)
// mask >> expval // fraction bits to mask off
// vout = ~(mask) // apply mask to remove fraction
// if (qneg) // negative floor is one less (more, sign bit for neg)
// vout += ((impl_mask) >> expval)
// if (mask && vin)
// vout = vin
// else // already an integer
// ; // no change
// compute floor
mask_mant_v >>= expval_v;
HVX_Vector neg_addin_v = mask_impl_v >> expval_v;
HVX_Vector vout_neg_addin = Q6_Vw_vadd_VwVw(in_vec, neg_addin_v);
HVX_Vector vout = Q6_V_vmux_QVV(q_negative, vout_neg_addin, in_vec);
HVX_Vector mask_chk_v = Q6_V_vand_VV(in_vec, mask_mant_v); // chk if bits set
HVX_VectorPred q_integral = Q6_Q_vcmp_eq_VwVw(const_zero_v, mask_chk_v);
HVX_Vector not_mask_v = Q6_V_vnot_V(mask_mant_v); // frac bits to clear
HVX_Vector vfrfloor_v = Q6_V_vand_VV(vout, not_mask_v); // clear frac bits
vout = in_vec;
vout = Q6_V_vmux_QVV(q_expltmn, vfrfloor_v, vout); // expval<mant
vout = Q6_V_vmux_QVV(q_integral, in_vec, vout); // integral values
vout = Q6_V_vmux_QVV(q_negexp_pos, const_zero_v, vout); // expval<0 x>0 -> 0
vout = Q6_V_vmux_QVV(q_negexp_neg, const_negone_v, vout); // expval<0 x<0 -> -1
return vout;
}
static inline HVX_Vector hvx_vec_i16_from_hf_rnd_sat(HVX_Vector vin) {
// This looks complicated.
// Ideally should just be Q6_Vh_equals_Vhf(vin)
// but that instruction does not do proper rounding.
// convert to qf32, multiplying by 1.0 in the process.
HVX_VectorPair v32 = Q6_Wqf32_vmpy_VhfVhf(vin, Q6_Vh_vsplat_R(0x3C00));
// 'in-range' values are +/32752.
// add 192K to it, convert to sf
HVX_Vector v192K = Q6_V_vsplat_R(0x48400000);
HVX_Vector vsf_0 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_V_lo_W(v32), v192K));
HVX_Vector vsf_1 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_V_hi_W(v32), v192K));
// for in-range cases, result is {163858... 229360} so the exponent is always 144.
// if we extract bits 21..0 as a signed quantity, and round 6 bits off, that will be the answer.
// Start by <<10 to get the final 'sign' bit in bit 15...
vsf_0 = Q6_Vw_vasl_VwR(vsf_0, 10);
vsf_1 = Q6_Vw_vasl_VwR(vsf_1, 10);
// now round down to 16
return Q6_Vh_vround_VwVw_sat(vsf_1, vsf_0);
}
static inline HVX_Vector hvx_vec_inverse_fp32(HVX_Vector v_sf) {
HVX_Vector inv_aprox_sf = Q6_V_vsplat_R(0x7EEEEBB3);
HVX_Vector two_sf = hvx_vec_splat_fp32(2.0);
// First approximation
HVX_Vector i_sf = Q6_Vw_vsub_VwVw(inv_aprox_sf, v_sf);
HVX_Vector r_qf;
// Refine
r_qf = Q6_Vqf32_vmpy_VsfVsf(
i_sf, Q6_Vsf_equals_Vqf32(Q6_Vqf32_vsub_VsfVsf(two_sf, Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(i_sf, v_sf)))));
r_qf = Q6_Vqf32_vmpy_Vqf32Vqf32(
r_qf, Q6_Vqf32_vsub_VsfVsf(two_sf, Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(r_qf), v_sf))));
r_qf = Q6_Vqf32_vmpy_Vqf32Vqf32(
r_qf, Q6_Vqf32_vsub_VsfVsf(two_sf, Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(r_qf), v_sf))));
return Q6_Vsf_equals_Vqf32(r_qf);
}
#define FAST_SIGMOID_LOG2F (0x3fb8aa3b) // 1.442695022
#define FAST_SIGMOID_C1 (0x3d009076) // 0.03138777
#define FAST_SIGMOID_C2 (0x3e8d74bd) // 0.276281267
#define FAST_SIGMOID_C3 (0x3f000000) // 0.5
static inline HVX_Vector hvx_vec_fast_sigmoid_fp32(HVX_Vector v) {
v = Q6_Vqf32_vmpy_VsfVsf(v, Q6_V_vsplat_R(FAST_SIGMOID_LOG2F));
v = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(v), Q6_V_vsplat_R(FAST_SIGMOID_C3));
HVX_Vector in_int = hvx_vec_truncate_fp32(Q6_Vsf_equals_Vqf32(v));
HVX_Vector x = Q6_Vqf32_vsub_Vqf32Vsf(v, Q6_Vsf_equals_Vw(in_int));
HVX_Vector xx = Q6_Vqf32_vmpy_Vqf32Vqf32(x, x);
HVX_Vector v1 = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(xx), Q6_V_vsplat_R(FAST_SIGMOID_C2));
v1 = Q6_Vqf32_vadd_Vqf32Vsf(v1, Q6_V_vsplat_R(FAST_SIGMOID_LOG2F));
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(x), Q6_V_vsplat_R(FAST_SIGMOID_C1));
v2 = Q6_Vqf32_vmpy_Vqf32Vqf32(v2, xx);
v2 = Q6_Vqf32_vadd_Vqf32Vqf32(v2, x);
HVX_Vector v3 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vqf32(v2, v1));
HVX_Vector v3_exponent = Q6_Vw_vasl_VwR(v3, 1);
v3_exponent = Q6_Vuw_vlsr_VuwR(v3_exponent, 24);
v3_exponent = Q6_Vw_vadd_VwVw(in_int, v3_exponent);
v3 = Q6_Vw_vaslacc_VwVwR(v3, in_int, 24);
HVX_Vector v4 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vsub_Vqf32Vqf32(v2, v1));
HVX_Vector v5 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vsub_VsfVsf(v3, v4));
HVX_Vector res = hvx_vec_inverse_fp32(v5);
res = Q6_Vqf32_vmpy_VsfVsf(v3, res);
return Q6_Vsf_equals_Vqf32(res);
}
#define EXP_COEFF_5 (0x39506967) // 0.000198757 = 1/(7!)
#define EXP_COEFF_4 (0x3AB743CE) // 0.0013982 = 1/(6!)
#define EXP_COEFF_3 (0x3C088908) // 0.00833345 = 1/(5!)
#define EXP_COEFF_2 (0x3D2AA9C1) // 0.416658 = 1/(4!)
#define EXP_COEFF_1 (0x3E2AAAAA) // 0.16666667 = 1/(3!)
#define EXP_COEFF_0 (0x3F000000) // 0.5 = 1/(2!)
#define EXP_LOGN2 (0x3F317218) // ln(2) = 0.6931471805
#define EXP_LOG2E (0x3FB8AA3B) // log2(e) = 1/ln(2) = 1.4426950408
#define EXP_ONE (0x3f800000) // 1.0
#define EXP_RANGE_R (0x41a00000) // 20.0
#define EXP_RANGE_L (0xc1a00000) // -20.0
static inline HVX_Vector hvx_vec_exp_fp32(HVX_Vector in_vec) {
HVX_Vector z_qf32_v;
HVX_Vector x_v;
HVX_Vector x_qf32_v;
HVX_Vector y_v;
HVX_Vector k_v;
HVX_Vector f_v;
HVX_Vector epsilon_v;
HVX_Vector log2e = Q6_V_vsplat_R(EXP_LOG2E);
HVX_Vector logn2 = Q6_V_vsplat_R(EXP_LOGN2);
HVX_Vector E_const;
HVX_Vector zero_v = Q6_V_vzero();
// exp(x) is approximated as follows:
// f = floor(x/ln(2)) = floor(x*log2(e))
// epsilon = x - f*ln(2)
// exp(x) = exp(epsilon+f*ln(2))
// = exp(epsilon)*exp(f*ln(2))
// = exp(epsilon)*2^f
//
// Since epsilon is close to zero, it can be approximated with its Taylor series:
// exp(x) ~= 1+x+x^2/2!+x^3/3!+...+x^n/n!+...
// Preserving the first eight elements, we get:
// exp(x) ~= 1+x+e0*x^2+e1*x^3+e2*x^4+e3*x^5+e4*x^6+e5*x^7
// = 1+x+(E0+(E1+(E2+(E3+(E4+E5*x)*x)*x)*x)*x)*x^2
HVX_Vector temp_v = in_vec;
// Clamp inputs to (-20.0, 20.0)
HVX_VectorPred pred_cap_right = Q6_Q_vcmp_gt_VsfVsf(in_vec, Q6_V_vsplat_R(EXP_RANGE_R));
HVX_VectorPred pred_cap_left = Q6_Q_vcmp_gt_VsfVsf(Q6_V_vsplat_R(EXP_RANGE_L), in_vec);
in_vec = Q6_V_vmux_QVV(pred_cap_right, Q6_V_vsplat_R(EXP_RANGE_R), temp_v);
in_vec = Q6_V_vmux_QVV(pred_cap_left, Q6_V_vsplat_R(EXP_RANGE_L), temp_v);
epsilon_v = Q6_Vqf32_vmpy_VsfVsf(log2e, in_vec);
epsilon_v = Q6_Vsf_equals_Vqf32(epsilon_v);
// f_v is the floating point result and k_v is the integer result
f_v = hvx_vec_floor_fp32(epsilon_v);
k_v = hvx_vec_truncate_fp32(f_v);
x_qf32_v = Q6_Vqf32_vadd_VsfVsf(in_vec, zero_v);
// x = x - f_v * logn2;
epsilon_v = Q6_Vqf32_vmpy_VsfVsf(f_v, logn2);
x_qf32_v = Q6_Vqf32_vsub_Vqf32Vqf32(x_qf32_v, epsilon_v);
// normalize before every QFloat's vmpy
x_qf32_v = Q6_Vqf32_vadd_Vqf32Vsf(x_qf32_v, zero_v);
// z = x * x;
z_qf32_v = Q6_Vqf32_vmpy_Vqf32Vqf32(x_qf32_v, x_qf32_v);
z_qf32_v = Q6_Vqf32_vadd_Vqf32Vsf(z_qf32_v, zero_v);
x_v = Q6_Vsf_equals_Vqf32(x_qf32_v);
// y = E4 + E5 * x;
E_const = Q6_V_vsplat_R(EXP_COEFF_5);
y_v = Q6_Vqf32_vmpy_VsfVsf(E_const, x_v);
E_const = Q6_V_vsplat_R(EXP_COEFF_4);
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, E_const);
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, zero_v);
// y = E3 + y * x;
E_const = Q6_V_vsplat_R(EXP_COEFF_3);
y_v = Q6_Vqf32_vmpy_Vqf32Vqf32(y_v, x_qf32_v);
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, E_const);
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, zero_v);
// y = E2 + y * x;
E_const = Q6_V_vsplat_R(EXP_COEFF_2);
y_v = Q6_Vqf32_vmpy_Vqf32Vqf32(y_v, x_qf32_v);
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, E_const);
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, zero_v);
// y = E1 + y * x;
E_const = Q6_V_vsplat_R(EXP_COEFF_1);
y_v = Q6_Vqf32_vmpy_Vqf32Vqf32(y_v, x_qf32_v);
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, E_const);
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, zero_v);
// y = E0 + y * x;
E_const = Q6_V_vsplat_R(EXP_COEFF_0);
y_v = Q6_Vqf32_vmpy_Vqf32Vqf32(y_v, x_qf32_v);
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, E_const);
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, zero_v);
// y = x + y * z;
y_v = Q6_Vqf32_vmpy_Vqf32Vqf32(y_v, z_qf32_v);
y_v = Q6_Vqf32_vadd_Vqf32Vqf32(y_v, x_qf32_v);
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, zero_v);
// y = y + 1.0;
y_v = Q6_Vqf32_vadd_Vqf32Vsf(y_v, Q6_V_vsplat_R(EXP_ONE));
// insert exponents
// y = ldexpf(y, k);
// y_v += k_v; // qf32
// modify exponent
y_v = Q6_Vsf_equals_Vqf32(y_v);
// add k_v to the exponent of y_v
HVX_Vector y_v_exponent = Q6_Vw_vasl_VwR(y_v, 1);
y_v_exponent = Q6_Vuw_vlsr_VuwR(y_v_exponent, IEEE_VSF_MANTLEN + 1);
y_v_exponent = Q6_Vw_vadd_VwVw(k_v, y_v_exponent);
// exponent cannot be negative; if overflow is detected, result is set to zero
HVX_VectorPred qy_v_negative_exponent = Q6_Q_vcmp_gt_VwVw(zero_v, y_v_exponent);
y_v = Q6_Vw_vaslacc_VwVwR(y_v, k_v, IEEE_VSF_MANTLEN);
y_v = Q6_V_vmux_QVV(qy_v_negative_exponent, zero_v, y_v);
return y_v;
}
#define RSQRT_CONST 0x5f3759df // Constant for fast inverse square root calculation
#define RSQRT_ONE_HALF 0x3f000000 // 0.5
#define RSQRT_THREE_HALVES 0x3fc00000 // 1.5
static inline HVX_Vector hvx_vec_rsqrt_fp32(HVX_Vector in_vec) {
//Algorithm :
// x2 = input*0.5
// y = * (long *) &input
// y = 0x5f3759df - (y>>2)
// y = y*(threehalfs - x2*y*y)
HVX_Vector rsqrtconst = Q6_V_vsplat_R(RSQRT_CONST);
HVX_Vector onehalf = Q6_V_vsplat_R(RSQRT_ONE_HALF);
HVX_Vector threehalfs = Q6_V_vsplat_R(RSQRT_THREE_HALVES);
HVX_Vector x2, y, ypower2, temp;
x2 = Q6_Vqf32_vmpy_VsfVsf(in_vec, onehalf);
x2 = Q6_Vqf32_vadd_Vqf32Vsf(x2, Q6_V_vzero());
y = Q6_Vw_vasr_VwR(in_vec, 1);
y = Q6_Vw_vsub_VwVw(rsqrtconst, y);
// 1st iteration
ypower2 = Q6_Vqf32_vmpy_VsfVsf(y, y);
ypower2 = Q6_Vqf32_vadd_Vqf32Vsf(ypower2, Q6_V_vzero());
temp = Q6_Vqf32_vmpy_Vqf32Vqf32(x2, ypower2);
temp = Q6_Vqf32_vsub_VsfVsf(threehalfs, Q6_Vsf_equals_Vqf32(temp));
temp = Q6_Vqf32_vmpy_VsfVsf(y, Q6_Vsf_equals_Vqf32(temp));
// 2nd iteration
y = Q6_Vqf32_vadd_Vqf32Vsf(temp, Q6_V_vzero());
ypower2 = Q6_Vqf32_vmpy_Vqf32Vqf32(y, y);
ypower2 = Q6_Vqf32_vadd_Vqf32Vsf(ypower2, Q6_V_vzero());
temp = Q6_Vqf32_vmpy_Vqf32Vqf32(x2, ypower2);
temp = Q6_Vqf32_vsub_VsfVsf(threehalfs, Q6_Vsf_equals_Vqf32(temp));
temp = Q6_Vqf32_vmpy_Vqf32Vqf32(y, temp);
// 3rd iteration
y = Q6_Vqf32_vadd_Vqf32Vsf(temp, Q6_V_vzero());
ypower2 = Q6_Vqf32_vmpy_Vqf32Vqf32(y, y);
ypower2 = Q6_Vqf32_vadd_Vqf32Vsf(ypower2, Q6_V_vzero());
temp = Q6_Vqf32_vmpy_Vqf32Vqf32(x2, ypower2);
temp = Q6_Vqf32_vsub_VsfVsf(threehalfs, Q6_Vsf_equals_Vqf32(temp));
temp = Q6_Vqf32_vmpy_Vqf32Vqf32(y, temp);
return Q6_Vsf_equals_Vqf32(temp);
}
static inline void hvx_fast_sigmoid_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems) {
int step_of_1 = num_elems >> 5;
int remaining = num_elems - step_of_1 * VLEN_FP32;
assert(remaining == 0);
const HVX_Vector * restrict v_src = (HVX_Vector *) src;
HVX_Vector * restrict v_dst = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < step_of_1; i++) {
v_dst[i] = hvx_vec_fast_sigmoid_fp32(v_src[i]);
}
}
float hvx_sum_of_squares_f32(const uint8_t * restrict src, const int num_elems);
void hvx_mul_f32(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems);
void hvx_mul_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems);
void hvx_mul_mul_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
const uint8_t * restrict src2,
uint8_t * restrict dst,
const int num_elems);
void hvx_mul_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems);
void hvx_add_f32(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems);
void hvx_add_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems);
void hvx_add_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems);
void hvx_sub_f32(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems);
void hvx_sub_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems);
void hvx_sub_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems);
void hvx_scale_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems, const float scale);
void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems);
void hvx_sigmoid_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems);
void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems, bool negate);
float hvx_self_max_f32(const uint8_t * restrict src, const int num_elems);
float hvx_self_sum_f32(const uint8_t * restrict src, const int num_elems);
void hvx_min_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems);
void hvx_clamp_scalar_f32(const uint8_t * restrict src,
const float limit_left,
const float limit_right,
uint8_t * restrict dst,
const int num_elems);
#endif /* HVX_UTILS_H */

View File

@ -0,0 +1,945 @@
#pragma clang diagnostic ignored "-Wgnu-zero-variadic-macro-arguments"
#pragma clang diagnostic ignored "-Wunused-function"
#define FARF_ERROR 1
#define FARF_HIGH 1
#define FARF_MEDIUM 0
#define FARF_LOW 0
#include <AEEStdErr.h>
#include <dspqueue.h>
#include <HAP_compute_res.h>
#include <HAP_etm_config.h>
#include <HAP_farf.h>
#include <HAP_mem.h>
#include <HAP_perf.h>
#include <HAP_power.h>
#include <HAP_ps.h>
#include <qurt.h>
#include <qurt_thread.h>
#include <remote.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-dma.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "ops-utils.h"
#include "worker-pool.h"
AEEResult htp_iface_open(const char * uri, remote_handle64 * handle) {
struct htp_context * ctx;
int err = 0;
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
return AEE_ENOMEMORY;
}
// Use the context structure as a handle
*handle = (remote_handle64) ctx;
// Enable FARF logs
HAP_setFARFRuntimeLoggingParams(0xffff, NULL, 0);
// Set client class
{
HAP_power_request_t request;
memset(&request, 0, sizeof(HAP_power_request_t));
request.type = HAP_power_set_apptype;
request.apptype = HAP_POWER_COMPUTE_CLIENT_CLASS;
if ((err = HAP_power_set((void *) ctx, &request)) != 0) {
return err;
}
}
{
HAP_power_request_t request;
memset(&request, 0, sizeof(request));
request.type = HAP_power_set_DCVS_v3;
request.dcvs_v3.set_dcvs_enable = TRUE;
request.dcvs_v3.dcvs_enable = TRUE;
request.dcvs_v3.dcvs_option = HAP_DCVS_V2_PERFORMANCE_MODE;
request.dcvs_v3.set_bus_params = TRUE;
request.dcvs_v3.bus_params.min_corner = HAP_DCVS_VCORNER_MAX;
request.dcvs_v3.bus_params.max_corner = HAP_DCVS_VCORNER_MAX;
request.dcvs_v3.bus_params.target_corner = HAP_DCVS_VCORNER_MAX;
request.dcvs_v3.set_core_params = TRUE;
request.dcvs_v3.core_params.min_corner = HAP_DCVS_VCORNER_MAX;
request.dcvs_v3.core_params.max_corner = HAP_DCVS_VCORNER_MAX;
request.dcvs_v3.core_params.target_corner = HAP_DCVS_VCORNER_MAX;
request.dcvs_v3.set_sleep_disable = TRUE;
request.dcvs_v3.sleep_disable = TRUE;
if ((err = HAP_power_set((void *) ctx, &request)) != 0) {
return err;
}
memset(&request, 0, sizeof(request));
request.type = HAP_power_set_HVX;
request.hvx.power_up = TRUE;
if ((err = HAP_power_set((void *) ctx, &request)) != 0) {
return err;
}
}
{
// Power on HMX
HAP_power_request_t request;
memset(&request, 0, sizeof(HAP_power_request_t));
request.type = HAP_power_set_HMX;
request.hmx.power_up = TRUE;
FARF(ALWAYS, "Powering HMX on\n");
err = HAP_power_set((void *) &ctx, &request);
if (err != AEE_SUCCESS) {
FARF(ERROR, "Error powering on HMX.");
return err;
}
}
return AEE_SUCCESS;
}
AEEResult htp_iface_close(remote_handle64 handle) {
struct htp_context * ctx = (struct htp_context *) handle;
if (!ctx) {
return AEE_EBADPARM;
}
if (ctx->queue) {
FARF(ERROR, "Closing handle with queue still open");
return AEE_EITEMBUSY;
}
free(ctx);
return AEE_SUCCESS;
}
AEEResult htp_iface_enable_etm(remote_handle64 handle) {
int err = HAP_user_etm_enable();
if (err) {
if (err == AEE_EVERSIONNOTSUPPORT) {
FARF(ERROR, "API HAP_user_etm_enable is not supported\n");
} else {
FARF(ERROR, "Error executing HAP_user_etm_enable with error code : 0x%x\n", err);
}
}
return err;
}
AEEResult htp_iface_disable_etm(remote_handle64 handle) {
int err = HAP_user_etm_disable();
if (err) {
if (err == AEE_EVERSIONNOTSUPPORT) {
FARF(ERROR, "API HAP_user_etm_disable is not supported\n");
} else {
FARF(ERROR, "Error executing HAP_user_etm_disable with error code : 0x%x\n", err);
}
}
return err;
}
static int vtcm_acquire(struct htp_context * ctx) {
if (!ctx->vtcm_valid) {
// Temporarily bump thread priority to make sure it's higher than other sessions.
// This way the resource manager will notify the other thread to release VTCM.
// Note that we need to reaquire VTCM at normal priority for this to work next time.
qurt_thread_set_priority(qurt_thread_get_id(), ctx->thread_prio - 10);
HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000);
HAP_compute_res_release_cached(ctx->vtcm_rctx);
qurt_thread_set_priority(qurt_thread_get_id(), ctx->thread_prio);
HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000);
ctx->vtcm_valid = true;
}
ctx->vtcm_inuse = true;
return 0;
}
static int vtcm_release(struct htp_context * ctx) {
ctx->vtcm_inuse = false;
if (ctx->vtcm_valid && ctx->vtcm_needs_release) {
ctx->vtcm_valid = false;
ctx->vtcm_needs_release = false;
HAP_compute_res_release_cached(ctx->vtcm_rctx);
}
return 0;
}
static int vtcm_release_callback(unsigned int rctx, void * state) {
struct htp_context * ctx = (struct htp_context *) state;
if (!ctx || ctx->vtcm_rctx != rctx) {
return AEE_EBADPARM;
}
// If VTCM is not inuse (not processing Ops) release it right here
// otherwise we'll release it once we're done with the current Op.
if (ctx->vtcm_inuse) {
ctx->vtcm_needs_release = false;
return 0;
}
ctx->vtcm_valid = false;
HAP_compute_res_release_cached(ctx->vtcm_rctx);
return 0;
}
static int vtcm_alloc(struct htp_context * ctx) {
unsigned int vtcm_size = 8 * 1024 * 1024; // 8MB default
HAP_compute_res_query_VTCM(0, &vtcm_size, NULL, NULL, NULL);
compute_res_attr_t attr;
HAP_compute_res_attr_init(&attr);
HAP_compute_res_attr_set_serialize(&attr, 0);
HAP_compute_res_attr_set_cache_mode(&attr, 1);
HAP_compute_res_attr_set_vtcm_param_v2(&attr, vtcm_size, vtcm_size, vtcm_size);
HAP_compute_res_attr_set_release_callback(&attr, vtcm_release_callback, (void *) ctx);
HAP_compute_res_attr_set_hmx_param(&attr, 1);
// Allocate VTCM for scratch pads
uint32_t rctx = HAP_compute_res_acquire(&attr, 1000000 /* timeout */);
if (!rctx) {
FARF(ERROR, "failed to allocate %zu bytes VTCM\n", ctx->vtcm_size);
return AEE_ENOMEMORY;
}
void * vtcm_ptr;
if (HAP_compute_res_attr_get_vtcm_ptr_v2(&attr, &vtcm_ptr, &vtcm_size) != 0) {
HAP_compute_res_release(rctx);
FARF(ERROR, "failed to allocate %zu bytes VTCM (new)\n", ctx->vtcm_size);
return AEE_ENOMEMORY;
}
ctx->vtcm_base = (uint8_t *) vtcm_ptr;
ctx->vtcm_size = vtcm_size;
ctx->vtcm_rctx = rctx;
ctx->vtcm_valid = false;
ctx->vtcm_inuse = false;
ctx->vtcm_needs_release = false;
return 0;
}
static void vtcm_free(struct htp_context * ctx) {
if (ctx->vtcm_rctx) {
HAP_compute_res_release(ctx->vtcm_rctx);
ctx->vtcm_base = 0;
ctx->vtcm_rctx = 0;
}
}
static void htp_packet_callback(dspqueue_t queue, int error, void * context);
static void htp_error_callback(dspqueue_t queue, int error, void * context);
AEEResult htp_iface_start(remote_handle64 handle, uint32 sess_id, uint64 dsp_queue_id, uint32 n_hvx) {
struct htp_context * ctx = (struct htp_context *) handle;
if (!ctx) {
return AEE_EBADPARM;
}
if (ctx->queue) {
FARF(ERROR, "Queue already open");
return AEE_EITEMBUSY;
}
// Import queue created on the CPU
int err = dspqueue_import(dsp_queue_id, // Queue ID from dspqueue_export
htp_packet_callback, // Packet callback
htp_error_callback, // Error callback; no errors expected on the DSP
(void *) ctx, // Callback context
&ctx->queue);
if (err) {
FARF(ERROR, "Queue import failed with 0x%08x", (unsigned) err);
return err;
}
ctx->thread_id = qurt_thread_get_id();
ctx->thread_prio = qurt_thread_get_priority(ctx->thread_id);
// allocate VTCM
err = vtcm_alloc(ctx);
if (err != AEE_SUCCESS) {
FARF(ERROR, "Unable to allocate VTCM");
return AEE_ENOMEMORY;
}
qurt_sysenv_max_hthreads_t hw_threads;
qurt_sysenv_get_max_hw_threads(&hw_threads);
uint32_t hw_nhvx = (qurt_hvx_get_units() >> 8) & 0xFF;
if (n_hvx == 0) {
n_hvx = hw_nhvx;
}
if (n_hvx > hw_threads.max_hthreads) {
n_hvx = hw_threads.max_hthreads;
}
if (n_hvx > HTP_MAX_NTHREADS) {
n_hvx = HTP_MAX_NTHREADS;
}
ctx->n_threads = n_hvx;
for (int i = 0; i < ctx->n_threads; i++) {
ctx->dma[i] = dma_queue_create(HTP_SPAD_SRC0_NROWS * 2);
}
// init worker pool
err = worker_pool_init(&ctx->worker_pool, n_hvx);
if (err != AEE_SUCCESS) {
FARF(ERROR, "Unable to create worker pool");
return err;
}
FARF(HIGH, "session %u started: n-hvx %u vtcm-size %zu vtcm-rctx %u n-threads %u thread-id %d thread-prio %d \n",
sess_id, hw_nhvx, ctx->vtcm_size, ctx->vtcm_rctx, ctx->n_threads, ctx->thread_id, ctx->thread_prio);
return AEE_SUCCESS;
}
AEEResult htp_iface_stop(remote_handle64 handle) {
struct htp_context * ctx = (struct htp_context *) handle;
if (!ctx) {
return AEE_EBADPARM;
}
if (!ctx->queue) {
FARF(ERROR, "Queue not open");
return AEE_EBADSTATE;
}
// Close queue. dspqueue_close() will also wait for callbacks to finish.
int err = dspqueue_close(ctx->queue);
ctx->queue = NULL;
if (err != 0) {
FARF(ERROR, "Queue close failed with 0x%08x", (unsigned) err);
return err;
}
if (ctx->worker_pool) {
// Release worker pool
worker_pool_release(&ctx->worker_pool);
}
for (int i = 0; i < ctx->n_threads; i++) {
dma_queue_delete(ctx->dma[i]);
}
vtcm_free(ctx);
return AEE_SUCCESS;
}
static void htp_error_callback(dspqueue_t queue, int error, void * context) {
// No errors expected on the DSP.
FARF(ERROR, "Error callback: 0x%08x", (unsigned) error);
}
struct profile_data {
uint64_t usecs;
uint64_t cycles;
uint64_t pkts;
};
static inline void profile_start(struct profile_data * d) {
d->usecs = HAP_perf_get_qtimer_count();
d->cycles = htp_get_cycles();
d->pkts = htp_get_pktcnt();
}
static inline void profile_stop(struct profile_data * d) {
d->usecs = HAP_perf_qtimer_count_to_us(HAP_perf_get_qtimer_count() - d->usecs);
d->cycles = htp_get_cycles() - d->cycles;
d->pkts = htp_get_pktcnt() - d->pkts;
}
static int send_htp_rsp(struct htp_context * c,
uint32_t op,
uint32_t status,
struct dspqueue_buffer * bufs,
size_t n_bufs,
struct profile_data * prof) {
// Prep response struct
struct htp_general_rsp rsp;
rsp.op = op;
rsp.status = status;
rsp.prof_usecs = prof->usecs;
rsp.prof_cycles = prof->cycles;
rsp.prof_pkts = prof->pkts;
int err = dspqueue_write(c->queue,
0, // Flags
n_bufs,
bufs, // Buffer references
sizeof(rsp),
(const uint8_t *) &rsp, // Message
DSPQUEUE_TIMEOUT_NONE);
if (err != 0) {
FARF(ERROR, "dspqueue_write failed: 0x%08x", (unsigned) err);
}
return err;
}
static void proc_matmul_req(struct htp_context * ctx,
struct htp_general_req * req,
struct dspqueue_buffer * bufs,
size_t n_bufs) {
// Prep response buffer structs (needed for error responses, etc)
struct dspqueue_buffer rsp_bufs[HTP_MAX_PACKET_BUFFERS];
memset(rsp_bufs, 0, sizeof(rsp_bufs));
rsp_bufs[0].fd = bufs[0].fd;
rsp_bufs[0].ptr = bufs[0].ptr;
rsp_bufs[0].size = bufs[0].size;
rsp_bufs[0].offset = bufs[0].offset;
rsp_bufs[0].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
rsp_bufs[1].fd = bufs[1].fd;
rsp_bufs[1].ptr = bufs[1].ptr;
rsp_bufs[1].size = bufs[1].size;
rsp_bufs[1].offset = bufs[1].offset;
rsp_bufs[1].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[2].fd = bufs[2].fd;
rsp_bufs[2].ptr = bufs[2].ptr;
rsp_bufs[2].size = bufs[2].size;
rsp_bufs[2].offset = bufs[2].offset;
rsp_bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_DEREF | // Release reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush NSP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
octx.ctx = ctx;
octx.src0 = req->src0;
octx.src1 = req->src1;
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
octx.src1.data = (uint32_t) bufs[1].ptr;
octx.dst.data = (uint32_t) bufs[2].ptr;
octx.n_threads = ctx->n_threads;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
rsp_status = op_matmul(&octx);
vtcm_release(ctx);
}
profile_stop(&prof);
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 3, &prof);
}
static void proc_matmul_id_req(struct htp_context * ctx,
struct htp_general_req * req,
struct dspqueue_buffer * bufs,
size_t n_bufs) {
// Prep response buffer structs (needed for error responses, etc)
struct dspqueue_buffer rsp_bufs[HTP_MAX_PACKET_BUFFERS];
memset(rsp_bufs, 0, sizeof(rsp_bufs));
rsp_bufs[0].fd = bufs[0].fd;
rsp_bufs[0].ptr = bufs[0].ptr;
rsp_bufs[0].size = bufs[0].size;
rsp_bufs[0].offset = bufs[0].offset;
rsp_bufs[0].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
rsp_bufs[1].fd = bufs[1].fd;
rsp_bufs[1].ptr = bufs[1].ptr;
rsp_bufs[1].size = bufs[1].size;
rsp_bufs[1].offset = bufs[1].offset;
rsp_bufs[1].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
rsp_bufs[2].fd = bufs[2].fd;
rsp_bufs[2].ptr = bufs[2].ptr;
rsp_bufs[2].size = bufs[2].size;
rsp_bufs[2].offset = bufs[2].offset;
rsp_bufs[2].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[3].fd = bufs[3].fd;
rsp_bufs[3].ptr = bufs[3].ptr;
rsp_bufs[3].size = bufs[3].size;
rsp_bufs[3].offset = bufs[3].offset;
rsp_bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_DEREF | // Release reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush NSP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
octx.ctx = ctx;
octx.src0 = req->src0;
octx.src1 = req->src1;
octx.src2 = req->src2;
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
octx.src1.data = (uint32_t) bufs[1].ptr;
octx.src2.data = (uint32_t) bufs[2].ptr;
octx.dst.data = (uint32_t) bufs[3].ptr;
octx.n_threads = ctx->n_threads;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
rsp_status = op_matmul_id(&octx);
vtcm_release(ctx);
}
profile_stop(&prof);
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 4, &prof);
}
static void proc_binary_req(struct htp_context * ctx, struct htp_general_req * req, struct dspqueue_buffer * bufs) {
struct dspqueue_buffer rsp_bufs[HTP_MAX_PACKET_BUFFERS];
memset(rsp_bufs, 0, sizeof(rsp_bufs));
rsp_bufs[0].fd = bufs[0].fd;
rsp_bufs[0].ptr = bufs[0].ptr;
rsp_bufs[0].offset = bufs[0].offset;
rsp_bufs[0].size = bufs[0].size;
rsp_bufs[0].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
rsp_bufs[1].fd = bufs[1].fd;
rsp_bufs[1].ptr = bufs[1].ptr;
rsp_bufs[1].offset = bufs[1].offset;
rsp_bufs[1].size = bufs[1].size;
rsp_bufs[1].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[2].fd = bufs[2].fd;
rsp_bufs[2].ptr = bufs[2].ptr;
rsp_bufs[2].offset = bufs[2].offset;
rsp_bufs[2].size = bufs[2].size;
rsp_bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_DEREF | // Release reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush NSP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
octx.ctx = ctx;
octx.src0 = req->src0;
octx.src1 = req->src1;
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
octx.src1.data = (uint32_t) bufs[1].ptr;
octx.dst.data = (uint32_t) bufs[2].ptr;
octx.n_threads = ctx->n_threads;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
rsp_status = op_binary(&octx);
vtcm_release(ctx);
}
profile_stop(&prof);
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 3, &prof);
}
static void proc_add_id_req(struct htp_context * ctx, struct htp_general_req * req, struct dspqueue_buffer * bufs) {
struct dspqueue_buffer rsp_bufs[HTP_MAX_PACKET_BUFFERS];
memset(rsp_bufs, 0, sizeof(rsp_bufs));
rsp_bufs[0].fd = bufs[0].fd;
rsp_bufs[0].ptr = bufs[0].ptr;
rsp_bufs[0].offset = bufs[0].offset;
rsp_bufs[0].size = bufs[0].size;
rsp_bufs[0].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
rsp_bufs[1].fd = bufs[1].fd;
rsp_bufs[1].ptr = bufs[1].ptr;
rsp_bufs[1].offset = bufs[1].offset;
rsp_bufs[1].size = bufs[1].size;
rsp_bufs[1].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
rsp_bufs[2].fd = bufs[2].fd;
rsp_bufs[2].ptr = bufs[2].ptr;
rsp_bufs[2].offset = bufs[2].offset;
rsp_bufs[2].size = bufs[2].size;
rsp_bufs[2].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[3].fd = bufs[3].fd;
rsp_bufs[3].ptr = bufs[3].ptr;
rsp_bufs[3].offset = bufs[3].offset;
rsp_bufs[3].size = bufs[3].size;
rsp_bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_DEREF | // Release reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush NSP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
octx.ctx = ctx;
octx.src0 = req->src0;
octx.src1 = req->src1;
octx.src2 = req->src2;
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
octx.src1.data = (uint32_t) bufs[1].ptr;
octx.src2.data = (uint32_t) bufs[2].ptr;
octx.dst.data = (uint32_t) bufs[3].ptr;
octx.n_threads = ctx->n_threads;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
rsp_status = op_binary(&octx);
vtcm_release(ctx);
}
profile_stop(&prof);
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 4, &prof);
}
static void proc_unary_req(struct htp_context * ctx, struct htp_general_req * req, struct dspqueue_buffer * bufs) {
struct dspqueue_buffer rsp_bufs[HTP_MAX_PACKET_BUFFERS];
memset(rsp_bufs, 0, sizeof(rsp_bufs));
rsp_bufs[0].fd = bufs[0].fd;
rsp_bufs[0].ptr = bufs[0].ptr;
rsp_bufs[0].offset = bufs[0].offset;
rsp_bufs[0].size = bufs[0].size;
rsp_bufs[0].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[1].fd = bufs[1].fd;
rsp_bufs[1].ptr = bufs[1].ptr;
rsp_bufs[1].offset = bufs[1].offset;
rsp_bufs[1].size = bufs[1].size;
rsp_bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_DEREF | // Release reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush NSP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
octx.ctx = ctx;
octx.src0 = req->src0;
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
memcpy(octx.op_params, req->op_params, sizeof(octx.op_params));
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
octx.dst.data = (uint32_t) bufs[1].ptr;
octx.n_threads = ctx->n_threads;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
rsp_status = op_unary(&octx);
vtcm_release(ctx);
}
profile_stop(&prof);
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 2, &prof);
}
static void proc_activations_req(struct htp_context * ctx,
struct htp_general_req * req,
struct dspqueue_buffer * bufs,
uint32_t n_bufs) {
struct dspqueue_buffer rsp_bufs[HTP_MAX_PACKET_BUFFERS];
memset(rsp_bufs, 0, sizeof(rsp_bufs));
rsp_bufs[0].fd = bufs[0].fd;
rsp_bufs[0].ptr = bufs[0].ptr;
rsp_bufs[0].offset = bufs[0].offset;
rsp_bufs[0].size = bufs[0].size;
rsp_bufs[0].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
int write_idx = 1;
if (3 == n_bufs) {
rsp_bufs[1].fd = bufs[1].fd;
rsp_bufs[1].ptr = bufs[1].ptr;
rsp_bufs[1].offset = bufs[1].offset;
rsp_bufs[1].size = bufs[1].size;
rsp_bufs[1].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
write_idx = 2;
}
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[write_idx].fd = bufs[write_idx].fd;
rsp_bufs[write_idx].ptr = bufs[write_idx].ptr;
rsp_bufs[write_idx].offset = bufs[write_idx].offset;
rsp_bufs[write_idx].size = bufs[write_idx].size;
rsp_bufs[write_idx].flags = (DSPQUEUE_BUFFER_FLAG_DEREF | // Release reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush NSP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
octx.ctx = ctx;
octx.src0 = req->src0;
if (3 == n_bufs) {
octx.src1 = req->src1;
}
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
memcpy(octx.op_params, req->op_params, sizeof(octx.op_params));
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
if (3 == n_bufs) {
octx.src1.data = (uint32_t) bufs[1].ptr;
octx.dst.data = (uint32_t) bufs[2].ptr;
} else {
octx.dst.data = (uint32_t) bufs[1].ptr;
}
octx.n_threads = ctx->n_threads;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
if (octx.op == HTP_OP_SOFTMAX) {
rsp_status = op_softmax(&octx);
} else {
rsp_status = op_activations(&octx);
}
vtcm_release(ctx);
}
profile_stop(&prof);
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, n_bufs, &prof);
}
static void proc_rope_req(struct htp_context * ctx,
struct htp_general_req * req,
struct dspqueue_buffer * bufs,
uint32_t n_bufs) {
struct dspqueue_buffer rsp_bufs[HTP_MAX_PACKET_BUFFERS];
memset(rsp_bufs, 0, sizeof(rsp_bufs));
rsp_bufs[0].fd = bufs[0].fd;
rsp_bufs[0].ptr = bufs[0].ptr;
rsp_bufs[0].offset = bufs[0].offset;
rsp_bufs[0].size = bufs[0].size;
rsp_bufs[0].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
rsp_bufs[1].fd = bufs[1].fd;
rsp_bufs[1].ptr = bufs[1].ptr;
rsp_bufs[1].offset = bufs[1].offset;
rsp_bufs[1].size = bufs[1].size;
rsp_bufs[1].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
int write_idx = 2;
if (4 == n_bufs) {
rsp_bufs[write_idx].fd = bufs[write_idx].fd;
rsp_bufs[write_idx].ptr = bufs[write_idx].ptr;
rsp_bufs[write_idx].offset = bufs[write_idx].offset;
rsp_bufs[write_idx].size = bufs[write_idx].size;
rsp_bufs[write_idx].flags = DSPQUEUE_BUFFER_FLAG_DEREF; // Release reference
write_idx++;
}
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[write_idx].fd = bufs[write_idx].fd;
rsp_bufs[write_idx].ptr = bufs[write_idx].ptr;
rsp_bufs[write_idx].offset = bufs[write_idx].offset;
rsp_bufs[write_idx].size = bufs[write_idx].size;
rsp_bufs[write_idx].flags = (DSPQUEUE_BUFFER_FLAG_DEREF | // Release reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush NSP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
octx.ctx = ctx;
octx.src0 = req->src0;
octx.src1 = req->src1;
if (4 == n_bufs) {
octx.src2 = req->src2;
}
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
memcpy(octx.op_params, req->op_params, sizeof(octx.op_params));
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
octx.src1.data = (uint32_t) bufs[1].ptr;
if (4 == n_bufs) {
octx.src2.data = (uint32_t) bufs[2].ptr;
octx.dst.data = (uint32_t) bufs[3].ptr;
} else {
octx.dst.data = (uint32_t) bufs[2].ptr;
}
octx.n_threads = ctx->n_threads;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
rsp_status = op_rope(&octx);
vtcm_release(ctx);
}
profile_stop(&prof);
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, n_bufs, &prof);
}
static void htp_packet_callback(dspqueue_t queue, int error, void * context) {
struct htp_context * ctx = (struct htp_context *) context;
// Repeatedly read packets from the queue until it's empty. We don't
// necessarily get a separate callback for each packet, and new packets
// may arrive while we're processing the previous one. This ensures we
// keep the DSP busy as much as possible and avoid waiting for the CPU.
while (1) {
struct htp_general_req req;
uint32_t req_size;
struct dspqueue_buffer bufs[HTP_MAX_PACKET_BUFFERS];
uint32_t n_bufs;
uint32_t flags;
// Read packet from queue
int err = dspqueue_read_noblock(queue, &flags,
HTP_MAX_PACKET_BUFFERS, // Maximum number of buffer references
&n_bufs, // Number of buffer references
bufs, // Buffer references
sizeof(req), // Max message length
&req_size, // Message length
(uint8_t *) &req); // Message
if (err == AEE_EWOULDBLOCK) {
// Consumed all packets available for now
return;
}
if (err != 0) {
FARF(ERROR, "dspqueue_read_noblock failed: 0x%08x", (unsigned) err);
return;
}
if (req_size != sizeof(req)) {
FARF(ERROR, "Invalid request size");
continue;
}
if (req.flags & HTP_OPFLAGS_EARLY_WAKEUP) {
// Host wants early notification
dspqueue_write_early_wakeup_noblock(ctx->queue, 10, 0);
}
// Process packet based on its message type
switch (req.op) {
case HTP_OP_MUL_MAT:
if (n_bufs != 3) {
FARF(ERROR, "Bad matmul-req buffer list");
continue;
}
proc_matmul_req(ctx, &req, bufs, n_bufs);
break;
case HTP_OP_MUL_MAT_ID:
if (n_bufs != 4) {
FARF(ERROR, "Bad matmul-id-req buffer list");
continue;
}
proc_matmul_id_req(ctx, &req, bufs, n_bufs);
break;
case HTP_OP_MUL:
case HTP_OP_ADD:
case HTP_OP_SUB:
if (n_bufs != 3) {
FARF(ERROR, "Bad binary-req buffer list");
continue;
}
proc_binary_req(ctx, &req, bufs);
break;
case HTP_OP_RMS_NORM:
if (n_bufs != 2) {
FARF(ERROR, "Bad unary-req buffer list");
continue;
}
proc_unary_req(ctx, &req, bufs);
break;
case HTP_OP_UNARY_SILU:
if (n_bufs != 2) {
FARF(ERROR, "Bad act-req buffer list");
continue;
}
proc_activations_req(ctx, &req, bufs, n_bufs);
break;
case HTP_OP_GLU_SWIGLU:
case HTP_OP_SOFTMAX:
if ((n_bufs != 2) && (n_bufs != 3)) {
FARF(ERROR, "Bad act-req buffer list");
continue;
}
proc_activations_req(ctx, &req, bufs, n_bufs);
break;
case HTP_OP_ADD_ID:
if (n_bufs != 4) {
FARF(ERROR, "Bad add-id-req buffer list");
continue;
}
proc_add_id_req(ctx, &req, bufs);
break;
case HTP_OP_ROPE:
if ((n_bufs != 3) && (n_bufs != 4)) {
FARF(ERROR, "Bad rope-req buffer list");
continue;
}
proc_rope_req(ctx, &req, bufs, n_bufs);
break;
default:
FARF(ERROR, "Unknown Op %u", req.op);
break;
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,116 @@
#ifndef OPS_UTILS_H
#define OPS_UTILS_H
#include "htp-msg.h"
#ifndef MAX
# define MAX(a, b) ((a) > (b) ? (a) : (b))
#endif
#ifndef MIN
# define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif
static inline uint64_t htp_get_cycles() {
uint64_t cycles = 0;
asm volatile(" %0 = c15:14\n" : "=r"(cycles));
return cycles;
}
static inline uint64_t htp_get_pktcnt() {
uint64_t pktcnt;
asm volatile(" %0 = c19:18\n" : "=r"(pktcnt));
return pktcnt;
}
static inline int32_t htp_is_aligned(void * addr, uint32_t align) {
return ((size_t) addr & (align - 1)) == 0;
}
static inline uint32_t htp_round_up(uint32_t n, uint32_t m) {
return m * ((n + m - 1) / m);
}
static inline void htp_l2fetch(const void * p, uint32_t height, uint32_t width, uint32_t stride) {
const uint64_t control = Q6_P_combine_RR(stride, Q6_R_combine_RlRl(width, height));
asm volatile(" l2fetch(%0,%1) " : : "r"(p), "r"(control));
}
static inline int32_t htp_is_one_chunk(void * addr, uint32_t n, uint32_t chunk_size) {
uint32_t left_off = (size_t) addr & (chunk_size - 1);
uint32_t right_off = left_off + n;
return right_off <= chunk_size;
}
static inline void htp_dump_int8_line(char * pref, const int8_t * x, int n) {
char str[1024], *p = str;
p += sprintf(p, "%s: ", pref);
for (int i = 0; i < 16; i++) {
p += sprintf(p, "%d, ", x[i]);
}
FARF(HIGH, "%s\n", str);
}
static inline void htp_dump_uint8_line(char * pref, const uint8_t * x, uint32_t n) {
char str[1024], *p = str;
p += sprintf(p, "%s: ", pref);
for (int i = 0; i < n; i++) {
p += sprintf(p, "%d, ", x[i]);
}
FARF(HIGH, "%s\n", str);
}
static inline void htp_dump_int32_line(char * pref, const int32_t * x, uint32_t n) {
char str[1024], *p = str;
p += sprintf(p, "%s: ", pref);
for (int i = 0; i < n; i++) {
p += sprintf(p, "%d, ", (int) x[i]);
}
FARF(HIGH, "%s\n", str);
}
static inline void htp_dump_fp16_line(char * pref, const __fp16 * x, uint32_t n) {
char str[1024], *p = str;
p += sprintf(p, "%s: ", pref);
for (int i = 0; i < n; i++) {
p += sprintf(p, "%.6f, ", (float) x[i]);
}
FARF(HIGH, "%s\n", str);
}
static inline void htp_dump_fp32_line(char * pref, const float * x, uint32_t n) {
char str[1024], *p = str;
p += sprintf(p, "%s: ", pref);
for (int i = 0; i < n; i++) {
p += sprintf(p, "%.6f, ", x[i]);
}
FARF(HIGH, "%s\n", str);
}
static inline void htp_dump_f32(char * pref, const float * x, uint32_t n) {
uint32_t n0 = n / 16;
uint32_t n1 = n % 16;
uint32_t i = 0;
for (; i < n0; i++) {
htp_dump_fp32_line(pref, x + (16 * i), 16);
}
if (n1) {
htp_dump_fp32_line(pref, x + (16 * i), n1);
}
}
static inline void htp_dump_f16(char * pref, const __fp16 * x, uint32_t n) {
uint32_t n0 = n / 16;
uint32_t n1 = n % 16;
uint32_t i = 0;
for (; i < n0; i++) {
htp_dump_fp16_line(pref, x + (16 * i), 16);
}
if (n1) {
htp_dump_fp16_line(pref, x + (16 * i), n1);
}
}
#endif /* OPS_UTILS_H */

View File

@ -0,0 +1,418 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#ifdef HTP_DEBUG
# define FARF_HIGH 1
#endif
#include <HAP_farf.h>
#include <HAP_mem.h>
#include <HAP_perf.h>
#include <HAP_ps.h>
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <qurt_thread.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-dma.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "hvx-utils.h"
#include "ops-utils.h"
#define htp_rope_preamble \
const uint32_t ne00 = src0->ne[0]; \
const uint32_t ne01 = src0->ne[1]; \
const uint32_t ne02 = src0->ne[2]; \
const uint32_t ne03 = src0->ne[3]; \
\
const uint32_t ne0 = dst->ne[0]; \
const uint32_t ne1 = dst->ne[1]; \
const uint32_t ne2 = dst->ne[2]; \
const uint32_t ne3 = dst->ne[3]; \
\
const uint32_t nb00 = src0->nb[0]; \
const uint32_t nb01 = src0->nb[1]; \
const uint32_t nb02 = src0->nb[2]; \
const uint32_t nb03 = src0->nb[3]; \
\
const uint32_t nb0 = dst->nb[0]; \
const uint32_t nb1 = dst->nb[1]; \
const uint32_t nb2 = dst->nb[2]; \
const uint32_t nb3 = dst->nb[3];
struct rope_th_ctx {
int32_t n_dims;
int32_t mode;
int32_t n_ctx_orig;
int32_t sections[4];
float freq_base;
float freq_scale;
float ext_factor;
float attn_factor;
float beta_fast;
float beta_slow;
float theta_scale;
float corr_dims[2];
struct htp_ops_context * octx;
};
static float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
return (1 - MIN(1, MAX(0, y)));
}
static void rope_cache_init(const float theta_base,
float freq_scale,
const float * freq_factors,
float * corr_dims,
uint32_t ne0,
float ext_factor,
float mscale,
float * cache,
float theta_scale) {
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
float theta = theta_base;
for (uint32_t i0 = 0; i0 < ne0; i0 += 2) {
const float ff = freq_factors ? freq_factors[i0 / 2] : 1.0f;
float theta_extrap = theta / ff;
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta2 = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
theta2 = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
}
cache[i0 + 0] = cosf(theta2) * mscale;
cache[i0 + 1] = sinf(theta2) * mscale;
theta *= theta_scale;
}
}
#define M_PI 3.1415926535897932384626433
static void rope_corr_dims(int n_dims,
int n_ctx_orig,
float freq_base,
float beta_fast,
float beta_slow,
float * dims) {
float start = floorf(n_dims * logf(n_ctx_orig / (beta_fast * 2 * (float) M_PI)) / (2 * logf(freq_base)));
float end = ceilf(n_dims * logf(n_ctx_orig / (beta_slow * 2 * (float) M_PI)) / (2 * logf(freq_base)));
dims[0] = MAX(0, start);
dims[1] = MIN(n_dims - 1, end);
}
static void init_rope_ctx(struct rope_th_ctx * rope_ctx, struct htp_ops_context * octx) {
memset(rope_ctx, 0, sizeof(struct rope_th_ctx));
const int32_t * op_params = &octx->op_params[0];
rope_ctx->n_dims = ((const int32_t *) op_params)[1];
rope_ctx->mode = ((const int32_t *) op_params)[2];
rope_ctx->n_ctx_orig = ((const int32_t *) op_params)[4];
memcpy(&rope_ctx->freq_base, (int32_t *) op_params + 5, sizeof(float));
memcpy(&rope_ctx->freq_scale, (int32_t *) op_params + 6, sizeof(float));
memcpy(&rope_ctx->ext_factor, (int32_t *) op_params + 7, sizeof(float));
memcpy(&rope_ctx->attn_factor, (int32_t *) op_params + 8, sizeof(float));
memcpy(&rope_ctx->beta_fast, (int32_t *) op_params + 9, sizeof(float));
memcpy(&rope_ctx->beta_slow, (int32_t *) op_params + 10, sizeof(float));
memcpy(&rope_ctx->sections, (int32_t *) op_params + 11, sizeof(int) * 4);
rope_ctx->theta_scale = powf(rope_ctx->freq_base, -2.0f / rope_ctx->n_dims);
rope_corr_dims(rope_ctx->n_dims, rope_ctx->n_ctx_orig, rope_ctx->freq_base, rope_ctx->beta_fast,
rope_ctx->beta_slow, rope_ctx->corr_dims);
rope_ctx->octx = octx;
FARF(HIGH, "rope-f32 n_dims:%d, ext_factor:%.6f, theta_scale:%.6f, attn_factor:%.6f\n", rope_ctx->n_dims,
rope_ctx->ext_factor, rope_ctx->theta_scale, rope_ctx->attn_factor);
}
static void hvx_calc_rope_f32(const float * restrict src0,
float * restrict dst,
const int num_elems,
const float * restrict theta_cache) {
// for (int i = 0; i < num_elems; i += 2) {
//const float cos_theta = theta_cache[i + 0];
//const float sin_theta = theta_cache[i + 1];
//const float x0 = src[0];
//const float x1 = src[1];
//dst[0] = x0*cos_theta - x1*sin_theta;
//dst[1] = x0*sin_theta + x1*cos_theta;
//src += 2;
//dst += 2;
// }
const uint8_t * restrict src0_curr = (const uint8_t *) src0;
const uint8_t * restrict theta_curr = (const uint8_t *) theta_cache;
uint8_t * restrict dst_curr = (uint8_t *) dst;
int step_of_1 = num_elems >> 6; // 6 because we process two vectors at once
for (int i = 0; i < step_of_1; i++) {
HVX_Vector v0 = *(HVX_Vector *) src0_curr;
HVX_Vector v1 = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v2 = *(HVX_Vector *) theta_curr;
HVX_Vector v3 = *(HVX_Vector *) (theta_curr + VLEN);
HVX_VectorPair vx0_x1 = Q6_W_vdeal_VVR(v1, v0, -4); // vx0_x1[0] = x0, vx0_x1[1] = x1
HVX_VectorPair vcos_sin = Q6_W_vdeal_VVR(v3, v2, -4); // vcos_sin[0] = cos_theta, vcos_sin[1] = sin_theta
HVX_Vector vx0_c = Q6_Vqf32_vmpy_VsfVsf(Q6_V_lo_W(vx0_x1), Q6_V_lo_W(vcos_sin));
HVX_Vector vx0_s = Q6_Vqf32_vmpy_VsfVsf(Q6_V_lo_W(vx0_x1), Q6_V_hi_W(vcos_sin));
HVX_Vector vx1_c = Q6_Vqf32_vmpy_VsfVsf(Q6_V_hi_W(vx0_x1), Q6_V_lo_W(vcos_sin));
HVX_Vector vx1_s = Q6_Vqf32_vmpy_VsfVsf(Q6_V_hi_W(vx0_x1), Q6_V_hi_W(vcos_sin));
HVX_Vector v4 = Q6_Vqf32_vsub_Vqf32Vqf32(vx0_c, vx1_s);
HVX_Vector v5 = Q6_Vqf32_vadd_Vqf32Vqf32(vx0_s, vx1_c);
HVX_VectorPair vstore = Q6_W_vshuff_VVR(Q6_Vsf_equals_Vqf32(v5), Q6_Vsf_equals_Vqf32(v4), -4);
*(HVX_Vector *) dst_curr = Q6_V_lo_W(vstore);
*(HVX_Vector *) (dst_curr + VLEN) = Q6_V_hi_W(vstore);
src0_curr += 2 * VLEN;
theta_curr += 2 * VLEN;
dst_curr += 2 * VLEN;
}
}
static void rope_hex_f32(struct rope_th_ctx * rope_ctx,
const uint32_t ir0,
const uint32_t ir1,
int nth,
int ith,
int opt_path) {
struct htp_ops_context * octx = rope_ctx->octx;
const struct htp_tensor * src0 = &octx->src0;
const struct htp_tensor * src1 = &octx->src1;
const struct htp_tensor * src2 = &octx->src2;
struct htp_tensor * dst = &octx->dst;
htp_rope_preamble;
const int32_t * pos = (const int32_t *) src1->data;
float * wp0 = (float *) (octx->src0_spad.data + (ith * nb01));
const float * freq_factors = NULL;
if (src2 != NULL) {
freq_factors = (const float *) src2->data;
}
int ir = 0;
for (uint32_t i3 = 0; i3 < ne3; i3++) { // batch
for (uint32_t i2 = 0; i2 < ne2; i2++) { // seq-len
const int32_t p = pos[i2];
rope_cache_init(p, rope_ctx->freq_scale, freq_factors, rope_ctx->corr_dims, ne0, rope_ctx->ext_factor,
rope_ctx->attn_factor, wp0, rope_ctx->theta_scale);
for (uint32_t i1 = 0; i1 < ne1; i1++) { // attn-heads
if (ir++ < ir0) {
continue;
}
if (ir > ir1) {
break;
}
const float * src = (float *) ((char *) src0->data + i3 * nb03 + i2 * nb02 + i1 * nb01);
float * dst_data = (float *) ((char *) dst->data + i3 * nb3 + i2 * nb2 + i1 * nb1);
const float * src_loc = src;
float * dst_data_loc = dst_data;
if (1 == opt_path) {
hvx_calc_rope_f32(src_loc, dst_data_loc, rope_ctx->n_dims, wp0);
} else {
for (uint32_t i0 = 0; i0 < rope_ctx->n_dims; i0 += 2) {
const float cos_theta = wp0[i0 + 0];
const float sin_theta = wp0[i0 + 1];
const float x0 = src_loc[0];
const float x1 = src_loc[1];
dst_data_loc[0] = x0 * cos_theta - x1 * sin_theta;
dst_data_loc[1] = x0 * sin_theta + x1 * cos_theta;
src_loc += 2;
dst_data_loc += 2;
}
}
for (uint32_t i0 = rope_ctx->n_dims; i0 < ne0; i0 += 2) {
dst_data_loc[0] = src_loc[0];
dst_data_loc[1] = src_loc[1];
src_loc += 2;
dst_data_loc += 2;
}
}
}
}
}
static void rope_job_f32_per_thread(struct rope_th_ctx * rope_ctx, int nth, int ith) {
struct htp_ops_context * octx = rope_ctx->octx;
const struct htp_tensor * src0 = &octx->src0;
const struct htp_tensor * src1 = &octx->src1;
struct htp_tensor * dst = &octx->dst;
htp_rope_preamble;
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
const uint32_t src0_nrows_per_thread = octx->src0_nrows_per_thread;
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
// no work for this thread
if (src0_start_row >= src0_end_row) {
return;
}
uint64_t t1, t2;
t1 = HAP_perf_get_qtimer_count();
int is_aligned = 1;
int opt_path = 0;
if ((0 == htp_is_aligned((void *) src0->data, VLEN)) || (0 == htp_is_aligned((void *) src1->data, VLEN)) ||
(0 == htp_is_aligned((void *) dst->data, VLEN))) {
FARF(HIGH, "rope-f32: unaligned addresses in rope op, possibly slower execution\n");
is_aligned = 0;
}
if ((1 == is_aligned) && !(nb01 & (VLEN - 1))) {
opt_path = 1;
}
rope_hex_f32(rope_ctx, src0_start_row, src0_end_row, nth, ith, opt_path);
t2 = HAP_perf_get_qtimer_count();
FARF(HIGH, "rope-f32: %d/%d/%d: (%u:%u) usec %u\n", ith, nth, opt_path, src0_start_row, src0_end_row,
(unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static void rope_job_dispatcher_f32(unsigned int n, unsigned int i, void * data) {
struct rope_th_ctx * rope_ctx = (struct rope_th_ctx *) data;
rope_job_f32_per_thread(rope_ctx, n, i);
}
static int execute_op_rope_f32(struct htp_ops_context * octx) {
int err = HTP_STATUS_OK;
const struct htp_tensor * src0 = &octx->src0;
const struct htp_tensor * src1 = &octx->src1;
const struct htp_tensor * src2 = &octx->src2;
struct htp_tensor * dst = &octx->dst;
worker_callback_t op_func;
const char * op_type = NULL;
struct rope_th_ctx rope_ctx;
switch (octx->op) {
case HTP_OP_ROPE:
op_func = rope_job_dispatcher_f32;
op_type = "rope-f32";
init_rope_ctx(&rope_ctx, octx);
break;
default:
FARF(ERROR, "Unsupported Op %u\n", octx->op);
return HTP_STATUS_NO_SUPPORT;
}
const uint32_t n_threads = octx->n_threads;
const size_t src0_row_size = src0->nb[1];
const size_t src1_row_size = src0_row_size;
const size_t dst_row_size = dst->nb[1];
// VTCM scratchpads for all tensors
// N rows per thread, padded to HVX vector size
octx->dst_spad.size = htp_round_up(dst_row_size, 128) * n_threads;
octx->src0_spad.size = htp_round_up(src0_row_size, 128) * n_threads;
octx->src1_spad.size = htp_round_up(src1_row_size, 128) * n_threads;
size_t spad_size = octx->src0_spad.size + octx->src1_spad.size + octx->dst_spad.size;
if (src2->ne[0]) {
FARF(HIGH,
"%s: %ux%ux%ux%u (x %ux%ux%ux%u x %ux%ux%ux%u) -> %ux%ux%ux%u : src0-spad-size %u src1-spad-size %u "
"dst-spad-size %u\n",
op_type, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], src1->ne[0], src1->ne[1], src1->ne[2],
src1->ne[3], src2->ne[0], src2->ne[1], src2->ne[2], src2->ne[3], dst->ne[0], dst->ne[1], dst->ne[2],
dst->ne[3], octx->src0_spad.size, octx->src1_spad.size, octx->dst_spad.size);
} else {
FARF(HIGH,
"%s: %ux%ux%ux%u (%ux%ux%ux%u) -> %ux%ux%ux%u : src0-spad-size %u src1-spad-size %u dst-spad-size %u\n",
op_type, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], src1->ne[0], src1->ne[1], src1->ne[2],
src1->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], octx->src0_spad.size, octx->src1_spad.size,
octx->dst_spad.size);
}
// Make sure the reserved vtcm size is sufficient
if (octx->ctx->vtcm_size < spad_size) {
FARF(ERROR, "%s : current VTCM reservation %zu is too small, needed %zu\n", op_type, octx->ctx->vtcm_size,
spad_size);
return HTP_STATUS_VTCM_TOO_SMALL;
}
octx->src0_spad.data = octx->ctx->vtcm_base;
octx->src1_spad.data = octx->src0_spad.data + octx->src0_spad.size;
octx->dst_spad.data = octx->src1_spad.data + octx->src1_spad.size;
uint32_t src0_nrows = src0->ne[1] * src0->ne[2] * src0->ne[3];
if (!(octx->flags & HTP_OPFLAGS_SKIP_COMPUTE)) {
uint32_t n_jobs = MIN(n_threads, src0_nrows);
octx->src0_nrows_per_thread = (src0_nrows + n_jobs - 1) / n_jobs;
worker_pool_run_func(octx->ctx->worker_pool, op_func, &rope_ctx, n_jobs);
}
return err;
}
int op_rope(struct htp_ops_context * octx) {
int err = HTP_STATUS_OK;
switch (octx->src0.type) {
case HTP_TYPE_F32:
err = execute_op_rope_f32(octx);
break;
default:
err = HTP_STATUS_NO_SUPPORT;
break;
}
return err;
}

View File

@ -0,0 +1,402 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#ifdef HTP_DEBUG
# define FARF_HIGH 1
#endif
#include <HAP_farf.h>
#include <HAP_mem.h>
#include <HAP_perf.h>
#include <HAP_ps.h>
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <qurt_thread.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-dma.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "hvx-utils.h"
#include "ops-utils.h"
#define htp_softmax_preamble3 \
const uint32_t ne00 = src0->ne[0]; \
const uint32_t ne01 = src0->ne[1]; \
const uint32_t ne02 = src0->ne[2]; \
const uint32_t ne03 = src0->ne[3]; \
\
const uint32_t nb00 = src0->nb[0]; \
const uint32_t nb01 = src0->nb[1]; \
const uint32_t nb02 = src0->nb[2]; \
const uint32_t nb03 = src0->nb[3]; \
\
const uint32_t ne10 = (src1->ne[0]) ? src1->ne[0] : 1; \
const uint32_t ne11 = (src1->ne[0]) ? src1->ne[1] : 1; \
const uint32_t ne12 = (src1->ne[0]) ? src1->ne[2] : 1; \
const uint32_t ne13 = (src1->ne[0]) ? src1->ne[3] : 1; \
\
const uint32_t nb10 = (src1->ne[0]) ? src1->nb[0] : 1; \
const uint32_t nb11 = (src1->ne[0]) ? src1->nb[1] : 1; \
const uint32_t nb12 = (src1->ne[0]) ? src1->nb[2] : 1; \
const uint32_t nb13 = (src1->ne[0]) ? src1->nb[3] : 1; \
\
const uint32_t ne0 = dst->ne[0]; \
const uint32_t ne1 = dst->ne[1]; \
const uint32_t ne2 = dst->ne[2]; \
const uint32_t ne3 = dst->ne[3]; \
\
const uint32_t nb0 = dst->nb[0]; \
const uint32_t nb1 = dst->nb[1]; \
const uint32_t nb2 = dst->nb[2]; \
const uint32_t nb3 = dst->nb[3];
struct softmax_th_ctx {
bool use_f16;
bool use_src1;
uint32_t n_head;
uint32_t n_head_log2;
float scale;
float max_bias;
float m0;
float m1;
struct htp_ops_context * octx;
};
static void init_softmax_ctx(struct softmax_th_ctx * softmax_ctx, struct htp_ops_context * octx) {
const struct htp_tensor * src0 = &octx->src0;
const struct htp_tensor * src1 = &octx->src1;
memset(softmax_ctx, 0, sizeof(struct softmax_th_ctx));
memcpy(&softmax_ctx->scale, (float *) octx->op_params, sizeof(float));
memcpy(&softmax_ctx->max_bias, (float *) octx->op_params + 1, sizeof(float));
softmax_ctx->n_head = src0->ne[2];
softmax_ctx->n_head_log2 = 1u << (uint32_t) floor(log2(softmax_ctx->n_head));
softmax_ctx->m0 = powf(2.0f, -(softmax_ctx->max_bias) / softmax_ctx->n_head_log2);
softmax_ctx->m1 = powf(2.0f, -(softmax_ctx->max_bias / 2.0f) / softmax_ctx->n_head_log2);
softmax_ctx->use_src1 = (src1->ne[0] != 0);
softmax_ctx->use_f16 = (src1->ne[0] != 0) && (src1->type == HTP_TYPE_F16);
softmax_ctx->octx = octx;
}
static void hvx_fast_softmax_prep_f32(const uint8_t * restrict src,
uint8_t * restrict dst,
const int num_elems,
float scale,
const uint8_t * restrict mask,
float slope) {
const uint8_t * restrict src_curr = src;
uint8_t * restrict dst_curr = dst;
const uint8_t * restrict mask_curr = mask;
HVX_Vector scale_vec = hvx_vec_splat_fp32(scale);
HVX_Vector slope_vec = hvx_vec_splat_fp32(slope);
int step_of_1 = num_elems >> 5;
#pragma unroll(4)
for (int i = 0; i < step_of_1; i++) {
HVX_Vector v1 = *(HVX_Vector *) src_curr;
HVX_Vector v3 = *(HVX_Vector *) mask_curr;
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(v1, scale_vec);
HVX_Vector v4 = Q6_Vqf32_vmpy_VsfVsf(v3, slope_vec);
HVX_Vector v5 = Q6_Vqf32_vadd_Vqf32Vqf32(v2, v4);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v5);
src_curr += VLEN;
dst_curr += VLEN;
mask_curr += VLEN;
}
}
static void hvx_fast_softmax_f32(const uint8_t * restrict src,
uint8_t * restrict dst,
uint8_t * restrict pad,
const int num_elems) {
const HVX_Vector * restrict v_src = (HVX_Vector *) src;
HVX_Vector * restrict v_pad = (HVX_Vector *) pad;
HVX_Vector * restrict v_dst = (HVX_Vector *) dst;
HVX_Vector sum_vec = Q6_V_vsplat_R(0x00000000);
HVX_Vector max_vec = hvx_vec_splat_fp32(((const float *) src)[0]);
HVX_Vector zero_v = Q6_V_vzero();
HVX_Vector one_v = hvx_vec_splat_fp32(1.0);
int step_of_1 = num_elems >> 5;
#pragma unroll(4)
for (int i = 0; i < step_of_1; i++) {
HVX_Vector v1 = v_src[i];
max_vec = Q6_Vsf_vmax_VsfVsf(max_vec, v1);
}
HVX_Vector v = hvx_vec_reduce_max_fp32(max_vec);
max_vec = hvx_vec_repl4(v);
#pragma unroll(4)
for (int i = 0; i < step_of_1; i++) {
HVX_Vector v1 = v_src[i];
HVX_Vector v2 = Q6_Vqf32_vsub_VsfVsf(v1, max_vec);
HVX_Vector v3 = hvx_vec_exp_fp32(Q6_Vsf_equals_Vqf32(v2));
sum_vec = Q6_Vqf32_vadd_VsfVsf(Q6_Vsf_equals_Vqf32(sum_vec), v3);
v_pad[i] = v3;
}
v = hvx_vec_qf32_reduce_sum(sum_vec);
sum_vec = hvx_vec_repl4(Q6_Vsf_equals_Vqf32(v));
HVX_VectorPred pos_sum = Q6_Q_vcmp_gt_VwVw(sum_vec, zero_v);
HVX_Vector v4 = hvx_vec_inverse_fp32(sum_vec);
HVX_Vector scale_vec = Q6_V_vmux_QVV(pos_sum, v4, one_v);
#pragma unroll(4)
for (int i = 0; i < step_of_1; i++) {
HVX_Vector v1 = v_pad[i];
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(v1, scale_vec);
v_dst[i] = Q6_Vsf_equals_Vqf32(v2);
}
}
static float hvx_softmax_f32(const uint8_t * restrict src,
uint8_t * restrict dst,
uint8_t * restrict spad,
const int num_elems,
const float max) {
hvx_sub_scalar_f32(src, max, spad, num_elems);
hvx_exp_f32(spad, dst, num_elems, false);
float sum = hvx_self_sum_f32(dst, num_elems);
return sum;
}
static void softmax_htp_f32(int nth, int ith, struct softmax_th_ctx * softmax_ctx, int opt_path) {
struct htp_ops_context * octx = softmax_ctx->octx;
const struct htp_tensor * src0 = &octx->src0;
const struct htp_tensor * src1 = &octx->src1;
const struct htp_tensor * dst = &octx->dst;
htp_softmax_preamble3;
uint8_t * src0_spad_data = octx->src0_spad.data + (ith * nb01);
uint8_t * src1_spad_data = octx->src1_spad.data + (ith * nb01);
uint8_t * dst_spad_data = octx->dst_spad.data + (ith * nb1);
float * wp0 = (float *) src0_spad_data;
float * wp1 = (float *) src1_spad_data;
float * wp2 = (float *) dst_spad_data;
for (uint32_t i03 = 0; i03 < ne03; i03++) {
for (uint32_t i02 = 0; i02 < ne02; i02++) {
for (uint32_t i01 = ith; i01 < ne01; i01 += nth) {
const uint32_t i11 = i01;
const uint32_t i12 = i02 % ne12;
const uint32_t i13 = i03 % ne13;
// ALiBi
const uint32_t h = i02; // head
const float slope = (softmax_ctx->max_bias > 0.0f) ?
h < softmax_ctx->n_head_log2 ?
powf(softmax_ctx->m0, h + 1) :
powf(softmax_ctx->m1, 2 * (h - softmax_ctx->n_head_log2) + 1) :
1.0f;
float * sp = (float *) ((char *) octx->src0.data + i01 * nb01 + i02 * nb02 + i03 * nb03);
float * dp = (float *) ((char *) octx->dst.data + i01 * nb1 + i02 * nb2 + i03 * nb3);
// broadcast the mask across rows
__fp16 * mp_f16 = (softmax_ctx->use_src1) ?
(__fp16 *) ((char *) octx->src1.data + i11 * nb11 + i12 * nb12 + i13 * nb13) :
NULL;
float * mp_f32 = (softmax_ctx->use_src1) ?
(float *) ((char *) octx->src1.data + i11 * nb11 + i12 * nb12 + i13 * nb13) :
NULL;
if ((1 == opt_path) && (mp_f32) && !(softmax_ctx->use_f16)) {
hvx_fast_softmax_prep_f32((const uint8_t *) sp, (uint8_t *) wp0, ne00, softmax_ctx->scale,
(const uint8_t *) mp_f32, slope);
} else {
hvx_scale_f32((const uint8_t *) sp, (uint8_t *) wp0, ne00, softmax_ctx->scale);
if (mp_f32) {
if (softmax_ctx->use_f16) {
for (int i = 0; i < ne00; ++i) {
wp0[i] += slope * (float) mp_f16[i];
}
} else {
for (int i = 0; i < ne00; ++i) {
wp0[i] += slope * mp_f32[i];
}
}
}
}
if (1 == opt_path) {
hvx_fast_softmax_f32((const uint8_t *) wp0, (uint8_t *) dp, (uint8_t *) wp1, ne00);
} else {
float max = hvx_self_max_f32((const uint8_t *) wp0, ne00);
float sum = hvx_softmax_f32((const uint8_t *) wp0, (uint8_t *) wp2, (uint8_t *) wp1, ne00, max);
sum = sum > 0.0 ? (1.0 / sum) : 1;
hvx_scale_f32((const uint8_t *) wp2, (uint8_t *) dp, ne00, sum);
}
}
}
}
}
static void softmax_job_f32_per_thread(struct softmax_th_ctx * softmax_ctx, int nth, int ith) {
struct htp_ops_context * octx = softmax_ctx->octx;
const struct htp_tensor * src0 = &octx->src0;
const struct htp_tensor * src1 = &octx->src1;
struct htp_tensor * dst = &octx->dst;
htp_softmax_preamble3;
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
const uint32_t src0_nrows_per_thread = octx->src0_nrows_per_thread;
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
// no work for this thread
if (src0_start_row >= src0_end_row) {
return;
}
uint64_t t1, t2;
t1 = HAP_perf_get_qtimer_count();
int is_aligned = 1;
int opt_path = 0;
if (!htp_is_aligned((void *) src0->data, VLEN) || !htp_is_aligned((void *) dst->data, VLEN)) {
is_aligned = 0;
FARF(HIGH, "softmax-f32: unaligned addresses in elementwise op, possibly slower execution\n");
}
if ((1 == is_aligned) && !(nb01 & (VLEN - 1))) {
opt_path = 1;
}
softmax_htp_f32(nth, ith, softmax_ctx, opt_path);
t2 = HAP_perf_get_qtimer_count();
FARF(HIGH, "softmax-f32 %d/%d/%d/%d: %ux%ux%ux%u (%u:%u) x %ux%ux%ux%u -> %ux%ux%ux%u usec %u\n", ith, nth,
softmax_ctx->use_f16, opt_path, ne00, ne01, ne02, ne03, src0_start_row, src0_end_row, ne10, ne11, ne12, ne13,
ne0, ne1, ne2, ne3, (unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static void softmax_job_dispatcher_f32(unsigned int n, unsigned int i, void * p_data) {
struct softmax_th_ctx * p_softmax_ctx = (struct softmax_th_ctx *) p_data;
softmax_job_f32_per_thread(p_softmax_ctx, n, i);
}
static int execute_op_softmax_f32(struct htp_ops_context * octx) {
int err = HTP_STATUS_OK;
const struct htp_tensor * src0 = &octx->src0;
const struct htp_tensor * src1 = &octx->src1;
struct htp_tensor * dst = &octx->dst;
worker_callback_t op_func;
const char * op_type = NULL;
struct softmax_th_ctx softmax_ctx;
switch (octx->op) {
case HTP_OP_SOFTMAX:
op_func = softmax_job_dispatcher_f32;
op_type = "softmax-f32";
init_softmax_ctx(&softmax_ctx, octx);
break;
default:
FARF(ERROR, "Unsupported Op %u\n", octx->op);
return HTP_STATUS_NO_SUPPORT;
}
const uint32_t n_threads = octx->n_threads;
const size_t src0_row_size = src0->nb[1];
const size_t src1_row_size = src0_row_size;
const size_t dst_row_size = dst->nb[1];
// VTCM scratchpads for all tensors
// N rows per thread, padded to HVX vector size
octx->dst_spad.size = htp_round_up(dst_row_size, 128) * n_threads;
octx->src0_spad.size = htp_round_up(src0_row_size, 128) * n_threads;
octx->src1_spad.size = htp_round_up(src1_row_size, 128) * n_threads;
size_t spad_size = octx->src0_spad.size + octx->src1_spad.size + octx->dst_spad.size;
if (src1->ne[0]) {
FARF(HIGH,
"%s: %ux%ux%ux%u x %ux%ux%ux%u -> %ux%ux%ux%u : src0-spad-size %u src1-spad-size %u dst-spad-size %u\n",
op_type, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], src1->ne[0], src1->ne[1], src1->ne[2],
src1->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], octx->src0_spad.size, octx->src1_spad.size,
octx->dst_spad.size);
} else {
FARF(HIGH, "%s: %ux%ux%ux%u -> %ux%ux%ux%u : src0-spad-size %u src1-spad-size %u dst-spad-size %u\n", op_type,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
octx->src0_spad.size, octx->src1_spad.size, octx->dst_spad.size);
}
// Make sure the reserved vtcm size is sufficient
if (octx->ctx->vtcm_size < spad_size) {
FARF(ERROR, "%s : current VTCM reservation %zu is too small, needed %zu\n", op_type, octx->ctx->vtcm_size,
spad_size);
return HTP_STATUS_VTCM_TOO_SMALL;
}
octx->src0_spad.data = octx->ctx->vtcm_base;
octx->src1_spad.data = octx->src0_spad.data + octx->src0_spad.size;
octx->dst_spad.data = octx->src1_spad.data + octx->src1_spad.size;
uint32_t src0_nrows = src0->ne[1] * src0->ne[2] * src0->ne[3];
if (!(octx->flags & HTP_OPFLAGS_SKIP_COMPUTE)) {
uint32_t n_jobs = MIN(n_threads, src0_nrows);
octx->src0_nrows_per_thread = (src0_nrows + n_jobs - 1) / n_jobs;
worker_pool_run_func(octx->ctx->worker_pool, op_func, &softmax_ctx, n_jobs);
}
return err;
}
int op_softmax(struct htp_ops_context * octx) {
int err = HTP_STATUS_OK;
switch (octx->src0.type) {
case HTP_TYPE_F32:
err = execute_op_softmax_f32(octx);
break;
default:
err = HTP_STATUS_NO_SUPPORT;
break;
}
return err;
}

View File

@ -0,0 +1,255 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#ifdef HTP_DEBUG
# define FARF_HIGH 1
#endif
#include <HAP_farf.h>
#include <HAP_mem.h>
#include <HAP_perf.h>
#include <HAP_ps.h>
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <qurt_thread.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-dma.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "hvx-utils.h"
#include "ops-utils.h"
#define htp_unary_preamble \
const uint32_t ne00 = src->ne[0]; \
const uint32_t ne01 = src->ne[1]; \
const uint32_t ne02 = src->ne[2]; \
const uint32_t ne03 = src->ne[3]; \
\
const uint32_t ne0 = dst->ne[0]; \
const uint32_t ne1 = dst->ne[1]; \
const uint32_t ne2 = dst->ne[2]; \
const uint32_t ne3 = dst->ne[3]; \
\
const uint32_t nb00 = src->nb[0]; \
const uint32_t nb01 = src->nb[1]; \
const uint32_t nb02 = src->nb[2]; \
const uint32_t nb03 = src->nb[3]; \
\
const uint32_t nb0 = dst->nb[0]; \
const uint32_t nb1 = dst->nb[1]; \
const uint32_t nb2 = dst->nb[2]; \
const uint32_t nb3 = dst->nb[3];
static void hvx_fast_rms_norm_f32(const uint8_t * restrict src,
uint8_t * restrict dst,
uint8_t * restrict pad,
const int num_elems,
float epsilon) {
const HVX_Vector * restrict v_src = (HVX_Vector *) src;
HVX_Vector * restrict v_dst = (HVX_Vector *) dst;
HVX_Vector sum_v = Q6_V_vsplat_R(0x00000000);
HVX_Vector epsilon_v = hvx_vec_splat_fp32(epsilon);
int step_of_1 = num_elems >> 5;
#pragma unroll(4)
for (int i = 0; i < step_of_1; i++) {
HVX_Vector v1 = v_src[i];
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(v1, v1);
sum_v = Q6_Vqf32_vadd_Vqf32Vqf32(sum_v, v2);
}
HVX_Vector reduced_sum = hvx_vec_qf32_reduce_sum(sum_v);
sum_v = hvx_vec_repl4(Q6_Vsf_equals_Vqf32(reduced_sum));
HVX_Vector t_v = hvx_vec_splat_fp32((float) num_elems);
HVX_Vector denom_v = hvx_vec_inverse_fp32(t_v);
HVX_Vector mean_v = Q6_Vqf32_vmpy_VsfVsf(sum_v, denom_v);
HVX_Vector mean_epsilon_v = Q6_Vqf32_vadd_Vqf32Vsf(mean_v, epsilon_v);
HVX_Vector scale_v = hvx_vec_rsqrt_fp32(Q6_Vsf_equals_Vqf32(mean_epsilon_v));
#pragma unroll(4)
for (int i = 0; i < step_of_1; i++) {
HVX_Vector v1 = v_src[i];
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(v1, scale_v);
v_dst[i] = Q6_Vsf_equals_Vqf32(v2);
}
}
static void rms_norm_htp_f32(const float * restrict src,
float * restrict dst,
uint8_t * restrict spad,
const uint32_t num_rows,
const uint32_t row_elems,
const size_t row_size,
int32_t * op_params,
int opt_path) {
float epsilon = 0.f;
memcpy(&epsilon, op_params, sizeof(float));
for (uint32_t ir = 0; ir < num_rows; ir++) {
const float * restrict src_local = src + (ir * row_elems);
float * restrict dst_local = dst + (ir * row_elems);
if (ir + 1 < num_rows) {
htp_l2fetch(src_local + row_elems, 1, row_size, row_size);
}
if (1 == opt_path) {
hvx_fast_rms_norm_f32((const uint8_t *) src_local, (uint8_t *) dst_local, spad, row_elems, epsilon);
} else {
float sum = hvx_sum_of_squares_f32((const uint8_t *) src_local, row_elems);
const float mean = sum / row_elems;
const float scale = 1.0f / sqrtf(mean + epsilon);
hvx_scale_f32((const uint8_t *) src_local, (uint8_t *) dst_local, row_elems, scale);
}
}
}
static void unary_job_f32_per_thread(const struct htp_tensor * src,
struct htp_tensor * dst,
uint8_t * spad,
int htp_op,
int32_t * op_params,
uint32_t nth,
uint32_t ith,
uint32_t src0_nrows_per_thread) {
htp_unary_preamble;
const size_t src0_row_size = nb01;
const size_t dst_row_size = nb1;
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
// no work for this thread
if (src0_start_row >= src0_end_row) {
return;
}
uint64_t t1, t2;
t1 = HAP_perf_get_qtimer_count();
int is_aligned = 1;
int opt_path = 0;
if ((0 == htp_is_aligned((void *) src->data, VLEN)) || (0 == htp_is_aligned((void *) dst->data, VLEN))) {
is_aligned = 0;
FARF(HIGH, "unary-f32: unaligned addresses in unary op, possibly slower execution\n");
}
if ((1 == is_aligned) && !(nb01 & (VLEN - 1))) {
opt_path = 1;
}
const uint8_t * restrict data_src = (const uint8_t *) src->data;
uint8_t * restrict data_dst = (uint8_t *) dst->data;
const float * restrict src_th = (float *) (data_src + (src0_start_row * src0_row_size));
float * restrict dst_th = (float *) (data_dst + (src0_start_row * dst_row_size));
uint8_t * restrict spad_th = (uint8_t *) spad + (ith * nb01);
switch (htp_op) {
case HTP_OP_RMS_NORM:
rms_norm_htp_f32(src_th, dst_th, spad_th, src0_end_row - src0_start_row, ne0, nb1, op_params, opt_path);
break;
default:
break;
}
t2 = HAP_perf_get_qtimer_count();
FARF(HIGH, "unary-f32 %d/%d/%d: %ux%ux%ux%u (%u:%u) -> %ux%ux%ux%u usec %u\n", ith, nth, opt_path, src->ne[0],
src->ne[1], src->ne[2], src->ne[3], src0_start_row, src0_end_row, dst->ne[0], dst->ne[1], dst->ne[2],
dst->ne[3], (unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static void unary_job_dispatcher_f32(unsigned int n, unsigned int i, void * data) {
struct htp_ops_context * octx = (struct htp_ops_context *) data;
unary_job_f32_per_thread(&octx->src0, &octx->dst, octx->src0_spad.data, octx->op, octx->op_params, n, i,
octx->src0_nrows_per_thread);
}
static int execute_op_unary_f32(struct htp_ops_context * octx) {
int err = HTP_STATUS_OK;
const struct htp_tensor * src0 = &octx->src0;
struct htp_tensor * dst = &octx->dst;
worker_callback_t unary_op_func;
const char * op_type = NULL;
switch (octx->op) {
case HTP_OP_RMS_NORM:
unary_op_func = unary_job_dispatcher_f32;
op_type = "rmsnorm-f32";
break;
default:
FARF(ERROR, "Unsupported unary Op %u\n", octx->op);
return HTP_STATUS_NO_SUPPORT;
}
const int n_threads = octx->n_threads;
const uint32_t src0_nrows = src0->ne[1] * src0->ne[2] * src0->ne[3];
const size_t src0_row_size = src0->nb[1];
const size_t dst_row_size = dst->nb[1];
// VTCM scratchpads for all tensors
octx->dst_spad.size = htp_round_up(dst_row_size, 128) * n_threads;
octx->src0_spad.size = htp_round_up(src0_row_size, 128) * n_threads;
size_t spad_size = octx->src0_spad.size + octx->dst_spad.size;
FARF(HIGH, "%s: (%ux%ux%ux%u) -> (%ux%ux%ux%u) : src0-spad-size %u src1-spad-size %u dst-spad-size %u\n", op_type,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
octx->src0_spad.size, octx->src1_spad.size, octx->dst_spad.size);
// Make sure the reserved vtcm size is sufficient
if (octx->ctx->vtcm_size < spad_size) {
FARF(ERROR, "unary-%s : current VTCM reservation %zu is too small, needed %zu\n", op_type, octx->ctx->vtcm_size,
spad_size);
return HTP_STATUS_VTCM_TOO_SMALL;
}
octx->src0_spad.data = octx->ctx->vtcm_base;
octx->dst_spad.data = octx->src0_spad.data + octx->src0_spad.size;
if (!(octx->flags & HTP_OPFLAGS_SKIP_COMPUTE)) {
uint32_t n_jobs = MIN(n_threads, src0_nrows);
octx->src0_nrows_per_thread = (src0_nrows + n_jobs - 1) / n_jobs;
worker_pool_run_func(octx->ctx->worker_pool, unary_op_func, octx, n_jobs);
}
return err;
}
int op_unary(struct htp_ops_context * octx) {
int err = HTP_STATUS_OK;
switch (octx->src0.type) {
case HTP_TYPE_F32:
err = execute_op_unary_f32(octx);
break;
default:
err = HTP_STATUS_NO_SUPPORT;
break;
}
return err;
}

View File

@ -0,0 +1,297 @@
#include "worker-pool.h"
#include <qurt.h>
#include <stdatomic.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HTP_DEBUG
# define FARF_HIGH 1
#endif
#include "HAP_farf.h"
#define WORKER_THREAD_STACK_SZ (2 * 16384)
#define LOWEST_USABLE_QURT_PRIO (254)
struct worker_pool_s;
// internal structure kept in thread-local storage per instance of worker pool
typedef struct {
struct worker_pool_s * pool;
unsigned int id;
} worker_context_t;
// internal structure kept in thread-local storage per instance of worker pool
typedef struct worker_pool_s {
worker_pool_job_t job[MAX_NUM_WORKERS]; // list of job descriptors
qurt_thread_t thread[MAX_NUM_WORKERS]; // thread ID's of the workers
worker_context_t context[MAX_NUM_WORKERS]; // worker contexts
void * stack[MAX_NUM_WORKERS]; // thread stack pointers
unsigned int n_threads; // number of workers in this pool
atomic_uint seqn; // seqno used to detect new jobs
atomic_uint next_job; // next job index
atomic_uint n_pending; // number of pending jobs
atomic_uint n_jobs; // number of current jobs
atomic_bool killed; // threads need to exit
} worker_pool_t;
static void worker_pool_main(void * context) {
worker_context_t * me = (worker_context_t *) context;
worker_pool_t * pool = me->pool;
FARF(HIGH, "worker-pool: thread %u started", me->id);
unsigned int prev_seqn = 0;
while (!atomic_load(&pool->killed)) {
unsigned int seqn = atomic_load(&pool->seqn);
if (seqn == prev_seqn) {
// Nothing to do
qurt_futex_wait(&pool->seqn, prev_seqn);
continue;
}
// New job
prev_seqn = seqn;
unsigned int n = atomic_load(&pool->n_jobs);
unsigned int i = atomic_fetch_add(&pool->next_job, 1);
if (i >= n) {
// Spurios wakeup
continue;
}
pool->job[i].func(n, i, pool->job[i].data);
atomic_fetch_sub(&pool->n_pending, 1);
}
FARF(HIGH, "worker-pool: thread %u stopped", me->id);
}
AEEResult worker_pool_init_with_stack_size(worker_pool_context_t * context, uint32_t n_threads, uint32_t stack_size) {
int err = 0;
if (NULL == context) {
FARF(ERROR, "NULL context passed to worker_pool_init().");
return AEE_EBADPARM;
}
// Allocations
int size = (stack_size * n_threads) + (sizeof(worker_pool_t));
unsigned char * mem_blob = (unsigned char *) malloc(size);
if (!mem_blob) {
FARF(ERROR, "Could not allocate memory for worker pool!!");
return AEE_ENOMEMORY;
}
worker_pool_t * me = (worker_pool_t *) (mem_blob + stack_size * n_threads);
// name for the first worker, useful in debugging threads
char name[19];
snprintf(name, 12, "0x%8x:", (int) me);
strcat(name, "worker0");
me->n_threads = n_threads;
// initializations
for (unsigned int i = 0; i < me->n_threads; i++) {
me->stack[i] = NULL;
me->thread[i] = 0;
me->context[i].id = i;
me->context[i].pool = me;
}
// initialize job queue
me->n_pending = 0;
me->n_jobs = 0;
me->next_job = 0;
me->seqn = 0;
me->killed = 0;
// launch the workers
qurt_thread_attr_t attr;
qurt_thread_attr_init(&attr);
for (unsigned int i = 0; i < me->n_threads; i++) {
// set up stack
me->stack[i] = mem_blob;
mem_blob += stack_size;
qurt_thread_attr_set_stack_addr(&attr, me->stack[i]);
qurt_thread_attr_set_stack_size(&attr, stack_size);
// set up name
qurt_thread_attr_set_name(&attr, name);
name[17] = (name[17] + 1);
// name threads context:worker0, context:worker1, .. (recycle at 9, but num threads should be less than that anyway)
if (name[17] > '9') {
name[17] = '0';
}
// set up priority - by default, match the creating thread's prio
int prio = qurt_thread_get_priority(qurt_thread_get_id());
if (prio < 1) {
prio = 1;
}
if (prio > LOWEST_USABLE_QURT_PRIO) {
prio = LOWEST_USABLE_QURT_PRIO;
}
qurt_thread_attr_set_priority(&attr, prio);
// launch
err = qurt_thread_create(&me->thread[i], &attr, worker_pool_main, (void *) &me->context[i]);
if (err) {
FARF(ERROR, "Could not launch worker threads!");
worker_pool_release((worker_pool_context_t *) &me);
return AEE_EQURTTHREADCREATE;
}
}
*context = (worker_pool_context_t *) me;
return AEE_SUCCESS;
}
AEEResult worker_pool_init(worker_pool_context_t * context, uint32_t n_threads) {
return worker_pool_init_with_stack_size(context, n_threads, WORKER_THREAD_STACK_SZ);
}
// clean up worker pool
void worker_pool_release(worker_pool_context_t * context) {
worker_pool_t * me = (worker_pool_t *) *context;
// if no worker pool exists, return error.
if (NULL == me) {
return;
}
atomic_store(&me->killed, 1);
atomic_fetch_add(&me->seqn, 1);
qurt_futex_wake(&me->seqn, me->n_threads);
// de-initializations
for (unsigned int i = 0; i < me->n_threads; i++) {
if (me->thread[i]) {
int status;
(void) qurt_thread_join(me->thread[i], &status);
}
}
// free allocated memory (were allocated as a single buffer starting at stack[0])
if (me->stack[0]) {
free(me->stack[0]);
}
*context = NULL;
}
// run jobs
AEEResult worker_pool_run_jobs(worker_pool_context_t context, worker_pool_job_t * job, unsigned int n) {
worker_pool_t * me = (worker_pool_t *) context;
if (NULL == me) {
FARF(ERROR, "worker-pool: invalid context");
return AEE_EBADPARM;
}
if (n > me->n_threads) {
FARF(ERROR, "worker-pool: invalid number of jobs %u for n-threads %u", n, me->n_threads);
return AEE_EBADPARM;
}
memcpy(me->job, job, sizeof(worker_pool_job_t) * n);
if (n > 1) {
atomic_store(&me->next_job, 1);
atomic_store(&me->n_jobs, n);
atomic_store(&me->n_pending, n - 1);
// wake up workers
atomic_fetch_add(&me->seqn, 1);
qurt_futex_wake(&me->seqn, n - 1);
}
// main thread runs job #0
me->job[0].func(n, 0, me->job[0].data);
if (n > 1) {
while (atomic_load(&me->n_pending))
;
}
return 0;
}
// run func
AEEResult worker_pool_run_func(worker_pool_context_t context, worker_callback_t func, void * data, unsigned int n) {
worker_pool_job_t job[n];
for (unsigned int i = 0; i < n; i++) {
job[i].func = func;
job[i].data = data;
}
return worker_pool_run_jobs(context, job, n);
}
AEEResult worker_pool_set_thread_priority(worker_pool_context_t context, unsigned int prio) {
worker_pool_t * me = (worker_pool_t *) context;
// if no worker pool exists, return error.
if (!me) {
return AEE_ENOMORE;
}
int result = AEE_SUCCESS;
if (prio < 1) {
prio = 1;
}
if (prio > LOWEST_USABLE_QURT_PRIO) {
prio = LOWEST_USABLE_QURT_PRIO;
}
for (unsigned int i = 0; i < me->n_threads; i++) {
int res = qurt_thread_set_priority(me->thread[i], (unsigned short) prio);
if (0 != res) {
result = AEE_EBADPARM;
FARF(ERROR, "QURT failed to set priority of thread %d, ERROR = %d", me->thread[i], res);
}
}
return result;
}
AEEResult worker_pool_retrieve_thread_id(worker_pool_context_t context, unsigned int * tids) {
worker_pool_t * me = (worker_pool_t *) context;
if (!me) {
FARF(ERROR, "worker-pool: invalid context");
return AEE_EBADPARM;
;
}
for (int i = 0; i < me->n_threads; i++) {
tids[i] = me->thread[i];
}
return AEE_SUCCESS;
}
AEEResult worker_pool_get_thread_priority(worker_pool_context_t context, unsigned int * prio) {
worker_pool_t * me = (worker_pool_t *) context;
if (!me) {
FARF(ERROR, "worker-pool: invalid context");
return AEE_EBADPARM;
}
int priority = qurt_thread_get_priority(me->thread[0]);
if (priority > 0) {
*prio = priority;
return 0;
} else {
*prio = 0;
return AEE_EBADSTATE;
}
}

View File

@ -0,0 +1,57 @@
#ifndef HTP_WORKER_POOL_H
#define HTP_WORKER_POOL_H
// MACRO enables function to be visible in shared-library case.
#define WORKERPOOL_API __attribute__((visibility("default")))
#include <AEEStdDef.h>
#include <AEEStdErr.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/// signature of callbacks to be invoked by worker threads
typedef void (*worker_callback_t)(unsigned int n, unsigned int i, void *);
/// Typedef of worker_pool context
typedef void * worker_pool_context_t;
/// descriptor for requested callback
typedef struct {
worker_callback_t func;
void * data;
} worker_pool_job_t;
/// Maximum supported number of worker threads.
#define MAX_NUM_WORKERS 10
// Initialize worker pool.
WORKERPOOL_API AEEResult worker_pool_init(worker_pool_context_t * context, uint32_t n_threads);
// Initialize worker pool with custom stack size
WORKERPOOL_API AEEResult worker_pool_init_with_stack_size(worker_pool_context_t * context,
uint32_t n_threads,
uint32_t stack_size);
// Kill worker threads and release worker pool resources
WORKERPOOL_API void worker_pool_release(worker_pool_context_t * context);
// Run jobs with the worker pool.
WORKERPOOL_API AEEResult worker_pool_run_jobs(worker_pool_context_t context, worker_pool_job_t * job, unsigned int n);
WORKERPOOL_API AEEResult worker_pool_run_func(worker_pool_context_t context,
worker_callback_t func,
void * data,
unsigned int n);
WORKERPOOL_API AEEResult worker_pool_set_thread_priority(worker_pool_context_t context, unsigned int prio);
WORKERPOOL_API AEEResult worker_pool_get_thread_priority(worker_pool_context_t context, unsigned int * prio);
WORKERPOOL_API AEEResult worker_pool_retrieve_thread_id(worker_pool_context_t context, unsigned int * tids);
#ifdef __cplusplus
}
#endif
#endif // #ifndef HTP_WORKER_POOL_H

View File

@ -28,8 +28,10 @@ if (CXX_IS_HIPCC)
" Prefer setting the HIP compiler directly. See README for details.") " Prefer setting the HIP compiler directly. See README for details.")
endif() endif()
else() else()
# Forward AMDGPU_TARGETS to CMAKE_HIP_ARCHITECTURES. # Forward (AMD)GPU_TARGETS to CMAKE_HIP_ARCHITECTURES.
if (AMDGPU_TARGETS AND NOT CMAKE_HIP_ARCHITECTURES) if(GPU_TARGETS AND NOT CMAKE_HIP_ARCHITECTURES)
set(CMAKE_HIP_ARCHITECTURES ${GPU_TARGETS})
elseif(AMDGPU_TARGETS AND NOT CMAKE_HIP_ARCHITECTURES)
set(CMAKE_HIP_ARCHITECTURES ${AMDGPU_TARGETS}) set(CMAKE_HIP_ARCHITECTURES ${AMDGPU_TARGETS})
endif() endif()
cmake_minimum_required(VERSION 3.21) cmake_minimum_required(VERSION 3.21)

View File

@ -565,14 +565,23 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x) #define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x) #define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
static inline int32_t ggml_node_get_use_count(const struct ggml_cgraph * cgraph, int node_idx) {
const struct ggml_tensor * node = cgraph->nodes[node_idx];
size_t hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node);
if (!ggml_bitset_get(cgraph->visited_hash_set.used, hash_pos)) {
return 0;
}
return cgraph->use_counts[hash_pos];
}
// return true if the node's results are only used by N other nodes // return true if the node's results are only used by N other nodes
// and can be fused into their calculations. // and can be fused into their calculations.
static inline bool ggml_node_has_n_uses(const struct ggml_cgraph * cgraph, int node_idx, int32_t n_uses) { static inline bool ggml_node_has_n_uses(const struct ggml_cgraph * cgraph, int node_idx, int32_t n_uses) {
const struct ggml_tensor * node = cgraph->nodes[node_idx]; const struct ggml_tensor * node = cgraph->nodes[node_idx];
// check the use count against how many we're replacing // check the use count against how many we're replacing
size_t hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node); if (ggml_node_get_use_count(cgraph, node_idx) != n_uses) {
if (!ggml_bitset_get(cgraph->visited_hash_set.used, hash_pos) || cgraph->use_counts[hash_pos] != n_uses) {
return false; return false;
} }
@ -638,6 +647,36 @@ static inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx
return ggml_can_fuse_ext(cgraph, idxs, ops, num_ops); return ggml_can_fuse_ext(cgraph, idxs, ops, num_ops);
} }
GGML_API bool ggml_can_fuse_subgraph_ext(const struct ggml_cgraph * cgraph,
const int * node_idxs,
int count,
const enum ggml_op * ops,
const int * outputs,
int num_outputs);
// Returns true if the subgraph formed by {node_idxs} can be fused
// checks whethers all nodes which are not part of outputs can be elided
// by checking if their num_uses are confined to the subgraph
static inline bool ggml_can_fuse_subgraph(const struct ggml_cgraph * cgraph,
int node_idx,
int count,
const enum ggml_op * ops,
const int * outputs,
int num_outputs) {
GGML_ASSERT(count < 32);
if (node_idx + count > cgraph->n_nodes) {
return false;
}
int idxs[32];
for (int i = 0; i < count; ++i) {
idxs[i] = node_idx + i;
}
return ggml_can_fuse_subgraph_ext(cgraph, idxs, count, ops, outputs, num_outputs);
}
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
@ -651,6 +690,13 @@ inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::
return ggml_can_fuse(cgraph, node_idx, ops.begin(), (int)ops.size()); return ggml_can_fuse(cgraph, node_idx, ops.begin(), (int)ops.size());
} }
inline bool ggml_can_fuse_subgraph(const struct ggml_cgraph * cgraph,
int start_idx,
std::initializer_list<enum ggml_op> ops,
std::initializer_list<int> outputs = {}) {
return ggml_can_fuse_subgraph(cgraph, start_idx, ops.size(), ops.begin(), outputs.begin(), outputs.size());
}
// expose GGUF internals for test code // expose GGUF internals for test code
GGML_API size_t gguf_type_size(enum gguf_type type); GGML_API size_t gguf_type_size(enum gguf_type type);
GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params); GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);

View File

@ -1406,6 +1406,31 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_1d(ggml_met
return res; return res;
} }
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_2d(ggml_metal_library_t lib, const ggml_tensor * op) {
assert(op->op == GGML_OP_CONV_TRANSPOSE_2D);
GGML_ASSERT(ggml_is_contiguous(op->src[0]));
GGML_ASSERT(ggml_is_contiguous(op->src[1]));
GGML_ASSERT(op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
GGML_ASSERT(op->type == GGML_TYPE_F32);
char base[256];
char name[256];
snprintf(base, 256, "kernel_conv_transpose_2d_%s_%s", ggml_type_name(op->src[0]->type), ggml_type_name(op->src[1]->type));
snprintf(name, 256, "%s", base);
ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
if (res) {
return res;
}
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
return res;
}
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_upscale(ggml_metal_library_t lib, const ggml_tensor * op) { ggml_metal_pipeline_t ggml_metal_library_get_pipeline_upscale(ggml_metal_library_t lib, const ggml_tensor * op) {
assert(op->op == GGML_OP_UPSCALE); assert(op->op == GGML_OP_UPSCALE);

View File

@ -130,6 +130,7 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_norm (ggml_me
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rope (ggml_metal_library_t lib, const struct ggml_tensor * op); ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rope (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_im2col (ggml_metal_library_t lib, const struct ggml_tensor * op); ggml_metal_pipeline_t ggml_metal_library_get_pipeline_im2col (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_1d (ggml_metal_library_t lib, const struct ggml_tensor * op); ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_2d (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_upscale (ggml_metal_library_t lib, const struct ggml_tensor * op); ggml_metal_pipeline_t ggml_metal_library_get_pipeline_upscale (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad (ggml_metal_library_t lib, const struct ggml_tensor * op); ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad_reflect_1d (ggml_metal_library_t lib, const struct ggml_tensor * op); ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad_reflect_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);

View File

@ -653,6 +653,11 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
case GGML_OP_SCALE: case GGML_OP_SCALE:
case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_CONV_TRANSPOSE_1D:
return true; return true;
case GGML_OP_CONV_TRANSPOSE_2D:
return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]) &&
(op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32) &&
op->src[1]->type == GGML_TYPE_F32 &&
op->type == GGML_TYPE_F32;
case GGML_OP_CLAMP: case GGML_OP_CLAMP:
return op->src[0]->type == GGML_TYPE_F32; return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_SQR: case GGML_OP_SQR:

View File

@ -514,6 +514,19 @@ typedef struct {
uint64_t nb1; uint64_t nb1;
} ggml_metal_kargs_conv_transpose_1d; } ggml_metal_kargs_conv_transpose_1d;
typedef struct {
int32_t IC;
int32_t IH;
int32_t IW;
int32_t KH;
int32_t KW;
int32_t OC;
int32_t s0;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
} ggml_metal_kargs_conv_transpose_2d;
typedef struct { typedef struct {
uint64_t ofs0; uint64_t ofs0;
uint64_t ofs1; uint64_t ofs1;

View File

@ -368,6 +368,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
{ {
n_fuse = ggml_metal_op_conv_transpose_1d(ctx, idx); n_fuse = ggml_metal_op_conv_transpose_1d(ctx, idx);
} break; } break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
n_fuse = ggml_metal_op_conv_transpose_2d(ctx, idx);
} break;
case GGML_OP_UPSCALE: case GGML_OP_UPSCALE:
{ {
n_fuse = ggml_metal_op_upscale(ctx, idx); n_fuse = ggml_metal_op_upscale(ctx, idx);
@ -3118,6 +3122,62 @@ int ggml_metal_op_conv_transpose_1d(ggml_metal_op_t ctx, int idx) {
return 1; return 1;
} }
int ggml_metal_op_conv_transpose_2d(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
ggml_metal_library_t lib = ctx->lib;
ggml_metal_encoder_t enc = ctx->enc;
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
const int32_t s0 = ((const int32_t *)(op->op_params))[0];
const int32_t IC = op->src[1]->ne[2];
const int32_t IH = op->src[1]->ne[1];
const int32_t IW = op->src[1]->ne[0];
const int32_t KH = op->src[0]->ne[1];
const int32_t KW = op->src[0]->ne[0];
const int32_t OW = op->ne[0];
const int32_t OH = op->ne[1];
const int32_t OC = op->ne[2];
ggml_metal_kargs_conv_transpose_2d args = {
/*.IC =*/ IC,
/*.IH =*/ IH,
/*.IW =*/ IW,
/*.KH =*/ KH,
/*.KW =*/ KW,
/*.OC =*/ OC,
/*.s0 =*/ s0,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_conv_transpose_2d(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
// Metal requires buffer size to be multiple of 16 bytes
const size_t smem = GGML_PAD(KW * KH * sizeof(float), 16);
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
ggml_metal_encoder_dispatch_threadgroups(enc, OW, OH, OC, KW, KH, 1);
return 1;
}
int ggml_metal_op_upscale(ggml_metal_op_t ctx, int idx) { int ggml_metal_op_upscale(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx); ggml_tensor * op = ctx->node(idx);

View File

@ -71,6 +71,7 @@ int ggml_metal_op_norm (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_rope (ggml_metal_op_t ctx, int idx); int ggml_metal_op_rope (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_im2col (ggml_metal_op_t ctx, int idx); int ggml_metal_op_im2col (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_conv_transpose_1d (ggml_metal_op_t ctx, int idx); int ggml_metal_op_conv_transpose_1d (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_conv_transpose_2d (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_upscale (ggml_metal_op_t ctx, int idx); int ggml_metal_op_upscale (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_pad (ggml_metal_op_t ctx, int idx); int ggml_metal_op_pad (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_pad_reflect_1d (ggml_metal_op_t ctx, int idx); int ggml_metal_op_pad_reflect_1d (ggml_metal_op_t ctx, int idx);

View File

@ -4179,6 +4179,97 @@ kernel void kernel_conv_transpose_1d<half>(
uint3 tgpig[[threadgroup_position_in_grid]], uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]]); uint3 tgpg[[threadgroups_per_grid]]);
typedef void (conv_transpose_2d_t)(
constant ggml_metal_kargs_conv_transpose_2d & args,
device const float * src0,
device const float * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]]);
template <typename T>
kernel void kernel_conv_transpose_2d(
constant ggml_metal_kargs_conv_transpose_2d & args,
device const T * src0,
device const float * src1,
device char * dst,
threadgroup float * shared_sum [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t out_x = tgpig[0];
const int64_t out_y = tgpig[1];
const int64_t out_c = tgpig[2];
const int64_t kw = tpitg[0];
const int64_t kh = tpitg[1];
float v = 0.0f;
for (int64_t in_c = 0; in_c < args.IC; in_c++) {
int64_t in_y = out_y - kh;
if (in_y < 0 || in_y % args.s0) continue;
in_y /= args.s0;
if (in_y >= args.IH) continue;
int64_t in_x = out_x - kw;
if (in_x < 0 || in_x % args.s0) continue;
in_x /= args.s0;
if (in_x >= args.IW) continue;
const int64_t input_idx = (args.IW * args.IH) * in_c + (args.IW) * in_y + in_x;
const int64_t kernel_idx = (args.KH * args.KW * args.OC) * in_c + (args.KH * args.KW) * out_c + (args.KW) * kh + kw;
v += (float)src0[kernel_idx] * src1[input_idx];
}
const uint tid = tpitg.y * ntg.x + tpitg.x;
shared_sum[tid] = v;
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tid == 0) {
float total = 0.0f;
const uint num_threads = ntg.x * ntg.y;
for (uint i = 0; i < num_threads; i++) {
total += shared_sum[i];
}
device float * dst_ptr = (device float *) (dst + out_x*args.nb0 + out_y * args.nb1 + out_c*args.nb2);
dst_ptr[0] = total;
}
}
template [[host_name("kernel_conv_transpose_2d_f32_f32")]]
kernel void kernel_conv_transpose_2d<float>(
constant ggml_metal_kargs_conv_transpose_2d & args,
device const float * src0,
device const float * src1,
device char * dst,
threadgroup float * shared_sum [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]);
template [[host_name("kernel_conv_transpose_2d_f16_f32")]]
kernel void kernel_conv_transpose_2d<half>(
constant ggml_metal_kargs_conv_transpose_2d & args,
device const half * src0,
device const float * src1,
device char * dst,
threadgroup float * shared_sum [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]);
kernel void kernel_upscale_f32( kernel void kernel_upscale_f32(
constant ggml_metal_kargs_upscale & args, constant ggml_metal_kargs_upscale & args,
device const char * src0, device const char * src0,

View File

@ -91,6 +91,8 @@ set(GGML_OPENCL_KERNELS
mul_mv_id_q8_0_f32_flat mul_mv_id_q8_0_f32_flat
mul_mv_id_mxfp4_f32 mul_mv_id_mxfp4_f32
mul_mv_id_mxfp4_f32_flat mul_mv_id_mxfp4_f32_flat
gemm_moe_mxfp4_f32
gemv_moe_mxfp4_f32
mul_mm_f32_f32_l4_lm mul_mm_f32_f32_l4_lm
mul_mm_f16_f32_l4_lm mul_mm_f16_f32_l4_lm
mul_mm_q8_0_f32_l4_lm mul_mm_q8_0_f32_l4_lm

View File

@ -15,13 +15,12 @@
#include <CL/cl.h> #include <CL/cl.h>
#include <inttypes.h>
#include <string.h> #include <string.h>
#include <cstddef> #include <cstddef>
#include <cstdint> #include <cstdint>
#include <atomic>
#include <fstream> #include <fstream>
#include <limits>
#include <vector> #include <vector>
#include <string> #include <string>
#include <cmath> #include <cmath>
@ -402,6 +401,7 @@ struct ggml_backend_opencl_context {
cl_program program_conv_2d_f32; cl_program program_conv_2d_f32;
cl_program program_conv_2d_f16_f32; cl_program program_conv_2d_f16_f32;
cl_program program_tsembd; cl_program program_tsembd;
cl_program program_gemv_moe_mxfp4_f32, program_gemm_moe_mxfp4_f32;
cl_program program_mul_mv_id_q4_0_f32_8x_flat; cl_program program_mul_mv_id_q4_0_f32_8x_flat;
cl_program program_mul_mv_id_q8_0_f32, program_mul_mv_id_q8_0_f32_flat; cl_program program_mul_mv_id_q8_0_f32, program_mul_mv_id_q8_0_f32_flat;
cl_program program_mul_mv_id_mxfp4_f32; cl_program program_mul_mv_id_mxfp4_f32;
@ -452,7 +452,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_mul_mat_f16_f32_tiled; cl_kernel kernel_mul_mat_f16_f32_tiled;
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v; cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0; cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
cl_kernel kernel_convert_block_mxfp4, kernel_restore_block_mxfp4; cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans;
cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0; cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0;
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat; cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
cl_kernel kernel_convert_block_q4_0_noshuffle; cl_kernel kernel_convert_block_q4_0_noshuffle;
@ -475,6 +475,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_conv_2d_f32; cl_kernel kernel_conv_2d_f32;
cl_kernel kernel_conv_2d_f16_f32; cl_kernel kernel_conv_2d_f16_f32;
cl_kernel kernel_timestep_embedding; cl_kernel kernel_timestep_embedding;
cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat; cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
cl_kernel kernel_mul_mv_id_q8_0_f32, kernel_mul_mv_id_q8_0_f32_flat; cl_kernel kernel_mul_mv_id_q8_0_f32, kernel_mul_mv_id_q8_0_f32_flat;
cl_kernel kernel_mul_mv_id_mxfp4_f32; cl_kernel kernel_mul_mv_id_mxfp4_f32;
@ -531,25 +532,17 @@ struct ggml_backend_opencl_context {
} }
// Dump a csv // Dump a csv
float total_kernel_time = 0; fprintf(fperf, "op name, kernel name, exec duration (ms), global size, local size, output size\n");
fprintf(fperf, "op name, kernel name, queued duration (ms), submit duration(ms), exec duration (ms), complete duration (ms), total duration (ms), global size, local size, output size\n");
for (const ProfilingInfo & info : profiling_info) { for (const ProfilingInfo & info : profiling_info) {
total_kernel_time += info.cmd_duration_ns/1.e6f; fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
fprintf(fperf, "%s,%s,%f,%f,%f,%f,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
info.op_name.c_str(), info.kernel_name.c_str(), info.op_name.c_str(), info.kernel_name.c_str(),
info.cmd_queued_duration_ns/1.e6f,
info.cmd_submit_duration_ns/1.e6f,
info.cmd_duration_ns/1.e6f, info.cmd_duration_ns/1.e6f,
info.cmd_complete_duration_ns/1.e6f,
info.cmd_total_duration_ns/1.e6f,
info.global_size[0], info.global_size[1], info.global_size[2], info.global_size[0], info.global_size[1], info.global_size[2],
info.local_size[0], info.local_size[1], info.local_size[2], info.local_size[0], info.local_size[1], info.local_size[2],
info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]); info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
} }
fclose(fperf); fclose(fperf);
GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
// Dump a simple chrome trace // Dump a simple chrome trace
FILE* ftrace = fopen("cl_trace.json", "w"); FILE* ftrace = fopen("cl_trace.json", "w");
if (!ftrace) { if (!ftrace) {
@ -559,14 +552,14 @@ struct ggml_backend_opencl_context {
fprintf(ftrace, "[\n"); fprintf(ftrace, "[\n");
for (const ProfilingInfo & info : profiling_info) { for (const ProfilingInfo & info : profiling_info) {
fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n", fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
info.kernel_name.c_str(), info.cmd_queued/1000); info.kernel_name.c_str(), info.cmd_queued/1000);
fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n", fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
info.kernel_name.c_str(), info.cmd_submit/1000); info.kernel_name.c_str(), info.cmd_submit/1000);
fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n", fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
info.kernel_name.c_str(), info.cmd_start/1000); info.kernel_name.c_str(), info.cmd_start/1000);
fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n", fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
info.kernel_name.c_str(), info.cmd_end/1000); info.kernel_name.c_str(), info.cmd_end/1000);
} }
fclose(ftrace); fclose(ftrace);
@ -777,6 +770,8 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err)); CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err)); CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err)); CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4_trans", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4_trans", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err)); CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err)); CL_CHECK((backend_ctx->kernel_convert_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err)); CL_CHECK((backend_ctx->kernel_restore_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err));
@ -1991,6 +1986,42 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err)); CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
GGML_LOG_CONT("."); GGML_LOG_CONT(".");
} }
std::string CL_moe_compile_opts = std::string("-cl-std=") + opencl_c_std +
" -cl-mad-enable "
" -cl-fast-relaxed-math";
// gemv_moe_mxfp4_f32
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "gemv_moe_mxfp4_f32.cl.h"
};
#else
const std::string kernel_src = read_file("gemv_moe_mxfp4_f32.cl");
#endif
backend_ctx->program_gemv_moe_mxfp4_f32 =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
CL_CHECK((backend_ctx->kernel_gemv_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemv_moe_mxfp4_f32, "kernel_gemv_moe_mxfp4_f32", &err), err));
GGML_LOG_CONT(".");
}
// gemm_moe_mxfp4_f32
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "gemm_moe_mxfp4_f32.cl.h"
};
#else
const std::string kernel_src = read_file("gemm_moe_mxfp4_f32.cl");
#endif
backend_ctx->program_gemm_moe_mxfp4_f32 =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
CL_CHECK((backend_ctx->kernel_gemm_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemm_moe_mxfp4_f32, "kernel_gemm_moe_mxfp4_f32", &err), err));
GGML_LOG_CONT(".");
}
#endif // GGML_OPENCL_USE_ADRENO_KERNELS #endif // GGML_OPENCL_USE_ADRENO_KERNELS
GGML_LOG_CONT("\n"); GGML_LOG_CONT("\n");
} }
@ -3299,6 +3330,12 @@ inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, c
tensor->ne[2] == 1 && tensor->ne[3] == 1; tensor->ne[2] == 1 && tensor->ne[3] == 1;
} }
inline bool use_adreno_moe_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
GGML_UNUSED(backend_ctx);
int ne01 = tensor->ne[1];
return ((strstr(tensor->name, "ffn") != NULL) || (strstr(tensor->name, "as") != NULL)) && (ne01 % 64 == 0);
}
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device); ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
@ -3601,14 +3638,39 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
CL_BUFFER_CREATE_TYPE_REGION, &region, &err); CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
CL_CHECK(err); CL_CHECK(err);
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
if (use_adreno_moe_kernels(backend_ctx, tensor)) {
cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4_trans;
int ne00 = tensor->ne[0];
int ne01 = tensor->ne[1];
int ne02 = tensor->ne[2];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01));
size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
size_t local_work_size[3] = {64, 2, 1};
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clReleaseMemObject(data_device));
tensor->extra = extra;
return;
}
#endif
cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4; cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device)); CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q)); CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e)); CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1}; size_t global_work_size[3] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
size_t local_work_size[] = {64, 1, 1}; size_t local_work_size[3] = {64, 1, 1};
cl_event evt; cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
@ -3624,7 +3686,6 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
{ extra->q } { extra->q }
}; };
extra->q_img = clCreateImage(context, CL_MEM_READ_ONLY, &img_format_q, &img_desc_q, NULL, &err); extra->q_img = clCreateImage(context, CL_MEM_READ_ONLY, &img_format_q, &img_desc_q, NULL, &err);
tensor->extra = extra; tensor->extra = extra;
return; return;
@ -3751,6 +3812,33 @@ static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer,
ggml_nbytes(tensor), NULL, &err); ggml_nbytes(tensor), NULL, &err);
CL_CHECK(err); CL_CHECK(err);
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
if (use_adreno_moe_kernels(backend_ctx, tensor)) {
cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4_trans;
int ne00 = tensor->ne[0];
int ne01 = tensor->ne[1];
int ne02 = tensor->ne[2];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_int), &ne01));
size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
size_t local_work_size[3] = {64, 2, 1};
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
global_work_size, local_work_size, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clEnqueueReadBuffer(
queue, data_device, CL_TRUE, offset,
size, data, 0, NULL, NULL));
CL_CHECK(clReleaseMemObject(data_device));
return;
}
#endif
cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4; cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q)); CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e)); CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
@ -7553,6 +7641,9 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
const int ne21 = src2->ne[1]; const int ne21 = src2->ne[1];
const cl_ulong nb21 = src2->nb[1]; const cl_ulong nb21 = src2->nb[1];
const cl_ulong nb20 = src2->nb[0];
UNUSED(nb20);
const int ne0 = dst->ne[0]; const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1]; const int ne1 = dst->ne[1];
@ -7692,6 +7783,105 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
break; break;
} }
case GGML_TYPE_MXFP4: { case GGML_TYPE_MXFP4: {
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
if (use_adreno_moe_kernels(backend_ctx, src0)) {
cl_int status;
size_t local_size[3] = {64, 2, 1};
size_t global_size[3] = {64, 2, 1};
cl_mem src1_sub_buffer, buf_src1_image, buf_src2;
int tile_size = 320;
if (ne12 == 1) { // for gemv
kernel = backend_ctx->kernel_gemv_moe_mxfp4_f32;
// create a sub_buffer for src2
cl_buffer_region region;
region.origin = offset2;
region.size = ne20 * ne21 * sizeof(int);
buf_src2 = clCreateSubBuffer(extra2->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
CL_CHECK(status);
// set thread grid
global_size[0] = static_cast<size_t>(ne01);
global_size[1] = 4;
global_size[2] = static_cast<size_t>(ne20);
local_size[1] = 4;
} else { // for gemm
kernel = backend_ctx->kernel_gemm_moe_mxfp4_f32;
// preprocess router table
int num_tiles_per_expert = (ne01 + tile_size - 1) / tile_size;
void * host_src2_reorder = malloc(ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short));
void * host_src2 = malloc(ne21 * nb21);
CL_CHECK(clEnqueueReadBuffer(backend_ctx->queue, extra2->data_device, CL_TRUE, offset2, ne21 * nb21, host_src2, 0, NULL, NULL));
int total_experts = nb21 / nb20;
int out_idx = 0;
for (int i_expert = 0; i_expert < ne02; i_expert++) {
for (int i_tile = 0; i_tile < num_tiles_per_expert; i_tile++) {
for (int j = 0; j < ne21; j++) {
for (int i = 0; i < ne20; i++) {
int expert = ((int *)host_src2)[j * total_experts + i];
if (i_expert == expert) {
((short *)host_src2_reorder)[out_idx] = static_cast<short>(expert);
((short *)host_src2_reorder)[out_idx + 1] = static_cast<short>(j * ne11 + (i % ne11));
((short *)host_src2_reorder)[out_idx + 2] = static_cast<short>(j * ne20 + i);
((short *)host_src2_reorder)[out_idx + 3] = static_cast<short>(i_tile);
out_idx += 4;
}
}
}
}
}
buf_src2 = clCreateBuffer(backend_ctx->context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short), host_src2_reorder, &status);
CL_CHECK(status);
// set thread grid
global_size[0] = static_cast<size_t>(tile_size);
global_size[2] = static_cast<size_t>(ne20 * ne21 * num_tiles_per_expert);
}
// create a sub_buffer for src1
cl_buffer_region region;
region.origin = offset1;
region.size = ne10 * ne11 * ne12 * sizeof(float);
src1_sub_buffer = clCreateSubBuffer(extra1->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
CL_CHECK(status);
// create image for src1
cl_image_format image_format_buf_src1 = {CL_RGBA, CL_FLOAT};
cl_image_desc image_desc_buf_src1 = {CL_MEM_OBJECT_IMAGE1D_BUFFER, static_cast<size_t>(ne10 * ne11 * ne12 / 4), 0,0,0,0,0,0,0, {src1_sub_buffer}};
buf_src1_image = clCreateImage(backend_ctx->context, CL_MEM_READ_ONLY, &image_format_buf_src1, &image_desc_buf_src1, NULL, &status);
CL_CHECK(status);
// Set kernel args
int arg_idx = 0;
CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->q));
CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->e));
CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src1_image));
CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src2));
CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne01));
if (ne12 == 1) {
CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne11));
} else {
CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &tile_size));
}
// launch kernel
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_size, local_size, dst);
// deallocate sub buffers and images
CL_CHECK(clReleaseMemObject(src1_sub_buffer));
CL_CHECK(clReleaseMemObject(buf_src1_image));
CL_CHECK(clReleaseMemObject(buf_src2));
return;
} // else fallback to generic kernel
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
#ifdef GGML_OPENCL_SOA_Q #ifdef GGML_OPENCL_SOA_Q
kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat; kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat;

View File

@ -147,6 +147,27 @@ kernel void kernel_convert_block_mxfp4(
} }
} }
kernel void kernel_convert_block_mxfp4_trans(
global struct block_mxfp4 * src0,
__global uint4 * dst_q,
__global uchar * dst_e,
uint ne00,
uint ne01
) {
int i00 = get_global_id(1);
uint i01 = get_global_id(0);
uint i02 = get_global_id(2);
uint ne00_blk = ne00 / QK_MXFP4;
uint src_blk_offset = i00 + i01 * ne00_blk + i02 * ne00_blk * ne01;
uint dst_blk_offset = i01 + i00 * ne01 + i02 * ne00_blk * ne01;
global struct block_mxfp4 * b = src0 + src_blk_offset;
dst_q[dst_blk_offset] = ((global uint4 *)(&(b->qs[0])))[0];
dst_e[dst_blk_offset] = b->e;
}
kernel void kernel_restore_block_mxfp4( kernel void kernel_restore_block_mxfp4(
global uchar * src_q, global uchar * src_q,
global half * src_e, global half * src_e,
@ -162,6 +183,27 @@ kernel void kernel_restore_block_mxfp4(
} }
} }
kernel void kernel_restore_block_mxfp4_trans(
__global uint4 * src_q,
__global uchar * src_e,
global struct block_mxfp4 * dst,
uint ne00,
uint ne01
) {
int i00 = get_global_id(1);
uint i01 = get_global_id(0);
uint i02 = get_global_id(2);
uint ne00_blk = ne00 / QK_MXFP4;
uint src_blk_offset = i01 + i00 * ne01 + i02 * ne00_blk * ne01;
uint dst_blk_offset = i00 + i01 * ne00_blk + i02 * ne00_blk * ne01;
global struct block_mxfp4 * b = dst + dst_blk_offset;
((global uint4 *)(&(b->qs[0])))[0] = src_q[src_blk_offset];
b->e = src_e[src_blk_offset];
}
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
// block_q8_0 // block_q8_0
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------

View File

@ -0,0 +1,162 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define QK_MXFP4 32
#define N_SIMDGROUP 2
#define SIMDGROUP_WIDTH 64
static inline half8 mxfp4_to_fp16_packed8(ushort2 fp4x8) { //, ushort 0x0E00, ushort 0x8000) {
ushort2 fp16_packed_a_0, fp16_packed_b_0, bias_a, bias_b, sign_a, sign_b;
fp16_packed_a_0.lo = (fp4x8.s0 << 9) & 0x0E00;
fp16_packed_a_0.hi = (fp4x8.s0 << 5) & 0x0E00;
fp16_packed_b_0.lo = (fp4x8.s0 << 1) & 0x0E00;
fp16_packed_b_0.hi = (fp4x8.s0 >> 3) & 0x0E00;
bias_a.lo = (fp16_packed_a_0.lo != 0) ? 0x3800 : 0x0;
bias_a.hi = (fp16_packed_a_0.hi != 0) ? 0x3800 : 0x0;
bias_b.lo = (fp16_packed_b_0.lo != 0) ? 0x3800 : 0x0;
bias_b.hi = (fp16_packed_b_0.hi != 0) ? 0x3800 : 0x0;
fp16_packed_a_0.lo = (fp16_packed_a_0.lo != 0x0200) ? fp16_packed_a_0.lo : 0x0;
fp16_packed_a_0.hi = (fp16_packed_a_0.hi != 0x0200) ? fp16_packed_a_0.hi : 0x0;
fp16_packed_b_0.lo = (fp16_packed_b_0.lo != 0x0200) ? fp16_packed_b_0.lo : 0x0;
fp16_packed_b_0.hi = (fp16_packed_b_0.hi != 0x0200) ? fp16_packed_b_0.hi : 0x0;
sign_a.lo = (fp4x8.s0 << 12) & 0x8000;
sign_a.hi = (fp4x8.s0 << 8) & 0x8000;
sign_b.lo = (fp4x8.s0 << 4) & 0x8000;
sign_b.hi = fp4x8.s0 & 0x8000;
fp16_packed_a_0 = sign_a + bias_a + fp16_packed_a_0;
fp16_packed_b_0 = sign_b + bias_b + fp16_packed_b_0;
ushort2 fp16_packed_a_1, fp16_packed_b_1;
fp16_packed_a_1.lo = (fp4x8.s1 << 9) & 0x0E00;
fp16_packed_a_1.hi = (fp4x8.s1 << 5) & 0x0E00;
fp16_packed_b_1.lo = (fp4x8.s1 << 1) & 0x0E00;
fp16_packed_b_1.hi = (fp4x8.s1 >> 3) & 0x0E00;
bias_a.lo = (fp16_packed_a_1.lo != 0) ? 0x3800 : 0x0;
bias_a.hi = (fp16_packed_a_1.hi != 0) ? 0x3800 : 0x0;
bias_b.lo = (fp16_packed_b_1.lo != 0) ? 0x3800 : 0x0;
bias_b.hi = (fp16_packed_b_1.hi != 0) ? 0x3800 : 0x0;
fp16_packed_a_1.lo = (fp16_packed_a_1.lo != 0x0200) ? fp16_packed_a_1.lo : 0x0;
fp16_packed_a_1.hi = (fp16_packed_a_1.hi != 0x0200) ? fp16_packed_a_1.hi : 0x0;
fp16_packed_b_1.lo = (fp16_packed_b_1.lo != 0x0200) ? fp16_packed_b_1.lo : 0x0;
fp16_packed_b_1.hi = (fp16_packed_b_1.hi != 0x0200) ? fp16_packed_b_1.hi : 0x0;
sign_a.lo = (fp4x8.s1 << 12) & 0x8000;
sign_a.hi = (fp4x8.s1 << 8) & 0x8000;
sign_b.lo = (fp4x8.s1 << 4) & 0x8000;
sign_b.hi = fp4x8.s1 & 0x8000;
fp16_packed_a_1 = sign_a + bias_a + fp16_packed_a_1;
fp16_packed_b_1 = sign_b + bias_b + fp16_packed_b_1;
return as_half8((ushort8)(fp16_packed_a_0, fp16_packed_b_0, fp16_packed_a_1, fp16_packed_b_1));
}
static inline float e8m0_to_fp32(uchar x) {
int bits;
bits = (x == 0) ? 0x00400000 : ((uint) x << 23);
return as_float(bits);
}
__attribute__((qcom_reqd_sub_group_size("half")))
__kernel void kernel_gemm_moe_mxfp4_f32(
__global uint4 * src0_q,
__global uchar * src0_e,
__read_only image1d_buffer_t src1,
__global ushort4 * src2,
__global float * dst,
ulong offsetd,
int ne00,
int ne01,
int tile_size
) {
uint i01 = get_global_id(0);
uint i20 = get_global_id(2);
uint sgid = get_local_id(1);
uint slid = get_sub_group_local_id();
ushort4 router = src2[i20];
ushort expert_id = router.x;
ushort i11 = router.y;
ushort i1 = router.z;
ushort tile_id = router.w;
if (tile_id * tile_size + i01 >= ne01) { // handle edge case when ne01 is not multiple of tile_size
return;
}
uint expert_offset = expert_id * ne00 * ne01 / 32;
uint tile_offset = expert_offset + tile_id * tile_size + i01;
__private float sum = 0.0f; // each thread calculate partial sum of one output
// loop along ne00 in block granularity, skip 4 blocks every iter
for (uint ib00 = sgid; ib00 < (ne00 / QK_MXFP4); ib00 += N_SIMDGROUP) {
// load one block of q
uint4 regQ = src0_q[tile_offset + ib00 * ne01];
// convert 8 fp4 to fp16
half8 fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s0));
uint offset = i11 * ne00 / 4 + ib00 * 8;
float4 shared_y4;
shared_y4 = read_imagef(src1, (offset + 0));
float4 acc = shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6);
shared_y4 = read_imagef(src1, (offset + 4));
acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7);
fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s1));
shared_y4 = read_imagef(src1, (offset + 1));
acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6);
shared_y4 = read_imagef(src1, (offset + 5));
acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7);
fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s2));
shared_y4 = read_imagef(src1, (offset + 2));
acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6);
shared_y4 = read_imagef(src1, (offset + 6));
acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7);
fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s3));
shared_y4 = read_imagef(src1, (offset + 3));
acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6);
shared_y4 = read_imagef(src1, (offset + 7));
acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7);
uchar regE = src0_e[tile_offset + ib00 * ne01];
sum += e8m0_to_fp32(regE) * ((acc.s0 + acc.s1) + (acc.s2 + acc.s3));
}
// reduction in local memory, assumes #subgroups=4
__local float reduceLM[SIMDGROUP_WIDTH * (N_SIMDGROUP - 1)];
if (sgid == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = sum;
// if (sgid == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = sum;
// if (sgid == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = sum;
barrier(CLK_LOCAL_MEM_FENCE);
if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 0 + slid];
// if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 1 + slid];
// if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 2 + slid];
// 1 outputs per thread in subgroup 0
if (sgid == 0) {
dst = dst + (offsetd >> 2);
dst[i01 + tile_id * tile_size + i1 * ne01] = sum;
}
}

View File

@ -0,0 +1,156 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define QK_MXFP4 32
#define N_SIMDGROUP 4
#define SIMDGROUP_WIDTH 64
static inline half8 mxfp4_to_fp16_packed8(ushort2 fp4x8) { //, ushort 0x0E00, ushort 0x8000) {
ushort2 fp16_packed_a_0, fp16_packed_b_0, bias_a, bias_b, sign_a, sign_b;
fp16_packed_a_0.lo = (fp4x8.s0 << 9) & 0x0E00;
fp16_packed_a_0.hi = (fp4x8.s0 << 5) & 0x0E00;
fp16_packed_b_0.lo = (fp4x8.s0 << 1) & 0x0E00;
fp16_packed_b_0.hi = (fp4x8.s0 >> 3) & 0x0E00;
bias_a.lo = (fp16_packed_a_0.lo != 0) ? 0x3800 : 0x0;
bias_a.hi = (fp16_packed_a_0.hi != 0) ? 0x3800 : 0x0;
bias_b.lo = (fp16_packed_b_0.lo != 0) ? 0x3800 : 0x0;
bias_b.hi = (fp16_packed_b_0.hi != 0) ? 0x3800 : 0x0;
fp16_packed_a_0.lo = (fp16_packed_a_0.lo != 0x0200) ? fp16_packed_a_0.lo : 0x0;
fp16_packed_a_0.hi = (fp16_packed_a_0.hi != 0x0200) ? fp16_packed_a_0.hi : 0x0;
fp16_packed_b_0.lo = (fp16_packed_b_0.lo != 0x0200) ? fp16_packed_b_0.lo : 0x0;
fp16_packed_b_0.hi = (fp16_packed_b_0.hi != 0x0200) ? fp16_packed_b_0.hi : 0x0;
sign_a.lo = (fp4x8.s0 << 12) & 0x8000;
sign_a.hi = (fp4x8.s0 << 8) & 0x8000;
sign_b.lo = (fp4x8.s0 << 4) & 0x8000;
sign_b.hi = fp4x8.s0 & 0x8000;
fp16_packed_a_0 = sign_a + bias_a + fp16_packed_a_0;
fp16_packed_b_0 = sign_b + bias_b + fp16_packed_b_0;
ushort2 fp16_packed_a_1, fp16_packed_b_1;
fp16_packed_a_1.lo = (fp4x8.s1 << 9) & 0x0E00;
fp16_packed_a_1.hi = (fp4x8.s1 << 5) & 0x0E00;
fp16_packed_b_1.lo = (fp4x8.s1 << 1) & 0x0E00;
fp16_packed_b_1.hi = (fp4x8.s1 >> 3) & 0x0E00;
bias_a.lo = (fp16_packed_a_1.lo != 0) ? 0x3800 : 0x0;
bias_a.hi = (fp16_packed_a_1.hi != 0) ? 0x3800 : 0x0;
bias_b.lo = (fp16_packed_b_1.lo != 0) ? 0x3800 : 0x0;
bias_b.hi = (fp16_packed_b_1.hi != 0) ? 0x3800 : 0x0;
fp16_packed_a_1.lo = (fp16_packed_a_1.lo != 0x0200) ? fp16_packed_a_1.lo : 0x0;
fp16_packed_a_1.hi = (fp16_packed_a_1.hi != 0x0200) ? fp16_packed_a_1.hi : 0x0;
fp16_packed_b_1.lo = (fp16_packed_b_1.lo != 0x0200) ? fp16_packed_b_1.lo : 0x0;
fp16_packed_b_1.hi = (fp16_packed_b_1.hi != 0x0200) ? fp16_packed_b_1.hi : 0x0;
sign_a.lo = (fp4x8.s1 << 12) & 0x8000;
sign_a.hi = (fp4x8.s1 << 8) & 0x8000;
sign_b.lo = (fp4x8.s1 << 4) & 0x8000;
sign_b.hi = fp4x8.s1 & 0x8000;
fp16_packed_a_1 = sign_a + bias_a + fp16_packed_a_1;
fp16_packed_b_1 = sign_b + bias_b + fp16_packed_b_1;
return as_half8((ushort8)(fp16_packed_a_0, fp16_packed_b_0, fp16_packed_a_1, fp16_packed_b_1));
}
static inline float e8m0_to_fp32(uchar x) {
int bits;
bits = (x == 0) ? 0x00400000 : ((uint) x << 23);
return as_float(bits);
}
__attribute__((qcom_reqd_sub_group_size("half")))
__kernel void kernel_gemv_moe_mxfp4_f32(
__global uint4 * src0_q,
__global uchar * src0_e,
__read_only image1d_buffer_t src1,
__global uint * src2,
__global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne11
) {
uint i01 = get_global_id(0);
uint i20 = get_global_id(2);
uint sgid = get_local_id(1);
uint slid = get_sub_group_local_id();
uint i11 = i20 % ne11;
uint expert_id = src2[i20];
uint expert_offset = expert_id * ne00 * ne01 / 32;
__private float sum = 0.0f; // each thread calculate partial sum of one output
// loop along ne00 in block granularity, skip 4 blocks every iter
for (uint ib00 = sgid; ib00 < (ne00 / QK_MXFP4); ib00 += N_SIMDGROUP) {
// load one block of q
uint4 regQ = src0_q[expert_offset + ib00 * ne01 + i01];
uint offset = i11 * ne00 / 4 + ib00 * 8;
half8 fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s0));
float4 shared_y4;
shared_y4 = read_imagef(src1, (offset + 0));
float4 acc = shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6);
shared_y4 = read_imagef(src1, (offset + 4));
acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7);
fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s1));
shared_y4 = read_imagef(src1, (offset + 1));
acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6);
shared_y4 = read_imagef(src1, (offset + 5));
acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7);
fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s2));
shared_y4 = read_imagef(src1, (offset + 2));
acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6);
shared_y4 = read_imagef(src1, (offset + 6));
acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7);
fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s3));
shared_y4 = read_imagef(src1, (offset + 3));
acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6);
shared_y4 = read_imagef(src1, (offset + 7));
acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7);
uchar regE = src0_e[ib00 * ne01 + i01 + expert_offset];
sum += e8m0_to_fp32(regE) * ((acc.s0 + acc.s1) + (acc.s2 + acc.s3));
}
// reduction in local memory, assumes #subgroups=4
__local float reduceLM[SIMDGROUP_WIDTH * (N_SIMDGROUP - 1)];
if (sgid == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = sum;
if (sgid == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = sum;
if (sgid == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = sum;
barrier(CLK_LOCAL_MEM_FENCE);
if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 0 + slid];
if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 1 + slid];
if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 2 + slid];
// 1 outputs per thread in subgroup 0
if (sgid == 0) {
dst = dst + (offsetd >> 2);
dst[i01 + i20 * ne01] = sum;
}
}

View File

@ -939,6 +939,7 @@ public:
bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response); bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
bool init_tensor(const rpc_msg_init_tensor_req & request); bool init_tensor(const rpc_msg_init_tensor_req & request);
bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response); bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response);
bool get_device_memory(const rpc_msg_get_device_memory_req & request, rpc_msg_get_device_memory_rsp & response);
private: private:
bool get_cached_file(uint64_t hash, std::vector<uint8_t> & data); bool get_cached_file(uint64_t hash, std::vector<uint8_t> & data);
@ -1458,6 +1459,20 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
return true; return true;
} }
bool rpc_server::get_device_memory(const rpc_msg_get_device_memory_req & request, rpc_msg_get_device_memory_rsp & response) {
uint32_t dev_id = request.device;
if (dev_id >= backends.size()) {
return false;
}
size_t free, total;
ggml_backend_dev_t dev = ggml_backend_get_device(backends[dev_id]);
ggml_backend_dev_memory(dev, &free, &total);
response.free_mem = free;
response.total_mem = total;
LOG_DBG("[%s] device: %u, free_mem: %" PRIu64 ", total_mem: %" PRIu64 "\n", __func__, dev_id, response.free_mem, response.total_mem);
return true;
}
rpc_server::~rpc_server() { rpc_server::~rpc_server() {
for (auto buffer : buffers) { for (auto buffer : buffers) {
ggml_backend_buffer_free(buffer); ggml_backend_buffer_free(buffer);
@ -1465,7 +1480,7 @@ rpc_server::~rpc_server() {
} }
static void rpc_serve_client(const std::vector<ggml_backend_t> & backends, const char * cache_dir, static void rpc_serve_client(const std::vector<ggml_backend_t> & backends, const char * cache_dir,
sockfd_t sockfd, const std::vector<size_t> & free_mem, const std::vector<size_t> & total_mem) { sockfd_t sockfd) {
rpc_server server(backends, cache_dir); rpc_server server(backends, cache_dir);
uint8_t cmd; uint8_t cmd;
if (!recv_data(sockfd, &cmd, 1)) { if (!recv_data(sockfd, &cmd, 1)) {
@ -1689,15 +1704,10 @@ static void rpc_serve_client(const std::vector<ggml_backend_t> & backends, const
if (!recv_msg(sockfd, &request, sizeof(request))) { if (!recv_msg(sockfd, &request, sizeof(request))) {
return; return;
} }
auto dev_id = request.device; rpc_msg_get_device_memory_rsp response;
if (dev_id >= backends.size()) { if (!server.get_device_memory(request, response)) {
return; return;
} }
rpc_msg_get_device_memory_rsp response;
response.free_mem = free_mem[dev_id];
response.total_mem = total_mem[dev_id];
LOG_DBG("[get_device_mem] device: %u, free_mem: %" PRIu64 ", total_mem: %" PRIu64 "\n", dev_id,
response.free_mem, response.total_mem);
if (!send_msg(sockfd, &response, sizeof(response))) { if (!send_msg(sockfd, &response, sizeof(response))) {
return; return;
} }
@ -1712,15 +1722,12 @@ static void rpc_serve_client(const std::vector<ggml_backend_t> & backends, const
} }
void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir, void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
size_t n_threads, size_t n_devices, size_t n_threads, size_t n_devices, ggml_backend_dev_t * devices) {
ggml_backend_dev_t * devices, size_t * free_mem, size_t * total_mem) { if (n_devices == 0 || devices == nullptr) {
if (n_devices == 0 || devices == nullptr || free_mem == nullptr || total_mem == nullptr) {
fprintf(stderr, "Invalid arguments to ggml_backend_rpc_start_server\n"); fprintf(stderr, "Invalid arguments to ggml_backend_rpc_start_server\n");
return; return;
} }
std::vector<ggml_backend_t> backends; std::vector<ggml_backend_t> backends;
std::vector<size_t> free_mem_vec(free_mem, free_mem + n_devices);
std::vector<size_t> total_mem_vec(total_mem, total_mem + n_devices);
printf("Starting RPC server v%d.%d.%d\n", printf("Starting RPC server v%d.%d.%d\n",
RPC_PROTO_MAJOR_VERSION, RPC_PROTO_MAJOR_VERSION,
RPC_PROTO_MINOR_VERSION, RPC_PROTO_MINOR_VERSION,
@ -1730,8 +1737,10 @@ void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir
printf("Devices:\n"); printf("Devices:\n");
for (size_t i = 0; i < n_devices; i++) { for (size_t i = 0; i < n_devices; i++) {
auto dev = devices[i]; auto dev = devices[i];
size_t free, total;
ggml_backend_dev_memory(dev, &free, &total);
printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev),
total_mem[i] / 1024 / 1024, free_mem[i] / 1024 / 1024); total / 1024 / 1024, free / 1024 / 1024);
auto backend = ggml_backend_dev_init(dev, nullptr); auto backend = ggml_backend_dev_init(dev, nullptr);
if (!backend) { if (!backend) {
fprintf(stderr, "Failed to create backend for device %s\n", dev->iface.get_name(dev)); fprintf(stderr, "Failed to create backend for device %s\n", dev->iface.get_name(dev));
@ -1775,7 +1784,7 @@ void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir
} }
printf("Accepted client connection\n"); printf("Accepted client connection\n");
fflush(stdout); fflush(stdout);
rpc_serve_client(backends, cache_dir, client_socket->fd, free_mem_vec, total_mem_vec); rpc_serve_client(backends, cache_dir, client_socket->fd);
printf("Client connection closed\n"); printf("Client connection closed\n");
fflush(stdout); fflush(stdout);
} }

View File

@ -37,5 +37,7 @@
#include "softmax.hpp" #include "softmax.hpp"
#include "tsembd.hpp" #include "tsembd.hpp"
#include "wkv.hpp" #include "wkv.hpp"
#include "pad_reflect_1d.hpp"
#endif // GGML_SYCL_BACKEND_HPP #endif // GGML_SYCL_BACKEND_HPP

View File

@ -150,6 +150,26 @@ static __dpct_inline__ T op_clamp(T x, float min_val, float max_val) {
return x < static_cast<T>(min_val) ? static_cast<T>(min_val) : (x > static_cast<T>(max_val) ? static_cast<T>(max_val) : x); return x < static_cast<T>(min_val) ? static_cast<T>(min_val) : (x > static_cast<T>(max_val) ? static_cast<T>(max_val) : x);
} }
template<typename T>
static __dpct_inline__ T op_floor(T x) {
return sycl::floor(x);
}
template<typename T>
static __dpct_inline__ T op_ceil(T x) {
return sycl::ceil(x);
}
template<typename T>
static __dpct_inline__ T op_round(T x) {
return sycl::round(x);
}
template<typename T>
static __dpct_inline__ T op_trunc(T x) {
return sycl::trunc(x);
}
template<typename T> template<typename T>
static void unary_op_sgn_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { static void unary_op_sgn_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) { SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
@ -304,6 +324,34 @@ static void unary_op_clamp_kernel(const T * x, T * dst, const int k, const sycl:
} }
} }
template<typename T>
static void unary_op_floor_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_floor(x[i]);
}
}
template<typename T>
static void unary_op_ceil_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_ceil(x[i]);
}
}
template<typename T>
static void unary_op_round_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_round(x[i]);
}
}
template<typename T>
static void unary_op_trunc_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_trunc(x[i]);
}
}
template<typename T> template<typename T>
static void upscale(const T *x, T *dst, const int nb00, const int nb01, static void upscale(const T *x, T *dst, const int nb00, const int nb01,
const int nb02, const int nb03, const int ne10, const int ne11, const int nb02, const int nb03, const int ne10, const int ne11,
@ -397,6 +445,14 @@ static void acc_f32_sycl(const float *x, const float *y, float *dst,
}); });
} }
template<typename T>
static void arange_kernel(T * dst, const int k, T start, T step,
const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = start + static_cast<T>(i) * step;
}
}
template<typename T> template<typename T>
static void upscale_sycl(const T *x, T *dst, const int nb00, const int nb01, static void upscale_sycl(const T *x, T *dst, const int nb00, const int nb01,
const int nb02, const int nb03, const int ne10, const int ne11, const int nb02, const int nb03, const int ne10, const int ne11,
@ -565,6 +621,25 @@ static inline void dispatch_ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx
} }
static inline void ggml_sycl_op_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float start, stop, step;
memcpy(&start, dst->op_params, sizeof(float));
memcpy(&stop, (float *) dst->op_params + 1, sizeof(float));
memcpy(&step, (float *) dst->op_params + 2, sizeof(float));
dpct::queue_ptr stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
float * dst_ptr = (float *)dst->data;
const int k = (int)ggml_nelements(dst);
const int num_blocks = ceil_div(k, SYCL_ARANGE_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_ARANGE_BLOCK_SIZE),
sycl::range<1>(SYCL_ARANGE_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
arange_kernel(dst_ptr, k, start, step, item_ct1);
});
}
} // namespace ggml_sycl_detail } // namespace ggml_sycl_detail
@ -870,6 +945,58 @@ static inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tens
}, min_val, max_val); }, min_val, max_val);
} }
static inline void ggml_sycl_op_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_floor_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_ceil_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_round_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_trunc_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { static inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32); GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32);
@ -1090,3 +1217,28 @@ void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_geglu_quick(ctx, dst); ggml_sycl_op_geglu_quick(ctx, dst);
} }
void ggml_sycl_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/0);
ggml_sycl_detail::ggml_sycl_op_arange(ctx, dst);
}
void ggml_sycl_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_floor(ctx, dst);
}
void ggml_sycl_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_ceil(ctx, dst);
}
void ggml_sycl_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_round(ctx, dst);
}
void ggml_sycl_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_trunc(ctx, dst);
}

View File

@ -80,5 +80,11 @@ void ggml_sycl_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif // GGML_SYCL_ELEMENTWISE_HPP #endif // GGML_SYCL_ELEMENTWISE_HPP

View File

@ -30,6 +30,9 @@
#include <regex> #include <regex>
#include <sycl/sycl.hpp> #include <sycl/sycl.hpp>
#if defined(GGML_SYCL_GRAPH) && SYCL_EXT_ONEAPI_ASYNC_MEMORY_ALLOC
# include <sycl/ext/oneapi/experimental/async_alloc/async_alloc.hpp>
#endif
#include <sycl/half_type.hpp> #include <sycl/half_type.hpp>
#include "ggml-sycl.h" #include "ggml-sycl.h"
@ -42,6 +45,7 @@
#include "ggml-sycl/presets.hpp" #include "ggml-sycl/presets.hpp"
#include "ggml-sycl/gemm.hpp" #include "ggml-sycl/gemm.hpp"
#include "ggml-sycl/set_rows.hpp" #include "ggml-sycl/set_rows.hpp"
#include "ggml-sycl/set.hpp"
#include "ggml-sycl/sycl_hw.hpp" #include "ggml-sycl/sycl_hw.hpp"
#include "ggml-sycl/getrows.hpp" #include "ggml-sycl/getrows.hpp"
#include "ggml-sycl/quantize.hpp" #include "ggml-sycl/quantize.hpp"
@ -53,6 +57,7 @@ int g_ggml_sycl_disable_optimize = 0;
int g_ggml_sycl_disable_graph = 0; int g_ggml_sycl_disable_graph = 0;
int g_ggml_sycl_disable_dnn = 0; int g_ggml_sycl_disable_dnn = 0;
int g_ggml_sycl_prioritize_dmmv = 0; int g_ggml_sycl_prioritize_dmmv = 0;
int g_ggml_sycl_use_async_mem_op = 0;
static ggml_sycl_device_info ggml_sycl_init() { static ggml_sycl_device_info ggml_sycl_init() {
ggml_sycl_device_info info = {}; ggml_sycl_device_info info = {};
@ -236,7 +241,20 @@ static void ggml_check_sycl() try {
fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__); fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
#endif #endif
*/ */
// Currently, we only use async malloc / free when graphs are enabled as it is required for the calls to be
// properly recorded. As this SYCL extension matures it may be beneficial to enable as the default path and in
// other places.
#if defined(GGML_SYCL_GRAPH) && SYCL_EXT_ONEAPI_ASYNC_MEMORY_ALLOC
g_ggml_sycl_use_async_mem_op = !g_ggml_sycl_disable_graph;
if (g_ggml_sycl_use_async_mem_op) {
for (unsigned int i = 0; i < dpct::dev_mgr::instance().device_count(); ++i) {
if (!dpct::dev_mgr::instance().get_device(i).has(sycl::aspect::ext_oneapi_async_memory_alloc)) {
g_ggml_sycl_use_async_mem_op = 0;
break;
}
}
}
#endif
if (CHECK_TRY_ERROR(g_all_sycl_device_count = if (CHECK_TRY_ERROR(g_all_sycl_device_count =
dpct::dev_mgr::instance().device_count()) != 0) { dpct::dev_mgr::instance().device_count()) != 0) {
initialized = true; initialized = true;
@ -2151,6 +2169,30 @@ inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor *
sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream); sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
} }
inline void ggml_sycl_op_mean(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
const int64_t ncols = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
main_stream->parallel_for(
sycl::range<1>(nrows),
[=](sycl::id<1> row) {
dst_dd[row] /= ncols;
}
);
}
inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_I32); GGML_ASSERT(dst->type == GGML_TYPE_I32);
@ -3006,19 +3048,51 @@ static bool ggml_sycl_supports_dmmv(enum ggml_type type) {
} }
} }
// Helper functions to unify device memory allocation for both async and sync paths
static inline void * sycl_ext_malloc_device(dpct::queue_ptr stream, size_t size) {
bool use_async = g_ggml_sycl_use_async_mem_op;
#if defined(GGML_SYCL_GRAPH) && SYCL_EXT_ONEAPI_ASYNC_MEMORY_ALLOC
if (use_async) {
return syclex::async_malloc(*stream, sycl::usm::alloc::device, size);
}
#else
// If async allocation extension is not available, use_async should always be false.
GGML_ASSERT(!use_async);
#endif
return sycl::malloc(size, *stream, sycl::usm::alloc::device);
}
static inline void sycl_ext_free(dpct::queue_ptr stream, void * ptr) {
bool use_async = g_ggml_sycl_use_async_mem_op;
#if defined(GGML_SYCL_GRAPH) && SYCL_EXT_ONEAPI_ASYNC_MEMORY_ALLOC
if (use_async) {
syclex::async_free(*stream, ptr);
return;
}
#else
// If async allocation extension is not available, use_async should always be false.
GGML_ASSERT(!use_async);
#endif
sycl::free(ptr, *stream);
}
static void reorder_qw_q4_0(uint8_t * data_device, const int ncols, const int nrows, size_t size, size_t offset, static void reorder_qw_q4_0(uint8_t * data_device, const int ncols, const int nrows, size_t size, size_t offset,
dpct::queue_ptr stream) { dpct::queue_ptr stream) {
auto * tmp_buf = sycl::malloc_shared<uint8_t>(size, *stream); uint8_t * tmp_buf = static_cast<uint8_t *>(sycl_ext_malloc_device(stream, size));
SYCL_CHECK(
CHECK_TRY_ERROR((*stream).memcpy(tmp_buf, data_device, size) sycl::event copy_event;
.wait())); SYCL_CHECK(CHECK_TRY_ERROR(copy_event = stream->memcpy(tmp_buf, data_device, size)));
if (!g_ggml_sycl_use_async_mem_op) {
copy_event.wait();
}
GGML_ASSERT((size % sizeof(block_q4_0) == 0)); GGML_ASSERT((size % sizeof(block_q4_0) == 0));
GGML_ASSERT((offset % sizeof(block_q4_0) == 0)); GGML_ASSERT((offset % sizeof(block_q4_0) == 0));
int offset_blks = offset / sizeof(block_q4_0); int offset_blks = offset / sizeof(block_q4_0);
auto qs_ptr = data_device + offset_blks * QK4_0 / 2; auto qs_ptr = data_device + offset_blks * QK4_0 / 2;
auto d_ptr = (sycl::half*)(qs_ptr + ncols * nrows / 2) + offset_blks; auto d_ptr = (sycl::half*)(qs_ptr + ncols * nrows / 2) + offset_blks;
stream->parallel_for( auto reorder_event = stream->parallel_for(
size / sizeof(block_q4_0), size / sizeof(block_q4_0),
[=](auto i) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { [=](auto i) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
const block_q4_0* x = (const block_q4_0*)tmp_buf; const block_q4_0* x = (const block_q4_0*)tmp_buf;
@ -3029,9 +3103,11 @@ static void reorder_qw_q4_0(uint8_t * data_device, const int ncols, const int nr
*(qs_ptr + ib * QK4_0 / 2 + j) = x[ib].qs[j]; *(qs_ptr + ib * QK4_0 / 2 + j) = x[ib].qs[j];
} }
*(d_ptr + ib) = x[ib].d; *(d_ptr + ib) = x[ib].d;
}).wait_and_throw(); });
if (!g_ggml_sycl_use_async_mem_op) {
sycl::free(tmp_buf, *stream); reorder_event.wait_and_throw();
}
sycl_ext_free(stream, tmp_buf);
} }
static void reorder_qw_q4_k(uint8_t * data_device, size_t size, size_t offset, dpct::queue_ptr stream) { static void reorder_qw_q4_k(uint8_t * data_device, size_t size, size_t offset, dpct::queue_ptr stream) {
@ -3040,14 +3116,19 @@ static void reorder_qw_q4_k(uint8_t * data_device, size_t size, size_t offset, d
const int nblocks = size / sizeof(block_q4_K); const int nblocks = size / sizeof(block_q4_K);
auto * tmp_buf = sycl::malloc_shared<uint8_t>(size, *stream); uint8_t * tmp_buf = static_cast<uint8_t *>(sycl_ext_malloc_device(stream, size));
SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy(tmp_buf, data_device, size).wait()));
sycl::event copy_event;
SYCL_CHECK(CHECK_TRY_ERROR(copy_event = stream->memcpy(tmp_buf, data_device, size)));
if (!g_ggml_sycl_use_async_mem_op) {
copy_event.wait();
}
auto * qs_ptr = data_device; auto * qs_ptr = data_device;
auto * scales_ptr = qs_ptr + QK_K / 2 * nblocks; auto * scales_ptr = qs_ptr + QK_K / 2 * nblocks;
auto * dm_ptr = (sycl::half2 *) (scales_ptr + K_SCALE_SIZE * nblocks); auto * dm_ptr = (sycl::half2 *) (scales_ptr + K_SCALE_SIZE * nblocks);
stream->parallel_for(nblocks, [=](auto i) { auto reorder_event = stream->parallel_for(nblocks, [=](auto i) {
const block_q4_K * x = (const block_q4_K *) tmp_buf; const block_q4_K * x = (const block_q4_K *) tmp_buf;
const int ib = i; const int ib = i;
@ -3060,9 +3141,11 @@ static void reorder_qw_q4_k(uint8_t * data_device, size_t size, size_t offset, d
} }
dm_ptr[ib] = x[ib].dm; dm_ptr[ib] = x[ib].dm;
}).wait_and_throw(); });
if (!g_ggml_sycl_use_async_mem_op) {
sycl::free(tmp_buf, *stream); reorder_event.wait_and_throw();
}
sycl_ext_free(stream, tmp_buf);
} }
static void reorder_qw_q6_k(uint8_t * data_device, size_t size, size_t offset, dpct::queue_ptr stream) { static void reorder_qw_q6_k(uint8_t * data_device, size_t size, size_t offset, dpct::queue_ptr stream) {
@ -3071,42 +3154,46 @@ static void reorder_qw_q6_k(uint8_t * data_device, size_t size, size_t offset, d
const int nblocks = size / sizeof(block_q6_K); const int nblocks = size / sizeof(block_q6_K);
auto * tmp_buf = sycl::malloc_shared<uint8_t>(size, *stream); uint8_t * tmp_buf = static_cast<uint8_t *>(sycl_ext_malloc_device(stream, size));
SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy(tmp_buf, data_device, size).wait()));
sycl::event copy_event;
SYCL_CHECK(CHECK_TRY_ERROR(copy_event = stream->memcpy(tmp_buf, data_device, size)));
if (!g_ggml_sycl_use_async_mem_op) {
copy_event.wait();
}
auto * ql_ptr = data_device; auto * ql_ptr = data_device;
auto * qh_ptr = ql_ptr + (QK_K / 2) * nblocks; auto * qh_ptr = ql_ptr + (QK_K / 2) * nblocks;
auto * scales_ptr = qh_ptr + (QK_K / 4) * nblocks; auto * scales_ptr = qh_ptr + (QK_K / 4) * nblocks;
sycl::half * dm_ptr = (sycl::half *) (scales_ptr + (QK_K / 16) * nblocks); sycl::half * dm_ptr = (sycl::half *) (scales_ptr + (QK_K / 16) * nblocks);
stream auto reorder_event = stream->parallel_for(nblocks, [=](auto i) {
->parallel_for(nblocks, const block_q6_K * x = (const block_q6_K *) tmp_buf;
[=](auto i) { const int ib = i;
const block_q6_K * x = (const block_q6_K *) tmp_buf;
const int ib = i;
const uint8_t * ql = x[ib].ql; const uint8_t * ql = x[ib].ql;
const uint8_t * qh = x[ib].qh; const uint8_t * qh = x[ib].qh;
uint8_t * base_ql_ptr = ql_ptr + (QK_K / 2) * ib; uint8_t * base_ql_ptr = ql_ptr + (QK_K / 2) * ib;
uint8_t * base_qh_ptr = qh_ptr + (QK_K / 4) * ib; uint8_t * base_qh_ptr = qh_ptr + (QK_K / 4) * ib;
uint8_t * base_scales_ptr = scales_ptr + (QK_K / 16) * ib; uint8_t * base_scales_ptr = scales_ptr + (QK_K / 16) * ib;
for (int j = 0; j < QK_K / 2; ++j) { for (int j = 0; j < QK_K / 2; ++j) {
base_ql_ptr[j] = ql[j]; base_ql_ptr[j] = ql[j];
} }
for (int j = 0; j < QK_K / 4; ++j) { for (int j = 0; j < QK_K / 4; ++j) {
base_qh_ptr[j] = qh[j]; base_qh_ptr[j] = qh[j];
} }
for (int j = 0; j < QK_K / 16; ++j) { for (int j = 0; j < QK_K / 16; ++j) {
base_scales_ptr[j] = x[ib].scales[j]; base_scales_ptr[j] = x[ib].scales[j];
} }
dm_ptr[ib] = x[ib].d; dm_ptr[ib] = x[ib].d;
}) });
.wait_and_throw(); if (!g_ggml_sycl_use_async_mem_op) {
reorder_event.wait_and_throw();
sycl::free(tmp_buf, *stream); }
sycl_ext_free(stream, tmp_buf);
} }
static void reorder_qw(const ggml_tensor * src0, dpct::queue_ptr stream) { static void reorder_qw(const ggml_tensor * src0, dpct::queue_ptr stream) {
@ -3535,6 +3622,12 @@ static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor * ds
ggml_sycl_op_sum_rows(ctx, dst); ggml_sycl_op_sum_rows(ctx, dst);
} }
static void ggml_sycl_mean(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_mean(ctx, dst);
}
static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
GGML_ASSERT(ggml_is_contiguous(dst->src[0])); GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
@ -3589,6 +3682,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_OP_GET_ROWS: case GGML_OP_GET_ROWS:
ggml_sycl_get_rows(ctx, dst); ggml_sycl_get_rows(ctx, dst);
break; break;
case GGML_OP_SET:
ggml_sycl_op_set(ctx, dst);
break;
case GGML_OP_SET_ROWS: case GGML_OP_SET_ROWS:
ggml_sycl_op_set_rows(ctx, dst); ggml_sycl_op_set_rows(ctx, dst);
break; break;
@ -3664,6 +3760,18 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_UNARY_OP_ELU: case GGML_UNARY_OP_ELU:
ggml_sycl_elu(ctx, dst); ggml_sycl_elu(ctx, dst);
break; break;
case GGML_UNARY_OP_FLOOR:
ggml_sycl_floor(ctx, dst);
break;
case GGML_UNARY_OP_CEIL:
ggml_sycl_ceil(ctx, dst);
break;
case GGML_UNARY_OP_ROUND:
ggml_sycl_round(ctx, dst);
break;
case GGML_UNARY_OP_TRUNC:
ggml_sycl_trunc(ctx, dst);
break;
default: default:
return false; return false;
} }
@ -3698,6 +3806,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_OP_CONCAT: case GGML_OP_CONCAT:
ggml_sycl_op_concat(ctx, dst); ggml_sycl_op_concat(ctx, dst);
break; break;
case GGML_OP_PAD_REFLECT_1D:
ggml_sycl_op_pad_reflect_1d(ctx,dst);
break;
case GGML_OP_UPSCALE: case GGML_OP_UPSCALE:
ggml_sycl_upscale(ctx, dst); ggml_sycl_upscale(ctx, dst);
break; break;
@ -3784,6 +3895,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
ggml_sycl_sum_rows(ctx, dst); ggml_sycl_sum_rows(ctx, dst);
break; break;
case GGML_OP_MEAN:
ggml_sycl_mean(ctx, dst);
break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
ggml_sycl_argsort(ctx, dst); ggml_sycl_argsort(ctx, dst);
break; break;
@ -3799,6 +3913,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_OP_GATED_LINEAR_ATTN: case GGML_OP_GATED_LINEAR_ATTN:
ggml_sycl_op_gated_linear_attn(ctx, dst); ggml_sycl_op_gated_linear_attn(ctx, dst);
break; break;
case GGML_OP_ARANGE:
ggml_sycl_arange(ctx, dst);
break;
default: default:
return false; return false;
} }
@ -4001,6 +4118,18 @@ static bool check_graph_compatibility(ggml_cgraph * cgraph) {
GGML_LOG_INFO("%s: disabling SYCL graphs due to unsupported node type %s\n", __func__, GGML_LOG_INFO("%s: disabling SYCL graphs due to unsupported node type %s\n", __func__,
ggml_op_name(node_op)); ggml_op_name(node_op));
return false; return false;
case GGML_OP_MUL_MAT:
// We cannot use graphs with ggml_sycl_mul_mat() when SYCL async memory allocation extensions are not available,
// as SYCL malloc / free and host wait calls are not supported when recording to a graph which are all present
// in reordering.
if (!g_ggml_sycl_use_async_mem_op) {
GGML_LOG_INFO(
"%s: disabling SYCL graphs due to unsupported node type when using a compiler without the "
"oneAPI async memory allocation extension "
"%s\n",
__func__, ggml_op_name(node_op));
return false;
}
} }
} }
return true; return true;
@ -4222,6 +4351,10 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_SGN: case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_ABS: case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_ELU: case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_FLOOR:
case GGML_UNARY_OP_CEIL:
case GGML_UNARY_OP_ROUND:
case GGML_UNARY_OP_TRUNC:
#if defined (GGML_SYCL_F16) #if defined (GGML_SYCL_F16)
return ggml_is_contiguous(op->src[0]) && (op->type == op->src[0]->type); return ggml_is_contiguous(op->src[0]) && (op->type == op->src[0]->type);
#else #else
@ -4295,6 +4428,12 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
return false; return false;
} }
} }
case GGML_OP_SET:
return (op->type == GGML_TYPE_F32) &&
(op->src[0] && op->src[1]) &&
(op->src[0]->type == GGML_TYPE_F32) &&
(op->src[1]->type == GGML_TYPE_F32);
case GGML_OP_SET_ROWS: case GGML_OP_SET_ROWS:
{ {
return ((op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16 || return ((op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16 ||
@ -4393,6 +4532,8 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_DIV: case GGML_OP_DIV:
case GGML_OP_REPEAT: case GGML_OP_REPEAT:
return true; return true;
case GGML_OP_PAD_REFLECT_1D:
return ggml_is_contiguous(op->src[0]) && op-> type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_SQR: case GGML_OP_SQR:
case GGML_OP_SQRT: case GGML_OP_SQRT:
case GGML_OP_SIN: case GGML_OP_SIN:
@ -4431,6 +4572,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST; return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_SUM: case GGML_OP_SUM:
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
return ggml_is_contiguous(op->src[0]); return ggml_is_contiguous(op->src[0]);
case GGML_OP_POOL_2D: case GGML_OP_POOL_2D:
@ -4444,6 +4586,8 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_RWKV_WKV7: case GGML_OP_RWKV_WKV7:
case GGML_OP_GATED_LINEAR_ATTN: case GGML_OP_GATED_LINEAR_ATTN:
return true; return true;
case GGML_OP_ARANGE:
return op->type == GGML_TYPE_F32;
default: default:
return false; return false;
} }

View File

@ -0,0 +1,72 @@
#include "pad_reflect_1d.hpp"
void pad_reflect_1d_f32(const float* src,float* dst,
const int64_t ne0, const int64_t ne02, const int p0, const int p1,
const int64_t nb0, const int64_t nb1, const int64_t nb2, const int64_t nb3,
const int64_t nb00, const int64_t nb01, const int64_t nb02, const int64_t nb03,
const sycl::nd_item<3> &item_ct1){
const int i0 = item_ct1.get_group(0) * SYCL_CONCAT_BLOCK_SIZE + item_ct1.get_local_id(0);
const int i1 = item_ct1.get_group(1);
const int g2 = item_ct1.get_group(2);
const int i2 = g2 % ne02;
const int i3 = g2 / ne02;
if (i0 >= p0 + ne0 + p1) return;
int t = i0 - p0;
int period = 2 * ne0 -2;
int m = t % period;
m += (m < 0) * period;
int center = ne0 -1;
int srci0 = center - abs(center - m);
int offest_src = i3*nb3 + i2*nb2 + i1*nb1 + srci0*nb0;
int offest_dst = i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00;
dst[offest_dst] = src[offest_src];
}
void ggml_sycl_op_pad_reflect_1d(ggml_backend_sycl_context& ctx, ggml_tensor* dst){
const ggml_tensor * src0 = dst->src[0];
queue_ptr stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int32_t * opts = (const int32_t *) dst->op_params;
const int p0 = opts[0];
const int p1 = opts[1];
const int64_t ne0 = src0->ne[0];
const int64_t ne00 = dst->ne[0];
const int64_t ne01 = dst->ne[1];
const int64_t ne02 = dst->ne[2];
const int64_t ne03 = dst->ne[3];
const int64_t nb00 = dst->nb[0];
const int64_t nb01 = dst->nb[1];
const int64_t nb02 = dst->nb[2];
const int64_t nb03 = dst->nb[3];
const int64_t nb0 = src0->nb[0];
const int64_t nb1 = src0->nb[1];
const int64_t nb2 = src0->nb[2];
const int64_t nb3 = src0->nb[3];
int num_blocks = (ne00 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
sycl::range<3> global(num_blocks * SYCL_CONCAT_BLOCK_SIZE, ne01, ne02*ne03);
sycl::range<3> local(SYCL_CONCAT_BLOCK_SIZE, 1, 1);
stream->parallel_for(
sycl::nd_range<3>(global,
local),
[=](sycl::nd_item<3> item_ct1) { pad_reflect_1d_f32(
(const float *) src0->data, (float *) dst->data,
ne0, ne02, p0, p1,
nb0, nb1, nb2, nb3,
nb00, nb01, nb02, nb03
, item_ct1);
});
}

View File

@ -0,0 +1,8 @@
#ifndef GGML_SYCL_PAD_REFLECT_1D_HPP
#define GGML_SYCL_PAD_REFLECT_1D_HPP
#include "common.hpp"
void ggml_sycl_op_pad_reflect_1d(ggml_backend_sycl_context& ctx, ggml_tensor* dst);
#endif // GGML_SYCL_PAD_REFLECT_1D_HPP

View File

@ -31,6 +31,7 @@
#define SYCL_SQRT_BLOCK_SIZE 256 #define SYCL_SQRT_BLOCK_SIZE 256
#define SYCL_SIN_BLOCK_SIZE 256 #define SYCL_SIN_BLOCK_SIZE 256
#define SYCL_SQR_BLOCK_SIZE 256 #define SYCL_SQR_BLOCK_SIZE 256
#define SYCL_SET_BLOCK_SIZE 256
#define SYCL_CPY_BLOCK_SIZE 32 #define SYCL_CPY_BLOCK_SIZE 32
#define SYCL_SCALE_BLOCK_SIZE 256 #define SYCL_SCALE_BLOCK_SIZE 256
#define SYCL_CLAMP_BLOCK_SIZE 256 #define SYCL_CLAMP_BLOCK_SIZE 256
@ -49,6 +50,7 @@
#define SYCL_ARGMAX_BLOCK_SIZE 256 #define SYCL_ARGMAX_BLOCK_SIZE 256
#define SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE 256 #define SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE 256
#define SYCL_TIMESTEP_EMBEDDING_BLOCK_SIZE 256 #define SYCL_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
#define SYCL_ARANGE_BLOCK_SIZE 256
// dmmv = dequantize_mul_mat_vec // dmmv = dequantize_mul_mat_vec
#ifndef GGML_SYCL_DMMV_X #ifndef GGML_SYCL_DMMV_X

View File

@ -0,0 +1,73 @@
#include "presets.hpp"
#include "common.hpp"
#include "ggml.h"
#include "set.hpp"
#include <cstdint>
#include <sycl/sycl.hpp>
using namespace sycl;
// Internal function: perform element-wise set operation for each thread
inline void set_f32(const float* src, float* dst,
const int64_t ne0, const int64_t ne1,
const int64_t ne2, const int64_t ne3,
const int64_t nb[3], const int64_t src_nb[3],
const int64_t offset_elem,
const nd_item<1>& item)
{
const size_t idx = item.get_global_id(0);
const size_t total = ne0 * ne1 * ne2 * ne3;
if (idx >= total) return;
// Convert linear index to 4D indices
const size_t i3 = idx / (ne2 * ne1 * ne0);
const size_t rem = idx % (ne2 * ne1 * ne0);
const size_t i2 = rem / (ne1 * ne0);
const size_t rem2 = rem % (ne1 * ne0);
const size_t i1 = rem2 / ne0;
const size_t i0 = rem2 % ne0;
// Compute source and destination indices and copy
dst[i0 + i1*nb[0] + i2*nb[1] + i3*nb[2] + offset_elem] =
src[i0 + i1*src_nb[0] + i2*src_nb[1] + i3*src_nb[2]];
}
// Main function: prepare GPU queue and launch parallel_for
void ggml_sycl_op_set(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
const ggml_tensor* src0 = dst->src[0];
const ggml_tensor* src1 = dst->src[1];
// Ensure shapes and types are compatible
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
GGML_ASSERT(dst->type == src0->type && src0->type == src1->type && dst->type == GGML_TYPE_F32);
const int32_t* opts = (const int32_t*) dst->op_params;
const int64_t nb[3] = {opts[0]/sizeof(float), opts[1]/sizeof(float), opts[2]/sizeof(float)};
const int64_t offset_elem = opts[3] / sizeof(float);
const bool inplace = opts[4];
float* dst_ptr = (float*) dst->data;
const float* src0_ptr = (const float*) src0->data;
const float* src1_ptr = (const float*) src1->data;
queue_ptr stream = ctx.stream();
// Copy src0 to dst if not inplace
if (!inplace)
stream->memcpy(dst_ptr, src0_ptr, ggml_nbytes(dst));
const int64_t ne[4] = {src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]};
const int64_t src_nb[3] = {src1->nb[1]/sizeof(float), src1->nb[2]/sizeof(float), src1->nb[3]/sizeof(float)};
const size_t total_threads = ne[0]*ne[1]*ne[2]*ne[3];
const size_t grid_size = ((total_threads + SYCL_SET_BLOCK_SIZE - 1) / SYCL_SET_BLOCK_SIZE) * SYCL_SET_BLOCK_SIZE;
// Copy src0 to dst if not inplace
stream->parallel_for(
nd_range<1>(range<1>(grid_size), range<1>(SYCL_SET_BLOCK_SIZE)),
[=](nd_item<1> item) {
set_f32(src1_ptr, dst_ptr,
ne[0], ne[1], ne[2], ne[3],
nb, src_nb, offset_elem, item); }
);
}

View File

@ -0,0 +1,5 @@
#pragma once
#include "backend.hpp"
#include "ggml.h"
void ggml_sycl_op_set(ggml_backend_sycl_context & ctx, ggml_tensor * dst);

View File

@ -385,6 +385,14 @@ enum shader_reduction_mode {
static constexpr uint32_t num_argsort_pipelines = 11; static constexpr uint32_t num_argsort_pipelines = 11;
static constexpr uint32_t max_argsort_cols = 1 << (num_argsort_pipelines-1); static constexpr uint32_t max_argsort_cols = 1 << (num_argsort_pipelines-1);
static constexpr uint32_t num_topk_moe_pipelines = 10;
static constexpr std::array topk_moe_norm{ GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
GGML_OP_SUM_ROWS, GGML_OP_DIV, GGML_OP_RESHAPE };
static constexpr std::array topk_moe { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
GGML_OP_VIEW, GGML_OP_GET_ROWS };
struct vk_device_struct { struct vk_device_struct {
std::recursive_mutex mutex; std::recursive_mutex mutex;
@ -582,6 +590,9 @@ struct vk_device_struct {
vk_pipeline pipeline_pool2d_f32; vk_pipeline pipeline_pool2d_f32;
vk_pipeline pipeline_rwkv_wkv6_f32; vk_pipeline pipeline_rwkv_wkv6_f32;
vk_pipeline pipeline_rwkv_wkv7_f32; vk_pipeline pipeline_rwkv_wkv7_f32;
vk_pipeline pipeline_ssm_scan_f32_d128;
vk_pipeline pipeline_ssm_scan_f32_d256;
vk_pipeline pipeline_ssm_conv_f32;
vk_pipeline pipeline_opt_step_adamw_f32; vk_pipeline pipeline_opt_step_adamw_f32;
vk_pipeline pipeline_opt_step_sgd_f32; vk_pipeline pipeline_opt_step_sgd_f32;
vk_pipeline pipeline_conv2d_f32[CONV_SHAPE_COUNT]; vk_pipeline pipeline_conv2d_f32[CONV_SHAPE_COUNT];
@ -595,6 +606,9 @@ struct vk_device_struct {
vk_pipeline pipeline_flash_attn_split_k_reduce; vk_pipeline pipeline_flash_attn_split_k_reduce;
// [2] is {!norm, norm}
vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][2];
std::vector<vk_pipeline_ref> all_pipelines; std::vector<vk_pipeline_ref> all_pipelines;
std::vector<std::tuple<void*, size_t, vk_buffer>> pinned_memory; std::vector<std::tuple<void*, size_t, vk_buffer>> pinned_memory;
@ -938,6 +952,11 @@ struct vk_op_multi_add_push_constants {
static_assert(MAX_PARAMETER_COUNT == 12); static_assert(MAX_PARAMETER_COUNT == 12);
static_assert(sizeof(vk_op_multi_add_push_constants) <= 256); static_assert(sizeof(vk_op_multi_add_push_constants) <= 256);
struct vk_op_topk_moe_push_constants {
uint32_t n_rows;
uint32_t n_expert_used;
};
struct vk_op_add_id_push_constants { struct vk_op_add_id_push_constants {
uint32_t ne0; uint32_t ne0;
uint32_t ne1; uint32_t ne1;
@ -1087,6 +1106,19 @@ struct vk_op_rwkv_wkv7_push_constants {
uint32_t C; uint32_t C;
uint32_t H; uint32_t H;
}; };
struct vk_op_ssm_scan_push_constants {
uint32_t nb02, nb03, nb12, nb13;
uint32_t nb21, nb22, nb31;
uint32_t nb42, nb43, nb52, nb53;
uint32_t s_off;
uint32_t n_head, d_head, n_group, n_tok;
};
struct vk_op_ssm_conv_push_constants {
uint32_t nb01, nb02;
uint32_t nb11;
uint32_t dst_nb0, dst_nb1, dst_nb2;
uint32_t nc, ncs, nr, n_t, n_s;
};
struct vk_op_conv2d_push_constants { struct vk_op_conv2d_push_constants {
uint32_t Cout; uint32_t Cout;
@ -3591,6 +3623,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv7_f32, "rwkv_wkv7_f32", rwkv_wkv7_f32_len, rwkv_wkv7_f32_data, "main", 8, sizeof(vk_op_rwkv_wkv7_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv7_f32, "rwkv_wkv7_f32", rwkv_wkv7_f32_len, rwkv_wkv7_f32_data, "main", 8, sizeof(vk_op_rwkv_wkv7_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d128, "ssm_scan_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {128, device->subgroup_size, 16}, 1);
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d256, "ssm_scan_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {256, device->subgroup_size, 16}, 1);
ggml_vk_create_pipeline(device, device->pipeline_ssm_conv_f32, "ssm_conv_f32", ssm_conv_f32_len, ssm_conv_f32_data, "main", 3, sizeof(vk_op_ssm_conv_push_constants), {32, 1, 1}, {32}, 1);
ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_opt_step_sgd_f32, "opt_step_sgd_f32", opt_step_sgd_f32_len, opt_step_sgd_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_opt_step_sgd_f32, "opt_step_sgd_f32", opt_step_sgd_f32_len, opt_step_sgd_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
@ -3701,6 +3738,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f16_f32, "conv2d_dw_whcn_f16_f32", conv2d_dw_whcn_f16_f32_len, conv2d_dw_whcn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f16_f32, "conv2d_dw_whcn_f16_f32", conv2d_dw_whcn_f16_f32_len, conv2d_dw_whcn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f16_f32, "conv2d_dw_cwhn_f16_f32", conv2d_dw_cwhn_f16_f32_len, conv2d_dw_cwhn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f16_f32, "conv2d_dw_cwhn_f16_f32", conv2d_dw_cwhn_f16_f32_len, conv2d_dw_cwhn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
for (uint32_t i = 0; i < num_topk_moe_pipelines; ++i) {
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][0], "topk_moe_f32_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0}, 1, true, true);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][1], "topk_moe_f32_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 1}, 1, true, true);
}
for (auto &c : compiles) { for (auto &c : compiles) {
c.wait(); c.wait();
} }
@ -7983,6 +8025,13 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);
GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32); GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32);
if (ctx->num_additional_fused_ops) {
uint32_t idx = (uint32_t)ceilf(log2f(float(dst->ne[0])));
GGML_ASSERT(idx < num_topk_moe_pipelines);
bool with_norm = ctx->num_additional_fused_ops == topk_moe_norm.size() - 1;
return ctx->device->pipeline_topk_moe[idx][with_norm];
}
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) { if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_wg512 : ctx->device->pipeline_soft_max_f32; return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_wg512 : ctx->device->pipeline_soft_max_f32;
} }
@ -8098,6 +8147,21 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_rwkv_wkv7_f32; return ctx->device->pipeline_rwkv_wkv7_f32;
} }
return nullptr; return nullptr;
case GGML_OP_SSM_SCAN:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
const uint32_t d_state = src0->ne[0];
if (d_state == 128) {
return ctx->device->pipeline_ssm_scan_f32_d128;
} else if (d_state == 256) {
return ctx->device->pipeline_ssm_scan_f32_d256;
}
}
return nullptr;
case GGML_OP_SSM_CONV:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_ssm_conv_f32;
}
return nullptr;
case GGML_OP_OPT_STEP_ADAMW: case GGML_OP_OPT_STEP_ADAMW:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_opt_step_adamw_f32; return ctx->device->pipeline_opt_step_adamw_f32;
@ -8592,6 +8656,14 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
} }
} }
break; break;
case GGML_OP_SSM_CONV:
{
const uint32_t nr = src0->ne[1];
const uint32_t n_t = dst->ne[1];
const uint32_t n_s = dst->ne[2];
elements = { nr, n_t, n_s };
}
break;
default: default:
elements = { (uint32_t)ggml_nelements(src0), 1, 1 }; elements = { (uint32_t)ggml_nelements(src0), 1, 1 };
break; break;
@ -9038,6 +9110,117 @@ static void ggml_vk_rwkv_wkv7(ggml_backend_vk_context * ctx, vk_context& subctx,
); );
} }
static void ggml_vk_ssm_scan(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
const ggml_tensor * src3 = dst->src[3];
const ggml_tensor * src4 = dst->src[4];
const ggml_tensor * src5 = dst->src[5];
GGML_ASSERT(dst->buffer != nullptr);
const uint32_t head_dim = src0->ne[1];
const uint32_t n_head = src1->ne[1];
const uint32_t n_group = src4->ne[1];
const uint32_t n_tok = src1->ne[2];
const uint32_t n_seq = src1->ne[3];
bool is_mamba2 = (src3->nb[1] == sizeof(float));
GGML_ASSERT(is_mamba2);
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, dst->op);
GGML_ASSERT(pipeline != nullptr);
if (dryrun) {
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
return;
}
const int64_t s_off = ggml_nelements(src1) * sizeof(float);
const vk_op_ssm_scan_push_constants pc = {
(uint32_t)src0->nb[2], (uint32_t)src0->nb[3],
(uint32_t)src1->nb[2], (uint32_t)src1->nb[3],
(uint32_t)src2->nb[1], (uint32_t)src2->nb[2],
(uint32_t)src3->nb[1],
(uint32_t)src4->nb[2], (uint32_t)src4->nb[3],
(uint32_t)src5->nb[2], (uint32_t)src5->nb[3],
(uint32_t)s_off,
n_head, head_dim, n_group, n_tok
};
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * src_buf_ctxs[GGML_MAX_SRC];
for (int i = 0; i < GGML_MAX_SRC && dst->src[i] != nullptr; i++) {
src_buf_ctxs[i] = (ggml_backend_vk_buffer_context *)dst->src[i]->buffer->context;
}
vk_buffer d_D = nullptr, d_srcs[GGML_MAX_SRC] = { nullptr };
size_t dst_offset = 0, src_offsets[GGML_MAX_SRC] = { 0 };
bool dst_uma = false, srcs_uma[GGML_MAX_SRC] = { false };
if (ctx->device->uma) {
for (int i = 0; i < GGML_MAX_SRC && dst->src[i] != nullptr; i++) {
ggml_vk_host_get(ctx->device, dst->src[i]->data, d_srcs[i], src_offsets[i]);
srcs_uma[i] = d_srcs[i] != nullptr;
}
ggml_vk_host_get(ctx->device, dst->data, d_D, dst_offset);
dst_uma = d_D != nullptr;
}
if (!dst_uma) {
d_D = dst_buf_ctx->dev_buffer;
dst_offset = vk_tensor_offset(dst) + dst->view_offs;
}
for (int i = 0; i < GGML_MAX_SRC && dst->src[i] != nullptr; i++) {
if (!srcs_uma[i]) {
d_srcs[i] = src_buf_ctxs[i]->dev_buffer;
src_offsets[i] = vk_tensor_offset(dst->src[i]) + dst->src[i]->view_offs;
}
}
size_t dst_size = ggml_nbytes(dst);
size_t src_sizes[GGML_MAX_SRC];
for (int i = 0; i < GGML_MAX_SRC && dst->src[i] != nullptr; i++) {
src_sizes[i] = ggml_nbytes(dst->src[i]);
}
std::array<uint32_t, 3> elements;
const int splitH = 16;
const uint32_t num_workgroups_x = CEIL_DIV(n_head * head_dim, splitH);
const uint32_t num_workgroups_y = n_seq;
elements = { num_workgroups_x, num_workgroups_y, 1 };
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {
vk_subbuffer{ d_srcs[0], src_offsets[0], src_sizes[0] },
vk_subbuffer{ d_srcs[1], src_offsets[1], src_sizes[1] },
vk_subbuffer{ d_srcs[2], src_offsets[2], src_sizes[2] },
vk_subbuffer{ d_srcs[3], src_offsets[3], src_sizes[3] },
vk_subbuffer{ d_srcs[4], src_offsets[4], src_sizes[4] },
vk_subbuffer{ d_srcs[5], src_offsets[5], src_sizes[5] },
vk_subbuffer{ d_srcs[6], src_offsets[6], src_sizes[6] },
vk_subbuffer{ d_D, dst_offset, dst_size }
}, pc, elements);
}
static void ggml_vk_ssm_conv(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
ggml_vk_op_f32<vk_op_ssm_conv_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SSM_CONV, {
(uint32_t)src0->nb[1], (uint32_t)src0->nb[2],
(uint32_t)src1->nb[1],
(uint32_t)dst->nb[0], (uint32_t)dst->nb[1], (uint32_t)dst->nb[2],
(uint32_t)src1->ne[0],
(uint32_t)src0->ne[0],
(uint32_t)src0->ne[1],
(uint32_t)dst->ne[1],
(uint32_t)dst->ne[2],
}, dryrun);
}
static void ggml_vk_op_f32_opt_step_adamw(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_push_constants&& pc, bool dryrun = false) { static void ggml_vk_op_f32_opt_step_adamw(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_push_constants&& pc, bool dryrun = false) {
const ggml_tensor * x = dst->src[0]; const ggml_tensor * x = dst->src[0];
const ggml_tensor * g = dst->src[1]; const ggml_tensor * g = dst->src[1];
@ -9434,6 +9617,87 @@ static void ggml_vk_soft_max_back(ggml_backend_vk_context * ctx, vk_context& sub
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX_BACK, { (uint32_t)src0->ne[0], (uint32_t)ggml_nrows(src0), op_params[0], op_params[1] }, dryrun); ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX_BACK, { (uint32_t)src0->ne[0], (uint32_t)ggml_nrows(src0), op_params[0], op_params[1] }, dryrun);
} }
static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_cgraph * cgraph, int node_idx, bool dryrun = false) {
bool with_norm = ctx->num_additional_fused_ops == topk_moe_norm.size() - 1;
ggml_tensor * logits = cgraph->nodes[node_idx + 0]->src[0];
ggml_tensor * weights = with_norm ? cgraph->nodes[node_idx + 8] : cgraph->nodes[node_idx + 4];
ggml_tensor * ids = cgraph->nodes[node_idx + 3];
GGML_ASSERT(logits->type == GGML_TYPE_F32);
GGML_ASSERT(weights->type == GGML_TYPE_F32);
GGML_ASSERT(ids->type == GGML_TYPE_I32);
const int n_experts = logits->ne[0];
const int n_rows = logits->ne[1];
const int n_expert_used = weights->ne[1];
GGML_ASSERT(ids->nb[1] / ggml_type_size(ids->type) == (size_t) n_experts);
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, nullptr, nullptr, nullptr, cgraph->nodes[node_idx], GGML_OP_SOFT_MAX);
if (dryrun) {
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
return;
}
ggml_backend_vk_buffer_context * logits_buf_ctx = (ggml_backend_vk_buffer_context *)logits->buffer->context;
ggml_backend_vk_buffer_context * weights_buf_ctx = (ggml_backend_vk_buffer_context *)weights->buffer->context;
ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
vk_buffer d_logits = nullptr;
size_t logits_buf_offset = 0;
vk_buffer d_weights = nullptr;
size_t weights_buf_offset = 0;
vk_buffer d_ids = nullptr;
size_t ids_buf_offset = 0;
bool logits_uma = false;
bool weights_uma = false;
bool ids_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, logits->data, d_logits, logits_buf_offset);
ggml_vk_host_get(ctx->device, weights->data, d_weights, weights_buf_offset);
ggml_vk_host_get(ctx->device, ids->data, d_ids, ids_buf_offset);
logits_uma = d_logits != nullptr;
weights_uma = d_weights != nullptr;
ids_uma = d_ids != nullptr;
}
if (!logits_uma) {
d_logits = logits_buf_ctx->dev_buffer;
logits_buf_offset = vk_tensor_offset(logits) + logits->view_offs;
GGML_ASSERT(d_logits != nullptr);
}
if (!weights_uma) {
d_weights = weights_buf_ctx->dev_buffer;
weights_buf_offset = vk_tensor_offset(weights) + weights->view_offs;
GGML_ASSERT(d_weights != nullptr);
}
if (!ids_uma) {
d_ids = ids_buf_ctx->dev_buffer;
ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs;
GGML_ASSERT(d_ids != nullptr);
}
vk_op_topk_moe_push_constants pc;
pc.n_rows = n_rows;
pc.n_expert_used = n_expert_used;
GGML_ASSERT(n_expert_used <= n_experts);
const uint32_t rows_per_block = 4;
std::array<uint32_t, 3> elements = { CEIL_DIV(n_rows, rows_per_block), 1, 1 };
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
{
ggml_vk_subbuffer(ctx, d_logits, logits_buf_offset),
ggml_vk_subbuffer(ctx, d_weights, weights_buf_offset),
ggml_vk_subbuffer(ctx, d_ids, ids_buf_offset),
}, pc, elements);
}
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool backprop, bool dryrun = false) { static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool backprop, bool dryrun = false) {
const int n_dims = ((int32_t *) dst->op_params)[1]; const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2]; const int mode = ((int32_t *) dst->op_params)[2];
@ -10870,6 +11134,8 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_CONV_2D_DW: case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6: case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7: case GGML_OP_RWKV_WKV7:
case GGML_OP_SSM_SCAN:
case GGML_OP_SSM_CONV:
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
case GGML_OP_FLASH_ATTN_EXT: case GGML_OP_FLASH_ATTN_EXT:
case GGML_OP_OPT_STEP_ADAMW: case GGML_OP_OPT_STEP_ADAMW:
@ -11017,11 +11283,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
ctx->unsynced_nodes_read.clear(); ctx->unsynced_nodes_read.clear();
ggml_vk_sync_buffers(ctx, compute_ctx); ggml_vk_sync_buffers(ctx, compute_ctx);
} }
// Add the last fused node and all fused source nodes to the unsynchronized list. // Add all fused nodes to the unsynchronized lists.
const ggml_tensor * last_node = cgraph->nodes[node_idx + ctx->num_additional_fused_ops];
ctx->unsynced_nodes_written.push_back(last_node);
for (int32_t i = 0; i < ctx->num_additional_fused_ops + 1; ++i) { for (int32_t i = 0; i < ctx->num_additional_fused_ops + 1; ++i) {
const ggml_tensor *cur_node = cgraph->nodes[node_idx + i]; const ggml_tensor *cur_node = cgraph->nodes[node_idx + i];
// Multiple outputs could be written, e.g. in topk_moe. Add them all to the list.
ctx->unsynced_nodes_written.push_back(cur_node);
for (uint32_t j = 0; j < GGML_MAX_SRC; ++j) { for (uint32_t j = 0; j < GGML_MAX_SRC; ++j) {
if (!cur_node->src[j]) { if (!cur_node->src[j]) {
continue; continue;
@ -11188,7 +11454,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
break; break;
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
ggml_vk_soft_max(ctx, compute_ctx, src0, src1, src2, node, dryrun); if (ctx->num_additional_fused_ops) {
ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx, dryrun);
} else {
ggml_vk_soft_max(ctx, compute_ctx, src0, src1, src2, node, dryrun);
}
break; break;
case GGML_OP_SOFT_MAX_BACK: case GGML_OP_SOFT_MAX_BACK:
@ -11287,6 +11557,16 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
break; break;
case GGML_OP_SSM_SCAN:
ggml_vk_ssm_scan(ctx, compute_ctx, node, dryrun);
break;
case GGML_OP_SSM_CONV:
ggml_vk_ssm_conv(ctx, compute_ctx, node, dryrun);
break;
case GGML_OP_OPT_STEP_ADAMW: case GGML_OP_OPT_STEP_ADAMW:
ggml_vk_opt_step_adamw(ctx, compute_ctx, node, dryrun); ggml_vk_opt_step_adamw(ctx, compute_ctx, node, dryrun);
@ -11398,6 +11678,8 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
case GGML_OP_CONV_2D_DW: case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6: case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7: case GGML_OP_RWKV_WKV7:
case GGML_OP_SSM_SCAN:
case GGML_OP_SSM_CONV:
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
case GGML_OP_REPEAT: case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK: case GGML_OP_REPEAT_BACK:
@ -11972,6 +12254,120 @@ static bool ggml_vk_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, st
return true; return true;
} }
static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph,
int node_idx, bool with_norm) {
if (with_norm) {
if (node_idx + (int)topk_moe_norm.size() > cgraph->n_nodes) {
return false;
}
for (size_t i = 0; i < topk_moe_norm.size(); ++i) {
if (cgraph->nodes[node_idx + i]->op != topk_moe_norm[i]) {
return false;
}
}
} else {
if (node_idx + (int)topk_moe.size() > cgraph->n_nodes) {
return false;
}
for (size_t i = 0; i < topk_moe.size(); ++i) {
if (cgraph->nodes[node_idx + i]->op != topk_moe[i]) {
return false;
}
}
}
const ggml_tensor * softmax = cgraph->nodes[node_idx + 0];
const ggml_tensor * weights = with_norm ? cgraph->nodes[node_idx + 8] : cgraph->nodes[node_idx + 4];
const float * op_params = (const float *)softmax->op_params;
float scale = op_params[0];
float max_bias = op_params[1];
if (!ggml_is_contiguous(softmax->src[0]) || !ggml_is_contiguous(weights)) {
return false;
}
if (scale != 1.0f || max_bias != 0.0f) {
return false;
}
// don't fuse when masks or sinks are present
if (softmax->src[1] || softmax->src[2]) {
return false;
}
const int n_expert = softmax->ne[0];
// n_expert must be a power of 2
if (!is_pow2(n_expert) || n_expert > (1 << (num_topk_moe_pipelines-1))) {
return false;
}
// Check that the nodes don't have any unexpected uses
const ggml_tensor * reshape1 = cgraph->nodes[node_idx + 1];
const ggml_tensor * argsort = cgraph->nodes[node_idx + 2];
const ggml_tensor * view = cgraph->nodes[node_idx + 3];
const ggml_tensor * get_rows = cgraph->nodes[node_idx + 4];
const ggml_tensor * reshape5 = with_norm ? cgraph->nodes[node_idx + 5] : nullptr;
const ggml_tensor * sum_rows = with_norm ? cgraph->nodes[node_idx + 6] : nullptr;
const ggml_tensor * div = with_norm ? cgraph->nodes[node_idx + 7] : nullptr;
const ggml_tensor * reshape8 = with_norm ? cgraph->nodes[node_idx + 8] : nullptr;
// softmax is used by reshape and argsort
if (ggml_node_get_use_count(cgraph, node_idx) != 2 ||
reshape1->src[0] != softmax ||
argsort->src[0] != softmax) {
return false;
}
// reshape is used by get_rows
if (ggml_node_get_use_count(cgraph, node_idx + 1) != 1 ||
get_rows->src[0] != reshape1) {
return false;
}
// argsort is used by view
if (ggml_node_get_use_count(cgraph, node_idx + 2) != 1 ||
view->src[0] != argsort) {
return false;
}
// view is written (via argsort), we can skip checking it
if (with_norm) {
// get_rows is used by reshape
if (ggml_node_get_use_count(cgraph, node_idx + 4) != 1 ||
reshape5->src[0] != get_rows) {
return false;
}
// reshape is used by sum_rows and div
if (ggml_node_get_use_count(cgraph, node_idx + 5) != 2 ||
sum_rows->src[0] != reshape5 ||
div->src[0] != reshape5) {
return false;
}
// sum_rows is used by div
if (ggml_node_get_use_count(cgraph, node_idx + 6) != 1 ||
div->src[1] != sum_rows) {
return false;
}
// div/reshape are written
if (reshape8->src[0] != div) {
return false;
}
}
if (!ctx->device->subgroup_arithmetic ||
!ctx->device->subgroup_shuffle ||
!ctx->device->subgroup_require_full_support ||
ctx->device->disable_fusion) {
return false;
}
return true;
}
static uint32_t ggml_vk_fuse_multi_add(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph, int node_idx) { static uint32_t ggml_vk_fuse_multi_add(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph, int node_idx) {
const ggml_tensor *first_node = cgraph->nodes[node_idx]; const ggml_tensor *first_node = cgraph->nodes[node_idx];
@ -12047,6 +12443,10 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
ctx->num_additional_fused_ops = num_adds - 1; ctx->num_additional_fused_ops = num_adds - 1;
} else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) { } else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1; ctx->num_additional_fused_ops = 1;
} else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, true)) {
ctx->num_additional_fused_ops = topk_moe_norm.size() - 1;
} else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, false)) {
ctx->num_additional_fused_ops = topk_moe.size() - 1;
} }
} }
ggml_vk_build_graph(ctx, cgraph, i, nullptr, 0, true, false, false, false); ggml_vk_build_graph(ctx, cgraph, i, nullptr, 0, true, false, false, false);
@ -12144,6 +12544,10 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
ctx->num_additional_fused_ops = num_adds - 1; ctx->num_additional_fused_ops = num_adds - 1;
} else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) { } else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1; ctx->num_additional_fused_ops = 1;
} else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, true)) {
ctx->num_additional_fused_ops = topk_moe_norm.size() - 1;
} else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, false)) {
ctx->num_additional_fused_ops = topk_moe.size() - 1;
} }
} }
@ -12151,10 +12555,10 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
bool almost_ready = (cgraph->n_nodes - i) < cgraph->n_nodes / 5; bool almost_ready = (cgraph->n_nodes - i) < cgraph->n_nodes / 5;
bool submit = (submitted_nodes >= nodes_per_submit) || bool submit = (submitted_nodes >= nodes_per_submit) ||
(mul_mat_bytes >= mul_mat_bytes_per_submit) || (mul_mat_bytes >= mul_mat_bytes_per_submit) ||
(i + ctx->num_additional_fused_ops == last_node) || (i + ctx->num_additional_fused_ops >= last_node) ||
(almost_ready && !ctx->almost_ready_fence_pending); (almost_ready && !ctx->almost_ready_fence_pending);
bool enqueued = ggml_vk_build_graph(ctx, cgraph, i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i + ctx->num_additional_fused_ops == last_node, almost_ready, submit); bool enqueued = ggml_vk_build_graph(ctx, cgraph, i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i + ctx->num_additional_fused_ops >= last_node, almost_ready, submit);
if (vk_perf_logger_enabled) { if (vk_perf_logger_enabled) {
if (ctx->compute_ctx.expired()) { if (ctx->compute_ctx.expired()) {
@ -12275,6 +12679,25 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
while (first_unused < graph->n_nodes) { while (first_unused < graph->n_nodes) {
std::vector<int> current_set; std::vector<int> current_set;
// Avoid reordering topk_moe_norm
if (first_unused + (int)topk_moe_norm.size() <= graph->n_nodes) {
bool is_topk_moe_norm = true;
for (size_t j = 0; j < topk_moe_norm.size(); ++j) {
if (graph->nodes[first_unused + j]->op != topk_moe_norm[j] || used[first_unused + j]) {
is_topk_moe_norm = false;
}
}
if (is_topk_moe_norm) {
for (size_t j = 0; j < topk_moe_norm.size(); ++j) {
new_order.push_back(graph->nodes[first_unused + j]);
used[first_unused + j] = true;
}
while (first_unused < graph->n_nodes && used[first_unused]) {
first_unused++;
}
continue;
}
}
// First, grab the next unused node. // First, grab the next unused node.
current_set.push_back(first_unused); current_set.push_back(first_unused);
@ -12879,6 +13302,47 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_RWKV_WKV6: case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7: case GGML_OP_RWKV_WKV7:
return true; return true;
case GGML_OP_SSM_SCAN:
{
for (int i = 0; i < 6; i++) {
if (op->src[i] && ggml_is_quantized(op->src[i]->type)) {
return false;
}
}
if (op->src[6] && op->src[6]->type != GGML_TYPE_I32) {
return false;
}
if (op->src[0]->type != GGML_TYPE_F32 || op->type != GGML_TYPE_F32) {
return false;
}
const uint32_t d_state = op->src[0]->ne[0];
const uint32_t head_dim = op->src[0]->ne[1];
bool is_mamba2 = (op->src[3] && op->src[3]->nb[1] == sizeof(float));
if (!is_mamba2) {
return false;
}
if ((d_state != 128 && d_state != 256) || head_dim % 16 != 0) {
return false;
}
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
const uint32_t SPLIT_H = 16;
size_t stateC_size = SPLIT_H * d_state * sizeof(float);
if (stateC_size > device->properties.limits.maxComputeSharedMemorySize) {
return false;
}
return true;
}
case GGML_OP_SSM_CONV:
return true;
case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_CONV_TRANSPOSE_1D:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32; return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
case GGML_OP_CONV_2D: case GGML_OP_CONV_2D:
@ -13223,14 +13687,14 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
struct ggml_context * ggml_ctx = ggml_init(iparams); struct ggml_context * ggml_ctx = ggml_init(iparams);
std::array<struct ggml_tensor *, 6> src_clone = {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}; std::array<struct ggml_tensor *, GGML_MAX_SRC> src_clone = {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr};
std::array<size_t, 6> src_size = {0, 0, 0, 0, 0, 0}; std::array<size_t, GGML_MAX_SRC> src_size = {};
std::array<void *, 6> src_buffer = {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}; std::array<void *, GGML_MAX_SRC> src_buffer = {};
const char * srci_name[6] = {"src0", "src1", "src2", "src3", "src4", "src5"}; const char * srci_name[GGML_MAX_SRC] = {"src0", "src1", "src2", "src3", "src4", "src5", "src6", "src7", "src8", "src9"};
struct ggml_tensor * tensor_clone = nullptr; struct ggml_tensor * tensor_clone = nullptr;
for (int i = 0; i < 6; i++) { for (int i = 0; i < GGML_MAX_SRC; i++) {
ggml_tensor * srci = tensor->src[i]; ggml_tensor * srci = tensor->src[i];
if (fused_rms_norm_mul) { if (fused_rms_norm_mul) {
rms_norm_idx = tensor->src[0]->op == GGML_OP_RMS_NORM ? 0 : 1; rms_norm_idx = tensor->src[0]->op == GGML_OP_RMS_NORM ? 0 : 1;
@ -13537,6 +14001,11 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
src_clone[2]); src_clone[2]);
} else if (tensor->op == GGML_OP_ADD_ID) { } else if (tensor->op == GGML_OP_ADD_ID) {
tensor_clone = ggml_add_id(ggml_ctx, src_clone[0], src_clone[1], src_clone[2]); tensor_clone = ggml_add_id(ggml_ctx, src_clone[0], src_clone[1], src_clone[2]);
} else if (tensor->op == GGML_OP_SSM_SCAN) {
tensor_clone = ggml_ssm_scan(ggml_ctx, src_clone[0], src_clone[1], src_clone[2],
src_clone[3], src_clone[4], src_clone[5], src_clone[6]);
} else if (tensor->op == GGML_OP_SSM_CONV) {
tensor_clone = ggml_ssm_conv(ggml_ctx, src_clone[0], src_clone[1]);
} }
else { else {
std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
@ -13558,7 +14027,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
memcpy(comp_result, tensor_clone->data, comp_size); memcpy(comp_result, tensor_clone->data, comp_size);
memcpy(comp_nb, tensor_clone->nb, sizeof(size_t) * GGML_MAX_DIMS); memcpy(comp_nb, tensor_clone->nb, sizeof(size_t) * GGML_MAX_DIMS);
for (int i = 0; i < 6; i++) { for (int i = 0; i < GGML_MAX_SRC; i++) {
if (src_buffer[i] != nullptr) { if (src_buffer[i] != nullptr) {
free(src_buffer[i]); free(src_buffer[i]);
} }

View File

@ -345,7 +345,7 @@ void main() {
float Lfrcp[Br]; float Lfrcp[Br];
[[unroll]] for (uint32_t r = 0; r < Br; ++r) { [[unroll]] for (uint32_t r = 0; r < Br; ++r) {
Lfrcp[r] = 1.0 / Lf[r]; Lfrcp[r] = (Lf[r] == 0.0) ? 0.0 : (1.0 / Lf[r]);
} }
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) { [[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {

View File

@ -380,7 +380,7 @@ void main() {
float Lfrcp[rows_per_thread]; float Lfrcp[rows_per_thread];
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) { [[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
Lfrcp[r] = 1.0 / Lf[r]; Lfrcp[r] = (Lf[r] == 0.0) ? 0.0 : (1.0 / Lf[r]);
} }
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) { [[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {

View File

@ -121,7 +121,11 @@ void main() {
const float NEG_FLT_MAX_OVER_2 = uintBitsToFloat(0xFEFFFFFF); const float NEG_FLT_MAX_OVER_2 = uintBitsToFloat(0xFEFFFFFF);
L = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(0); L = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(0);
#if defined(ACC_TYPE_MAX)
M = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(-ACC_TYPE_MAX / ACC_TYPE(2));
#else
M = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(NEG_FLT_MAX_OVER_2); M = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(NEG_FLT_MAX_OVER_2);
#endif
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> slopeMat = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(1.0); coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> slopeMat = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(1.0);
@ -294,7 +298,7 @@ void main() {
[[unroll]] [[unroll]]
for (int k = 0; k < Ldiag.length(); ++k) { for (int k = 0; k < Ldiag.length(); ++k) {
Ldiag[k] = ACC_TYPE(1.0) / Ldiag[k]; Ldiag[k] = (Ldiag[k] == 0.0) ? ACC_TYPE(0.0) : (ACC_TYPE(1.0) / Ldiag[k]);
} }
O = Ldiag*O; O = Ldiag*O;

View File

@ -91,7 +91,7 @@ void main() {
L = L*ms + vs; L = L*ms + vs;
} }
L = 1.0 / L; L = (L == 0.0) ? 0.0 : 1.0 / L;
// D dimension is split across workgroups in the y dimension // D dimension is split across workgroups in the y dimension
uint d = tid + gl_WorkGroupID.y * BLOCK_SIZE; uint d = tid + gl_WorkGroupID.y * BLOCK_SIZE;

View File

@ -0,0 +1,44 @@
#version 450
#extension GL_EXT_control_flow_attributes : require
#include "types.glsl"
layout(constant_id = 0) const uint BLOCK_SIZE = 32;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout(binding = 0) readonly buffer Src0 { float src0[]; };
layout(binding = 1) readonly buffer Src1 { float src1[]; };
layout(binding = 2) buffer Dst { float dst[]; };
layout(push_constant) uniform PushConstants {
uint nb01; uint nb02;
uint nb11;
uint dst_nb0; uint dst_nb1; uint dst_nb2;
uint nc; uint ncs; uint nr; uint n_t; uint n_s;
};
void main() {
const uint global_thread_id = gl_GlobalInvocationID.x;
const uint i2 = gl_WorkGroupID.y;
const uint i3 = gl_WorkGroupID.z;
if (global_thread_id >= nr || i2 >= n_t || i3 >= n_s) {
return;
}
const uint i1 = global_thread_id;
const uint src0_base = i3 * (nb02 / 4) + i2 + i1 * (nb01 / 4);
const uint src1_base = i1 * (nb11 / 4);
const uint dst_idx = i3 * (dst_nb2 / 4) + i2 * (dst_nb1 / 4) + i1;
float sum = 0.0;
[[unroll]] for (uint i0 = 0; i0 < nc; i0++) {
const uint src0_idx = src0_base + i0;
const uint src1_idx = src1_base + i0;
sum += src0[src0_idx] * src1[src1_idx];
}
dst[dst_idx] = sum;
}

View File

@ -0,0 +1,125 @@
#version 450
#extension GL_EXT_control_flow_attributes : require
#include "types.glsl"
layout(constant_id = 0) const uint D_STATE = 128;
layout(constant_id = 1) const uint SUBGROUP_SIZE = 32;
layout(constant_id = 2) const uint SPLIT_H = 16;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout(binding = 0) readonly buffer Src0 { float s0[]; };
layout(binding = 1) readonly buffer Src1 { float x[]; };
layout(binding = 2) readonly buffer Src2 { float dt[]; };
layout(binding = 3) readonly buffer Src3 { float A[]; };
layout(binding = 4) readonly buffer Src4 { float B[]; };
layout(binding = 5) readonly buffer Src5 { float C[]; };
layout(binding = 6) readonly buffer Src6 { int ids[]; };
layout(binding = 7) buffer Dst { float d[]; };
layout(push_constant) uniform PushConstants {
uint nb02; uint nb03; uint nb12; uint nb13;
uint nb21; uint nb22; uint nb31;
uint nb42; uint nb43; uint nb52; uint nb53;
uint s_off;
uint n_head;
uint d_head;
uint n_group;
uint n_tok;
};
float softplus(float x) {
if (x <= 20.0) {
return log(1.0 + exp(x));
} else {
return x;
}
}
shared float stateC[SPLIT_H * D_STATE];
void main() {
const uint tid = gl_LocalInvocationID.x;
const uint head_idx = (gl_WorkGroupID.x * SPLIT_H) / d_head;
const uint head_off = ((gl_WorkGroupID.x * SPLIT_H) % d_head) * 4;
const uint seq_idx = gl_WorkGroupID.y;
const uint group_off = (head_idx / (n_head / n_group)) * D_STATE * 4;
const uint s0_base_idx = (uint(ids[seq_idx]) * nb03 + head_idx * nb02 + head_off * D_STATE) / 4;
const uint x_base_idx = (seq_idx * nb13 + gl_WorkGroupID.x * SPLIT_H * 4) / 4;
const uint dt_base_idx = (seq_idx * nb22 + head_idx * 4) / 4;
const uint A_base_idx = (head_idx * nb31) / 4;
const uint B_base_idx = (seq_idx * nb43 + group_off) / 4;
const uint C_base_idx = (seq_idx * nb53 + group_off) / 4;
const uint y_base_idx = seq_idx * n_tok * n_head * d_head + gl_WorkGroupID.x * SPLIT_H;
const uint s_base_idx = (s_off + seq_idx * nb03 + head_idx * nb02 + head_off * D_STATE) / 4;
const uint stride_x = nb12 / 4;
const uint stride_dt = nb21 / 4;
const uint stride_B = nb42 / 4;
const uint stride_C = nb52 / 4;
const uint stride_y = n_head * d_head;
float state[SPLIT_H];
[[unroll]] for (uint j = 0; j < SPLIT_H; j++) {
state[j] = s0[s0_base_idx + j * D_STATE + tid];
}
for (uint i = 0; i < n_tok; i++) {
const float dt_soft_plus = softplus(dt[dt_base_idx + i * stride_dt]);
const float dA = exp(dt_soft_plus * A[A_base_idx]);
const float B_val = B[B_base_idx + i * stride_B + tid];
const float C_val = C[C_base_idx + i * stride_C + tid];
[[unroll]] for (uint j = 0; j < SPLIT_H; j++) {
const float x_dt = x[x_base_idx + i * stride_x + j] * dt_soft_plus;
state[j] = (state[j] * dA) + (B_val * x_dt);
stateC[j * D_STATE + tid] = state[j] * C_val;
}
barrier();
for (uint w = D_STATE; w > SUBGROUP_SIZE; w >>= 1) {
[[unroll]] for (uint j = 0; j < ((w >> 1) * SPLIT_H + D_STATE - 1) / D_STATE; j++) {
const uint k = (tid % (w >> 1)) +
(D_STATE * (tid / (w >> 1))) +
j * D_STATE * (D_STATE / (w >> 1));
if (k < SPLIT_H * D_STATE && (k + (w >> 1)) < SPLIT_H * D_STATE) {
stateC[k] += stateC[k + (w >> 1)];
}
}
barrier();
}
[[unroll]] for (uint j = 0; j <= SPLIT_H / (D_STATE / SUBGROUP_SIZE); j++) {
const uint idx = (tid % SUBGROUP_SIZE) +
D_STATE * (tid / SUBGROUP_SIZE) +
j * D_STATE * (D_STATE / SUBGROUP_SIZE);
uint lane = tid % SUBGROUP_SIZE;
[[unroll]] for (uint offset = SUBGROUP_SIZE / 2; offset > 0; offset >>= 1) {
if (idx + offset < SPLIT_H * D_STATE) {
stateC[idx] += stateC[idx + offset];
}
barrier();
}
if (idx < SPLIT_H * D_STATE && tid % SUBGROUP_SIZE == 0) {
const uint k = tid / SUBGROUP_SIZE + j * (D_STATE / SUBGROUP_SIZE);
d[y_base_idx + i * stride_y + k] = stateC[idx];
}
}
barrier();
}
[[unroll]] for (uint j = 0; j < SPLIT_H; j++) {
d[s_base_idx + j * D_STATE + tid] = state[j];
}
}

View File

@ -0,0 +1,139 @@
#version 450
#extension GL_EXT_control_flow_attributes : require
#extension GL_KHR_shader_subgroup_basic : enable
#extension GL_KHR_shader_subgroup_arithmetic : enable
#extension GL_KHR_shader_subgroup_shuffle : enable
#include "types.glsl"
layout (push_constant) uniform parameter
{
uint n_rows;
uint n_expert_used;
};
layout(local_size_x_id = 0, local_size_y = 4, local_size_z = 1) in;
layout(constant_id = 0) const uint WARP_SIZE = 32;
layout(constant_id = 1) const uint n_experts = 512;
layout(constant_id = 2) const bool with_norm = true;
const uint experts_per_thread = (n_experts > WARP_SIZE) ? n_experts / WARP_SIZE : 1;
layout (binding = 0, std430) readonly buffer Logits {float logits[];};
layout (binding = 1, std430) writeonly buffer Weights {float weights[];};
layout (binding = 2, std430) writeonly buffer Ids {uint ids[];};
void main() {
const uint row = gl_WorkGroupID.x * gl_WorkGroupSize.y + gl_LocalInvocationID.y;
if (row >= n_rows) {
return;
}
const uint logits_offset = n_experts * row;
const uint weights_offset = n_expert_used * row;
const uint ids_offset = n_experts * row;
float logits_r[experts_per_thread];
const float INFINITY = 1.0 / 0.0;
[[unroll]]
for (uint i = 0; i < n_experts; i += WARP_SIZE) {
const uint expert = i + gl_LocalInvocationID.x;
logits_r[i / WARP_SIZE] = n_experts % WARP_SIZE == 0 || expert < n_experts ? logits[logits_offset + expert] : -INFINITY;
}
float max_val = logits_r[0];
[[unroll]]
for (int i = 1; i < experts_per_thread; i++) {
const float val = logits_r[i];
max_val = max(val, max_val);
}
max_val = subgroupMax(max_val);
float wt[experts_per_thread];
float tmp = 0.f;
[[unroll]]
for (int i = 0; i < experts_per_thread; i++) {
const float val = logits_r[i];
wt[i] = exp(val - max_val);
tmp += wt[i];
}
tmp = subgroupAdd(tmp);
const float inv_sum = 1.0f / tmp;
[[unroll]]
for (int i = 0; i < experts_per_thread; i++) {
wt[i] = wt[i] * inv_sum;
}
// at this point, each thread holds a portion of softmax,
// we do the argmax reduce over n_expert_used, each time marking
// the expert weight as -inf to exclude from the next iteration
float wt_sum = 0.f;
float output_weights[experts_per_thread];
for (int k = 0; k < n_expert_used; k++) {
float max_val = wt[0];
uint max_expert = gl_LocalInvocationID.x;
[[unroll]]
for (int i = 1; i < experts_per_thread; i++) {
const uint expert = gl_LocalInvocationID.x + i * WARP_SIZE;
if ((n_experts % WARP_SIZE == 0 || expert < n_experts) && wt[i] > max_val) {
max_val = wt[i];
max_expert = expert;
}
}
[[unroll]]
for (uint mask = WARP_SIZE / 2; mask > 0; mask /= 2) {
const float val = subgroupShuffleXor(max_val, mask);
const uint expert = subgroupShuffleXor(max_expert, mask);
if (val > max_val || (val == max_val && expert < max_expert)) {
max_val = val;
max_expert = expert;
}
}
if ((k & (WARP_SIZE - 1)) == gl_LocalInvocationID.x) {
output_weights[k / WARP_SIZE] = max_val;
}
if ((max_expert & (WARP_SIZE - 1)) == gl_LocalInvocationID.x) {
wt[max_expert / WARP_SIZE] = -INFINITY;
ids[ids_offset + k] = max_expert;
if (with_norm) {
wt_sum += max_val;
}
}
}
if (with_norm) {
wt_sum = subgroupAdd(wt_sum);
const float inv_sum = 1.0f / wt_sum;
[[unroll]]
for (uint i = 0; i < experts_per_thread; ++i) {
output_weights[i] *= inv_sum;
}
}
[[unroll]]
for (uint i = 0; i < experts_per_thread; ++i) {
uint idx = i * WARP_SIZE + gl_LocalInvocationID.x;
if (idx < n_expert_used) {
weights[weights_offset + idx] = output_weights[i];
}
}
}

View File

@ -916,6 +916,12 @@ void process_shaders() {
string_to_spv("multi_add_f32", "multi_add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}, {"ADD_RMS" , "0"}}); string_to_spv("multi_add_f32", "multi_add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}, {"ADD_RMS" , "0"}});
string_to_spv("multi_add_rms_f32", "multi_add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}, {"ADD_RMS" , "1"}}); string_to_spv("multi_add_rms_f32", "multi_add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}, {"ADD_RMS" , "1"}});
string_to_spv("ssm_scan_f32", "ssm_scan.comp", {{"A_TYPE", "float"}});
string_to_spv("ssm_conv_f32", "ssm_conv.comp", {{"A_TYPE", "float"}});
string_to_spv("topk_moe_f32", "topk_moe.comp", {});
for (auto &c : compiles) { for (auto &c : compiles) {
c.wait(); c.wait();
} }
@ -959,7 +965,7 @@ void write_output_files() {
} }
std::string suffixes[2] = {"_f32", "_f16"}; std::string suffixes[2] = {"_f32", "_f16"};
for (auto op : {"add", "sub", "mul", "div", "add_rms"}) { for (std::string op : {"add", "sub", "mul", "div", "add_rms"}) {
hdr << "extern const void * " << op << "_data[2][2][2][2];\n"; hdr << "extern const void * " << op << "_data[2][2][2][2];\n";
hdr << "extern const uint64_t " << op << "_len[2][2][2][2];\n"; hdr << "extern const uint64_t " << op << "_len[2][2][2][2];\n";

View File

@ -6964,6 +6964,78 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) {
GGML_LOG_INFO("========================================\n"); GGML_LOG_INFO("========================================\n");
} }
static int ggml_node_list_find_tensor(const struct ggml_cgraph * cgraph,
const int * idxs,
int count,
const struct ggml_tensor * tensor) {
GGML_ASSERT(cgraph && idxs);
for (int i = 0; i < count; ++i) {
const int node_idx = idxs[i];
if (node_idx >= cgraph->n_nodes) {
return -1;
}
if (cgraph->nodes[node_idx] == tensor) {
return i;
}
}
return -1;
}
bool ggml_can_fuse_subgraph_ext(const struct ggml_cgraph * cgraph,
const int * node_idxs,
int count,
const enum ggml_op * ops,
const int * outputs,
int num_outputs) {
GGML_ASSERT(outputs && num_outputs > 0);
for (int i = 0; i < count; ++i) {
if (node_idxs[i] >= cgraph->n_nodes) {
return false;
}
const struct ggml_tensor * node = cgraph->nodes[node_idxs[i]];
if (node->op != ops[i]) {
return false;
}
if (ggml_node_list_find_tensor(cgraph, outputs, num_outputs, node) != -1) {
continue;
}
if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
return false;
}
int subgraph_uses = 0;
for (int j = i + 1; j < count; ++j) {
const struct ggml_tensor * other_node = cgraph->nodes[node_idxs[j]];
for (int src_idx = 0; src_idx < GGML_MAX_SRC; src_idx++) {
if (other_node->src[src_idx] == node) {
subgraph_uses++;
}
}
}
if (subgraph_uses != ggml_node_get_use_count(cgraph, node_idxs[i])) {
return false;
}
// if node is a view, check if the view_src and all it's parent view_srcs are within the subgraph
struct ggml_tensor * view_src = node->view_src;
while (view_src) {
if (ggml_node_list_find_tensor(cgraph, node_idxs, count, view_src) == -1) {
return false;
}
view_src = view_src->view_src;
}
}
return true;
}
// check if node is part of the graph // check if node is part of the graph
static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
if (cgraph == NULL) { if (cgraph == NULL) {

View File

@ -102,6 +102,8 @@ class Keys:
EXPERT_COUNT = "{arch}.expert_count" EXPERT_COUNT = "{arch}.expert_count"
EXPERT_USED_COUNT = "{arch}.expert_used_count" EXPERT_USED_COUNT = "{arch}.expert_used_count"
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count" EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
EXPERT_GROUP_COUNT = "{arch}.expert_group_count"
EXPERT_GROUP_USED_COUNT = "{arch}.expert_group_used_count"
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale" EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
EXPERT_WEIGHTS_NORM = "{arch}.expert_weights_norm" EXPERT_WEIGHTS_NORM = "{arch}.expert_weights_norm"
EXPERT_GATING_FUNC = "{arch}.expert_gating_func" EXPERT_GATING_FUNC = "{arch}.expert_gating_func"
@ -400,6 +402,7 @@ class MODEL_ARCH(IntEnum):
WAVTOKENIZER_DEC = auto() WAVTOKENIZER_DEC = auto()
PLM = auto() PLM = auto()
BAILINGMOE = auto() BAILINGMOE = auto()
BAILINGMOE2 = auto()
DOTS1 = auto() DOTS1 = auto()
ARCEE = auto() ARCEE = auto()
ERNIE4_5 = auto() ERNIE4_5 = auto()
@ -744,6 +747,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec", MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
MODEL_ARCH.PLM: "plm", MODEL_ARCH.PLM: "plm",
MODEL_ARCH.BAILINGMOE: "bailingmoe", MODEL_ARCH.BAILINGMOE: "bailingmoe",
MODEL_ARCH.BAILINGMOE2: "bailingmoe2",
MODEL_ARCH.DOTS1: "dots1", MODEL_ARCH.DOTS1: "dots1",
MODEL_ARCH.ARCEE: "arcee", MODEL_ARCH.ARCEE: "arcee",
MODEL_ARCH.ERNIE4_5: "ernie4_5", MODEL_ARCH.ERNIE4_5: "ernie4_5",
@ -2533,6 +2537,35 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_SHEXP, MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP, MODEL_TENSOR.FFN_UP_SHEXP,
], ],
MODEL_ARCH.BAILINGMOE2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.NEXTN_EH_PROJ,
MODEL_TENSOR.NEXTN_EMBED_TOKENS,
MODEL_TENSOR.NEXTN_ENORM,
MODEL_TENSOR.NEXTN_HNORM,
MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD,
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM,
MODEL_TENSOR.LAYER_OUT_NORM,
],
MODEL_ARCH.DOTS1: [ MODEL_ARCH.DOTS1: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.OUTPUT_NORM,

View File

@ -755,6 +755,12 @@ class GGUFWriter:
def add_expert_shared_count(self, count: int) -> None: def add_expert_shared_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count) self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
def add_expert_group_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_GROUP_COUNT.format(arch=self.arch), count)
def add_expert_group_used_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_GROUP_USED_COUNT.format(arch=self.arch), count)
def add_expert_weights_scale(self, value: float) -> None: def add_expert_weights_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value) self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)

View File

@ -174,6 +174,7 @@ class TensorNameMap:
"h.{bid}.self_attention.query_key_value", # bloom "h.{bid}.self_attention.query_key_value", # bloom
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
"model.layers.{bid}.self_attn.query_key_value", # persimmon "model.layers.{bid}.self_attn.query_key_value", # persimmon
"model.layers.{bid}.attention.query_key_value", # bailingmoe2
"h.{bid}.attn.c_attn", # gpt2 "h.{bid}.attn.c_attn", # gpt2
"transformer.h.{bid}.mixer.Wqkv", # phi2 "transformer.h.{bid}.mixer.Wqkv", # phi2
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
@ -260,6 +261,7 @@ class TensorNameMap:
"transformer.h.{bid}.attn.out_proj", # gpt-j "transformer.h.{bid}.attn.out_proj", # gpt-j
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
"model.layers.{bid}.self_attn.dense", # persimmon "model.layers.{bid}.self_attn.dense", # persimmon
"model.layers.{bid}.attention.dense", # bailingmoe2
"h.{bid}.attn.c_proj", # gpt2 "h.{bid}.attn.c_proj", # gpt2
"transformer.h.{bid}.mixer.out_proj", # phi2 "transformer.h.{bid}.mixer.out_proj", # phi2
"model.layers.layers.{bid}.self_attn.o_proj", # plamo "model.layers.layers.{bid}.self_attn.o_proj", # plamo
@ -373,6 +375,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_EXP_PROBS_B: ( MODEL_TENSOR.FFN_EXP_PROBS_B: (
"model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1 "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
"model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
"model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
"model.layers.{bid}.feed_forward.expert_bias", # lfm2moe "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
), ),
@ -549,6 +552,7 @@ class TensorNameMap:
"language_model.encoder.layers.{bid}.self_attention.q_layernorm", "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
"model.layers.{bid}.self_attn.q_layernorm", # persimmon "model.layers.{bid}.self_attn.q_layernorm", # persimmon
"model.layers.{bid}.self_attn.query_layernorm", # hunyuan "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
"model.layers.{bid}.attention.query_layernorm", # bailingmoe2
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2 "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
"layers.{bid}.self_attn.q_norm", # embeddinggemma "layers.{bid}.self_attn.q_norm", # embeddinggemma
"transformer.blocks.{bid}.attn.q_ln", # sea-lion "transformer.blocks.{bid}.attn.q_ln", # sea-lion
@ -563,6 +567,7 @@ class TensorNameMap:
"language_model.encoder.layers.{bid}.self_attention.k_layernorm", "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
"model.layers.{bid}.self_attn.k_layernorm", # persimmon "model.layers.{bid}.self_attn.k_layernorm", # persimmon
"model.layers.{bid}.self_attn.key_layernorm", # hunyuan "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
"model.layers.{bid}.attention.key_layernorm", # bailingmoe2
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2 "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
"layers.{bid}.self_attn.k_norm", # embeddinggemma "layers.{bid}.self_attn.k_norm", # embeddinggemma
"transformer.blocks.{bid}.attn.k_ln", # sea-lion "transformer.blocks.{bid}.attn.k_ln", # sea-lion
@ -584,6 +589,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.rms_norm_3", # Grok "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
"encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2 "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
"encoder.layer.{bid}.layer_norm_2", # jina-v2-code "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
"model.layers.{bid}.final_layernorm", # bailingmoe2
), ),
MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: ( MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (

View File

@ -14,12 +14,12 @@ except ImportError:
SentencePieceProcessor = None SentencePieceProcessor = None
try: try:
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.tokens.tokenizers.mistral import MistralTokenizer # pyright: ignore[reportMissingImports]
from mistral_common.tokens.tokenizers.tekken import Tekkenizer from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
from mistral_common.tokens.tokenizers.utils import ( from mistral_common.tokens.tokenizers.utils import ( # pyright: ignore[reportMissingImports]
_filter_valid_tokenizer_files, _filter_valid_tokenizer_files,
) )
from mistral_common.tokens.tokenizers.sentencepiece import ( from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
SentencePieceTokenizer, SentencePieceTokenizer,
) )
except ImportError: except ImportError:

Some files were not shown because too many files have changed in this diff Show More