naive chunking form implemented
This commit is contained in:
parent
aba181ebad
commit
cfed14e31b
|
|
@ -265,7 +265,7 @@ llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const ll
|
|||
// Choose between build_kda_chunking and build_kda_recurrent based on n_tokens
|
||||
// TODO: Currently only build_kda_recurrent is implemented
|
||||
ggml_tensor * attn_out = n_seq_tokens > CHUNK_SIZE ?
|
||||
build_kda_recurrent(Qcur, Kcur, Vcur, g1, beta, state, causal_mask, identity, il) :
|
||||
build_kda_chunking(Qcur, Kcur, Vcur, g1, beta, state, causal_mask, identity, il) :
|
||||
build_kda_recurrent(Qcur, Kcur, Vcur, g1, beta, state, causal_mask, identity, il);
|
||||
cb(attn_out, "attn_out", il);
|
||||
|
||||
|
|
@ -485,7 +485,7 @@ ggml_tensor * llm_build_kimi_linear::build_kda_chunking(
|
|||
GGML_ASSERT(k->ne[2] == n_tokens);
|
||||
GGML_ASSERT(gk->ne[0] == S_v && gk->ne[1] == H_v && gk->ne[2] == n_tokens && gk->ne[3] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
||||
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
|
||||
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v && state->ne[2] == H_v && state->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
||||
|
|
@ -504,8 +504,6 @@ ggml_tensor * llm_build_kimi_linear::build_kda_chunking(
|
|||
|
||||
const float scale = 1.0f / sqrtf(S_v);
|
||||
|
||||
q = ggml_scale(ctx0, q, scale);
|
||||
|
||||
beta = ggml_sigmoid(ctx0, beta);
|
||||
|
||||
cb(q, "q_in", il);
|
||||
|
|
@ -514,8 +512,8 @@ ggml_tensor * llm_build_kimi_linear::build_kda_chunking(
|
|||
cb(beta, "beta_in", il);
|
||||
cb(gk, "gk_in", il);
|
||||
|
||||
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs);
|
||||
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs);
|
||||
v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
gk = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
|
||||
|
|
@ -530,20 +528,227 @@ ggml_tensor * llm_build_kimi_linear::build_kda_chunking(
|
|||
cb(beta, "beta_perm", il);
|
||||
cb(gk, "gk_perm", il);
|
||||
cb(state, "state_in", il);
|
||||
cb(causal_diag_mask, "causal_diag_mask", il);
|
||||
|
||||
GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
|
||||
GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
|
||||
|
||||
// Do padding
|
||||
const int64_t chunk_size = CHUNK_SIZE;
|
||||
|
||||
const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
|
||||
const int64_t n_chunks = (n_tokens + pad) / chunk_size;
|
||||
|
||||
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
|
||||
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
|
||||
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
|
||||
gk = ggml_pad(ctx0, gk, 0, pad, 0, 0);
|
||||
beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
|
||||
|
||||
cb(q, "q_pad", il);
|
||||
cb(k, "k_pad", il);
|
||||
cb(v, "v_pad", il);
|
||||
cb(beta, "beta_pad", il);
|
||||
cb(gk, "gk_pad", il);
|
||||
|
||||
ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
|
||||
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
|
||||
|
||||
cb(k_beta, "k_beta", il);
|
||||
cb(v_beta, "v_beta", il);
|
||||
cb(k_beta, "k_beta", il);
|
||||
|
||||
return nullptr;
|
||||
ggml_tensor * chunked_mask =
|
||||
ggml_view_4d(ctx0, causal_mask, chunk_size,
|
||||
chunk_size, causal_mask->ne[2], causal_mask->ne[3],
|
||||
causal_mask->nb[1], causal_mask->nb[2], causal_mask->nb[3], 0);
|
||||
|
||||
ggml_tensor * chunked_diag_mask =
|
||||
ggml_view_4d(ctx0, causal_diag_mask, chunk_size,
|
||||
chunk_size, causal_diag_mask->ne[2], causal_diag_mask->ne[3],
|
||||
causal_diag_mask->nb[1], causal_diag_mask->nb[2], causal_diag_mask->nb[3], 0);
|
||||
|
||||
ggml_tensor * chunked_identity =
|
||||
ggml_view_4d(ctx0, identity, chunk_size,
|
||||
chunk_size, identity->ne[2], identity->ne[3],
|
||||
identity->nb[1], identity->nb[2], identity->nb[3], 0);
|
||||
|
||||
const int64_t HB = H_k * n_seqs;
|
||||
|
||||
q = ggml_cont_4d(ctx0, q, S_k, chunk_size, n_chunks, HB);
|
||||
k = ggml_cont_4d(ctx0, k, S_k, chunk_size, n_chunks, HB);
|
||||
k_beta = ggml_cont_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, HB);
|
||||
v = ggml_cont_4d(ctx0, v, S_v, chunk_size, n_chunks, HB);
|
||||
v_beta = ggml_cont_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, HB);
|
||||
|
||||
gk = ggml_cont_4d(ctx0, gk, S_k, chunk_size, n_chunks, HB);
|
||||
beta = ggml_cont_4d(ctx0, beta, 1, chunk_size, n_chunks, HB);
|
||||
|
||||
// switch for cumsum
|
||||
gk = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk, 1, 0, 2, 3), chunk_size, S_k, n_chunks, HB);
|
||||
ggml_tensor * gk_cumsum = ggml_cumsum(ctx0, gk);
|
||||
cb(gk_cumsum, "gk_cumsum", il);
|
||||
|
||||
const int64_t CHB = n_chunks * H_v * n_seqs;
|
||||
|
||||
ggml_tensor * g_i = ggml_reshape_4d(ctx0, gk_cumsum, chunk_size, 1, S_k, CHB);
|
||||
ggml_tensor * g_j = ggml_reshape_4d(ctx0, gk_cumsum, 1, chunk_size, S_k, CHB);
|
||||
|
||||
ggml_tensor * g_j_bc = ggml_repeat_4d(ctx0, g_j, chunk_size, chunk_size, S_k, CHB);
|
||||
|
||||
ggml_tensor * decay_mask = ggml_sub(ctx0, g_j_bc, g_i);
|
||||
|
||||
cb(decay_mask, "decay_mask", il);
|
||||
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, chunked_diag_mask);
|
||||
decay_mask = ggml_exp(ctx0, decay_mask);
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, chunked_diag_mask);
|
||||
cb(decay_mask, "decay_mask_exp", il);
|
||||
|
||||
// k [S,BT,NT,H*B] k_per [BT,S,NT,H*B]
|
||||
ggml_tensor * k_per = ggml_cont(ctx0, ggml_permute(ctx0, k, 1, 0, 2, 3));
|
||||
ggml_tensor * k_i = ggml_reshape_4d(ctx0, k_per, chunk_size, 1, S_k, CHB);
|
||||
ggml_tensor * k_i_bc = ggml_repeat_4d(ctx0, k_i, chunk_size, chunk_size, S_k, CHB);
|
||||
ggml_tensor * k_j = ggml_reshape_4d(ctx0, k_per, 1, chunk_size, S_k, CHB);
|
||||
ggml_tensor * k_j_bc = ggml_repeat_4d(ctx0, k_j, chunk_size, chunk_size, S_k, CHB);
|
||||
|
||||
ggml_tensor * Akk = ggml_mul(ctx0, decay_mask, k_j_bc);
|
||||
Akk = ggml_mul(ctx0, Akk, k_i_bc);
|
||||
|
||||
Akk = ggml_cont(ctx0, ggml_permute(ctx0, Akk, 1, 2, 0, 3));
|
||||
Akk = ggml_sum_rows(ctx0, Akk);
|
||||
|
||||
Akk = ggml_reshape_4d(ctx0, Akk, chunk_size, chunk_size, n_chunks, H_k * n_seqs);
|
||||
|
||||
Akk = ggml_mul(ctx0, Akk, beta);
|
||||
Akk = ggml_neg(ctx0, ggml_mul(ctx0, Akk, chunked_mask));
|
||||
|
||||
cb(Akk, "attn_pre_solve", il);
|
||||
|
||||
ggml_tensor * attn_lower = ggml_mul(ctx0, Akk, chunked_mask);
|
||||
ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, chunked_identity, attn_lower), attn_lower);
|
||||
|
||||
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, Akk, true, true, false);
|
||||
Akk = ggml_mul(ctx0, lin_solve, chunked_mask);
|
||||
Akk = ggml_add(ctx0, Akk, chunked_identity);
|
||||
|
||||
cb(Akk, "attn_solved", il);
|
||||
|
||||
ggml_tensor * vb = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), Akk);
|
||||
|
||||
gk_cumsum = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk_cumsum, 1, 0, 2, 3), S_k, chunk_size, n_chunks, HB);
|
||||
ggml_tensor * gkexp = ggml_exp(ctx0, gk_cumsum);
|
||||
|
||||
ggml_tensor * kbeta_gkexp = ggml_mul(ctx0, k_beta, gkexp);
|
||||
cb(kbeta_gkexp, "kbeta_gkexp", il);
|
||||
|
||||
ggml_tensor * k_cumdecay = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gkexp)), Akk);
|
||||
cb(k_cumdecay, "k_cumdecay", il);
|
||||
|
||||
ggml_tensor * core_attn_out = nullptr;
|
||||
ggml_tensor * new_state = ggml_dup(ctx0, state);
|
||||
|
||||
cb(new_state, "new_state", il);
|
||||
|
||||
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
|
||||
// for (int64_t chunk = 0; chunk < 1; chunk++) {
|
||||
// extract one chunk worth of data
|
||||
auto chunkify = [=](ggml_tensor * t) {
|
||||
return ggml_cont(ctx0, ggml_view_4d(ctx0, t, t->ne[0], chunk_size, 1, t->ne[3],
|
||||
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
|
||||
};
|
||||
|
||||
// k [S,BT,NT,H*B] => k_chunk [S,BT,1,H*B]
|
||||
ggml_tensor * k_chunk = chunkify(k);
|
||||
ggml_tensor * q_chunk = chunkify(q);
|
||||
ggml_tensor * vb_chunk = chunkify(vb);
|
||||
|
||||
// Since decay_mask now has dimension of [BT,BT,S,NT*H*B], it can't be chunkified
|
||||
// decay_mask_chunk needs to be recomputed
|
||||
// gk_cumsum [S,BT,NT,H*B] => gk_cs_chunk [S,BT,1,H*B]
|
||||
ggml_tensor * gk_cs_chunk = chunkify(gk_cumsum);
|
||||
ggml_tensor * gk_cs_chunk_i = ggml_cont(ctx0, ggml_permute(ctx0, gk_cs_chunk, 2, 0, 1, 3));
|
||||
ggml_tensor * gk_cs_chunk_j = ggml_cont(ctx0, ggml_permute(ctx0, gk_cs_chunk, 2, 1, 0, 3));
|
||||
|
||||
ggml_tensor * gk_cs_chunk_j_bc = ggml_repeat_4d(ctx0, gk_cs_chunk_j, chunk_size, chunk_size, S_k, HB);
|
||||
ggml_tensor * decay_mask_chunk = ggml_sub(ctx0, gk_cs_chunk_j_bc, gk_cs_chunk_i);
|
||||
cb(decay_mask_chunk, "decay_mask_chunk", il);
|
||||
decay_mask_chunk = ggml_mul(ctx0, decay_mask_chunk, chunked_diag_mask);
|
||||
decay_mask_chunk = ggml_exp(ctx0, decay_mask_chunk);
|
||||
decay_mask_chunk = ggml_mul(ctx0, decay_mask_chunk, chunked_diag_mask);
|
||||
cb(decay_mask_chunk, "decay_mask_chunk_exp", il);
|
||||
|
||||
ggml_tensor * k_cumdecay_chunk = chunkify(k_cumdecay);
|
||||
|
||||
ggml_tensor * gkexp_chunk = ggml_exp(ctx0, gk_cs_chunk);
|
||||
|
||||
ggml_tensor * k_chunk_i = ggml_cont(ctx0, ggml_permute(ctx0, k_chunk, 2, 0, 1, 3));
|
||||
ggml_tensor * k_chunk_i_bc = ggml_repeat_4d(ctx0, k_chunk_i, chunk_size, chunk_size, S_k, HB);
|
||||
ggml_tensor * q_chunk_j = ggml_cont(ctx0, ggml_permute(ctx0, q_chunk, 2, 1, 0, 3));
|
||||
ggml_tensor * q_chunk_j_bc = ggml_repeat_4d(ctx0, q_chunk_j, chunk_size, chunk_size, S_k, HB);
|
||||
ggml_tensor * kq = ggml_mul(ctx0, decay_mask_chunk, q_chunk_j_bc);
|
||||
kq = ggml_mul(ctx0, kq, k_chunk_i_bc);
|
||||
|
||||
ggml_tensor * Aqk = ggml_mul(ctx0, kq, decay_mask_chunk);
|
||||
Aqk = ggml_mul(ctx0, Aqk, ggml_add(ctx0, chunked_identity, chunked_mask));
|
||||
Aqk = ggml_cont(ctx0, ggml_permute(ctx0, Aqk, 1, 2, 0, 3));
|
||||
Aqk = ggml_sum_rows(ctx0, Aqk);
|
||||
Aqk = ggml_scale(ctx0, Aqk, scale); // scale q
|
||||
Aqk = ggml_reshape_4d(ctx0, Aqk, chunk_size, chunk_size, 1, HB);
|
||||
|
||||
ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
|
||||
|
||||
// new_state [S,S,1,H*B] k_cumdecay_chunk [S,BT,1,H*B]
|
||||
ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
|
||||
|
||||
ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, vb_chunk, v_prime), v_prime);
|
||||
ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
|
||||
|
||||
// q_chunk [S,BT,1,H*B] gkexp_chunk [S,BT,1,H*B]
|
||||
ggml_tensor * q_gk_exp = ggml_mul(ctx0, q_chunk, gkexp_chunk);
|
||||
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_gk_exp);
|
||||
attn_inter = ggml_scale(ctx0, attn_inter, scale); // scale q
|
||||
|
||||
// v_new_t [S,BT,1,H*B] Aqk [BT,BT,1,H*B]
|
||||
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, Aqk);
|
||||
|
||||
ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
|
||||
|
||||
core_attn_out = core_attn_out == nullptr ? core_attn_out_chunk : ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 1);
|
||||
|
||||
ggml_tensor * gk_cum_last =
|
||||
ggml_cont(ctx0, ggml_view_4d(ctx0, gk_cs_chunk, gk_cs_chunk->ne[0], 1, gk_cs_chunk->ne[2], gk_cs_chunk->ne[3],
|
||||
gk_cs_chunk->nb[1], gk_cs_chunk->nb[2], gk_cs_chunk->nb[3],
|
||||
gk_cs_chunk->nb[1] * (gk_cs_chunk->ne[1] - 1)));
|
||||
|
||||
ggml_tensor * gkexp_last = ggml_exp(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, gk_cum_last)));
|
||||
|
||||
ggml_tensor * gk_diff = ggml_neg(ctx0, ggml_sub(ctx0, gk_cs_chunk, gk_cum_last));
|
||||
|
||||
ggml_tensor * gk_diff_exp = ggml_exp(ctx0, gk_diff);
|
||||
|
||||
ggml_tensor * key_gkdiff = ggml_mul(ctx0, k_chunk, gk_diff_exp);
|
||||
|
||||
ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, key_gkdiff)));
|
||||
|
||||
new_state = ggml_add(ctx0,
|
||||
ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gkexp_last, gkexp_last->ne[0], gkexp_last->ne[1], H_v, n_seqs)),
|
||||
ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
|
||||
}
|
||||
|
||||
core_attn_out = ggml_cont_4d(ctx0, core_attn_out, S_v, chunk_size * n_chunks, H_v, n_seqs);
|
||||
|
||||
ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out, S_v, n_tokens, H_v, n_seqs, core_attn_out->nb[1], core_attn_out->nb[2], core_attn_out->nb[3], 0);
|
||||
cb(output_tokens, "output_tokens", il);
|
||||
|
||||
// flatten output
|
||||
ggml_tensor * flat_output =
|
||||
ggml_cont_1d(ctx0, ggml_permute(ctx0, output_tokens, 0, 2, 1, 3), S_v * H_v * n_tokens * n_seqs);
|
||||
|
||||
ggml_tensor * flat_state = ggml_cont_1d(ctx0, new_state, S_v * S_v * H_v * n_seqs);
|
||||
cb(new_state, "output_state", il);
|
||||
|
||||
return ggml_concat(ctx0, flat_output, flat_state, 0);
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_kimi_linear::build_kda_recurrent(
|
||||
|
|
|
|||
Loading…
Reference in New Issue