Revert "chore: reformat code with clang-formatter to pass cli test"

This reverts commit 952877ec24.
This commit is contained in:
shouyud 2025-12-16 14:28:34 -05:00
parent 952877ec24
commit cf3a65fb73
6 changed files with 260 additions and 221 deletions

View File

@ -8,8 +8,8 @@
#include <atomic>
#include <chrono>
#include <mutex>
#include <stdexcept>
#include <string>
#include <stdexcept>
#ifdef _WIN32
# include <sal.h>
@ -53,12 +53,10 @@ static int opt_opmask = HTP_OPMASK_QUEUE | HTP_OPMASK_QUANTIZE | HTP_OPMASK_COMP
static int opt_opsync = 0; // synchronous ops
#define HEX_VERBOSE(...) \
if (opt_verbose) \
GGML_LOG_DEBUG(__VA_ARGS__)
if (opt_verbose) GGML_LOG_DEBUG(__VA_ARGS__)
#define HEX_PROFILE(...) \
if (opt_profile) \
GGML_LOG_INFO(__VA_ARGS__)
if (opt_profile) GGML_LOG_INFO(__VA_ARGS__)
static inline uint64_t hex_is_aligned(void * addr, uint32_t align) {
return ((size_t) addr & (align - 1)) == 0;
@ -220,7 +218,7 @@ struct ggml_hexagon_session {
void allocate(int dev_id) noexcept(false);
void release() noexcept(true);
void enqueue(struct htp_general_req & req, struct dspqueue_buffer * bufs, uint32_t n_bufs, bool sync = false);
void enqueue(struct htp_general_req &req, struct dspqueue_buffer *bufs, uint32_t n_bufs, bool sync = false);
void flush();
ggml_backend_buffer_type buffer_type;
@ -260,10 +258,7 @@ static inline void hex_print_op_info(const ggml_tensor * op, ggml_hexagon_sessio
names, dims, types, strides, buffs, req_flags);
}
void ggml_hexagon_session::enqueue(struct htp_general_req & req,
struct dspqueue_buffer * bufs,
uint32_t n_bufs,
bool sync) {
void ggml_hexagon_session::enqueue(struct htp_general_req &req, struct dspqueue_buffer *bufs, uint32_t n_bufs, bool sync) {
// Bump pending flag (cleared in the session::flush once we get the responce)
this->op_pending++; // atomic inc
@ -303,13 +298,13 @@ void ggml_hexagon_session::flush() {
// Read response packet from queue
int err = dspqueue_read(q, &flags,
HTP_MAX_PACKET_BUFFERS, // Maximum number of buffer references
&n_bufs, // Number of buffer references
bufs, // Buffer references
sizeof(rsp), // Max message length
&rsp_size, // Message length
(uint8_t *) &rsp,
1000000); // Timeout
HTP_MAX_PACKET_BUFFERS, // Maximum number of buffer references
&n_bufs, // Number of buffer references
bufs, // Buffer references
sizeof(rsp), // Max message length
&rsp_size, // Message length
(uint8_t *) &rsp,
1000000); // Timeout
if (err == AEE_EEXPIRED) {
// TODO: might need to bail out if the HTP is stuck on something
@ -359,8 +354,8 @@ struct ggml_backend_hexagon_buffer_context {
int err = fastrpc_mmap(s->domain_id, this->fd, (void *) this->base, 0, this->size, FASTRPC_MAP_FD);
if (err != 0) {
GGML_LOG_ERROR("ggml-hex: buffer mapping failed : domain_id %d size %zu fd %d error 0x%08x\n", s->domain_id,
this->size, this->fd, (unsigned) err);
GGML_LOG_ERROR("ggml-hex: buffer mapping failed : domain_id %d size %zu fd %d error 0x%08x\n",
s->domain_id, this->size, this->fd, (unsigned) err);
return false;
}
@ -391,12 +386,10 @@ struct ggml_backend_hexagon_buffer_context {
size += 4 * 1024; // extra page for padding
if (rpcmem_alloc2) {
this->base =
(uint8_t *) rpcmem_alloc2(RPCMEM_HEAP_ID_SYSTEM, RPCMEM_DEFAULT_FLAGS | RPCMEM_HEAP_NOREG, size);
this->base = (uint8_t *) rpcmem_alloc2(RPCMEM_HEAP_ID_SYSTEM, RPCMEM_DEFAULT_FLAGS | RPCMEM_HEAP_NOREG, size);
} else {
GGML_LOG_INFO("ggml-hex: %s rpcmem_alloc2 not found, falling back to rpcmem_alloc\n", sess->name.c_str());
this->base =
(uint8_t *) rpcmem_alloc(RPCMEM_HEAP_ID_SYSTEM, RPCMEM_DEFAULT_FLAGS | RPCMEM_HEAP_NOREG, size);
this->base = (uint8_t *) rpcmem_alloc(RPCMEM_HEAP_ID_SYSTEM, RPCMEM_DEFAULT_FLAGS | RPCMEM_HEAP_NOREG, size);
}
if (!this->base) {
@ -460,7 +453,7 @@ static enum ggml_status ggml_backend_hexagon_buffer_init_tensor(ggml_backend_buf
(int) ctx->repack);
if (tensor->view_src != NULL && tensor->view_offs == 0) {
; // nothing to do for the view
; // nothing to do for the view
} else {
if (!ctx->mapped) {
ctx->mmap();
@ -709,8 +702,8 @@ static void repack_q4_0_q4x4x2(ggml_tensor * t, const void * data, size_t size)
// Ensure we don't try to read more data than is available in the source buffer 'data'
// or write more than the tensor can hold.
const size_t total_tensor_size = (size_t) nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
const size_t total_tensor_size = (size_t)nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
// Calculate how many full rows and how many remaining bytes we need to process.
const int64_t n_full_rows = n_bytes_to_copy / row_size;
@ -739,7 +732,7 @@ static void repack_q4_0_q4x4x2(ggml_tensor * t, const void * data, size_t size)
// 2. Process the final, potentially partial, row
if (n_rem_bytes > 0) {
const int64_t i = n_full_rows;
const int64_t i = n_full_rows;
const uint8_t * src = (const uint8_t *) data + (i * row_size);
uint8_t * dst = (uint8_t *) t->data + (i * row_size);
@ -769,8 +762,8 @@ static void repack_q4x4x2_q4_0(void * data, const ggml_tensor * t, size_t size)
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
// Ensure we don't try to copy more data than the tensor actually contains.
const size_t total_tensor_size = (size_t) nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
const size_t total_tensor_size = (size_t)nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
// Calculate how many full rows and how many remaining bytes we need to process.
const int64_t n_full_rows = n_bytes_to_copy / row_size;
@ -799,7 +792,7 @@ static void repack_q4x4x2_q4_0(void * data, const ggml_tensor * t, size_t size)
// 2. Process the final, potentially partial, row
if (n_rem_bytes > 0) {
const int64_t i = n_full_rows;
const int64_t i = n_full_rows;
const uint8_t * src = (const uint8_t *) t->data + (i * row_size);
uint8_t * dst = (uint8_t *) data + (i * row_size);
@ -1035,8 +1028,8 @@ static void repack_q8_0_q8x4x2(ggml_tensor * t, const void * data, size_t size)
// Ensure we don't try to read more data than is available in the source buffer 'data'
// or write more than the tensor can hold.
const size_t total_tensor_size = (size_t) nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
const size_t total_tensor_size = (size_t)nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
// Calculate how many full rows and how many remaining bytes we need to process.
const int64_t n_full_rows = n_bytes_to_copy / row_size;
@ -1065,7 +1058,7 @@ static void repack_q8_0_q8x4x2(ggml_tensor * t, const void * data, size_t size)
// 2. Process the final, potentially partial, row
if (n_rem_bytes > 0) {
const int64_t i = n_full_rows;
const int64_t i = n_full_rows;
const uint8_t * src = (const uint8_t *) data + (i * row_size);
uint8_t * dst = (uint8_t *) t->data + (i * row_size);
@ -1095,8 +1088,8 @@ static void repack_q8x4x2_q8_0(void * data, const ggml_tensor * t, size_t size)
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
// Ensure we don't try to copy more data than the tensor actually contains.
const size_t total_tensor_size = (size_t) nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
const size_t total_tensor_size = (size_t)nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
// Calculate how many full rows and how many remaining bytes we need to process.
const int64_t n_full_rows = n_bytes_to_copy / row_size;
@ -1125,7 +1118,7 @@ static void repack_q8x4x2_q8_0(void * data, const ggml_tensor * t, size_t size)
// 2. Process the final, potentially partial, row
if (n_rem_bytes > 0) {
const int64_t i = n_full_rows;
const int64_t i = n_full_rows;
const uint8_t * src = (const uint8_t *) t->data + (i * row_size);
uint8_t * dst = (uint8_t *) data + (i * row_size);
@ -1386,8 +1379,8 @@ static void repack_mxfp4_mxfp4x4x2(ggml_tensor * t, const void * data, size_t si
// Ensure we don't try to read more data than is available in the source buffer 'data'
// or write more than the tensor can hold.
const size_t total_tensor_size = (size_t) nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
const size_t total_tensor_size = (size_t)nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
// Calculate how many full rows and how many remaining bytes we need to process.
const int64_t n_full_rows = n_bytes_to_copy / row_size;
@ -1416,7 +1409,7 @@ static void repack_mxfp4_mxfp4x4x2(ggml_tensor * t, const void * data, size_t si
// 2. Process the final, potentially partial, row
if (n_rem_bytes > 0) {
const int64_t i = n_full_rows;
const int64_t i = n_full_rows;
const uint8_t * src = (const uint8_t *) data + (i * row_size);
uint8_t * dst = (uint8_t *) t->data + (i * row_size);
@ -1446,8 +1439,8 @@ static void repack_mxfp4x4x2_mxfp4(void * data, const ggml_tensor * t, size_t si
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
// Ensure we don't try to copy more data than the tensor actually contains.
const size_t total_tensor_size = (size_t) nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
const size_t total_tensor_size = (size_t)nrows * row_size;
const size_t n_bytes_to_copy = size < total_tensor_size ? size : total_tensor_size;
// Calculate how many full rows and how many remaining bytes we need to process.
const int64_t n_full_rows = n_bytes_to_copy / row_size;
@ -1476,7 +1469,7 @@ static void repack_mxfp4x4x2_mxfp4(void * data, const ggml_tensor * t, size_t si
// 2. Process the final, potentially partial, row
if (n_rem_bytes > 0) {
const int64_t i = n_full_rows;
const int64_t i = n_full_rows;
const uint8_t * src = (const uint8_t *) t->data + (i * row_size);
uint8_t * dst = (uint8_t *) data + (i * row_size);
@ -1599,28 +1592,25 @@ static const char * ggml_backend_hexagon_buffer_type_name(ggml_backend_buffer_ty
return static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer_type->context)->name.c_str();
}
static ggml_backend_buffer_t ggml_backend_hexagon_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type,
size_t size) {
static ggml_backend_buffer_t ggml_backend_hexagon_buffer_type_alloc_buffer(
ggml_backend_buffer_type_t buffer_type, size_t size) {
auto sess = static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer_type->context)->sess;
try {
ggml_backend_hexagon_buffer_context * ctx =
new ggml_backend_hexagon_buffer_context(sess, size, false /*repack*/);
ggml_backend_hexagon_buffer_context * ctx = new ggml_backend_hexagon_buffer_context(sess, size, false /*repack*/);
return ggml_backend_buffer_init(buffer_type, ggml_backend_hexagon_buffer_interface, ctx, size);
} catch (const std::exception & exc) {
} catch (std::exception const &exc) {
GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer context: %s\n", sess->name.c_str(), exc.what());
return nullptr;
}
}
static ggml_backend_buffer_t ggml_backend_hexagon_repack_buffer_type_alloc_buffer(
ggml_backend_buffer_type_t buffer_type,
size_t size) {
ggml_backend_buffer_type_t buffer_type, size_t size) {
auto sess = static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer_type->context)->sess;
try {
ggml_backend_hexagon_buffer_context * ctx =
new ggml_backend_hexagon_buffer_context(sess, size, true /*repack*/);
ggml_backend_hexagon_buffer_context * ctx = new ggml_backend_hexagon_buffer_context(sess, size, true /*repack*/);
return ggml_backend_buffer_init(buffer_type, ggml_backend_hexagon_buffer_interface, ctx, size);
} catch (const std::exception & exc) {
} catch (std::exception const &exc) {
GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer context: %s\n", sess->name.c_str(), exc.what());
return nullptr;
}
@ -1631,8 +1621,7 @@ static size_t ggml_backend_hexagon_buffer_type_get_alignment(ggml_backend_buffer
GGML_UNUSED(buffer_type);
}
static size_t ggml_backend_hexagon_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft,
const struct ggml_tensor * t) {
static size_t ggml_backend_hexagon_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * t) {
return ggml_nbytes(t);
}
@ -1708,8 +1697,8 @@ void ggml_hexagon_session::allocate(int dev_id) noexcept(false) {
}
// Save the IDs
this->session_id = n.session_id;
this->domain_id = n.effective_domain_id;
this->session_id = n.session_id;
this->domain_id = n.effective_domain_id;
this->valid_session = true;
}
@ -1718,17 +1707,16 @@ void ggml_hexagon_session::allocate(int dev_id) noexcept(false) {
char session_uri[256];
{
char htp_uri[256];
snprintf(htp_uri, sizeof(htp_uri), "file:///libggml-htp-v%u.so?htp_iface_skel_handle_invoke&_modver=1.0",
opt_arch);
snprintf(htp_uri, sizeof(htp_uri), "file:///libggml-htp-v%u.so?htp_iface_skel_handle_invoke&_modver=1.0", opt_arch);
struct remote_rpc_get_uri u = {};
u.session_id = this->session_id;
u.domain_name = const_cast<char *>(CDSP_DOMAIN_NAME);
u.domain_name_len = strlen(CDSP_DOMAIN_NAME);
u.module_uri = const_cast<char *>(htp_uri);
u.module_uri_len = strlen(htp_uri);
u.uri = session_uri;
u.uri_len = sizeof(session_uri);
u.session_id = this->session_id;
u.domain_name = const_cast<char *>(CDSP_DOMAIN_NAME);
u.domain_name_len = strlen(CDSP_DOMAIN_NAME);
u.module_uri = const_cast<char *>(htp_uri);
u.module_uri_len = strlen(htp_uri);
u.uri = session_uri;
u.uri_len = sizeof(session_uri);
int err = remote_session_control(FASTRPC_GET_URI, (void *) &u, sizeof(u));
if (err != AEE_SUCCESS) {
@ -1737,9 +1725,7 @@ void ggml_hexagon_session::allocate(int dev_id) noexcept(false) {
snprintf(session_uri, htp_URI_domain_len, "%s%s", htp_uri, my_domain->uri);
GGML_LOG_WARN(
"ggml-hex: failed to get URI for session %d : error 0x%x. Falling back to single session URI: %s\n",
dev_id, err, session_uri);
GGML_LOG_WARN("ggml-hex: failed to get URI for session %d : error 0x%x. Falling back to single session URI: %s\n", dev_id, err, session_uri);
}
}
@ -1765,7 +1751,7 @@ void ggml_hexagon_session::allocate(int dev_id) noexcept(false) {
this->valid_handle = true;
GGML_LOG_INFO("ggml-hex: new session: %s : session-id %d domain-id %d uri %s handle 0x%lx\n", this->name.c_str(),
this->session_id, this->domain_id, session_uri, (unsigned long) this->handle);
this->session_id, this->domain_id, session_uri, (unsigned long) this->handle);
// Enable FastRPC QoS mode
{
@ -1855,8 +1841,8 @@ ggml_hexagon_session::ggml_hexagon_session(int dev_id, ggml_backend_dev_t dev) n
buffer_type.context = nullptr;
repack_buffer_type.context = nullptr;
buffer_type.device = dev;
repack_buffer_type.device = dev;
buffer_type.device = dev;
repack_buffer_type.device = dev;
try {
allocate(dev_id);
@ -1866,7 +1852,7 @@ ggml_hexagon_session::ggml_hexagon_session(int dev_id, ggml_backend_dev_t dev) n
repack_buffer_type.iface = ggml_backend_hexagon_repack_buffer_type_interface;
repack_buffer_type.context = new ggml_backend_hexagon_buffer_type_context(this->name + "-REPACK", this);
} catch (const std::exception & exc) {
} catch (std::exception const &exc) {
release();
throw;
}
@ -1875,8 +1861,8 @@ ggml_hexagon_session::ggml_hexagon_session(int dev_id, ggml_backend_dev_t dev) n
ggml_hexagon_session::~ggml_hexagon_session() noexcept(true) {
release();
delete static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer_type.context);
delete static_cast<ggml_backend_hexagon_buffer_type_context *>(repack_buffer_type.context);
delete static_cast<ggml_backend_hexagon_buffer_type_context*>(buffer_type.context);
delete static_cast<ggml_backend_hexagon_buffer_type_context*>(repack_buffer_type.context);
}
// ** backend interface
@ -2178,11 +2164,11 @@ static bool ggml_hexagon_supported_activations(const struct ggml_hexagon_session
}
// src0, src1 & dst must be mapped to the same session
if (src1) {
if(src1){
if (!hex_supported_buffer(sess, src0, src1, dst)) {
return false;
}
} else {
}else{
if (!hex_supported_buffer(sess, src0, dst)) {
return false;
}
@ -2320,11 +2306,11 @@ static size_t dspqueue_buffers_init(dspqueue_buffer * buf, const ggml_tensor * t
memset(buf, 0, sizeof(*buf));
auto tensor_buf = static_cast<ggml_backend_hexagon_buffer_context *>(t->buffer->context);
buf->fd = tensor_buf->fd;
buf->ptr = t->data;
buf->offset = (uint8_t *) t->data - tensor_buf->base;
buf->size = ggml_nbytes(t);
buf->flags = (flush_host ? DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER : 0); // Flush CPU
buf->fd = tensor_buf->fd;
buf->ptr = t->data;
buf->offset = (uint8_t *) t->data - tensor_buf->base;
buf->size = ggml_nbytes(t);
buf->flags = (flush_host ? DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER : 0); // Flush CPU
buf->flags |= (flush_htp ? DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT : 0); // Invalidate DSP
return 1;
}
@ -2684,7 +2670,8 @@ static void ggml_hexagon_unary(const struct ggml_tensor * op, uint32_t flags) {
if (ggml_get_unary_op(dst) == GGML_UNARY_OP_SILU) {
req.op = HTP_OP_UNARY_SILU;
supported = true;
} else if (ggml_get_unary_op(dst) == GGML_UNARY_OP_GELU) {
}
else if (ggml_get_unary_op(dst) == GGML_UNARY_OP_GELU){
req.op = HTP_OP_UNARY_GELU;
supported = true;
}
@ -2915,7 +2902,8 @@ static inline bool op_reuse_src1(const ggml_tensor * op1, const ggml_tensor * op
return (op0 && op0->src[1] == op1->src[1]);
}
static inline bool is_compute_op(ggml_tensor * node) {
static inline bool is_compute_op(ggml_tensor *node)
{
return !(ggml_op_is_empty(node->op) || ggml_is_empty(node));
}
@ -3025,17 +3013,29 @@ struct node_info {
std::vector<ggml_tensor *> fused;
ggml_op op() const { return node->op; }
ggml_op op() const {
return node->op;
}
const ggml_tensor * dst() const { return fused.empty() ? node : fused.back(); }
const ggml_tensor * dst() const {
return fused.empty() ? node : fused.back();
}
const ggml_tensor * src0() const { return node->src[0]; }
const ggml_tensor * src0() const {
return node->src[0];
}
const ggml_tensor * src1() const { return node->src[1]; }
const ggml_tensor * src1() const {
return node->src[1];
}
bool is_empty() const { return ggml_op_is_empty(node->op); }
bool is_empty() const {
return ggml_op_is_empty(node->op);
}
void add_fused(ggml_tensor * t) { fused.push_back(t); }
void add_fused(ggml_tensor * t) {
fused.push_back(t);
}
bool stackable() const {
switch (this->op()) {
@ -3047,7 +3047,9 @@ struct node_info {
}
}
bool same_input(const node_info & n) const { return n.src1() == this->src1(); }
bool same_input(const node_info& n) const {
return n.src1() == this->src1();
}
};
static std::vector<int> ggml_hexagon_graph_optimize_reorder(const std::vector<node_info> & nodes) {
@ -3112,21 +3114,25 @@ static void ggml_backend_hexagon_graph_optimize(ggml_backend_t backend, ggml_cgr
// and perform the reorder over the fused nodes. after the reorder is done, we unfuse
for (int i = 0; i < n; i++) {
node_info node = {
/*.node =*/gf->nodes[i],
/*.fused =*/{},
/*.node =*/ gf->nodes[i],
/*.fused =*/ {},
};
// fuse only ops that start with these operations
// can be expanded when needed
if (node.op() == GGML_OP_ADD || node.op() == GGML_OP_NORM || node.op() == GGML_OP_RMS_NORM) {
if (node.op() == GGML_OP_ADD ||
node.op() == GGML_OP_NORM ||
node.op() == GGML_OP_RMS_NORM) {
ops[0] = node.op();
int f = i + 1;
while (f < n && f < i + MAX_FUSE) {
// conservatively allow fusing only these ops
// can be expanded when needed
if (gf->nodes[f]->op != GGML_OP_ADD && gf->nodes[f]->op != GGML_OP_MUL &&
gf->nodes[f]->op != GGML_OP_NORM && gf->nodes[f]->op != GGML_OP_RMS_NORM) {
if (gf->nodes[f]->op != GGML_OP_ADD &&
gf->nodes[f]->op != GGML_OP_MUL &&
gf->nodes[f]->op != GGML_OP_NORM &&
gf->nodes[f]->op != GGML_OP_RMS_NORM) {
break;
}
ops[f - i] = gf->nodes[f]->op;
@ -3302,7 +3308,8 @@ static bool ggml_backend_hexagon_device_supports_op(ggml_backend_dev_t dev, cons
case GGML_OP_UNARY:
if (ggml_get_unary_op(op) == GGML_UNARY_OP_SILU) {
supp = ggml_hexagon_supported_activations(sess, op);
} else if (ggml_get_unary_op(op) == GGML_UNARY_OP_GELU) {
}
else if (ggml_get_unary_op(op) == GGML_UNARY_OP_GELU){
supp = ggml_hexagon_supported_activations(sess, op);
}
break;
@ -3409,7 +3416,7 @@ ggml_hexagon_registry::ggml_hexagon_registry(ggml_backend_reg_t reg) {
}
}
if (opt_arch < 75) {
if(opt_arch < 75) {
opt_ndev = 1;
GGML_LOG_WARN("ggml-hex: forcing ndev to 1 for SoCs archs lower than v75.\n");
}
@ -3418,11 +3425,11 @@ ggml_hexagon_registry::ggml_hexagon_registry(ggml_backend_reg_t reg) {
// Create devices / sessions
for (size_t i = 0; i < opt_ndev; i++) {
devices[i].iface = ggml_backend_hexagon_device_i;
devices[i].reg = reg;
devices[i].iface = ggml_backend_hexagon_device_i;
devices[i].reg = reg;
try {
devices[i].context = new ggml_hexagon_session(i, &devices[i]);
} catch (const std::exception & exc) {
} catch (std::exception const &exc) {
GGML_LOG_ERROR("ggml-hex: failed to create device/session %zu\n", i);
devices[i].context = nullptr;
}

View File

@ -255,6 +255,7 @@ static void glu_swiglu_oai_fp32_per_thread(const struct htp_tensor * src0,
src1->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], (unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static void unary_gelu_fp32_per_thread(const struct htp_tensor * src0,
struct htp_tensor * dst,
const int32_t * op_params,
@ -314,11 +315,12 @@ static void unary_gelu_fp32_per_thread(const struct htp_tensor * src0,
// gelu = x * sigmoid(1.702 * x) // current implementation
if (1 == opt_path) {
hvx_mul_scalar_f32((const uint8_t *) src0, (float) 1.702, (uint8_t *) src0_spad_data, ne0);
hvx_mul_scalar_f32( (const uint8_t *) src0, (float)1.702, (uint8_t *) src0_spad_data, ne0);
hvx_fast_sigmoid_f32((const uint8_t *) src0_spad_data, (uint8_t *) src0_spad_data, ne0);
hvx_mul_f32_opt((const uint8_t *) src0, src0_spad_data, (uint8_t *) dst, ne0);
} else {
hvx_mul_scalar_f32((const uint8_t *) src0, (float) 1.702, (uint8_t *) src0_spad_data, ne0);
}
else {
hvx_mul_scalar_f32( (const uint8_t *) src0, (float)1.702, (uint8_t *) src0_spad_data, ne0);
hvx_sigmoid_f32((const uint8_t *) src0_spad_data, (uint8_t *) src0_spad_data, ne0);
hvx_mul_f32((const uint8_t *) src0, src0_spad_data, (uint8_t *) dst, ne0);
}
@ -337,6 +339,8 @@ static void unary_gelu_fp32(unsigned int n, unsigned int i, void * data) {
octx->src0_nrows_per_thread);
}
static void unary_silu_fp32_per_thread(const struct htp_tensor * src0,
struct htp_tensor * dst,
const int32_t * op_params,

View File

@ -120,10 +120,10 @@ static const char * htp_type_name(uint32_t t) {
#define HTP_MAX_DIMS 4
struct htp_tensor {
uint32_t data; // Buffer offset in the messages, and data pointer on the NSP
uint32_t type; // Data type
uint32_t ne[HTP_MAX_DIMS]; // Number of elements
uint32_t nb[HTP_MAX_DIMS]; // Stride in bytes (see ggml.h ggml_tensor)
uint32_t data; // Buffer offset in the messages, and data pointer on the NSP
uint32_t type; // Data type
uint32_t ne[HTP_MAX_DIMS]; // Number of elements
uint32_t nb[HTP_MAX_DIMS]; // Stride in bytes (see ggml.h ggml_tensor)
};
#define HTP_MAX_OP_PARAMS 64

View File

@ -49,25 +49,28 @@ void hvx_mul_f32(const uint8_t * restrict src0,
FARF(HIGH, "hvx_mul_f32: unaligned loop in hvx op, possibly slower execution\n");
}
bool handled_leftover = false;
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src0;
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1++, *vec_in2++);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
int step_of_1 = num_elems_whole >> 5; // divby 32, because 32 float = 128 bytes per HVX vector
int step_of_1 = num_elems_whole >> 5; // divby 32, because 32 float = 128 bytes per HVX vector
int leftover_size = left_over * sizeof(float);
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src0;
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src0;
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_UVector * restrict vec_out = (HVX_UVector *) dst;
HVX_Vector slinep;
HVX_Vector slinec;
HVX_Vector sline;
@ -75,35 +78,40 @@ void hvx_mul_f32(const uint8_t * restrict src0,
HVX_Vector sline2c;
HVX_Vector sline2;
slinep = *vec_in1++;
slinep = *vec_in1++;
sline2p = *vec_in2++;
#pragma unroll(4)
for (uint32_t i = step_of_1 - 1; i > 0; i--) {
slinec = *vec_in1++;
#pragma unroll(4)
for(uint32_t i = step_of_1 -1; i> 0; i--){
slinec = *vec_in1++;
sline2c = *vec_in2++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src0);
sline2 = Q6_V_valign_VVR(sline2c, sline2p, (size_t) src1);
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src0);
sline2 = Q6_V_valign_VVR(sline2c, sline2p, (size_t) src1);
*((HVX_UVector *) (vec_out++)) = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(sline, sline2));
slinep = slinec;
sline2p = sline2c;
*((HVX_UVector *)(vec_out++)) =Q6_Vsf_equals_Vqf32( Q6_Vqf32_vmpy_VsfVsf(sline, sline2));
slinep = slinec;
sline2p = sline2c;
}
if (step_of_1 > 1) {
slinec = htp_is_aligned(vec_in1, VLEN) && left_over == 0 ? slinep : *vec_in1++;
if(step_of_1 > 1){
slinec = htp_is_aligned(vec_in1, VLEN) && left_over == 0 ? slinep : *vec_in1++;
sline2c = htp_is_aligned(vec_in2, VLEN) && left_over == 0 ? sline2p : *vec_in2++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src0);
sline2 = Q6_V_valign_VVR(sline2c, sline2p, (size_t) src1);
*((HVX_UVector *) (vec_out++)) = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(sline, sline2));
slinep = slinec;
sline2p = sline2c;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src0);
sline2 = Q6_V_valign_VVR(sline2c, sline2p, (size_t) src1);
*((HVX_UVector *)(vec_out++)) =Q6_Vsf_equals_Vqf32( Q6_Vqf32_vmpy_VsfVsf(sline, sline2));
slinep = slinec;
sline2p = sline2c;
}
if (left_over > 0) {
slinec = (is_in_one_chunk(vec_in1, leftover_size, VLEN) ? slinep : *vec_in1++);
if(left_over > 0 ){
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src0);
sline2c = (is_in_one_chunk(vec_in2, leftover_size, VLEN) ? sline2p : *vec_in2++);
sline2 = Q6_V_valign_VVR(sline2c, sline2p, (size_t) src1);
slinec = (is_in_one_chunk(vec_in1, leftover_size, VLEN)
? slinep
: *vec_in1++);
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src0);
sline2c = (is_in_one_chunk(vec_in2, leftover_size, VLEN)
? sline2p
: *vec_in2++);
sline2 = Q6_V_valign_VVR(sline2c, sline2p, (size_t) src1);
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(sline, sline2);
hvx_vec_store_u(vec_out, leftover_size, Q6_Vsf_equals_Vqf32(out));
@ -111,6 +119,7 @@ void hvx_mul_f32(const uint8_t * restrict src0,
}
}
if (left_over > 0 && !handled_leftover) {
const float * src0f = (const float *) src0 + num_elems_whole;
const float * src1f = (const float *) src1 + num_elems_whole;
@ -306,13 +315,13 @@ void hvx_add_f32(const uint8_t * restrict src0,
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(*vec_in1++, *vec_in2++);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in1 = *(HVX_UVector *) (src0 + i * SIZEOF_FP32);
HVX_Vector in2 = *(HVX_UVector *) (src1 + i * SIZEOF_FP32);
@ -449,7 +458,7 @@ void hvx_add_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *vec_in1++;
const HVX_VectorPred pred_inf = Q6_Q_vcmp_eq_VwVw(inf, in);
@ -459,7 +468,7 @@ void hvx_add_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
*vec_out++ = v;
}
} else {
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
@ -503,23 +512,26 @@ void hvx_mul_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
FARF(HIGH, "hvx_mul_scalar_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector val_vec = hvx_vec_splat_fp32(val);
bool handled_leftover = false;
HVX_Vector val_vec = hvx_vec_splat_fp32(val);
bool handled_leftover = false;
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1++, val_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
int step_of_1 = num_elems >> 5; // divby 32, because 32 float = 128 bytes per HVX vector
int step_of_1 = num_elems >> 5; // divby 32, because 32 float = 128 bytes per HVX vector
int leftover_size = left_over * sizeof(float);
HVX_Vector * input_v_ptr = (HVX_Vector *) src;
HVX_UVector * output_v_ptr = (HVX_UVector *) dst;
HVX_Vector * input_v_ptr = (HVX_Vector *) src;
HVX_UVector * output_v_ptr = (HVX_UVector *) dst;
HVX_Vector slinep;
HVX_Vector slinec;
@ -527,29 +539,32 @@ void hvx_mul_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
slinep = *input_v_ptr++;
#pragma unroll(4)
for (uint32_t i = step_of_1 - 1; i > 0; i--) {
slinec = *input_v_ptr++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src);
*((HVX_UVector *) (output_v_ptr++)) = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(sline, val_vec));
#pragma unroll(4)
for(uint32_t i = step_of_1 - 1; i > 0; i--){
slinec = *input_v_ptr++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src);
*((HVX_UVector *)(output_v_ptr++)) = Q6_Vsf_equals_Vqf32( Q6_Vqf32_vmpy_VsfVsf(sline, val_vec));
/* Prepare slinep for next iteration */
slinep = slinec;
slinep = slinec;
}
if (step_of_1 > 0) {
if(step_of_1 > 0){
slinec = htp_is_aligned(input_v_ptr, VLEN) && left_over == 0 ? slinep : *input_v_ptr++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src);
*((HVX_UVector *) (output_v_ptr++)) = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(sline, val_vec));
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src);
*((HVX_UVector *)(output_v_ptr++)) = Q6_Vsf_equals_Vqf32( Q6_Vqf32_vmpy_VsfVsf(sline, val_vec));
slinep = slinec;
}
if (leftover_size > 0) {
slinec = (is_in_one_chunk(input_v_ptr, leftover_size, VLEN) ? slinep : *input_v_ptr++);
if(leftover_size > 0){
slinec = (is_in_one_chunk(input_v_ptr, leftover_size, VLEN)
? slinep
: *input_v_ptr++);
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src);
HVX_Vector sout = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(sline, val_vec));
HVX_Vector sout = Q6_Vsf_equals_Vqf32( Q6_Vqf32_vmpy_VsfVsf(sline, val_vec));
hvx_vec_store_u(output_v_ptr, leftover_size, sout);
handled_leftover = true;
}
@ -591,13 +606,13 @@ void hvx_sub_f32(const uint8_t * restrict src0,
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vsub_VsfVsf(*vec_in1++, *vec_in2++);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in1 = *(HVX_UVector *) (src0 + i * SIZEOF_FP32);
HVX_Vector in2 = *(HVX_UVector *) (src1 + i * SIZEOF_FP32);
@ -732,13 +747,13 @@ void hvx_sub_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vsub_VsfVsf(*vec_in1++, val_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
@ -774,7 +789,7 @@ float hvx_sum_of_squares_f32(const uint8_t * restrict src, const int num_elems)
HVX_Vector sum_vec_acc = Q6_V_vsplat_R(0x00000000);
HVX_Vector zero_vec = Q6_V_vsplat_R(0x00000000);
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1, *vec_in1);
sum_vec_acc = Q6_Vqf32_vadd_Vqf32Vqf32(sum_vec_acc, v);
@ -818,13 +833,13 @@ float hvx_self_sum_f32(const uint8_t * restrict src, const int num_elems) {
if (0 == unaligned_loop) {
HVX_Vector * vec_in = (HVX_Vector *) src;
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
// sum_vec = Q6_Vqf32_vadd_Vqf32Vsf(sum_vec, *vec_in++);
sum_vec = Q6_Vqf32_vadd_VsfVsf(Q6_Vsf_equals_Vqf32(sum_vec), *vec_in++);
}
} else {
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
@ -867,13 +882,13 @@ void hvx_scale_f32(const uint8_t * restrict src, uint8_t * restrict dst, const i
HVX_Vector * vec_in1 = (HVX_Vector *) src;
HVX_Vector * vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1++, scale_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
@ -916,12 +931,12 @@ float hvx_self_max_f32(const uint8_t * restrict src, const int num_elems) {
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in = (HVX_Vector *) src;
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
vec_max = Q6_Vsf_vmax_VsfVsf(vec_max, *vec_in++);
}
} else {
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
@ -959,7 +974,7 @@ void hvx_min_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
HVX_Vector * restrict vec_in = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
vec_min = Q6_Vsf_vmin_VsfVsf(vec_min, *vec_in++);
*vec_out++ = Q6_Vsf_equals_Vqf32(vec_min);
@ -997,7 +1012,7 @@ void hvx_clamp_scalar_f32(const uint8_t * restrict src,
HVX_Vector range_left = hvx_vec_splat_fp32(limit_left);
HVX_Vector range_right = hvx_vec_splat_fp32(limit_right);
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in_vec = *vec_in++;
HVX_Vector temp_v = in_vec;

View File

@ -23,18 +23,20 @@ typedef union {
/* Q6_Vsf_equals_Vw is only available on v73+.*/
#if __HVX_ARCH__ < 73
static inline HVX_Vector int32_to_qfloat(const HVX_Vector in) {
const HVX_Vector vzero = Q6_V_vzero();
HVX_VectorPred is_zero = Q6_Q_vcmp_eq_VwVw(in, vzero);
HVX_Vector lshift = Q6_Vw_vnormamt_Vw(in);
HVX_Vector normalized = Q6_Vw_vasl_VwVw(in, lshift);
HVX_Vector vexp = Q6_Vw_vsub_VwVw(Q6_V_vsplat_R(0x7f + 30), lshift);
HVX_Vector mant = Q6_V_vand_VV(Q6_V_vsplat_R(0xFFFFFF00), normalized);
HVX_Vector ret = Q6_V_vmux_QVV(is_zero, vzero, Q6_Vw_vadd_VwVw(mant, vexp));
static inline HVX_Vector int32_to_qfloat(HVX_Vector const in)
{
HVX_Vector const vzero = Q6_V_vzero();
HVX_VectorPred is_zero = Q6_Q_vcmp_eq_VwVw(in, vzero);
HVX_Vector lshift = Q6_Vw_vnormamt_Vw(in);
HVX_Vector normalized = Q6_Vw_vasl_VwVw(in, lshift);
HVX_Vector vexp = Q6_Vw_vsub_VwVw(Q6_V_vsplat_R(0x7f + 30), lshift);
HVX_Vector mant = Q6_V_vand_VV(Q6_V_vsplat_R(0xFFFFFF00), normalized);
HVX_Vector ret = Q6_V_vmux_QVV(is_zero, vzero, Q6_Vw_vadd_VwVw(mant, vexp));
return ret;
}
static inline HVX_Vector Q6_Vsf_equals_Vw(const HVX_Vector in) {
static inline HVX_Vector Q6_Vsf_equals_Vw(HVX_Vector const in)
{
return Q6_Vsf_equals_Vqf32(int32_to_qfloat(in));
}
#endif
@ -107,7 +109,7 @@ static inline void hvx_copy_fp16_aa(uint8_t * restrict dst, const uint8_t * rest
uint32_t i = 0;
#pragma unroll(4)
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
@ -131,7 +133,7 @@ static inline void hvx_copy_fp16_ua(uint8_t * restrict dst, const uint8_t * rest
uint32_t i = 0;
#pragma unroll(4)
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
@ -155,7 +157,7 @@ static inline void hvx_copy_fp16_au(uint8_t * restrict dst, const uint8_t * rest
uint32_t i = 0;
#pragma unroll(4)
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
@ -180,7 +182,7 @@ static inline void hvx_copy_fp32_aa(uint8_t * restrict dst, const uint8_t * rest
uint32_t i = 0;
#pragma unroll(4)
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
@ -204,7 +206,7 @@ static inline void hvx_copy_fp32_ua(uint8_t * restrict dst, const uint8_t * rest
uint32_t i = 0;
#pragma unroll(4)
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
@ -228,7 +230,7 @@ static inline void hvx_copy_fp32_au(uint8_t * restrict dst, const uint8_t * rest
uint32_t i = 0;
#pragma unroll(4)
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
@ -253,7 +255,7 @@ static inline void hvx_bcast_fp32_a(uint8_t * restrict dst, float elem, uint32_t
uint32_t i = 0;
#pragma unroll(4)
#pragma unroll(4)
for (; i < nvec; i++) {
vdst[i] = velem;
}
@ -263,6 +265,7 @@ static inline void hvx_bcast_fp32_a(uint8_t * restrict dst, float elem, uint32_t
}
}
/* Return whether 'n' elements from vector are in the one chunk of 'chunk_size'. */
static __attribute__((always_inline)) int32_t is_in_one_chunk(void * addr, uint32_t n, uint32_t chunk_size) {
uint32_t left_off = (size_t) addr & (chunk_size - 1);
@ -270,6 +273,8 @@ static __attribute__((always_inline)) int32_t is_in_one_chunk(void * addr, uint3
return right_off <= chunk_size;
}
static void hvx_vec_dump_fp16_n(char * pref, HVX_Vector v, uint32_t n) {
HVX_VectorAlias u = { .v = v };
@ -987,15 +992,16 @@ static inline void hvx_fast_sigmoid_f32(const uint8_t * restrict src, uint8_t *
const HVX_Vector max_exp = hvx_vec_splat_fp32(kMaxExp);
const HVX_Vector min_exp = hvx_vec_splat_fp32(kMinExp);
#pragma unroll(4)
#pragma unroll(4)
for (int i = 0; i < step_of_1; i++) {
v_dst[i] = hvx_vec_fast_sigmoid_fp32_guard(v_src[i], one, max_exp, min_exp);
}
}
static inline void hvx_sigmoid_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems) {
static inline void hvx_sigmoid_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems){
int step_of_1 = num_elems >> 5; // divby 32, because 32 float = 128 bytes per HVX vector
int leftover = num_elems - (step_of_1 * VLEN_FP32);
int leftover = num_elems - (step_of_1 * VLEN_FP32);
int32_t leftover_size = leftover * sizeof(float);
@ -1006,44 +1012,51 @@ static inline void hvx_sigmoid_f32(const uint8_t * restrict src, uint8_t * restr
const HVX_Vector max_exp = hvx_vec_splat_fp32(kMaxExp);
const HVX_Vector min_exp = hvx_vec_splat_fp32(kMinExp);
const float * input = (float *) src;
float * output = (float *) dst;
const float *input = (float *)src;
float *output = (float *)dst;
HVX_Vector * input_v_ptr = (HVX_Vector *) input;
HVX_UVector * output_v_ptr = (HVX_UVector *) output;
HVX_Vector * input_v_ptr = (HVX_Vector *) input;
HVX_UVector * output_v_ptr = (HVX_UVector *) output;
HVX_Vector slinep;
HVX_Vector slinec;
HVX_Vector sline;
slinep = *input_v_ptr++;
#pragma unroll(4)
for (uint32_t i = step_of_1 - 1; i > 0; i--) {
slinec = *input_v_ptr++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) input);
*((HVX_UVector *) (output_v_ptr++)) = hvx_vec_fast_sigmoid_fp32_guard(sline, one, max_exp, min_exp);
#pragma unroll(4)
for(uint32_t i = step_of_1 -1; i> 0; i--){
slinec = *input_v_ptr++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) input);
*((HVX_UVector *)(output_v_ptr++)) = hvx_vec_fast_sigmoid_fp32_guard(sline, one, max_exp, min_exp);
/* Prepare slinep for next iteration */
slinep = slinec;
slinep = slinec;
}
if (step_of_1 > 0) {
if(step_of_1> 0){
slinec = htp_is_aligned(input_v_ptr, 128) && leftover == 0 ? slinep : *input_v_ptr++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) input);
*((HVX_UVector *) (output_v_ptr++)) = hvx_vec_fast_sigmoid_fp32_guard(sline, one, max_exp, min_exp);
;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) input);
*((HVX_UVector *)(output_v_ptr++)) = hvx_vec_fast_sigmoid_fp32_guard(sline, one, max_exp, min_exp);;
slinep = slinec;
}
if (leftover > 0) {
slinec = (is_in_one_chunk(input_v_ptr, leftover_size, 128) ? slinep : *input_v_ptr++);
if(leftover> 0){
slinec = (is_in_one_chunk(input_v_ptr, leftover_size, 128)
? slinep
: *input_v_ptr++);
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) input);
HVX_Vector sout = hvx_vec_fast_sigmoid_fp32_guard(sline, one, max_exp, min_exp);
hvx_vec_store_u(output_v_ptr, leftover_size, sout);
}
}
float hvx_sum_of_squares_f32(const uint8_t * restrict src, const int num_elems);
void hvx_mul_f32(const uint8_t * restrict src0,
const uint8_t * restrict src1,

View File

@ -151,7 +151,7 @@ static int vtcm_acquire(struct htp_context * ctx) {
qurt_thread_set_priority(qurt_thread_get_id(), ctx->thread_prio - 10);
err = HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000);
if (err != 0) {
FARF(ERROR, "Failed to acquire VTCM: 0x%08x", (unsigned) err);
FARF(ERROR, "Failed to acquire VTCM: 0x%08x", (unsigned)err);
abort();
}
HAP_compute_res_release_cached(ctx->vtcm_rctx);
@ -159,7 +159,7 @@ static int vtcm_acquire(struct htp_context * ctx) {
err = HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000);
if (err != 0) {
FARF(ERROR, "Failed to acquire VTCM: 0x%08x", (unsigned) err);
FARF(ERROR, "Failed to acquire VTCM: 0x%08x", (unsigned)err);
abort();
}
ctx->vtcm_valid = true;
@ -411,7 +411,7 @@ static void proc_matmul_req(struct htp_context * ctx,
rsp_bufs[0].ptr = bufs[2].ptr;
rsp_bufs[0].size = bufs[2].size;
rsp_bufs[0].offset = bufs[2].offset;
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
@ -453,7 +453,7 @@ static void proc_matmul_id_req(struct htp_context * ctx,
rsp_bufs[0].ptr = bufs[3].ptr;
rsp_bufs[0].size = bufs[3].size;
rsp_bufs[0].offset = bufs[3].offset;
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
@ -494,7 +494,7 @@ static void proc_binary_req(struct htp_context * ctx, struct htp_general_req * r
rsp_bufs[0].ptr = bufs[2].ptr;
rsp_bufs[0].offset = bufs[2].offset;
rsp_bufs[0].size = bufs[2].size;
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
@ -533,7 +533,7 @@ static void proc_add_id_req(struct htp_context * ctx, struct htp_general_req * r
rsp_bufs[0].ptr = bufs[3].ptr;
rsp_bufs[0].offset = bufs[3].offset;
rsp_bufs[0].size = bufs[3].size;
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
@ -574,7 +574,7 @@ static void proc_unary_req(struct htp_context * ctx, struct htp_general_req * re
rsp_bufs[0].ptr = bufs[1].ptr;
rsp_bufs[0].offset = bufs[1].offset;
rsp_bufs[0].size = bufs[1].size;
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
@ -618,8 +618,8 @@ static void proc_activations_req(struct htp_context * ctx,
rsp_bufs[0].ptr = bufs[write_idx].ptr;
rsp_bufs[0].offset = bufs[write_idx].offset;
rsp_bufs[0].size = bufs[write_idx].size;
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
@ -674,8 +674,8 @@ static void proc_rope_req(struct htp_context * ctx,
rsp_bufs[0].ptr = bufs[write_idx].ptr;
rsp_bufs[0].offset = bufs[write_idx].offset;
rsp_bufs[0].size = bufs[write_idx].size;
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };