models : deduplicate delta-net graphs for Qwen family (#19597)

* models : add llm_build_delta_net_base

* cont : keep qwen35 and qwen35moe graphs intact

* cont : add comments
This commit is contained in:
Georgi Gerganov 2026-02-16 14:35:04 +02:00 committed by GitHub
parent d5dfc33027
commit cc45f2ada6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
16 changed files with 428 additions and 392 deletions

View File

@ -57,13 +57,14 @@ add_library(llama
models/deci.cpp
models/deepseek.cpp
models/deepseek2.cpp
models/delta-net-base.cpp
models/dots1.cpp
models/dream.cpp
models/ernie4-5-moe.cpp
models/ernie4-5.cpp
models/exaone-moe.cpp
models/exaone.cpp
models/exaone4.cpp
models/exaone-moe.cpp
models/falcon-h1.cpp
models/falcon.cpp
models/gemma-embedding.cpp
@ -91,10 +92,12 @@ add_library(llama
models/llama-iswa.cpp
models/llama.cpp
models/maincoder.cpp
models/mamba-base.cpp
models/mamba.cpp
models/mimo2-iswa.cpp
models/minicpm3.cpp
models/minimax-m2.cpp
models/mistral3.cpp
models/modern-bert.cpp
models/mpt.cpp
models/nemotron-h.cpp
@ -118,12 +121,12 @@ add_library(llama
models/qwen2moe.cpp
models/qwen2vl.cpp
models/qwen3.cpp
models/qwen3vl.cpp
models/qwen3vl-moe.cpp
models/qwen3moe.cpp
models/qwen3next.cpp
models/qwen35.cpp
models/qwen35moe.cpp
models/qwen3moe.cpp
models/qwen3next.cpp
models/qwen3vl-moe.cpp
models/qwen3vl.cpp
models/refact.cpp
models/rnd1.cpp
models/rwkv6-base.cpp
@ -142,8 +145,6 @@ add_library(llama
models/t5-enc.cpp
models/wavtokenizer-dec.cpp
models/xverse.cpp
models/mistral3.cpp
models/graph-context-mamba.cpp
)
set_target_properties(llama PROPERTIES

View File

@ -0,0 +1,333 @@
#include "models.h"
#define CHUNK_SIZE 64
// utility to get one slice from the third dimension
// input dim: [x, y, c, b]
// output dim: [x, y, 1, b]
static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t c) {
return ggml_view_4d(ctx0, t, t->ne[0], t->ne[1], 1, t->ne[3],
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c);
}
llm_build_delta_net_base::llm_build_delta_net_base(const llm_graph_params & params) : llm_graph_context(params) {}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_delta_net_base::build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
g = ggml_permute(ctx0, g, 2, 1, 3, 0); // [ 1, n_tokens, H_v, n_seqs]
b = ggml_permute(ctx0, b, 2, 0, 1, 3); // [ 1, n_tokens, H_v, n_seqs]
const int CS = CHUNK_SIZE;
const int pad = (CS - n_tokens % CS) % CS;
const int n_chunks = (n_tokens + pad) / CS;
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
g = ggml_pad(ctx0, g, 0, pad, 0, 0);
b = ggml_pad(ctx0, b, 0, pad, 0, 0);
ggml_tensor * v_b = ggml_mul(ctx0, v, b);
ggml_tensor * k_b = ggml_mul(ctx0, k, b);
cb(v_b, "v_b", il);
cb(k_b, "k_b", il);
q = ggml_reshape_4d(ctx0, q, S_k, CS, n_chunks, H_k * n_seqs);
k = ggml_reshape_4d(ctx0, k, S_k, CS, n_chunks, H_k * n_seqs);
k_b = ggml_reshape_4d(ctx0, k_b, S_k, CS, n_chunks, H_v * n_seqs);
v = ggml_reshape_4d(ctx0, v, S_v, CS, n_chunks, H_v * n_seqs);
v_b = ggml_reshape_4d(ctx0, v_b, S_v, CS, n_chunks, H_v * n_seqs);
g = ggml_reshape_4d(ctx0, g, CS, 1, n_chunks, H_v * n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, CS, n_chunks, H_v * n_seqs);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_cs = ggml_cumsum(ctx0, g);
cb(g_cs, "g_cs", il);
ggml_tensor * g_cs_i = g_cs;
ggml_tensor * g_cs_j = ggml_reshape_4d(ctx0, g_cs, 1, CS, n_chunks, H_v * n_seqs);
g_cs_j = ggml_repeat_4d(ctx0, g_cs_j, CS, CS, n_chunks, H_v * n_seqs);
// [CS, CS, n_chunks, H_v * n_seqs]
ggml_tensor * decay_mask;
decay_mask = ggml_sub(ctx0, g_cs_j, g_cs_i);
decay_mask = ggml_tri(ctx0, decay_mask, GGML_TRI_TYPE_LOWER_DIAG);
decay_mask = ggml_exp(ctx0, decay_mask);
cb(decay_mask, "decay_mask", il);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kb;
kb = ggml_mul_mat(ctx0, k, k_b);
kb = ggml_mul (ctx0, kb, decay_mask);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * attn;
attn = ggml_tri(ctx0, kb, GGML_TRI_TYPE_LOWER);
ggml_tensor * identity;
identity = ggml_view_1d(ctx0, attn, CS, 0);
identity = ggml_fill (ctx0, identity, 1.0f);
identity = ggml_diag (ctx0, identity);
ggml_tensor * lhs = ggml_add(ctx0, attn, identity);
cb(lhs, "dnet_add_ch_lhs", il);
attn = ggml_neg(ctx0, attn);
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
attn = ggml_add(ctx0, lin_solve, identity);
cb(attn, "dnet_add_ch_attn_solved", il); // [CS, CS, n_chunks, H_k * n_seqs]
// [S_v, CS, n_chunks, H_v * n_seqs]
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_b)), attn);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_exp = ggml_exp(ctx0, g_cs);
k_b = ggml_cont(ctx0, ggml_transpose(ctx0, k_b));
// [CS, S_k, n_chunks, H_k * n_seqs]
ggml_tensor * kbg = ggml_mul(ctx0, k_b, g_exp);
cb(kbg, "k_beta_g_exp", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * k_cd = ggml_mul_mat(ctx0, kbg, attn);
cb(k_cd, "k_cumdecay", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * g_exp_t = ggml_transpose(ctx0, g_exp);
ggml_tensor * q_g_exp = ggml_mul(ctx0, q, g_exp_t);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
kq = ggml_mul(ctx0, kq, decay_mask);
kq = ggml_tri(ctx0, kq, GGML_TRI_TYPE_LOWER_DIAG);
cb(kq, "kq", il);
// vectorized calculation of key_gdiff
// improved from the chunked version:
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
// key_gdiff = key * g_diff.unsqueeze(-1)
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
// get last element in g_cumsum along CS dimension (ne0)
// example: [[x, y, z, ..., last], ...] -> [[last], ...]
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last = ggml_view_4d(ctx0, g_cs, 1, 1, g_cs->ne[2], g_cs->ne[3],
g_cs->nb[1],
g_cs->nb[2],
g_cs->nb[3],
ggml_row_size(g_cs->type, g_cs->ne[0] - 1));
cb(g_last, "g_last", il);
// TODO: remove this cont when CUDA supports non-cont unary ops
g_last = ggml_cont(ctx0, g_last);
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last);
cb(g_last_exp, "g_last_exp", il);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cs, g_last));
cb(g_diff, "g_diff", il);
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
ggml_tensor * g_diff_exp_t = ggml_transpose(ctx0, g_diff_exp);
// [S_k, CS, n_chunks, H_v * n_seqs]
ggml_tensor * kg = ggml_mul(ctx0, k, g_diff_exp_t);
cb(kg, "key_gdiff", il);
// [CS, S_k, n_chunks, H_v * n_seqs]
ggml_tensor * kg_t = ggml_cont(ctx0, ggml_transpose(ctx0, kg));
cb(kg_t, "key_gdiff_t", il);
ggml_tensor * s_t = ggml_transpose(ctx0, s);
s_t = ggml_cont_4d(ctx0, s_t, S_v, S_v, 1, H_v * n_seqs);
cb(s_t, "dnet_add_ch_state", il);
// [CS, S_v, n_chunks, H_v * n_seqs]
ggml_tensor * v_t = ggml_cont(ctx0, ggml_transpose(ctx0, v));
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
ggml_tensor * ch_k_cd = get_slice_2d(ctx0, k_cd, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_v_t = get_slice_2d(ctx0, v_t, chunk); // [ CS, S_v, 1, H_v * n_seqs]
ggml_tensor * ch_kq = get_slice_2d(ctx0, kq, chunk); // [ CS, CS, 1, H_k * n_seqs]
ggml_tensor * ch_q_g_exp = get_slice_2d(ctx0, q_g_exp, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_kg_t = get_slice_2d(ctx0, kg_t, chunk); // [ CS, S_k, 1, H_v * n_seqs]
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_p = ggml_mul_mat(ctx0, ch_k_cd, s_t);
cb(v_t_p, "v_prime", il);
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_new = ggml_sub(ctx0, ch_v_t, v_t_p);
cb(v_t_new, "v_t_new", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_t_new, ch_kq);
cb(v_attn, "v_attn", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, s_t, ch_q_g_exp);
cb(attn_inter, "attn_inter", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * o_ch = ggml_add(ctx0, attn_inter, v_attn);
cb(o_ch, "dnet_add_ch_attn_out", il);
v = ggml_set_inplace(ctx0, v, o_ch, v->nb[1], v->nb[2], v->nb[3], chunk * v->nb[2]);
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// TODO: head broadcast might not work here - probably will need a transpose
ggml_tensor * kgv = ggml_mul_mat(ctx0, ch_kg_t, v_t_new); // [S_k, S_v, 1, H_k * n_seqs]
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
ggml_tensor * ch_g_last_exp = get_slice_2d(ctx0, g_last_exp, chunk);
s_t = ggml_mul(ctx0, s_t, ch_g_last_exp);
s_t = ggml_add(ctx0, s_t, kgv);
cb(s_t, "dnet_add_ch_state", il);
}
s_t = ggml_reshape_4d(ctx0, s_t, S_v, S_v, H_v, n_seqs);
// truncate padded tokens
ggml_tensor * o = ggml_view_4d(ctx0, v,
S_v, n_tokens, H_v, n_seqs,
ggml_row_size(v->type, S_v),
ggml_row_size(v->type, S_v * CS * n_chunks),
ggml_row_size(v->type, S_v * CS * n_chunks * H_v), 0);
o = ggml_permute (ctx0, o, 0, 2, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_delta_net_base::build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b, // beta
ggml_tensor * s, // state
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(n_tokens == 1);
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
g = ggml_reshape_4d(ctx0, g, 1, 1, H_v, n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, 1, H_v, n_seqs);
// [S_v, S_v, H_v, n_seqs]
g = ggml_exp(ctx0, g);
s = ggml_mul(ctx0, s, g);
ggml_tensor * s_t = ggml_cont(ctx0, ggml_transpose(ctx0, s));
// [1, S_v, H_v, n_seqs]
ggml_tensor * sk;
sk = ggml_mul (ctx0, s_t, k);
sk = ggml_sum_rows(ctx0, sk);
// [S_v, 1, H_v, n_seqs]
ggml_tensor * d;
d = ggml_sub(ctx0, v, ggml_transpose(ctx0, sk));
d = ggml_mul(ctx0, d, b);
// [1, S_v, H_v, n_seqs]
ggml_tensor * d_t;
d_t = ggml_transpose(ctx0, d);
// [S_v, S_v, H_v, n_seqs]
ggml_tensor * kd;
k = ggml_repeat(ctx0, k, s);
kd = ggml_mul (ctx0, k, d_t);
s_t = ggml_add(ctx0, s_t, kd);
cb(s_t, "dnet_add_ar_state", il);
ggml_tensor * s_q = ggml_mul (ctx0, s_t, q);
ggml_tensor * o = ggml_sum_rows(ctx0, s_q);
o = ggml_permute (ctx0, o, 2, 0, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}

View File

@ -1,9 +1,7 @@
#include "models.h"
llm_build_falcon_h1::llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
llm_build_mamba_base(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;

View File

@ -2,7 +2,7 @@
llm_build_granite_hybrid::llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
llm_build_mamba_base(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

View File

@ -1,6 +1,6 @@
#include "models.h"
llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_build_mamba_base(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;

View File

@ -1,6 +1,8 @@
#include "models.h"
#include "ggml.h"
#include "llama-memory-recurrent.h"
#define CHUNK_SIZE 64
// Causal Conv1d function for Q,K,V
@ -65,7 +67,7 @@ static ggml_tensor * causal_conv1d(ggml_cgraph * gf, ggml_context * ctx0, ggml_t
}
llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params), model(model) {
llm_build_mamba_base(params), model(model) {
ggml_tensor * cur;
ggml_tensor * inpL;

View File

@ -1,8 +1,10 @@
#include "models.h"
llm_graph_context_mamba::llm_graph_context_mamba(const llm_graph_params & params) : llm_graph_context(params) {}
#include "llama-memory-recurrent.h"
ggml_tensor * llm_graph_context_mamba::build_mamba_layer(llm_graph_input_rs * inp,
llm_build_mamba_base::llm_build_mamba_base(const llm_graph_params & params) : llm_graph_context(params) {}
ggml_tensor * llm_build_mamba_base::build_mamba_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
@ -143,7 +145,7 @@ ggml_tensor * llm_graph_context_mamba::build_mamba_layer(llm_graph_input_rs * in
return cur;
}
ggml_tensor * llm_graph_context_mamba::build_mamba2_layer(llm_graph_input_rs * inp,
ggml_tensor * llm_build_mamba_base::build_mamba2_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,

View File

@ -1,7 +1,6 @@
#include "models.h"
llm_build_mamba::llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
llm_build_mamba::llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_build_mamba_base(params) {
ggml_tensor * cur;
ggml_tensor * inpL;

View File

@ -1,23 +1,51 @@
#pragma once
#include "../llama-model.h"
#include "../llama-graph.h"
#include "llama-model.h"
#include "llama-graph.h"
// TODO: remove in follow-up PR - move to .cpp files
#include "../llama-memory-recurrent.h"
// note: almost all graphs require atleast sqrtf, so include cmath globally
#include <cmath>
struct llm_graph_context_mamba : public llm_graph_context {
llm_graph_context_mamba(const llm_graph_params & params);
//
// base classes
//
virtual ~llm_graph_context_mamba() = default;
struct llm_build_mamba_base : public llm_graph_context {
llm_build_mamba_base(const llm_graph_params & params);
virtual ~llm_build_mamba_base() = default;
ggml_tensor * build_mamba_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il);
ggml_tensor * build_mamba2_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il) const;
};
// Base class for RWKV-related models
struct llm_build_delta_net_base : public llm_graph_context {
llm_build_delta_net_base(const llm_graph_params & params);
virtual ~llm_build_delta_net_base() = default;
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il);
};
struct llm_build_rwkv6_base : public llm_graph_context {
const llama_model & model;
@ -58,6 +86,10 @@ struct llm_build_rwkv7_base : public llm_graph_context {
int il) const;
};
//
// models
//
struct llm_build_afmoe : public llm_graph_context {
llm_build_afmoe(const llama_model & model, const llm_graph_params & params);
};
@ -175,7 +207,7 @@ struct llm_build_falcon : public llm_graph_context {
llm_build_falcon(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_falcon_h1 : public llm_graph_context_mamba {
struct llm_build_falcon_h1 : public llm_build_mamba_base {
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params);
};
@ -253,7 +285,7 @@ private:
const int il);
};
struct llm_build_granite_hybrid : public llm_graph_context_mamba {
struct llm_build_granite_hybrid : public llm_build_mamba_base {
llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_layer_ffn(ggml_tensor * cur, ggml_tensor * inpSA, const llama_model & model, const int il);
ggml_tensor * build_attention_layer(ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv * inp_attn,
@ -284,11 +316,12 @@ struct llm_build_jais : public llm_graph_context {
llm_build_jais(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_jamba : public llm_graph_context_mamba {
struct llm_build_jamba : public llm_build_mamba_base {
llm_build_jamba(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_kimi_linear : public llm_graph_context_mamba {
// TODO: derive llm_build_delta_net_base instead
struct llm_build_kimi_linear : public llm_build_mamba_base {
llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params);
std::pair<ggml_tensor *, ggml_tensor *> build_kda_autoregressive(
@ -347,7 +380,7 @@ struct llm_build_maincoder : public llm_graph_context {
llm_build_maincoder(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_mamba : public llm_graph_context_mamba {
struct llm_build_mamba : public llm_build_mamba_base {
llm_build_mamba(const llama_model & model, const llm_graph_params & params);
};
@ -379,11 +412,11 @@ struct llm_build_nemotron : public llm_graph_context {
llm_build_nemotron(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_nemotron_h : public llm_graph_context_mamba {
struct llm_build_nemotron_h : public llm_build_mamba_base {
llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il);
ggml_tensor * build_ffn_layer(ggml_tensor * cur, const llama_model & model, int il);
ggml_tensor * build_attention_layer(ggml_tensor * cur, llm_graph_input_attn_kv * inp_attn,
const llama_model & model, const int64_t n_embd_head, const int il);
const llama_model & model, int64_t n_embd_head, int il);
};
struct llm_build_neo_bert : public llm_graph_context {
@ -428,7 +461,7 @@ struct llm_build_phi3 : public llm_graph_context {
llm_build_phi3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_plamo2 : public llm_graph_context_mamba {
struct llm_build_plamo2 : public llm_build_mamba_base {
llm_build_plamo2(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_plamo2_mamba_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il);
@ -477,7 +510,7 @@ struct llm_build_qwen3vlmoe : public llm_graph_context {
llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen3next : public llm_graph_context_mamba {
struct llm_build_qwen3next : public llm_build_delta_net_base {
llm_build_qwen3next(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_layer_attn(
@ -495,26 +528,6 @@ private:
ggml_tensor * cur,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
int il);
ggml_tensor * build_norm_gated(
ggml_tensor * input,
ggml_tensor * weights,
@ -529,7 +542,8 @@ private:
const llama_model & model;
};
struct llm_build_qwen35 : public llm_graph_context_mamba {
// TODO: derive llm_build_delta_net_base instead
struct llm_build_qwen35 : public llm_graph_context {
llm_build_qwen35(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_layer_attn(
@ -547,6 +561,7 @@ private:
ggml_tensor * diag_mask,
int il);
ggml_tensor * build_layer_ffn(
ggml_tensor * cur,
int il);
@ -588,7 +603,8 @@ private:
const llama_model & model;
};
struct llm_build_qwen35moe : public llm_graph_context_mamba {
// TODO: derive llm_build_delta_net_base instead
struct llm_build_qwen35moe : public llm_graph_context {
llm_build_qwen35moe(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_layer_attn(

View File

@ -1,9 +1,7 @@
#include "models.h"
llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
llm_build_mamba_base(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -65,8 +63,8 @@ llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_
ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor * cur,
llm_graph_input_attn_kv * inp_attn,
const llama_model & model,
const int64_t n_embd_head,
const int il) {
int64_t n_embd_head,
int il) {
// compute Q and K
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
@ -106,7 +104,7 @@ ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor *
return cur;
}
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) {
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, int il) {
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,

View File

@ -1,7 +1,9 @@
#include "models.h"
#include "llama-memory-recurrent.h"
llm_build_plamo2::llm_build_plamo2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
llm_build_mamba_base(params) {
ggml_tensor * cur;
ggml_tensor * inpL;

View File

@ -1,10 +1,11 @@
#include "ggml.h"
#include "models.h"
#include "llama-memory-recurrent.h"
#define CHUNK_SIZE 64
llm_build_qwen35::llm_build_qwen35(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params), model(model) {
llm_graph_context(params), model(model) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

View File

@ -1,10 +1,11 @@
#include "ggml.h"
#include "models.h"
#include "llama-memory-recurrent.h"
#define CHUNK_SIZE 64
llm_build_qwen35moe::llm_build_qwen35moe(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params), model(model) {
llm_graph_context(params), model(model) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

View File

@ -1,10 +1,9 @@
#include "ggml.h"
#include "models.h"
#define CHUNK_SIZE 64
#include "llama-memory-recurrent.h"
llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params), model(model) {
llm_build_delta_net_base(params), model(model) {
ggml_tensor * cur;
ggml_tensor * inpL;
@ -83,326 +82,6 @@ static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c);
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen3next::build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
g = ggml_permute(ctx0, g, 2, 1, 3, 0); // [ 1, n_tokens, H_v, n_seqs]
b = ggml_permute(ctx0, b, 2, 0, 1, 3); // [ 1, n_tokens, H_v, n_seqs]
const int CS = CHUNK_SIZE;
const int pad = (CS - n_tokens % CS) % CS;
const int n_chunks = (n_tokens + pad) / CS;
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
g = ggml_pad(ctx0, g, 0, pad, 0, 0);
b = ggml_pad(ctx0, b, 0, pad, 0, 0);
ggml_tensor * v_b = ggml_mul(ctx0, v, b);
ggml_tensor * k_b = ggml_mul(ctx0, k, b);
cb(v_b, "v_b", il);
cb(k_b, "k_b", il);
q = ggml_reshape_4d(ctx0, q, S_k, CS, n_chunks, H_k * n_seqs);
k = ggml_reshape_4d(ctx0, k, S_k, CS, n_chunks, H_k * n_seqs);
k_b = ggml_reshape_4d(ctx0, k_b, S_k, CS, n_chunks, H_v * n_seqs);
v = ggml_reshape_4d(ctx0, v, S_v, CS, n_chunks, H_v * n_seqs);
v_b = ggml_reshape_4d(ctx0, v_b, S_v, CS, n_chunks, H_v * n_seqs);
g = ggml_reshape_4d(ctx0, g, CS, 1, n_chunks, H_v * n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, CS, n_chunks, H_v * n_seqs);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_cs = ggml_cumsum(ctx0, g);
cb(g_cs, "g_cs", il);
ggml_tensor * g_cs_i = g_cs;
ggml_tensor * g_cs_j = ggml_reshape_4d(ctx0, g_cs, 1, CS, n_chunks, H_v * n_seqs);
g_cs_j = ggml_repeat_4d(ctx0, g_cs_j, CS, CS, n_chunks, H_v * n_seqs);
// [CS, CS, n_chunks, H_v * n_seqs]
ggml_tensor * decay_mask;
decay_mask = ggml_sub(ctx0, g_cs_j, g_cs_i);
decay_mask = ggml_tri(ctx0, decay_mask, GGML_TRI_TYPE_LOWER_DIAG);
decay_mask = ggml_exp(ctx0, decay_mask);
cb(decay_mask, "decay_mask", il);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kb;
kb = ggml_mul_mat(ctx0, k, k_b);
kb = ggml_mul (ctx0, kb, decay_mask);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * attn;
attn = ggml_tri(ctx0, kb, GGML_TRI_TYPE_LOWER);
ggml_tensor * identity;
identity = ggml_view_1d(ctx0, attn, CS, 0);
identity = ggml_fill (ctx0, identity, 1.0f);
identity = ggml_diag (ctx0, identity);
ggml_tensor * lhs = ggml_add(ctx0, attn, identity);
cb(lhs, "dnet_add_ch_lhs", il);
attn = ggml_neg(ctx0, attn);
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
attn = ggml_add(ctx0, lin_solve, identity);
cb(attn, "dnet_add_ch_attn_solved", il); // [CS, CS, n_chunks, H_k * n_seqs]
// [S_v, CS, n_chunks, H_v * n_seqs]
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_b)), attn);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_exp = ggml_exp(ctx0, g_cs);
k_b = ggml_cont(ctx0, ggml_transpose(ctx0, k_b));
// [CS, S_k, n_chunks, H_k * n_seqs]
ggml_tensor * kbg = ggml_mul(ctx0, k_b, g_exp);
cb(kbg, "k_beta_g_exp", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * k_cd = ggml_mul_mat(ctx0, kbg, attn);
cb(k_cd, "k_cumdecay", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * g_exp_t = ggml_transpose(ctx0, g_exp);
ggml_tensor * q_g_exp = ggml_mul(ctx0, q, g_exp_t);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
kq = ggml_mul(ctx0, kq, decay_mask);
kq = ggml_tri(ctx0, kq, GGML_TRI_TYPE_LOWER_DIAG);
cb(kq, "kq", il);
// vectorized calculation of key_gdiff
// improved from the chunked version:
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
// key_gdiff = key * g_diff.unsqueeze(-1)
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
// get last element in g_cumsum along CS dimension (ne0)
// example: [[x, y, z, ..., last], ...] -> [[last], ...]
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last = ggml_view_4d(ctx0, g_cs, 1, 1, g_cs->ne[2], g_cs->ne[3],
g_cs->nb[1],
g_cs->nb[2],
g_cs->nb[3],
ggml_row_size(g_cs->type, g_cs->ne[0] - 1));
cb(g_last, "g_last", il);
// TODO: remove this cont when CUDA supports non-cont unary ops
g_last = ggml_cont(ctx0, g_last);
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last);
cb(g_last_exp, "g_last_exp", il);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cs, g_last));
cb(g_diff, "g_diff", il);
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
ggml_tensor * g_diff_exp_t = ggml_transpose(ctx0, g_diff_exp);
// [S_k, CS, n_chunks, H_v * n_seqs]
ggml_tensor * kg = ggml_mul(ctx0, k, g_diff_exp_t);
cb(kg, "key_gdiff", il);
// [CS, S_k, n_chunks, H_v * n_seqs]
ggml_tensor * kg_t = ggml_cont(ctx0, ggml_transpose(ctx0, kg));
cb(kg_t, "key_gdiff_t", il);
ggml_tensor * s_t = ggml_transpose(ctx0, s);
s_t = ggml_cont_4d(ctx0, s_t, S_v, S_v, 1, H_v * n_seqs);
cb(s_t, "dnet_add_ch_state", il);
// [CS, S_v, n_chunks, H_v * n_seqs]
ggml_tensor * v_t = ggml_cont(ctx0, ggml_transpose(ctx0, v));
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
ggml_tensor * ch_k_cd = get_slice_2d(ctx0, k_cd, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_v_t = get_slice_2d(ctx0, v_t, chunk); // [ CS, S_v, 1, H_v * n_seqs]
ggml_tensor * ch_kq = get_slice_2d(ctx0, kq, chunk); // [ CS, CS, 1, H_k * n_seqs]
ggml_tensor * ch_q_g_exp = get_slice_2d(ctx0, q_g_exp, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_kg_t = get_slice_2d(ctx0, kg_t, chunk); // [ CS, S_k, 1, H_v * n_seqs]
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_p = ggml_mul_mat(ctx0, ch_k_cd, s_t);
cb(v_t_p, "v_prime", il);
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_new = ggml_sub(ctx0, ch_v_t, v_t_p);
cb(v_t_new, "v_t_new", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_t_new, ch_kq);
cb(v_attn, "v_attn", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, s_t, ch_q_g_exp);
cb(attn_inter, "attn_inter", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * o_ch = ggml_add(ctx0, attn_inter, v_attn);
cb(o_ch, "dnet_add_ch_attn_out", il);
v = ggml_set_inplace(ctx0, v, o_ch, v->nb[1], v->nb[2], v->nb[3], chunk * v->nb[2]);
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// TODO: head broadcast might not work here - probably will need a transpose
ggml_tensor * kgv = ggml_mul_mat(ctx0, ch_kg_t, v_t_new); // [S_k, S_v, 1, H_k * n_seqs]
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
ggml_tensor * ch_g_last_exp = get_slice_2d(ctx0, g_last_exp, chunk);
s_t = ggml_mul(ctx0, s_t, ch_g_last_exp);
s_t = ggml_add(ctx0, s_t, kgv);
cb(s_t, "dnet_add_ch_state", il);
}
s_t = ggml_reshape_4d(ctx0, s_t, S_v, S_v, H_v, n_seqs);
// truncate padded tokens
ggml_tensor * o = ggml_view_4d(ctx0, v,
S_v, n_tokens, H_v, n_seqs,
ggml_row_size(v->type, S_v),
ggml_row_size(v->type, S_v * CS * n_chunks),
ggml_row_size(v->type, S_v * CS * n_chunks * H_v), 0);
o = ggml_permute (ctx0, o, 0, 2, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen3next::build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b, // beta
ggml_tensor * s, // state
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(n_tokens == 1);
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
g = ggml_reshape_4d(ctx0, g, 1, 1, H_v, n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, 1, H_v, n_seqs);
// [S_v, S_v, H_v, n_seqs]
g = ggml_exp(ctx0, g);
s = ggml_mul(ctx0, s, g);
ggml_tensor * s_t = ggml_cont(ctx0, ggml_transpose(ctx0, s));
// [1, S_v, H_v, n_seqs]
ggml_tensor * sk;
sk = ggml_mul (ctx0, s_t, k);
sk = ggml_sum_rows(ctx0, sk);
// [S_v, 1, H_v, n_seqs]
ggml_tensor * d;
d = ggml_sub(ctx0, v, ggml_transpose(ctx0, sk));
d = ggml_mul(ctx0, d, b);
// [1, S_v, H_v, n_seqs]
ggml_tensor * d_t;
d_t = ggml_transpose(ctx0, d);
// [S_v, S_v, H_v, n_seqs]
ggml_tensor * kd;
k = ggml_repeat(ctx0, k, s);
kd = ggml_mul (ctx0, k, d_t);
s_t = ggml_add(ctx0, s_t, kd);
cb(s_t, "dnet_add_ar_state", il);
ggml_tensor * s_q = ggml_mul (ctx0, s_t, q);
ggml_tensor * o = ggml_sum_rows(ctx0, s_q);
o = ggml_permute (ctx0, o, 2, 0, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}
ggml_tensor * llm_build_qwen3next::build_norm_gated(
ggml_tensor * input,
ggml_tensor * weights,

View File

@ -1,5 +1,7 @@
#include "models.h"
#include "llama-memory-recurrent.h"
llm_build_rwkv6_base::llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model) {}

View File

@ -1,5 +1,7 @@
#include "models.h"
#include "llama-memory-recurrent.h"
llm_build_rwkv7_base::llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model) {}