model: support GLM MoE DSA arch
This commit is contained in:
parent
292f6908cd
commit
cc0d6c28d6
|
|
@ -8698,6 +8698,19 @@ class Glm4MoeLiteModel(DeepseekV2Model):
|
|||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
|
||||
@ModelBase.register("GlmMoeDsaForCausalLM")
|
||||
class GlmMoeDsaModel(DeepseekV2Model, Glm4MoeModel):
|
||||
model_arch = gguf.MODEL_ARCH.GLM_DSA
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
# combine DeepseekV2Model + GLM4MoeModel parameters
|
||||
super().set_gguf_parameters()
|
||||
|
||||
def modify_tensors(self, data_torch, name, bid):
|
||||
# note: skip Glm4MoeModel super method
|
||||
return super(DeepseekV2Model).modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
|
||||
class ChatGLMModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.CHATGLM
|
||||
|
|
|
|||
|
|
@ -422,6 +422,7 @@ class MODEL_ARCH(IntEnum):
|
|||
CHATGLM = auto()
|
||||
GLM4 = auto()
|
||||
GLM4_MOE = auto()
|
||||
GLM_DSA = auto()
|
||||
BITNET = auto()
|
||||
T5 = auto()
|
||||
T5ENCODER = auto()
|
||||
|
|
@ -852,6 +853,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.CHATGLM: "chatglm",
|
||||
MODEL_ARCH.GLM4: "glm4",
|
||||
MODEL_ARCH.GLM4_MOE: "glm4moe",
|
||||
MODEL_ARCH.GLM_DSA: "glm-dsa",
|
||||
MODEL_ARCH.BITNET: "bitnet",
|
||||
MODEL_ARCH.T5: "t5",
|
||||
MODEL_ARCH.T5ENCODER: "t5encoder",
|
||||
|
|
@ -2615,6 +2617,37 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD,
|
||||
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM,
|
||||
],
|
||||
MODEL_ARCH.GLM_DSA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_POST_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
MODEL_TENSOR.FFN_EXP_PROBS_B,
|
||||
# NextN/MTP tensors - preserved but unused
|
||||
MODEL_TENSOR.NEXTN_EH_PROJ,
|
||||
MODEL_TENSOR.NEXTN_EMBED_TOKENS,
|
||||
MODEL_TENSOR.NEXTN_ENORM,
|
||||
MODEL_TENSOR.NEXTN_HNORM,
|
||||
MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD,
|
||||
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM,
|
||||
],
|
||||
MODEL_ARCH.BITNET: [
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
|
|
|
|||
|
|
@ -72,6 +72,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_CHATGLM, "chatglm" },
|
||||
{ LLM_ARCH_GLM4, "glm4" },
|
||||
{ LLM_ARCH_GLM4_MOE, "glm4moe" },
|
||||
{ LLM_ARCH_GLM_DSA, "glm-dsa" },
|
||||
{ LLM_ARCH_BITNET, "bitnet" },
|
||||
{ LLM_ARCH_T5, "t5" },
|
||||
{ LLM_ARCH_T5ENCODER, "t5encoder" },
|
||||
|
|
|
|||
|
|
@ -76,6 +76,7 @@ enum llm_arch {
|
|||
LLM_ARCH_CHATGLM,
|
||||
LLM_ARCH_GLM4,
|
||||
LLM_ARCH_GLM4_MOE,
|
||||
LLM_ARCH_GLM_DSA,
|
||||
LLM_ARCH_BITNET,
|
||||
LLM_ARCH_T5,
|
||||
LLM_ARCH_T5ENCODER,
|
||||
|
|
|
|||
|
|
@ -1820,6 +1820,44 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GLM_DSA:
|
||||
{
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, false);
|
||||
|
||||
// MoE parameters
|
||||
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
|
||||
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
||||
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
|
||||
|
||||
// deepseek MLA parameters
|
||||
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
|
||||
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla_impl, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla_impl, false);
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
||||
|
||||
// Expert gating function (GLM-4.5 uses sigmoid)
|
||||
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
|
||||
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
|
||||
hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
|
||||
}
|
||||
|
||||
// NextN/MTP parameters
|
||||
ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
|
||||
|
||||
// TODO: when MTP is implemented, this should probably be updated if needed
|
||||
hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
// TODO
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_BITNET:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
|
@ -5430,6 +5468,97 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
}
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_GLM_DSA:
|
||||
{
|
||||
const bool is_mla = hparams.is_mla();
|
||||
if (!is_mla) {
|
||||
throw std::runtime_error("GLM_DSA architecture requires MLA");
|
||||
}
|
||||
|
||||
// note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
|
||||
const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla();
|
||||
const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla();
|
||||
|
||||
const int64_t n_embd_head_qk_rope = hparams.n_rot;
|
||||
const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
|
||||
|
||||
const int64_t q_lora_rank = hparams.n_lora_q;
|
||||
const int64_t kv_lora_rank = hparams.n_lora_kv;
|
||||
|
||||
const int64_t n_ff_exp = hparams.n_ff_exp;
|
||||
const int64_t n_expert_shared = hparams.n_expert_shared;
|
||||
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
// try to load output.weight, if not found, use token_embd (tied embeddings)
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
if (!output) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||
layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
|
||||
layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
|
||||
|
||||
layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
|
||||
layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
|
||||
|
||||
|
||||
layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
|
||||
|
||||
// note: only old legacy GGUF files will have the unsplit wkv_b tensor in
|
||||
layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
|
||||
layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
|
||||
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
if (i < (int) hparams.n_layer_dense_lead) {
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
} else {
|
||||
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
|
||||
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
if (n_expert == 0) {
|
||||
throw std::runtime_error("n_expert must be > 0");
|
||||
}
|
||||
if (n_expert_used == 0) {
|
||||
throw std::runtime_error("n_expert_used must be > 0");
|
||||
}
|
||||
|
||||
// MoE branch
|
||||
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
||||
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
||||
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
||||
|
||||
// Shared expert branch
|
||||
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
|
||||
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
|
||||
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
|
||||
}
|
||||
|
||||
// NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
|
||||
int flags = 0;
|
||||
if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
|
||||
layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
|
||||
layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
|
||||
layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
|
||||
|
||||
// Optional tensors
|
||||
layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
|
||||
layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
|
||||
layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags | TENSOR_NOT_REQUIRED);
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_NEMOTRON:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
|
@ -7576,7 +7705,7 @@ void llama_model::print_info() const {
|
|||
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
|
||||
}
|
||||
|
||||
if (arch == LLM_ARCH_DEEPSEEK2) {
|
||||
if (arch == LLM_ARCH_DEEPSEEK2 || arch == LLM_ARCH_GLM_DSA) {
|
||||
LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
|
||||
LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
|
||||
LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
|
||||
|
|
@ -8149,6 +8278,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
llm = std::make_unique<llm_build_deepseek>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_DEEPSEEK2:
|
||||
case LLM_ARCH_GLM_DSA:
|
||||
{
|
||||
llm = std::make_unique<llm_build_deepseek2>(*this, params);
|
||||
} break;
|
||||
|
|
@ -8542,6 +8672,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|||
case LLM_ARCH_MISTRAL3:
|
||||
case LLM_ARCH_LLAMA_EMBED:
|
||||
case LLM_ARCH_MAINCODER:
|
||||
case LLM_ARCH_GLM_DSA:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
|
|
|
|||
Loading…
Reference in New Issue