model : Granite docling + Idefics3 preprocessing (SmolVLM) (#16206)

* feat: Add granite-docling conversion using trillion pretokenizer

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add granite-docling vocab pre enum

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use granite-docling pre

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add clip_is_idefics3

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Allow multi-token boundary sequences for image templating

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add tiling support for idefices3 in clip.cpp

This should likely be moved into llava_uhd::get_slice_instructions, but for
now this avoids disrupting the logic there.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Partial support for full templating for idefics3 in mtmd

There are still errors encoding some of the image chunks, but the token
sequence now matches transformers _almost_ perfectly, except for the double
newline before the global image which shows up as two consecutive newline
tokens instead of a single double-newline token. I think this is happening
because the blocks are tokenized separately then concatenated.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Fully working image preprocessing for idefics3 w/ resize and slicing

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse the preprocessor config's longest side and add it to the mmproj hparams

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the longest side instead of size * scale_factor

For Granite Docling, these come out to the same value, but that was just a
conicidence.

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Allow batch encoding and remove clip_is_idefics3

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove unnecessary conditionals for empty token vectors

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use image_manipulation util

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* add test model

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This commit is contained in:
Gabe Goodhart 2025-10-05 06:57:47 -06:00 committed by GitHub
parent 35266573b9
commit ca71fb9b36
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 165 additions and 97 deletions

View File

@ -891,6 +891,9 @@ class TextModel(ModelBase):
if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
# ref: https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base
res = "llada-moe"
if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
# ref: https://huggingface.co/ibm-granite/granite-docling-258M
res = "granite-docling"
if res is None:
logger.warning("\n")
@ -1325,6 +1328,7 @@ class MmprojModel(ModelBase):
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
# load preprocessor config
self.preprocessor_config = {}
if not self.is_mistral_format:
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
@ -1347,7 +1351,8 @@ class MmprojModel(ModelBase):
self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
# vision config
self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
self.image_size = self.find_vparam(["image_size"])
self.gguf_writer.add_vision_image_size(self.image_size)
self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
@ -2378,6 +2383,10 @@ class SmolVLMModel(MmprojModel):
self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
self.gguf_writer.add_vision_use_gelu(True)
# Add the preprocessor longest edge size
preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
def tensor_force_quant(self, name, new_name, bid, n_dims):
if ".embeddings." in name:
return gguf.GGMLQuantizationType.F32

View File

@ -140,6 +140,7 @@ models = [
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
{"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
{"name": "llada-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base", },
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
]
# some models are known to be broken upstream, so we will skip them as exceptions

View File

@ -261,6 +261,7 @@ class Keys:
class ClipVision:
IMAGE_SIZE = "clip.vision.image_size"
PREPROC_IMAGE_SIZE = "clip.vision.preproc_image_size"
PATCH_SIZE = "clip.vision.patch_size"
EMBEDDING_LENGTH = "clip.vision.embedding_length"
FEED_FORWARD_LENGTH = "clip.vision.feed_forward_length"

View File

@ -1037,6 +1037,9 @@ class GGUFWriter:
def add_vision_image_size(self, value: int) -> None:
self.add_uint32(Keys.ClipVision.IMAGE_SIZE, value)
def add_vision_preproc_image_size(self, value: int) -> None:
self.add_uint32(Keys.ClipVision.PREPROC_IMAGE_SIZE, value)
def add_vision_image_mean(self, values: Sequence[float]) -> None:
self.add_array(Keys.ClipVision.IMAGE_MEAN, values)

View File

@ -347,6 +347,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
case LLAMA_VOCAB_PRE_TYPE_OLMO:
case LLAMA_VOCAB_PRE_TYPE_JAIS:
case LLAMA_VOCAB_PRE_TYPE_TRILLION:
case LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING:
regex_exprs = {
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
};
@ -1961,6 +1962,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "trillion") {
pre_type = LLAMA_VOCAB_PRE_TYPE_TRILLION;
clean_spaces = false;
} else if (
tokenizer_pre == "granite-docling") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING;
clean_spaces = false;
} else if (
tokenizer_pre == "bailingmoe" ||
tokenizer_pre == "llada-moe") {

View File

@ -48,6 +48,7 @@ enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_KIMI_K2 = 37,
LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE = 38,
LLAMA_VOCAB_PRE_TYPE_GROK_2 = 39,
LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
};
struct LLM_KV;

View File

@ -31,6 +31,7 @@
// vision-specific
#define KEY_IMAGE_SIZE "clip.vision.image_size"
#define KEY_PREPROC_IMAGE_SIZE "clip.vision.preproc_image_size"
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"

View File

@ -170,7 +170,9 @@ struct clip_hparams {
int32_t projection_dim;
int32_t n_head;
int32_t n_layer;
int32_t proj_scale_factor = 0; // idefics3
// idefics3
int32_t preproc_image_size = 0;
int32_t proj_scale_factor = 0;
float image_mean[3];
float image_std[3];
@ -2250,6 +2252,7 @@ struct clip_model_loader {
if (is_vision) {
get_u32(KEY_IMAGE_SIZE, hparams.image_size);
get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.preproc_image_size, false);
get_u32(KEY_PATCH_SIZE, hparams.patch_size);
get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
@ -3551,10 +3554,51 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
// res_imgs->data[0] = *res;
res_imgs->entries.push_back(std::move(img_f32));
return true;
} else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
// The refined size has two steps:
// 1. Resize w/ aspect-ratio preserving such that the longer side is
// the preprocessor longest size
// 2. Resize w/out preserving aspect ratio such that both sides are
// multiples of image_size (always rounding up)
//
// CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
const clip_image_size refined_size = image_manipulation::calc_size_preserved_ratio(
original_size, params.image_size, params.preproc_image_size);
llava_uhd::slice_instructions instructions;
instructions.overview_size = clip_image_size{params.image_size, params.image_size};
instructions.refined_size = refined_size;
instructions.grid_size = clip_image_size{
static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
};
for (int y = 0; y < refined_size.height; y += params.image_size) {
for (int x = 0; x < refined_size.width; x += params.image_size) {
instructions.slices.push_back(llava_uhd::slice_coordinates{
/* x */x,
/* y */y,
/* size */clip_image_size{
std::min(params.image_size, refined_size.width - x),
std::min(params.image_size, refined_size.height - y)
}
else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
});
}
}
auto imgs = llava_uhd::slice_image(img, instructions);
// cast and normalize to f32
for (size_t i = 0; i < imgs.size(); ++i) {
// clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
res_imgs->entries.push_back(std::move(res));
}
res_imgs->grid_x = instructions.grid_size.width;
res_imgs->grid_y = instructions.grid_size.height;
return true;
} else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
|| ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
|| ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3
|| ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
) {
clip_image_u8 resized_image;

View File

@ -76,7 +76,7 @@ enum mtmd_slice_tmpl {
MTMD_SLICE_TMPL_MINICPMV_2_5,
MTMD_SLICE_TMPL_MINICPMV_2_6,
MTMD_SLICE_TMPL_LLAMA4,
// TODO @ngxson : add support for idefics (SmolVLM)
MTMD_SLICE_TMPL_IDEFICS3,
};
const char * mtmd_default_marker() {
@ -114,19 +114,22 @@ struct mtmd_context {
// for llava-uhd style models, we need special tokens in-between slices
// minicpmv calls them "slices", llama 4 calls them "tiles"
mtmd_slice_tmpl slice_tmpl = MTMD_SLICE_TMPL_NONE;
llama_token tok_ov_img_start = LLAMA_TOKEN_NULL; // overview image
llama_token tok_ov_img_end = LLAMA_TOKEN_NULL; // overview image
llama_token tok_slices_start = LLAMA_TOKEN_NULL; // start of all slices
llama_token tok_slices_end = LLAMA_TOKEN_NULL; // end of all slices
llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice start
llama_token tok_sli_img_end = LLAMA_TOKEN_NULL; // single slice end
llama_token tok_sli_img_mid = LLAMA_TOKEN_NULL; // between 2 slices
llama_token tok_row_end = LLAMA_TOKEN_NULL; // end of row
std::vector<llama_token> tok_ov_img_start; // overview image
std::vector<llama_token> tok_ov_img_end; // overview image
std::vector<llama_token> tok_slices_start; // start of all slices
std::vector<llama_token> tok_slices_end; // end of all slices
std::vector<llama_token> tok_sli_img_start; // single slice start
std::vector<llama_token> tok_sli_img_end; // single slice end
std::vector<llama_token> tok_sli_img_mid; // between 2 slices
std::vector<llama_token> tok_row_end; // end of row
bool tok_row_end_trail = false;
bool ov_img_first = false;
bool use_mrope = false; // for Qwen2VL, we need to use M-RoPE
// string template for slice image delimiters with row/col (idefics3)
std::string sli_img_start_tmpl;
// for whisper, we pre-calculate the mel filter bank
whisper_preprocessor::whisper_filters w_filters;
@ -197,13 +200,13 @@ struct mtmd_context {
// minicpmv 2.5 format:
// <image> (overview) </image><slice><image> (slice) </image><image> (slice) </image>\n ... </slice>
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_5;
tok_ov_img_start = lookup_token("<image>");
tok_ov_img_end = lookup_token("</image>");
tok_slices_start = lookup_token("<slice>");
tok_slices_end = lookup_token("</slice>");
tok_ov_img_start = {lookup_token("<image>")};
tok_ov_img_end = {lookup_token("</image>")};
tok_slices_start = {lookup_token("<slice>")};
tok_slices_end = {lookup_token("</slice>")};
tok_sli_img_start = tok_ov_img_start;
tok_sli_img_end = tok_ov_img_end;
tok_row_end = lookup_token("\n");
tok_row_end = {lookup_token("\n")};
tok_row_end_trail = false; // no trailing end-of-row token
ov_img_first = true;
@ -211,11 +214,11 @@ struct mtmd_context {
// minicpmv 2.6 format:
// <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6;
tok_ov_img_start = lookup_token("<image>");
tok_ov_img_end = lookup_token("</image>");
tok_sli_img_start = lookup_token("<slice>");
tok_sli_img_end = lookup_token("</slice>");
tok_row_end = lookup_token("\n");
tok_ov_img_start = {lookup_token("<image>")};
tok_ov_img_end = {lookup_token("</image>")};
tok_sli_img_start = {lookup_token("<slice>")};
tok_sli_img_end = {lookup_token("</slice>")};
tok_row_end = {lookup_token("\n")};
tok_row_end_trail = false; // no trailing end-of-row token
ov_img_first = true;
@ -230,9 +233,9 @@ struct mtmd_context {
// <|image|> (overview) <-- overview image is last
// <|image_end|>
slice_tmpl = MTMD_SLICE_TMPL_LLAMA4;
tok_ov_img_start = lookup_token("<|image|>");
tok_sli_img_mid = lookup_token("<|tile_x_separator|>");
tok_row_end = lookup_token("<|tile_y_separator|>");
tok_ov_img_start = {lookup_token("<|image|>")};
tok_sli_img_mid = {lookup_token("<|tile_x_separator|>")};
tok_row_end = {lookup_token("<|tile_y_separator|>")};
tok_row_end_trail = true; // add trailing end-of-row token
ov_img_first = false; // overview image is last
}
@ -245,8 +248,12 @@ struct mtmd_context {
} else if (proj == PROJECTOR_TYPE_IDEFICS3) {
// https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
img_beg = "<fake_token_around_image><global-img>";
img_end = "<fake_token_around_image>";
slice_tmpl = MTMD_SLICE_TMPL_IDEFICS3;
tok_ov_img_start = {lookup_token("\n"), lookup_token("<fake_token_around_image>"), lookup_token("<global-img>")};
tok_ov_img_end = {lookup_token("<fake_token_around_image>")};
tok_row_end = {lookup_token("\n")};
img_beg = "<fake_token_around_image>";
sli_img_start_tmpl = "<fake_token_around_image><row_%d_col_%d>";
} else if (proj == PROJECTOR_TYPE_PIXTRAL) {
// https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
@ -504,6 +511,7 @@ struct mtmd_tokenizer {
ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_IDEFICS3
) {
const int n_col = batch_f32.grid_x;
const int n_row = batch_f32.grid_y;
@ -517,53 +525,45 @@ struct mtmd_tokenizer {
// add overview image (first)
if (ctx->ov_img_first) {
if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_ov_img_start});
}
add_text(ctx->tok_ov_img_start);
cur.entries.emplace_back(std::move(ov_chunk));
if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_ov_img_end});
}
add_text(ctx->tok_ov_img_end);
}
// add slices (or tiles)
if (!chunks.empty()) {
GGML_ASSERT((int)chunks.size() == n_row * n_col);
if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_slices_start});
}
add_text(ctx->tok_slices_start);
for (int y = 0; y < n_row; y++) {
for (int x = 0; x < n_col; x++) {
const bool is_last_in_row = (x == n_col - 1);
if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_sli_img_start});
if (!ctx->tok_sli_img_start.empty()) {
add_text(ctx->tok_sli_img_start);
} else if (!ctx->sli_img_start_tmpl.empty()) {
// If using a template to preceed a slice image
const size_t sz = std::snprintf(nullptr, 0, ctx->sli_img_start_tmpl.c_str(), y+1, x+1) + 1;
std::unique_ptr<char[]> buf(new char[sz]);
std::snprintf(buf.get(), sz, ctx->sli_img_start_tmpl.c_str(), y+1, x+1);
add_text(std::string(buf.get(), buf.get() + sz - 1), true);
}
cur.entries.emplace_back(std::move(chunks[y * n_col + x]));
if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_sli_img_end});
}
if (!is_last_in_row && ctx->tok_sli_img_mid != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_sli_img_mid});
add_text(ctx->tok_sli_img_end);
if (!is_last_in_row) {
add_text(ctx->tok_sli_img_mid);
}
}
if ((y != n_row - 1 || ctx->tok_row_end_trail) && ctx->tok_row_end != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_row_end});
if ((y != n_row - 1 || ctx->tok_row_end_trail)) {
add_text(ctx->tok_row_end);
}
}
if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_slices_end});
}
add_text(ctx->tok_slices_end);
}
// add overview image (last)
if (!ctx->ov_img_first) {
if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_ov_img_start});
}
add_text(ctx->tok_ov_img_start);
cur.entries.emplace_back(std::move(ov_chunk));
if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_ov_img_end});
}
add_text(ctx->tok_ov_img_end);
}
} else {
@ -780,7 +780,9 @@ int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens)
ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
bool ok = false;
if (clip_is_llava(ctx_clip) || clip_is_minicpmv(ctx_clip) || clip_is_glm(ctx_clip)) {
if (clip_is_llava(ctx_clip)
|| clip_is_minicpmv(ctx_clip)
|| clip_is_glm(ctx_clip)) {
// TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode()
const auto & entries = image_tokens->batch_f32.entries;
for (size_t i = 0; i < entries.size(); i++) {

View File

@ -69,6 +69,7 @@ add_test_vision "ggml-org/InternVL2_5-1B-GGUF:Q8_0"
add_test_vision "ggml-org/InternVL3-1B-Instruct-GGUF:Q8_0"
add_test_vision "ggml-org/Qwen2.5-Omni-3B-GGUF:Q4_K_M"
add_test_vision "ggml-org/LFM2-VL-450M-GGUF:Q8_0"
add_test_vision "ggml-org/granite-docling-258M-GGUF:Q8_0"
add_test_audio "ggml-org/ultravox-v0_5-llama-3_2-1b-GGUF:Q8_0"
add_test_audio "ggml-org/Qwen2.5-Omni-3B-GGUF:Q4_K_M"