CANN: add support for partial RoPE and Vision mode (#17543)
* cann: add support for partial RoPE and Vision mode
Add support for two important RoPE variants: partial rotation (rope_dims < ne0)
and Vision mode rotation.
1. Support for partial RoPE (rope_dims < ne0):
- Split tensor into head (first rope_dims dimensions) and tail portions
- Apply rotation only to head portion using RotaryPositionEmbedding operator
- Copy unrotated tail portion directly from source to destination
- Handle both contiguous and non-contiguous tensor layouts
2. Support for Vision mode (GGML_ROPE_TYPE_VISION):
- Set rope_dims = ne0 for Vision mode to rotate entire tensor
- Vision mode pairs dimension i with dimension i+n_dims (where n_dims = ne0/2)
- No tail handling needed since entire tensor is rotated
Implementation details:
- Use has_tail flag to determine execution path: head/tail splitting when
rope_dims < ne0, or full tensor rotation when rope_dims == ne0
- Support both F32 and F16 data types with intermediate F32 conversion
- Copy non-contiguous tensors to contiguous buffers before calling
RotaryPositionEmbedding operator for compatibility
- Improve cache invalidation logic to include rope_dims and indep_sects
parameters
These enhancements enable CANN backend to handle various RoPE configurations
used in modern vision-language models and models with partial rotation.
* cann: fix review comment
This commit is contained in:
parent
0cdce38a97
commit
ca709e427b
|
|
@ -2251,12 +2251,12 @@ static void aclnn_rope_cache_init(ggml_backend_cann_context & ctx,
|
|||
int sections[4],
|
||||
bool mrope_used,
|
||||
bool is_imrope,
|
||||
bool indep_sects) {
|
||||
ggml_tensor * src0 = dst->src[0]; // input
|
||||
bool indep_sects,
|
||||
int64_t rope_dims) {
|
||||
ggml_tensor * src1 = dst->src[1]; // position
|
||||
ggml_tensor * src2 = dst->src[2]; // freq_factors
|
||||
|
||||
int64_t theta_scale_length = src0->ne[0] / 2;
|
||||
int64_t theta_scale_length = rope_dims / 2;
|
||||
int64_t position_length = dst->ne[2];
|
||||
|
||||
// TODO: check theta_scale_length and position_length.
|
||||
|
|
@ -2331,18 +2331,17 @@ static void aclnn_rope_cache_init(ggml_backend_cann_context & ctx,
|
|||
ACL_CHECK(aclrtMemcpyAsync(ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float),
|
||||
ctx.rope_cache.theta_scale_exp_host, theta_scale_length * sizeof(float),
|
||||
ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream()));
|
||||
|
||||
acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
|
||||
theta_scale_ne, theta_scale_nb, 1);
|
||||
}
|
||||
acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
|
||||
theta_scale_ne, theta_scale_nb, 1);
|
||||
|
||||
// Step1.2: prepare rope_yarn_ramp, if this part updated, should update theta_scale_tensor.
|
||||
// TODO: acl_yarn_ramp_tensor use rope cache.
|
||||
bool yarn_ramp_tensor_updated = false;
|
||||
ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool());
|
||||
acl_tensor_ptr acl_yarn_ramp_tensor;
|
||||
if (ext_factor != 0 &&
|
||||
// TODO: check more parameter.
|
||||
(ctx.rope_cache.theta_scale_length != theta_scale_length || ctx.rope_cache.freq_scale != freq_scale)) {
|
||||
if (ext_factor != 0 && (theta_scale_updated || ctx.rope_cache.theta_scale_length != theta_scale_length ||
|
||||
ctx.rope_cache.freq_scale != freq_scale)) {
|
||||
yarn_ramp_tensor_updated = true;
|
||||
|
||||
// -rope_yarn_ramp
|
||||
|
|
@ -2590,7 +2589,7 @@ static void aclnn_rope_cache_init(ggml_backend_cann_context & ctx,
|
|||
aclnn_muls(ctx, acl_cos_tensor.get(), attn_factor, nullptr, true);
|
||||
}
|
||||
|
||||
int64_t sin_reshape_ne[4] = { src0->ne[0], 1, dst->ne[2], 1 };
|
||||
int64_t sin_reshape_ne[4] = { rope_dims, 1, dst->ne[2], 1 };
|
||||
size_t sin_reshape_nb[GGML_MAX_DIMS];
|
||||
sin_reshape_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
|
|
@ -2645,7 +2644,7 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
|||
|
||||
// param
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
int sections[4];
|
||||
int sections[4];
|
||||
// const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
|
|
@ -2654,44 +2653,60 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
|||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int) * 4);
|
||||
|
||||
// TODO: n_dims <= ne0
|
||||
GGML_ASSERT(n_dims == ne0);
|
||||
GGML_ASSERT(n_dims % 2 == 0);
|
||||
GGML_ASSERT(n_dims <= ne00);
|
||||
|
||||
const float theta_scale = powf(freq_base, -2.0f / n_dims);
|
||||
|
||||
float corr_dims[2];
|
||||
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
||||
|
||||
bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE; // qwen3vl apply interleaved mrope
|
||||
const bool mrope_used = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, note: also true for vision (24 & 8 == true) and for imrope
|
||||
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
||||
bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE; // qwen3vl apply interleaved mrope
|
||||
// mrope_used means the GGML_ROPE_TYPE_MROPE bit is set.
|
||||
// Note: this bit is also set for imrope and some vision modes,
|
||||
// so mrope_used does NOT exclusively indicate pure mrope.
|
||||
const bool mrope_used = mode & GGML_ROPE_TYPE_MROPE;
|
||||
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
||||
|
||||
if (mrope_used) {
|
||||
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
|
||||
}
|
||||
|
||||
if (is_vision) {
|
||||
GGML_ASSERT(n_dims == ne0/2);
|
||||
GGML_ASSERT(n_dims == ne0 / 2);
|
||||
}
|
||||
|
||||
if (is_imrope || mrope_used) {
|
||||
is_neox = true;
|
||||
}
|
||||
|
||||
// init ctx.rope_cos/rope_sin cache
|
||||
aclnn_rope_cache_init(ctx, dst, corr_dims, ext_factor, theta_scale, freq_scale, attn_factor, is_neox, sections, mrope_used, is_imrope, is_vision);
|
||||
int64_t rope_dims = n_dims;
|
||||
|
||||
int64_t sin_reshape_ne[4] = { ne00, 1, ne02, 1 };
|
||||
//Our current RotaryPositionEmbedding does not support the VISION mode,
|
||||
//but essentially it only modifies theta_base in mrope,
|
||||
//then repeats it at the end in the same way as is_neox.
|
||||
//In fact, RoPE is still applied across all dimensions.
|
||||
if (is_vision) {
|
||||
rope_dims = src0->ne[0];
|
||||
}
|
||||
int64_t tail_dims = ne00 - rope_dims;
|
||||
bool has_tail = tail_dims > 0;
|
||||
|
||||
// init ctx.rope_cos/rope_sin cache
|
||||
aclnn_rope_cache_init(ctx, dst, corr_dims, ext_factor, theta_scale, freq_scale, attn_factor, is_neox, sections,
|
||||
mrope_used, is_imrope, is_vision, rope_dims);
|
||||
|
||||
// Cache is generated with ne00 dimensions, so we use ne00 for reshape
|
||||
int64_t sin_reshape_ne[4] = { rope_dims, 1, ne02, 1 };
|
||||
size_t sin_reshape_nb[GGML_MAX_DIMS];
|
||||
sin_reshape_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
|
|
@ -2704,7 +2719,6 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
|||
|
||||
acl_tensor_ptr acl_src = ggml_cann_create_tensor(src0);
|
||||
acl_tensor_ptr acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
#ifdef ASCEND_310P
|
||||
// Special ROPE operation for 310P
|
||||
|
||||
|
|
@ -2844,46 +2858,124 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
|||
}
|
||||
return;
|
||||
#endif
|
||||
|
||||
int64_t acl_mode = is_neox ? 0 : 1;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src.get(), acl_cos_reshape_tensor.get(),
|
||||
acl_sin_reshape_tensor.get(), acl_mode, acl_dst.get());
|
||||
break;
|
||||
}
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
ggml_cann_pool_alloc src_trans_allocator(ctx.pool(), ggml_nelements(src0) * sizeof(float));
|
||||
void * src_trans_buffer = src_trans_allocator.get();
|
||||
ggml_cann_pool_alloc dst_trans_allocator(ctx.pool(), ggml_nelements(dst) * sizeof(float));
|
||||
void * dst_trans_buffer = dst_trans_allocator.get();
|
||||
// Pre-define head and tail dimensions for reuse
|
||||
int64_t head_ne[GGML_MAX_DIMS] = { rope_dims, ne01, ne02, ne03 };
|
||||
int64_t tail_ne[GGML_MAX_DIMS] = { tail_dims, ne01, ne02, ne03 };
|
||||
|
||||
size_t src_trans_nb[GGML_MAX_DIMS];
|
||||
src_trans_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
|
||||
}
|
||||
// Step 1: Prepare trans tensors for F16 type conversion to F32 if needed
|
||||
bool src_dst_need_trans = false;
|
||||
ggml_cann_pool_alloc src_trans_allocator(ctx.pool());
|
||||
ggml_cann_pool_alloc dst_trans_allocator(ctx.pool());
|
||||
acl_tensor_ptr acl_src_trans_tensor;
|
||||
acl_tensor_ptr acl_dst_trans_tensor;
|
||||
void * src_trans_buffer = nullptr;
|
||||
void * dst_trans_buffer = nullptr;
|
||||
size_t src_dst_trans_nb[GGML_MAX_DIMS];
|
||||
if (src0->type == GGML_TYPE_F16) {
|
||||
src_dst_need_trans = true;
|
||||
src_trans_buffer = src_trans_allocator.alloc(ggml_nelements(src0) * sizeof(float));
|
||||
dst_trans_buffer = dst_trans_allocator.alloc(ggml_nelements(dst) * sizeof(float));
|
||||
|
||||
acl_tensor_ptr acl_src_trans_tensor = ggml_cann_create_tensor(
|
||||
src_trans_buffer, ACL_FLOAT, sizeof(float), src0->ne, src_trans_nb, GGML_MAX_DIMS);
|
||||
acl_tensor_ptr acl_dst_trans_tensor = ggml_cann_create_tensor(
|
||||
dst_trans_buffer, ACL_FLOAT, sizeof(float), dst->ne, src_trans_nb, GGML_MAX_DIMS);
|
||||
src_dst_trans_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
src_dst_trans_nb[i] = src_dst_trans_nb[i - 1] * src0->ne[i - 1];
|
||||
}
|
||||
acl_src_trans_tensor = ggml_cann_create_tensor(src_trans_buffer, ACL_FLOAT, sizeof(float), src0->ne,
|
||||
src_dst_trans_nb, GGML_MAX_DIMS);
|
||||
acl_dst_trans_tensor = ggml_cann_create_tensor(dst_trans_buffer, ACL_FLOAT, sizeof(float), dst->ne,
|
||||
src_dst_trans_nb, GGML_MAX_DIMS);
|
||||
aclnn_cast(ctx, acl_src.get(), acl_src_trans_tensor.get(), ACL_FLOAT);
|
||||
}
|
||||
|
||||
aclnn_cast(ctx, acl_src.get(), acl_src_trans_tensor.get(), ACL_FLOAT);
|
||||
// Step 2: Prepare head tensors for tail splitting if needed
|
||||
acl_tensor_ptr acl_src_head;
|
||||
acl_tensor_ptr acl_dst_head;
|
||||
if (has_tail) {
|
||||
// Create head views for RotaryPositionEmbedding (only first rope_dims dimensions)
|
||||
// RotaryPositionEmbedding requires contiguous dst tensor, so we use a temporary buffer
|
||||
if (src_dst_need_trans) {
|
||||
// Use F32 trans tensor strides
|
||||
acl_src_head = ggml_cann_create_tensor((char *) src_trans_buffer, ACL_FLOAT, sizeof(float), head_ne,
|
||||
src_dst_trans_nb, GGML_MAX_DIMS);
|
||||
} else {
|
||||
// Use original F32 tensor strides
|
||||
acl_src_head = ggml_cann_create_tensor((char *) src0->data, ACL_FLOAT, sizeof(float), head_ne, src0->nb,
|
||||
GGML_MAX_DIMS);
|
||||
}
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src_trans_tensor.get(),
|
||||
acl_cos_reshape_tensor.get(), acl_sin_reshape_tensor.get(), acl_mode,
|
||||
acl_dst_trans_tensor.get());
|
||||
int64_t head_elements = rope_dims * ne01 * ne02 * ne03;
|
||||
ggml_cann_pool_alloc dst_head_contiguous_allocator(ctx.pool(), head_elements * sizeof(float));
|
||||
void * dst_head_contiguous_buffer = dst_head_contiguous_allocator.get();
|
||||
|
||||
aclnn_cast(ctx, acl_dst_trans_tensor.get(), acl_dst.get(), ACL_FLOAT16);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
GGML_ABORT("Unsupported tensor type for GGML_OP_ROPE");
|
||||
break;
|
||||
size_t head_contiguous_nb[GGML_MAX_DIMS];
|
||||
head_contiguous_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
head_contiguous_nb[i] = head_contiguous_nb[i - 1] * head_ne[i - 1];
|
||||
}
|
||||
acl_dst_head = ggml_cann_create_tensor(dst_head_contiguous_buffer, ACL_FLOAT, sizeof(float), head_ne,
|
||||
head_contiguous_nb, GGML_MAX_DIMS);
|
||||
}
|
||||
|
||||
// Step 3: Execute RotaryPositionEmbedding
|
||||
if (has_tail) {
|
||||
// Rotate only the head portion (first rope_dims dimensions)
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src_head.get(), acl_cos_reshape_tensor.get(),
|
||||
acl_sin_reshape_tensor.get(), acl_mode, acl_dst_head.get());
|
||||
|
||||
// Copy head result from contiguous buffer back to destination tensor
|
||||
if (src_dst_need_trans) {
|
||||
acl_tensor_ptr acl_dst_head_target = ggml_cann_create_tensor(
|
||||
(char *) dst_trans_buffer, ACL_FLOAT, sizeof(float), head_ne, src_dst_trans_nb, GGML_MAX_DIMS);
|
||||
cann_copy(ctx, acl_dst_head.get(), acl_dst_head_target.get());
|
||||
} else {
|
||||
acl_tensor_ptr acl_dst_head_target =
|
||||
ggml_cann_create_tensor((char *) dst->data, ACL_FLOAT, sizeof(float), head_ne, dst->nb, GGML_MAX_DIMS);
|
||||
cann_copy(ctx, acl_dst_head.get(), acl_dst_head_target.get());
|
||||
}
|
||||
} else if (src_dst_need_trans) {
|
||||
// Rotate full tensor (no tail), using trans tensors
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src_trans_tensor.get(), acl_cos_reshape_tensor.get(),
|
||||
acl_sin_reshape_tensor.get(), acl_mode, acl_dst_trans_tensor.get());
|
||||
} else {
|
||||
// Rotate full tensor (no tail), using original tensors
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src.get(), acl_cos_reshape_tensor.get(),
|
||||
acl_sin_reshape_tensor.get(), acl_mode, acl_dst.get());
|
||||
}
|
||||
|
||||
// Step 4: Copy unrotated tail portion from source to destination
|
||||
if (has_tail) {
|
||||
size_t src_tail_offset;
|
||||
size_t dst_tail_offset;
|
||||
|
||||
auto copy_tail_device = [&](void * src_ptr, void * dst_ptr, aclDataType dtype, size_t elem_size,
|
||||
size_t * nb_src_arr, size_t * nb_dst_arr) {
|
||||
acl_tensor_ptr acl_src_tail =
|
||||
ggml_cann_create_tensor(src_ptr, dtype, elem_size, tail_ne, nb_src_arr, GGML_MAX_DIMS);
|
||||
acl_tensor_ptr acl_dst_tail =
|
||||
ggml_cann_create_tensor(dst_ptr, dtype, elem_size, tail_ne, nb_dst_arr, GGML_MAX_DIMS);
|
||||
cann_copy(ctx, acl_src_tail.get(), acl_dst_tail.get());
|
||||
};
|
||||
|
||||
if (src_dst_need_trans) {
|
||||
// Use F32 trans tensor strides and offsets
|
||||
src_tail_offset = rope_dims * src_dst_trans_nb[0];
|
||||
dst_tail_offset = rope_dims * src_dst_trans_nb[0];
|
||||
copy_tail_device((char *) src_trans_buffer + src_tail_offset, (char *) dst_trans_buffer + dst_tail_offset,
|
||||
ACL_FLOAT, sizeof(float), src_dst_trans_nb, src_dst_trans_nb);
|
||||
} else {
|
||||
// Use original tensor strides and offsets
|
||||
src_tail_offset = rope_dims * nb00;
|
||||
dst_tail_offset = rope_dims * nb0;
|
||||
copy_tail_device((char *) src0->data + src_tail_offset, (char *) dst->data + dst_tail_offset,
|
||||
ggml_cann_type_mapping(dst->type), ggml_element_size(dst), src0->nb, dst->nb);
|
||||
}
|
||||
}
|
||||
|
||||
// Step 5: Cast back to F16 if needed
|
||||
if (src_dst_need_trans) {
|
||||
aclnn_cast(ctx, acl_dst_trans_tensor.get(), acl_dst.get(), ACL_FLOAT16);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -315,7 +315,7 @@ struct ggml_cann_rope_cache {
|
|||
if (theta_scale_exp_host) {
|
||||
free(theta_scale_exp_host);
|
||||
}
|
||||
if(position_select_index_host) {
|
||||
if (position_select_index_host) {
|
||||
free(position_select_index_host);
|
||||
}
|
||||
}
|
||||
|
|
@ -340,7 +340,7 @@ struct ggml_cann_rope_cache {
|
|||
|
||||
void set(int64_t theta_scale_length,
|
||||
int64_t position_length,
|
||||
float ext_factor,
|
||||
float ext_factor,
|
||||
float theta_scale,
|
||||
float freq_scale,
|
||||
float attn_factor,
|
||||
|
|
|
|||
|
|
@ -2308,7 +2308,7 @@ static enum ggml_status ggml_backend_cann_graph_compute(ggml_backend_t backend,
|
|||
|
||||
bool cann_graph_update_required = false;
|
||||
#ifdef USE_ACL_GRAPH
|
||||
bool use_cann_graph = true;
|
||||
bool use_cann_graph = true;
|
||||
|
||||
static bool prefill_use_graph = parse_bool(get_env("GGML_CANN_PREFILL_USE_GRAPH").value_or(""));
|
||||
if (!prefill_use_graph) {
|
||||
|
|
@ -2338,7 +2338,7 @@ static enum ggml_status ggml_backend_cann_graph_compute(ggml_backend_t backend,
|
|||
}
|
||||
}
|
||||
#else
|
||||
bool use_cann_graph = false;
|
||||
bool use_cann_graph = false;
|
||||
#endif // USE_ACL_GRAPH
|
||||
evaluate_and_capture_cann_graph(cann_ctx, cgraph, use_cann_graph, cann_graph_update_required);
|
||||
|
||||
|
|
@ -2474,16 +2474,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
|
|||
}
|
||||
case GGML_OP_ROPE:
|
||||
{
|
||||
// TODO: with ops-test v == 1
|
||||
// TODO: n_dims <= ne0
|
||||
if (op->src[0]->ne[0] != op->op_params[1]) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (op->src[0]->ne[0] > 896) {
|
||||
return false;
|
||||
}
|
||||
#ifdef ASCEND_310P
|
||||
// TODO: Support rope_dim < ne00(dim)
|
||||
if (op->src[0]->ne[0] != op->op_params[1]) {
|
||||
return false;
|
||||
}
|
||||
if (!ggml_is_contiguous(op->src[0])) {
|
||||
return false;
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue