CANN: add support for partial RoPE and Vision mode (#17543)

* cann: add support for partial RoPE and Vision mode

Add support for two important RoPE variants: partial rotation (rope_dims < ne0)
and Vision mode rotation.

1. Support for partial RoPE (rope_dims < ne0):
   - Split tensor into head (first rope_dims dimensions) and tail portions
   - Apply rotation only to head portion using RotaryPositionEmbedding operator
   - Copy unrotated tail portion directly from source to destination
   - Handle both contiguous and non-contiguous tensor layouts

2. Support for Vision mode (GGML_ROPE_TYPE_VISION):
   - Set rope_dims = ne0 for Vision mode to rotate entire tensor
   - Vision mode pairs dimension i with dimension i+n_dims (where n_dims = ne0/2)
   - No tail handling needed since entire tensor is rotated

Implementation details:
   - Use has_tail flag to determine execution path: head/tail splitting when
     rope_dims < ne0, or full tensor rotation when rope_dims == ne0
   - Support both F32 and F16 data types with intermediate F32 conversion
   - Copy non-contiguous tensors to contiguous buffers before calling
     RotaryPositionEmbedding operator for compatibility
   - Improve cache invalidation logic to include rope_dims and indep_sects
     parameters

These enhancements enable CANN backend to handle various RoPE configurations
used in modern vision-language models and models with partial rotation.

* cann: fix review comment
This commit is contained in:
Chenguang Li 2025-12-09 17:53:23 +08:00 committed by GitHub
parent 0cdce38a97
commit ca709e427b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 162 additions and 72 deletions

View File

@ -2251,12 +2251,12 @@ static void aclnn_rope_cache_init(ggml_backend_cann_context & ctx,
int sections[4], int sections[4],
bool mrope_used, bool mrope_used,
bool is_imrope, bool is_imrope,
bool indep_sects) { bool indep_sects,
ggml_tensor * src0 = dst->src[0]; // input int64_t rope_dims) {
ggml_tensor * src1 = dst->src[1]; // position ggml_tensor * src1 = dst->src[1]; // position
ggml_tensor * src2 = dst->src[2]; // freq_factors ggml_tensor * src2 = dst->src[2]; // freq_factors
int64_t theta_scale_length = src0->ne[0] / 2; int64_t theta_scale_length = rope_dims / 2;
int64_t position_length = dst->ne[2]; int64_t position_length = dst->ne[2];
// TODO: check theta_scale_length and position_length. // TODO: check theta_scale_length and position_length.
@ -2331,18 +2331,17 @@ static void aclnn_rope_cache_init(ggml_backend_cann_context & ctx,
ACL_CHECK(aclrtMemcpyAsync(ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float), ACL_CHECK(aclrtMemcpyAsync(ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float),
ctx.rope_cache.theta_scale_exp_host, theta_scale_length * sizeof(float), ctx.rope_cache.theta_scale_exp_host, theta_scale_length * sizeof(float),
ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream())); ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream()));
}
acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float), acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
theta_scale_ne, theta_scale_nb, 1); theta_scale_ne, theta_scale_nb, 1);
}
// Step1.2: prepare rope_yarn_ramp, if this part updated, should update theta_scale_tensor. // Step1.2: prepare rope_yarn_ramp, if this part updated, should update theta_scale_tensor.
// TODO: acl_yarn_ramp_tensor use rope cache.
bool yarn_ramp_tensor_updated = false; bool yarn_ramp_tensor_updated = false;
ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool()); ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool());
acl_tensor_ptr acl_yarn_ramp_tensor; acl_tensor_ptr acl_yarn_ramp_tensor;
if (ext_factor != 0 && if (ext_factor != 0 && (theta_scale_updated || ctx.rope_cache.theta_scale_length != theta_scale_length ||
// TODO: check more parameter. ctx.rope_cache.freq_scale != freq_scale)) {
(ctx.rope_cache.theta_scale_length != theta_scale_length || ctx.rope_cache.freq_scale != freq_scale)) {
yarn_ramp_tensor_updated = true; yarn_ramp_tensor_updated = true;
// -rope_yarn_ramp // -rope_yarn_ramp
@ -2590,7 +2589,7 @@ static void aclnn_rope_cache_init(ggml_backend_cann_context & ctx,
aclnn_muls(ctx, acl_cos_tensor.get(), attn_factor, nullptr, true); aclnn_muls(ctx, acl_cos_tensor.get(), attn_factor, nullptr, true);
} }
int64_t sin_reshape_ne[4] = { src0->ne[0], 1, dst->ne[2], 1 }; int64_t sin_reshape_ne[4] = { rope_dims, 1, dst->ne[2], 1 };
size_t sin_reshape_nb[GGML_MAX_DIMS]; size_t sin_reshape_nb[GGML_MAX_DIMS];
sin_reshape_nb[0] = sizeof(float); sin_reshape_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) { for (int i = 1; i < GGML_MAX_DIMS; i++) {
@ -2662,9 +2661,8 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int) * 4); memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int) * 4);
// TODO: n_dims <= ne0
GGML_ASSERT(n_dims == ne0);
GGML_ASSERT(n_dims % 2 == 0); GGML_ASSERT(n_dims % 2 == 0);
GGML_ASSERT(n_dims <= ne00);
const float theta_scale = powf(freq_base, -2.0f / n_dims); const float theta_scale = powf(freq_base, -2.0f / n_dims);
@ -2673,7 +2671,10 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
bool is_neox = mode & GGML_ROPE_TYPE_NEOX; bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE; // qwen3vl apply interleaved mrope const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE; // qwen3vl apply interleaved mrope
const bool mrope_used = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, note: also true for vision (24 & 8 == true) and for imrope // mrope_used means the GGML_ROPE_TYPE_MROPE bit is set.
// Note: this bit is also set for imrope and some vision modes,
// so mrope_used does NOT exclusively indicate pure mrope.
const bool mrope_used = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION; const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (mrope_used) { if (mrope_used) {
@ -2688,10 +2689,24 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
is_neox = true; is_neox = true;
} }
// init ctx.rope_cos/rope_sin cache int64_t rope_dims = n_dims;
aclnn_rope_cache_init(ctx, dst, corr_dims, ext_factor, theta_scale, freq_scale, attn_factor, is_neox, sections, mrope_used, is_imrope, is_vision);
int64_t sin_reshape_ne[4] = { ne00, 1, ne02, 1 }; //Our current RotaryPositionEmbedding does not support the VISION mode,
//but essentially it only modifies theta_base in mrope,
//then repeats it at the end in the same way as is_neox.
//In fact, RoPE is still applied across all dimensions.
if (is_vision) {
rope_dims = src0->ne[0];
}
int64_t tail_dims = ne00 - rope_dims;
bool has_tail = tail_dims > 0;
// init ctx.rope_cos/rope_sin cache
aclnn_rope_cache_init(ctx, dst, corr_dims, ext_factor, theta_scale, freq_scale, attn_factor, is_neox, sections,
mrope_used, is_imrope, is_vision, rope_dims);
// Cache is generated with ne00 dimensions, so we use ne00 for reshape
int64_t sin_reshape_ne[4] = { rope_dims, 1, ne02, 1 };
size_t sin_reshape_nb[GGML_MAX_DIMS]; size_t sin_reshape_nb[GGML_MAX_DIMS];
sin_reshape_nb[0] = sizeof(float); sin_reshape_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) { for (int i = 1; i < GGML_MAX_DIMS; i++) {
@ -2704,7 +2719,6 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
acl_tensor_ptr acl_src = ggml_cann_create_tensor(src0); acl_tensor_ptr acl_src = ggml_cann_create_tensor(src0);
acl_tensor_ptr acl_dst = ggml_cann_create_tensor(dst); acl_tensor_ptr acl_dst = ggml_cann_create_tensor(dst);
#ifdef ASCEND_310P #ifdef ASCEND_310P
// Special ROPE operation for 310P // Special ROPE operation for 310P
@ -2844,46 +2858,124 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
} }
return; return;
#endif #endif
int64_t acl_mode = is_neox ? 0 : 1; int64_t acl_mode = is_neox ? 0 : 1;
switch (src0->type) { // Pre-define head and tail dimensions for reuse
case GGML_TYPE_F32: int64_t head_ne[GGML_MAX_DIMS] = { rope_dims, ne01, ne02, ne03 };
{ int64_t tail_ne[GGML_MAX_DIMS] = { tail_dims, ne01, ne02, ne03 };
// Step 1: Prepare trans tensors for F16 type conversion to F32 if needed
bool src_dst_need_trans = false;
ggml_cann_pool_alloc src_trans_allocator(ctx.pool());
ggml_cann_pool_alloc dst_trans_allocator(ctx.pool());
acl_tensor_ptr acl_src_trans_tensor;
acl_tensor_ptr acl_dst_trans_tensor;
void * src_trans_buffer = nullptr;
void * dst_trans_buffer = nullptr;
size_t src_dst_trans_nb[GGML_MAX_DIMS];
if (src0->type == GGML_TYPE_F16) {
src_dst_need_trans = true;
src_trans_buffer = src_trans_allocator.alloc(ggml_nelements(src0) * sizeof(float));
dst_trans_buffer = dst_trans_allocator.alloc(ggml_nelements(dst) * sizeof(float));
src_dst_trans_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_dst_trans_nb[i] = src_dst_trans_nb[i - 1] * src0->ne[i - 1];
}
acl_src_trans_tensor = ggml_cann_create_tensor(src_trans_buffer, ACL_FLOAT, sizeof(float), src0->ne,
src_dst_trans_nb, GGML_MAX_DIMS);
acl_dst_trans_tensor = ggml_cann_create_tensor(dst_trans_buffer, ACL_FLOAT, sizeof(float), dst->ne,
src_dst_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src.get(), acl_src_trans_tensor.get(), ACL_FLOAT);
}
// Step 2: Prepare head tensors for tail splitting if needed
acl_tensor_ptr acl_src_head;
acl_tensor_ptr acl_dst_head;
if (has_tail) {
// Create head views for RotaryPositionEmbedding (only first rope_dims dimensions)
// RotaryPositionEmbedding requires contiguous dst tensor, so we use a temporary buffer
if (src_dst_need_trans) {
// Use F32 trans tensor strides
acl_src_head = ggml_cann_create_tensor((char *) src_trans_buffer, ACL_FLOAT, sizeof(float), head_ne,
src_dst_trans_nb, GGML_MAX_DIMS);
} else {
// Use original F32 tensor strides
acl_src_head = ggml_cann_create_tensor((char *) src0->data, ACL_FLOAT, sizeof(float), head_ne, src0->nb,
GGML_MAX_DIMS);
}
int64_t head_elements = rope_dims * ne01 * ne02 * ne03;
ggml_cann_pool_alloc dst_head_contiguous_allocator(ctx.pool(), head_elements * sizeof(float));
void * dst_head_contiguous_buffer = dst_head_contiguous_allocator.get();
size_t head_contiguous_nb[GGML_MAX_DIMS];
head_contiguous_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
head_contiguous_nb[i] = head_contiguous_nb[i - 1] * head_ne[i - 1];
}
acl_dst_head = ggml_cann_create_tensor(dst_head_contiguous_buffer, ACL_FLOAT, sizeof(float), head_ne,
head_contiguous_nb, GGML_MAX_DIMS);
}
// Step 3: Execute RotaryPositionEmbedding
if (has_tail) {
// Rotate only the head portion (first rope_dims dimensions)
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src_head.get(), acl_cos_reshape_tensor.get(),
acl_sin_reshape_tensor.get(), acl_mode, acl_dst_head.get());
// Copy head result from contiguous buffer back to destination tensor
if (src_dst_need_trans) {
acl_tensor_ptr acl_dst_head_target = ggml_cann_create_tensor(
(char *) dst_trans_buffer, ACL_FLOAT, sizeof(float), head_ne, src_dst_trans_nb, GGML_MAX_DIMS);
cann_copy(ctx, acl_dst_head.get(), acl_dst_head_target.get());
} else {
acl_tensor_ptr acl_dst_head_target =
ggml_cann_create_tensor((char *) dst->data, ACL_FLOAT, sizeof(float), head_ne, dst->nb, GGML_MAX_DIMS);
cann_copy(ctx, acl_dst_head.get(), acl_dst_head_target.get());
}
} else if (src_dst_need_trans) {
// Rotate full tensor (no tail), using trans tensors
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src_trans_tensor.get(), acl_cos_reshape_tensor.get(),
acl_sin_reshape_tensor.get(), acl_mode, acl_dst_trans_tensor.get());
} else {
// Rotate full tensor (no tail), using original tensors
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src.get(), acl_cos_reshape_tensor.get(), GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src.get(), acl_cos_reshape_tensor.get(),
acl_sin_reshape_tensor.get(), acl_mode, acl_dst.get()); acl_sin_reshape_tensor.get(), acl_mode, acl_dst.get());
break;
}
case GGML_TYPE_F16:
{
ggml_cann_pool_alloc src_trans_allocator(ctx.pool(), ggml_nelements(src0) * sizeof(float));
void * src_trans_buffer = src_trans_allocator.get();
ggml_cann_pool_alloc dst_trans_allocator(ctx.pool(), ggml_nelements(dst) * sizeof(float));
void * dst_trans_buffer = dst_trans_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
} }
acl_tensor_ptr acl_src_trans_tensor = ggml_cann_create_tensor( // Step 4: Copy unrotated tail portion from source to destination
src_trans_buffer, ACL_FLOAT, sizeof(float), src0->ne, src_trans_nb, GGML_MAX_DIMS); if (has_tail) {
acl_tensor_ptr acl_dst_trans_tensor = ggml_cann_create_tensor( size_t src_tail_offset;
dst_trans_buffer, ACL_FLOAT, sizeof(float), dst->ne, src_trans_nb, GGML_MAX_DIMS); size_t dst_tail_offset;
aclnn_cast(ctx, acl_src.get(), acl_src_trans_tensor.get(), ACL_FLOAT); auto copy_tail_device = [&](void * src_ptr, void * dst_ptr, aclDataType dtype, size_t elem_size,
size_t * nb_src_arr, size_t * nb_dst_arr) {
acl_tensor_ptr acl_src_tail =
ggml_cann_create_tensor(src_ptr, dtype, elem_size, tail_ne, nb_src_arr, GGML_MAX_DIMS);
acl_tensor_ptr acl_dst_tail =
ggml_cann_create_tensor(dst_ptr, dtype, elem_size, tail_ne, nb_dst_arr, GGML_MAX_DIMS);
cann_copy(ctx, acl_src_tail.get(), acl_dst_tail.get());
};
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src_trans_tensor.get(), if (src_dst_need_trans) {
acl_cos_reshape_tensor.get(), acl_sin_reshape_tensor.get(), acl_mode, // Use F32 trans tensor strides and offsets
acl_dst_trans_tensor.get()); src_tail_offset = rope_dims * src_dst_trans_nb[0];
dst_tail_offset = rope_dims * src_dst_trans_nb[0];
copy_tail_device((char *) src_trans_buffer + src_tail_offset, (char *) dst_trans_buffer + dst_tail_offset,
ACL_FLOAT, sizeof(float), src_dst_trans_nb, src_dst_trans_nb);
} else {
// Use original tensor strides and offsets
src_tail_offset = rope_dims * nb00;
dst_tail_offset = rope_dims * nb0;
copy_tail_device((char *) src0->data + src_tail_offset, (char *) dst->data + dst_tail_offset,
ggml_cann_type_mapping(dst->type), ggml_element_size(dst), src0->nb, dst->nb);
}
}
// Step 5: Cast back to F16 if needed
if (src_dst_need_trans) {
aclnn_cast(ctx, acl_dst_trans_tensor.get(), acl_dst.get(), ACL_FLOAT16); aclnn_cast(ctx, acl_dst_trans_tensor.get(), acl_dst.get(), ACL_FLOAT16);
break;
}
default:
GGML_ABORT("Unsupported tensor type for GGML_OP_ROPE");
break;
} }
} }

View File

@ -2474,16 +2474,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
} }
case GGML_OP_ROPE: case GGML_OP_ROPE:
{ {
// TODO: with ops-test v == 1
// TODO: n_dims <= ne0
if (op->src[0]->ne[0] != op->op_params[1]) {
return false;
}
if (op->src[0]->ne[0] > 896) { if (op->src[0]->ne[0] > 896) {
return false; return false;
} }
#ifdef ASCEND_310P #ifdef ASCEND_310P
// TODO: Support rope_dim < ne00(dim)
if (op->src[0]->ne[0] != op->op_params[1]) {
return false;
}
if (!ggml_is_contiguous(op->src[0])) { if (!ggml_is_contiguous(op->src[0])) {
return false; return false;
} }