fix compiling error after merge

This commit is contained in:
chraac 2025-10-05 23:05:42 +08:00
parent 31cfe411d1
commit ca4d2778d9
2 changed files with 44 additions and 88 deletions

View File

@ -17,10 +17,8 @@ qnn::qnn_graph * get_qnn_graph_from_cache(qnn::ggml_backend_qnn_device_context *
std::string graph_key;
auto op_data_type = qnn::qnn_graph::get_graph_key_from_cgraph(cgraph, graph_key);
if (graph_key.empty()) {
QNN_LOG_DEBUG("[%s]empty graph key for cgraph: %p, size: %d\n",
qnn::get_backend_name(ctx->device),
(const void *) cgraph,
(int) cgraph->n_nodes);
QNN_LOG_DEBUG("[%s]empty graph key for cgraph: %p, size: %d\n", qnn::get_backend_name(ctx->device),
(const void *) cgraph, (int) cgraph->n_nodes);
return nullptr;
}
@ -28,21 +26,19 @@ qnn::qnn_graph * get_qnn_graph_from_cache(qnn::ggml_backend_qnn_device_context *
qnn::qnn_graph * graph_ptr = nullptr;
if (it != graph_cache.end()) {
auto it = graph_cache.find(graph_key);
QNN_LOG_DEBUG("[%s]found graph %s in cache, cache size: %d\n",
qnn::get_backend_name(ctx->device),
graph_key.c_str(),
(int) graph_cache.size());
QNN_LOG_DEBUG("[%s]found graph %s in cache, cache size: %d\n", qnn::get_backend_name(ctx->device),
graph_key.c_str(), (int) graph_cache.size());
graph_ptr = it->second.get();
} else {
auto precision = qnn::qnn_graph::kHtpDefault;
if (op_data_type == GGML_TYPE_F16) {
QNN_LOG_DEBUG(
"[%s][%s]set graph precision to FP16\n", qnn::get_backend_name(ctx->device), graph_key.c_str());
QNN_LOG_DEBUG("[%s][%s]set graph precision to FP16\n", qnn::get_backend_name(ctx->device),
graph_key.c_str());
precision = qnn::qnn_graph::kHtpFp16;
}
auto graph = std::make_unique<qnn::qnn_graph>(
graph_key, ctx->device, ctx->instance, precision, ctx->socinfo.vtcm_size_in_mb);
auto graph = std::make_unique<qnn::qnn_graph>(graph_key, ctx->device, ctx->instance, precision,
ctx->socinfo.vtcm_size_in_mb);
if (!graph->is_valid()) {
return nullptr;
}
@ -54,10 +50,8 @@ qnn::qnn_graph * get_qnn_graph_from_cache(qnn::ggml_backend_qnn_device_context *
graph_ptr = graph.get();
graph_cache[graph_key] = std::move(graph);
QNN_LOG_DEBUG("[%s]add graph %s to cache, cache size: %d\n",
qnn::get_backend_name(ctx->device),
graph_key.c_str(),
(int) graph_cache.size());
QNN_LOG_DEBUG("[%s]add graph %s to cache, cache size: %d\n", qnn::get_backend_name(ctx->device),
graph_key.c_str(), (int) graph_cache.size());
}
return graph_ptr;
@ -179,6 +173,7 @@ constexpr const bool kQnnSupportedOps[] = {
false, // GGML_UNARY_OP_HARDSIGMOID
false, // GGML_UNARY_OP_EXP
false, // GGML_UNARY_OP_GELU_ERF
false, // GGML_UNARY_OP_XIELU
};
static_assert(kQnnSupportedOps[GGML_OP_NONE], "GGML_OP_NONE is not true");
@ -207,13 +202,8 @@ inline bool is_tensor_size_valid(qnn::ggml_backend_qnn_device_context * ctx, con
const auto tensor_size = get_tensor_size_in_bytes(tensor, type);
if (ctx->max_tensor_size_in_bytes && tensor_size >= ctx->max_tensor_size_in_bytes) {
QNN_LOG_DEBUG("[%s]tensor(%s_%dx%dx%dx%d) size(%lld) exceeds the limit(%lld)\n",
qnn::get_backend_name(ctx->device),
ggml_get_name(tensor),
(int) tensor->ne[0],
(int) tensor->ne[1],
(int) tensor->ne[2],
(int) tensor->ne[3],
(long long int) tensor_size,
qnn::get_backend_name(ctx->device), ggml_get_name(tensor), (int) tensor->ne[0],
(int) tensor->ne[1], (int) tensor->ne[2], (int) tensor->ne[3], (long long int) tensor_size,
(long long int) ctx->max_tensor_size_in_bytes);
return false;
}
@ -230,18 +220,10 @@ bool is_tensor_type_valid(qnn::ggml_backend_qnn_device_context * ctx, const ggml
#ifndef NDEBUG
if (tensor->view_src) {
auto * src_tensor = tensor->view_src;
QNN_LOG_DEBUG("[%s]tensor(%s_%dx%dx%dx%d) is a view, src: %s_%dx%dx%dx%d\n",
qnn::get_backend_name(ctx->device),
ggml_get_name(tensor),
(int) tensor->ne[0],
(int) tensor->ne[1],
(int) tensor->ne[2],
(int) tensor->ne[3],
ggml_get_name(src_tensor),
(int) src_tensor->ne[0],
(int) src_tensor->ne[1],
(int) src_tensor->ne[2],
(int) src_tensor->ne[3]);
QNN_LOG_DEBUG("[%s]tensor(%s_%dx%dx%dx%d) is a view, src: %s_%dx%dx%dx%d\n", qnn::get_backend_name(ctx->device),
ggml_get_name(tensor), (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2],
(int) tensor->ne[3], ggml_get_name(src_tensor), (int) src_tensor->ne[0], (int) src_tensor->ne[1],
(int) src_tensor->ne[2], (int) src_tensor->ne[3]);
}
#endif
@ -250,15 +232,14 @@ bool is_tensor_type_valid(qnn::ggml_backend_qnn_device_context * ctx, const ggml
case GGML_TYPE_F16:
if (!is_type_bit_enabled(ctx->supported_types, tensor->type)) {
QNN_LOG_DEBUG("[%s]unsupported data type %s, supported_types: 0x%x\n",
qnn::get_backend_name(ctx->device),
ggml_type_name(tensor->type),
qnn::get_backend_name(ctx->device), ggml_type_name(tensor->type),
(unsigned int) ctx->supported_types);
return false;
}
break;
default:
QNN_LOG_DEBUG(
"[%s]unsupported data type %s\n", qnn::get_backend_name(ctx->device), ggml_type_name(tensor->type));
QNN_LOG_DEBUG("[%s]unsupported data type %s\n", qnn::get_backend_name(ctx->device),
ggml_type_name(tensor->type));
return false;
}
@ -301,20 +282,14 @@ bool ggml_qnn_have_same_tensor_types(qnn::ggml_backend_qnn_device_context * ctx,
if (src1) {
if (src0->type != op->type || src1->type != op->type) {
QNN_LOG_DEBUG("[%s][%s]type src0(%s), src1(%s) and op(%s) are not equal\n",
qnn::get_backend_name(ctx->device),
ggml_op_name(op->op),
ggml_type_name(src0->type),
ggml_type_name(src1->type),
ggml_type_name(op->type));
qnn::get_backend_name(ctx->device), ggml_op_name(op->op), ggml_type_name(src0->type),
ggml_type_name(src1->type), ggml_type_name(op->type));
return false;
}
} else {
if (src0->type != op->type) {
QNN_LOG_DEBUG("[%s][%s]type src0(%s) and op(%s) are not equal\n",
qnn::get_backend_name(ctx->device),
ggml_op_name(op->op),
ggml_type_name(src0->type),
ggml_type_name(op->type));
QNN_LOG_DEBUG("[%s][%s]type src0(%s) and op(%s) are not equal\n", qnn::get_backend_name(ctx->device),
ggml_op_name(op->op), ggml_type_name(src0->type), ggml_type_name(op->type));
return false;
}
}
@ -333,9 +308,7 @@ bool ggml_qnn_supports_matmul_op(qnn::ggml_backend_qnn_device_context * ctx, con
if (is_data_reinterpretation_op(src0->op) || is_data_reinterpretation_op(src1->op)) {
// TODO: remove the blocker here when we support permute op
QNN_LOG_DEBUG("[%s][MUL_MAT]data reorganization op is not supported, (%s, %s)\n",
qnn::get_backend_name(ctx->device),
ggml_op_name(src0->op),
ggml_op_name(src1->op));
qnn::get_backend_name(ctx->device), ggml_op_name(src0->op), ggml_op_name(src1->op));
return false;
}
@ -362,8 +335,7 @@ bool ggml_qnn_supports_matmul_op(qnn::ggml_backend_qnn_device_context * ctx, con
!is_type_bit_enabled(ctx->cpu_preprocess_types, src0->type)) {
// for such cases that src0 is quantized and op is float32, check if the quant type is enabled
QNN_LOG_DEBUG("[%s][MUL_MAT]quantized src0 type %s is not enabled\n",
qnn::get_backend_name(ctx->device),
ggml_type_name(src0->type));
qnn::get_backend_name(ctx->device), ggml_type_name(src0->type));
return false;
}
break;
@ -387,12 +359,8 @@ void print_tensor_info(qnn::ggml_backend_qnn_device_context * ctx, const ggml_te
std::string op_key;
qnn::get_qnn_op_desc(op, true, GGML_TYPE_COUNT, op_key);
QNN_LOG_DEBUG("[%s][%s]op was %s, support/unsupported: %d/%d\n",
qnn::get_backend_name(ctx->device),
op_key.c_str(),
supported,
ctx->supported_op_count.load(),
ctx->unsupported_op_count.load());
QNN_LOG_DEBUG("[%s][%s]op was %s, support/unsupported: %d/%d\n", qnn::get_backend_name(ctx->device), op_key.c_str(),
supported, ctx->supported_op_count.load(), ctx->unsupported_op_count.load());
}
#endif
@ -439,9 +407,7 @@ bool device_supports_op(qnn::ggml_backend_qnn_device_context * ctx, const ggml_t
// TODO: fix this when we have the support for mul with rms_norm
if (ctx->enable_cpu_dequantize && (src0->op == GGML_OP_RMS_NORM || src1->op == GGML_OP_RMS_NORM)) {
QNN_LOG_DEBUG("[%s][%s]skip unsupported mul with rms norm, (%s, %s)\n",
qnn::get_backend_name(ctx->device),
ggml_op_desc(op),
ggml_op_desc(src0),
qnn::get_backend_name(ctx->device), ggml_op_desc(op), ggml_op_desc(src0),
ggml_op_desc(src1));
is_op_supported = false;
break;
@ -453,8 +419,7 @@ bool device_supports_op(qnn::ggml_backend_qnn_device_context * ctx, const ggml_t
// TODO: move to op caps array?
if (!ggml_are_same_shape(src0, src1)) {
QNN_LOG_DEBUG("[%s][%s] src0 and src1 dimensions are not equal\n",
qnn::get_backend_name(ctx->device),
ggml_op_desc(op));
qnn::get_backend_name(ctx->device), ggml_op_desc(op));
is_op_supported = false;
}
break;
@ -482,8 +447,8 @@ bool device_supports_op(qnn::ggml_backend_qnn_device_context * ctx, const ggml_t
}
bool device_compute_graph(qnn::ggml_backend_qnn_device_context * ctx, ggml_cgraph * cgraph) {
QNN_LOG_DEBUG(
"[%s]compute graph start, nodes count: %d\n", qnn::get_backend_name(ctx->device), (int) cgraph->n_nodes);
QNN_LOG_DEBUG("[%s]compute graph start, nodes count: %d\n", qnn::get_backend_name(ctx->device),
(int) cgraph->n_nodes);
auto qnn_graph = get_qnn_graph_from_cache(ctx, cgraph);
bool success = qnn_graph && qnn_graph->execute(cgraph, ctx->convert_context);

View File

@ -24,24 +24,13 @@ void append_tensor_shape_and_type_impl(const ggml_tensor * tensor, ggml_type ove
len = snprintf(buffer, sizeof(buffer), "%ldx%ld%s", (long) tensor->ne[0], (long) tensor->ne[1], type_name);
break;
case 3:
len = snprintf(buffer,
sizeof(buffer),
"%ldx%ldx%ld%s",
(long) tensor->ne[0],
(long) tensor->ne[1],
(long) tensor->ne[2],
type_name);
len = snprintf(buffer, sizeof(buffer), "%ldx%ldx%ld%s", (long) tensor->ne[0], (long) tensor->ne[1],
(long) tensor->ne[2], type_name);
break;
case 4:
default:
len = snprintf(buffer,
sizeof(buffer),
"%ldx%ldx%ldx%ld%s",
(long) tensor->ne[0],
(long) tensor->ne[1],
(long) tensor->ne[2],
(long) tensor->ne[3],
type_name);
len = snprintf(buffer, sizeof(buffer), "%ldx%ldx%ldx%ld%s", (long) tensor->ne[0], (long) tensor->ne[1],
(long) tensor->ne[2], (long) tensor->ne[3], type_name);
break;
}
GGML_ASSERT(len > 0 && len < (int) sizeof(buffer));
@ -238,6 +227,7 @@ constexpr const qnn_op_caps_t kOpCaps[] = {
{}, // GGML_UNARY_OP_HARDSIGMOID
{}, // GGML_UNARY_OP_EXP
{}, // GGML_UNARY_OP_GELU_ERF
{}, // GGML_UNARY_OP_XIELU
};
static_assert(kOpCaps[GGML_OP_NONE].get_desc == nullptr, "GGML_OP_NONE should not have get_desc function");
@ -255,8 +245,8 @@ std::shared_ptr<qnn::ggml_qnn_op_config> mat_mul_op_constructor(const ggml_tenso
qnn::qnn_instance_ptr qnn_instance) {
if (qnn_instance->has_custom_op_package() && ggml_n_dims(op) == 2) {
QNN_LOG_DEBUG("create GgmlMulMat, name %s, use GgmlOpPackage\n", instance_name.c_str());
return std::make_shared<qnn::ggml_qnn_single_op_config>(
instance_name, "GgmlOpPackage", "GgmlMulMat", qnn_instance);
return std::make_shared<qnn::ggml_qnn_single_op_config>(instance_name, "GgmlOpPackage", "GgmlMulMat",
qnn_instance);
}
QNN_LOG_DEBUG("create QNN_OP_MAT_MUL, name %s\n", instance_name.c_str());
@ -270,8 +260,8 @@ std::shared_ptr<qnn::ggml_qnn_op_config> generic_op_constructor(const ggml_tenso
GGML_UNUSED(op);
static_assert(_op < std::size(kOpCaps));
static_assert(kOpCaps[_op].qnn_op_name != nullptr);
return std::make_shared<qnn::ggml_qnn_single_op_config>(
instance_name, QNN_OP_PACKAGE_NAME_QTI_AISW, kOpCaps[_op].qnn_op_name, qnn_instance);
return std::make_shared<qnn::ggml_qnn_single_op_config>(instance_name, QNN_OP_PACKAGE_NAME_QTI_AISW,
kOpCaps[_op].qnn_op_name, qnn_instance);
}
void add_type_parameters(std::shared_ptr<qnn::ggml_qnn_op_config_base> op, const char * name, float value) {
@ -293,8 +283,8 @@ std::shared_ptr<qnn::ggml_qnn_op_config> op_constructor_with_type_param(const gg
_ggml_op_param_type op_param;
memcpy(&op_param, op->op_params, sizeof(op_param));
auto qnn_op = std::make_shared<_qnn_op_type_name>(
instance_name, QNN_OP_PACKAGE_NAME_QTI_AISW, op_caps.qnn_op_name, qnn_instance);
auto qnn_op = std::make_shared<_qnn_op_type_name>(instance_name, QNN_OP_PACKAGE_NAME_QTI_AISW, op_caps.qnn_op_name,
qnn_instance);
if (op_caps.qnn_param_name) {
add_type_parameters(qnn_op, op_caps.qnn_param_name, op_param);
}
@ -416,6 +406,7 @@ constexpr const op_constructor_t kOpConstructors[] = {
nullptr, // GGML_UNARY_OP_HARDSIGMOID
nullptr, // GGML_UNARY_OP_EXP
nullptr, // GGML_UNARY_OP_GELU_ERF
nullptr, // GGML_UNARY_OP_XIELU
};
static_assert(kOpConstructors[GGML_OP_NONE] == nullptr, "GGML_OP_NONE does not match the nullptr function");