diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml index 2ad3811594..cab3ba9e68 100644 --- a/.github/workflows/release.yml +++ b/.github/workflows/release.yml @@ -134,6 +134,8 @@ jobs: include: - build: 'x64' os: ubuntu-22.04 + - build: 's390x-z15' # z15 because our CI runners are on z15 + os: ubuntu-22.04-s390x # GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm # - build: 'arm64' # os: ubuntu-22.04-arm diff --git a/.github/workflows/update-ops-docs.yml b/.github/workflows/update-ops-docs.yml index c0218fa742..d5e264b34f 100644 --- a/.github/workflows/update-ops-docs.yml +++ b/.github/workflows/update-ops-docs.yml @@ -3,10 +3,12 @@ name: Update Operations Documentation on: push: paths: + - 'docs/ops.md' - 'docs/ops/**' - 'scripts/create_ops_docs.py' pull_request: paths: + - 'docs/ops.md' - 'docs/ops/**' - 'scripts/create_ops_docs.py' diff --git a/CODEOWNERS b/CODEOWNERS index 3b696bf94a..f833fb7cf4 100644 --- a/CODEOWNERS +++ b/CODEOWNERS @@ -55,7 +55,7 @@ /ggml/src/ggml-cuda/common.cuh @slaren /ggml/src/ggml-cuda/fattn* @JohannesGaessler /ggml/src/ggml-cuda/ggml-cuda.cu @slaren -/ggml/src/ggml-cuda/mmf.* @JohannesGaessler +/ggml/src/ggml-cuda/mmf.* @JohannesGaessler @am17an /ggml/src/ggml-cuda/mmq.* @JohannesGaessler /ggml/src/ggml-cuda/mmvf.* @JohannesGaessler /ggml/src/ggml-cuda/mmvq.* @JohannesGaessler diff --git a/README.md b/README.md index 1c0742370d..e373611051 100644 --- a/README.md +++ b/README.md @@ -138,6 +138,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo - [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32) - [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38) - [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7) +- [x] [BailingMoeV2 (Ring/Ling 2.0) models](https://huggingface.co/collections/inclusionAI/ling-v2-68bf1dd2fc34c306c1fa6f86) #### Multimodal @@ -187,6 +188,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo - Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift) - Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama) - Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi) +- Go (no CGo needed): [hybridgroup/yzma](https://github.com/hybridgroup/yzma) diff --git a/ci/run.sh b/ci/run.sh index bf0d53f20a..1a4806976a 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -75,7 +75,7 @@ if [ ! -z ${GG_BUILD_ROCM} ]; then exit 1 fi - CMAKE_EXTRA="${CMAKE_EXTRA} -DAMDGPU_TARGETS=${GG_BUILD_AMDGPU_TARGETS}" + CMAKE_EXTRA="${CMAKE_EXTRA} -DGPU_TARGETS=${GG_BUILD_AMDGPU_TARGETS}" fi if [ ! -z ${GG_BUILD_SYCL} ]; then diff --git a/common/json-schema-to-grammar.cpp b/common/json-schema-to-grammar.cpp index db1f0b23dd..dd9b51a9e5 100644 --- a/common/json-schema-to-grammar.cpp +++ b/common/json-schema-to-grammar.cpp @@ -41,9 +41,9 @@ static std::string build_repetition(const std::string & item_rule, int min_items return result; } -static void _build_min_max_int(int min_value, int max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) { - auto has_min = min_value != std::numeric_limits::min(); - auto has_max = max_value != std::numeric_limits::max(); +static void _build_min_max_int(int64_t min_value, int64_t max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) { + auto has_min = min_value != std::numeric_limits::min(); + auto has_max = max_value != std::numeric_limits::max(); auto digit_range = [&](char from, char to) { out << "["; @@ -159,7 +159,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream & if (has_min) { if (min_value < 0) { out << "\"-\" ("; - _build_min_max_int(std::numeric_limits::min(), -min_value, out, decimals_left, /* top_level= */ false); + _build_min_max_int(std::numeric_limits::min(), -min_value, out, decimals_left, /* top_level= */ false); out << ") | [0] | [1-9] "; more_digits(0, decimals_left - 1); } else if (min_value == 0) { @@ -194,7 +194,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream & } digit_range(c, c); out << " ("; - _build_min_max_int(std::stoi(min_s.substr(1)), std::numeric_limits::max(), out, less_decimals, /* top_level= */ false); + _build_min_max_int(std::stoll(min_s.substr(1)), std::numeric_limits::max(), out, less_decimals, /* top_level= */ false); out << ")"; if (c < '9') { out << " | "; @@ -216,7 +216,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream & _build_min_max_int(0, max_value, out, decimals_left, /* top_level= */ true); } else { out << "\"-\" ("; - _build_min_max_int(-max_value, std::numeric_limits::max(), out, decimals_left, /* top_level= */ false); + _build_min_max_int(-max_value, std::numeric_limits::max(), out, decimals_left, /* top_level= */ false); out << ")"; } return; @@ -925,17 +925,17 @@ public: int max_len = schema.contains("maxLength") ? schema["maxLength"].get() : std::numeric_limits::max(); return _add_rule(rule_name, "\"\\\"\" " + build_repetition(char_rule, min_len, max_len) + " \"\\\"\" space"); } else if (schema_type == "integer" && (schema.contains("minimum") || schema.contains("exclusiveMinimum") || schema.contains("maximum") || schema.contains("exclusiveMaximum"))) { - int min_value = std::numeric_limits::min(); - int max_value = std::numeric_limits::max(); + int64_t min_value = std::numeric_limits::min(); + int64_t max_value = std::numeric_limits::max(); if (schema.contains("minimum")) { - min_value = schema["minimum"].get(); + min_value = schema["minimum"].get(); } else if (schema.contains("exclusiveMinimum")) { - min_value = schema["exclusiveMinimum"].get() + 1; + min_value = schema["exclusiveMinimum"].get() + 1; } if (schema.contains("maximum")) { - max_value = schema["maximum"].get(); + max_value = schema["maximum"].get(); } else if (schema.contains("exclusiveMaximum")) { - max_value = schema["exclusiveMaximum"].get() - 1; + max_value = schema["exclusiveMaximum"].get() - 1; } std::stringstream out; out << "("; diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 8c5132193e..ed99dc8477 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -892,8 +892,8 @@ class TextModel(ModelBase): # ref: https://huggingface.co/JetBrains/Mellum-4b-base res = "mellum" if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206": - # ref: https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base - res = "llada-moe" + # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0 + res = "bailingmoe2" if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e": # ref: https://huggingface.co/ibm-granite/granite-docling-258M res = "granite-docling" @@ -8055,6 +8055,103 @@ class BailingMoeModel(TextModel): raise ValueError(f"Unprocessed experts: {experts}") +@ModelBase.register("BailingMoeV2ForCausalLM") +class BailingMoeV2Model(TextModel): + model_arch = gguf.MODEL_ARCH.BAILINGMOE2 + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0): + self.block_count = self.hparams["num_hidden_layers"] + nextn_layers + self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) + + def set_vocab(self): + self._set_vocab_gpt2() + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + if (rope_dim := hparams.get("head_dim")) is None: + rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] + + self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))) + rope_scaling = self.hparams.get("rope_scaling") or {} + if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) + self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) + self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) + else: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) + self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"]) + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"]) + self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"])) + self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"]) + self.gguf_writer.add_expert_count(hparams["num_experts"]) + self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"]) + self.gguf_writer.add_expert_group_count(hparams["n_group"]) + self.gguf_writer.add_expert_group_used_count(hparams["topk_group"]) + self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"]) + + if hparams["score_function"] == "sigmoid": + self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID) + elif hparams["score_function"] == "softmax": + self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX) + else: + raise ValueError(f"Unsupported score_function value: {hparams['score_function']}") + + if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None: + self.gguf_writer.add_nextn_predict_layers(nextn_layers) + + _experts: list[dict[str, Tensor]] | None = None + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + if "mlp.experts" in name: + n_experts = self.hparams["num_experts"] + assert bid is not None + + tensors: list[tuple[str, Tensor]] = [] + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + # merge the experts into a single 3d tensor + for w_name in ["down_proj", "gate_proj", "up_proj"]: + datas: list[Tensor] = [] + + for xid in range(n_experts): + ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" + datas.append(self._experts[bid][ename]) + del self._experts[bid][ename] + + data_torch = torch.stack(datas, dim=0) + + merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" + + new_name = self.map_tensor_name(merged_name) + + tensors.append((new_name, data_torch)) + + return tensors + + if name.endswith(".expert_bias"): + name = name.replace(".expert_bias", ".expert_bias.bias") + + return [(self.map_tensor_name(name), data_torch)] + + def prepare_tensors(self): + super().prepare_tensors() + + if self._experts is not None: + # flatten `list[dict[str, Tensor]]` into `list[str]` + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM") class GroveMoeModel(TextModel): model_arch = gguf.MODEL_ARCH.GROVEMOE diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index 28002f766e..0ebc1b160f 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -139,7 +139,7 @@ models = [ {"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"}, {"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", }, {"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", }, - {"name": "llada-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base", }, + {"name": "bailingmoe2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-mini-base-2.0", }, {"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", }, ] diff --git a/docs/ops.md b/docs/ops.md index 5df72d2501..226cd935d6 100644 --- a/docs/ops.md +++ b/docs/ops.md @@ -22,7 +22,7 @@ Legend: | ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | -| CEIL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | +| CEIL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | | CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | | CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ | | CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ | @@ -42,7 +42,7 @@ Legend: | ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | | EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | | FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | -| FLOOR | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | +| FLOOR | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | | GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | | GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | | GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | @@ -84,7 +84,7 @@ Legend: | ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | | ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | -| ROUND | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | +| ROUND | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | | RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | @@ -100,8 +100,8 @@ Legend: | SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | | SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | | SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ | ❌ | -| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | -| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | +| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | +| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | | STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | | SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | | SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | @@ -111,6 +111,6 @@ Legend: | TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ | | TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | TOPK_MOE | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | -| TRUNC | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | +| TRUNC | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | | UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ | | XIELU | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | diff --git a/docs/ops/SYCL.csv b/docs/ops/SYCL.csv index d7efa43cdf..bc6319f51f 100644 --- a/docs/ops/SYCL.csv +++ b/docs/ops/SYCL.csv @@ -31,6 +31,14 @@ "SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","XIELU","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL" +"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","TRUNC","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","ABS","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","SGN","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" @@ -95,6 +103,14 @@ "SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","XIELU","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL" +"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","TRUNC","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","ABS","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","SGN","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" diff --git a/docs/ops/Vulkan.csv b/docs/ops/Vulkan.csv index ea25257728..298c2a6ccd 100644 --- a/docs/ops/Vulkan.csv +++ b/docs/ops/Vulkan.csv @@ -3263,27 +3263,27 @@ "Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=0","support","1","yes","Vulkan" "Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=1","support","1","yes","Vulkan" "Vulkan0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" -"Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" -"Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan" +"Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan" +"Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=1,n_seqs=1","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=1","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan" diff --git a/ggml/include/ggml-rpc.h b/ggml/include/ggml-rpc.h index 72eff00273..e6dca3f62b 100644 --- a/ggml/include/ggml-rpc.h +++ b/ggml/include/ggml-rpc.h @@ -21,8 +21,7 @@ GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const c GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total); GGML_BACKEND_API void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir, - size_t n_threads, size_t n_devices, - ggml_backend_dev_t * devices, size_t * free_mem, size_t * total_mem); + size_t n_threads, size_t n_devices, ggml_backend_dev_t * devices); GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void); GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint); diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index 892c23318a..3356ef550d 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -307,6 +307,10 @@ function(ggml_add_cpu_backend_variant tag_name) foreach (feat ${ARGN}) set(GGML_INTERNAL_${feat} ON) endforeach() + elseif (GGML_SYSTEM_ARCH STREQUAL "s390x") + foreach (feat ${ARGN}) + set(GGML_INTERNAL_${feat} ON) + endforeach() endif() ggml_add_cpu_backend_variant_impl(${tag_name}) @@ -371,6 +375,14 @@ if (GGML_CPU_ALL_VARIANTS) else() message(FATAL_ERROR "Unsupported PowerPC target OS: ${CMAKE_SYSTEM_NAME}") endif() + elseif (GGML_SYSTEM_ARCH STREQUAL "s390x") + if (CMAKE_SYSTEM_NAME MATCHES "Linux") + ggml_add_cpu_backend_variant(s390x_z15 Z15 VXE) + # ggml_add_cpu_backend_variant(s390x_z16 Z16 VXE) + # ggml_add_cpu_backend_variant(s390x_z17 Z17 VXE) + else() + message(FATAL_ERROR "Unsupported s390x target OS: ${CMAKE_SYSTEM_NAME}") + endif() else() message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}") endif() diff --git a/ggml/src/ggml-alloc.c b/ggml/src/ggml-alloc.c index 929bc44881..c830c09655 100644 --- a/ggml/src/ggml-alloc.c +++ b/ggml/src/ggml-alloc.c @@ -598,6 +598,26 @@ static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated; } +// free the extra space at the end if the new tensor is smaller +static void ggml_gallocr_free_extra_space(ggml_gallocr_t galloc, struct ggml_tensor * node, struct ggml_tensor * parent) { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); + + size_t parent_size = ggml_backend_buft_get_alloc_size(galloc->bufts[p_hn->buffer_id], parent); + size_t node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node); + + GGML_ASSERT(parent_size >= node_size); + + if (parent_size > node_size) { + struct ggml_dyn_tallocr * p_alloc = galloc->buf_tallocs[p_hn->buffer_id]; + struct buffer_address p_addr = p_hn->addr; + p_addr.offset += node_size; + size_t extra_size = parent_size - node_size; + AT_PRINTF("freeing extra %zu bytes from parent %s for %s\n", extra_size, parent->name, node->name); + ggml_dyn_tallocr_free_tensor(p_alloc, p_addr, extra_size, parent); + } +} + static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { GGML_ASSERT(buffer_id >= 0); struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); @@ -643,6 +663,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor hn->addr = p_hn->addr; p_hn->allocated = false; // avoid freeing the parent view_src_hn->allocated = false; + ggml_gallocr_free_extra_space(galloc, node, view_src); return; } } else { @@ -650,6 +671,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor hn->buffer_id = p_hn->buffer_id; hn->addr = p_hn->addr; p_hn->allocated = false; // avoid freeing the parent + ggml_gallocr_free_extra_space(galloc, node, parent); return; } } diff --git a/ggml/src/ggml-cpu/CMakeLists.txt b/ggml/src/ggml-cpu/CMakeLists.txt index 42041b717a..34323afa07 100644 --- a/ggml/src/ggml-cpu/CMakeLists.txt +++ b/ggml/src/ggml-cpu/CMakeLists.txt @@ -466,29 +466,45 @@ function(ggml_add_cpu_backend_variant_impl tag_name) list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d) elseif (GGML_SYSTEM_ARCH STREQUAL "s390x") message(STATUS "s390x detected") - list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c) - file(READ "/proc/cpuinfo" CPUINFO_CONTENTS) - string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS}) + list(APPEND GGML_CPU_SOURCES + ggml-cpu/arch/s390/quants.c) - # TODO: Separation to determine activation of VX/VXE/VXE2 - if (${S390X_M} MATCHES "8561|8562") - message(STATUS "z15 target") - list(APPEND ARCH_FLAGS -march=z15) - elseif (${S390X_M} MATCHES "3931") - message(STATUS "z16 target") - list(APPEND ARCH_FLAGS -march=z16) - elseif (${S390X_M} MATCHES "9175|9176") - # NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version. - # binutils must also be updated to the latest for the -march=z17 flag to work. Otherwise, use -march=arch15. - message(STATUS "z17 target") - list(APPEND ARCH_FLAGS -march=arch15) - else() - message(STATUS "Unknown target") - message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.") - list(APPEND ARCH_FLAGS -march=native -mtune=native) + # for native compilation + if (GGML_NATIVE) + # check machine level to determine target + file(READ "/proc/cpuinfo" CPUINFO_CONTENTS) + string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS}) + + # TODO: Separation to determine activation of VX/VXE/VXE2 + if (${S390X_M} MATCHES "8561|8562") + message(STATUS "z15 target") + list(APPEND ARCH_FLAGS -march=z15) + elseif (${S390X_M} MATCHES "3931") + message(STATUS "z16 target") + list(APPEND ARCH_FLAGS -march=z16) + elseif (${S390X_M} MATCHES "9175|9176") + # NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version. + # binutils must also be updated to the latest for the -march=z17 flag to work. Otherwise, use -march=arch15. + message(STATUS "z17 target") + list(APPEND ARCH_FLAGS -march=arch15) + else() + message(STATUS "Unknown target") + message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.") + list(APPEND ARCH_FLAGS -march=native -mtune=native) + endif() + # for cross-compilation + elseif(GGML_CPU_ALL_VARIANTS) + # range through IBM z15 to z17 + # NOTE: update when a new hardware level is released + foreach (ZHW RANGE 15 17) + if(DEFINED GGML_INTERNAL_Z${ZHW}) + message(STATUS "z${ZHW} cross-compile target") + list(APPEND ARCH_FLAGS -march=z${ZHW}) + endif() + endforeach() endif() - if (GGML_VXE) + if (GGML_VXE OR GGML_INTERNAL_VXE) message(STATUS "VX/VXE/VXE2 enabled") list(APPEND ARCH_FLAGS -mvx -mzvector) list(APPEND ARCH_DEFINITIONS GGML_VXE) diff --git a/ggml/src/ggml-cpu/spacemit/ime.cpp b/ggml/src/ggml-cpu/spacemit/ime.cpp index 54d3dece0e..91fe1925ea 100644 --- a/ggml/src/ggml-cpu/spacemit/ime.cpp +++ b/ggml/src/ggml-cpu/spacemit/ime.cpp @@ -485,8 +485,9 @@ template class tensor_ int32_t start = ith * task_per_thread; int32_t end = std::min((ith + 1) * task_per_thread, task_count); for (int32_t compute_idx = start; compute_idx < end; compute_idx++) { - int32_t gemm_idx = compute_idx / block_size_m; - int32_t m_idx = compute_idx % block_size_m * block_size_m; + int32_t gemm_idx = compute_idx / per_gemm_block_count_m; + int32_t block_idx_in_gemm = compute_idx % per_gemm_block_count_m; + int32_t m_idx = block_idx_in_gemm * block_size_m; const qnbitgemm_spacemit_ime_args & data = qnbitgemm_args[gemm_idx]; int32_t rows_tobe_handled = (gemm_m - m_idx) > block_size_m ? block_size_m : (gemm_m - m_idx); diff --git a/ggml/src/ggml-cuda/topk-moe.cu b/ggml/src/ggml-cuda/topk-moe.cu index afe4aee240..c588da2bb9 100644 --- a/ggml/src/ggml-cuda/topk-moe.cu +++ b/ggml/src/ggml-cuda/topk-moe.cu @@ -73,8 +73,7 @@ __launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float * float wt_sum = 0.f; - extern __shared__ float data_topk_shared[]; - float * wt_shared_ptr = data_topk_shared + threadIdx.y * n_expert_used; + float output_weights[experts_per_thread]; for (int k = 0; k < n_expert_used; k++) { float max_val = wt[0]; @@ -99,11 +98,14 @@ __launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float * } } + if ((k & (WARP_SIZE - 1)) == threadIdx.x) { + output_weights[k / WARP_SIZE] = max_val; + } + if ((max_expert & (WARP_SIZE - 1)) == threadIdx.x) { wt[max_expert / WARP_SIZE] = -INFINITY; - wt_shared_ptr[k] = max_val; - ids[k] = max_expert; + ids[k] = max_expert; if constexpr (with_norm) { wt_sum += max_val; } @@ -115,12 +117,16 @@ __launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float * const float inv_sum = 1.0f / wt_sum; for (int i = threadIdx.x; i < n_expert_used; i += WARP_SIZE) { - wt_shared_ptr[i] = wt_shared_ptr[i] * inv_sum; + output_weights[i] *= inv_sum; } } - for (int i = threadIdx.x; i < n_expert_used; i += WARP_SIZE) { - weights[i] = wt_shared_ptr[i]; +#pragma unroll + for (int i = 0; i < experts_per_thread; i++) { + const int idx = i * WARP_SIZE + threadIdx.x; + if (idx < n_expert_used) { + weights[idx] = output_weights[i]; + } } } @@ -137,48 +143,46 @@ static void launch_topk_moe_cuda(ggml_backend_cuda_context & ctx, dim3 block_dims(WARP_SIZE, rows_per_block, 1); cudaStream_t stream = ctx.stream(); - const int nbytes_shared = n_expert_used * rows_per_block * sizeof(float); - switch (n_expert) { case 1: topk_moe_cuda<1, with_norm> - <<>>(logits, weights, ids, n_rows, n_expert_used); + <<>>(logits, weights, ids, n_rows, n_expert_used); break; case 2: topk_moe_cuda<2, with_norm> - <<>>(logits, weights, ids, n_rows, n_expert_used); + <<>>(logits, weights, ids, n_rows, n_expert_used); break; case 4: topk_moe_cuda<4, with_norm> - <<>>(logits, weights, ids, n_rows, n_expert_used); + <<>>(logits, weights, ids, n_rows, n_expert_used); break; case 8: topk_moe_cuda<8, with_norm> - <<>>(logits, weights, ids, n_rows, n_expert_used); + <<>>(logits, weights, ids, n_rows, n_expert_used); break; case 16: topk_moe_cuda<16, with_norm> - <<>>(logits, weights, ids, n_rows, n_expert_used); + <<>>(logits, weights, ids, n_rows, n_expert_used); break; case 32: topk_moe_cuda<32, with_norm> - <<>>(logits, weights, ids, n_rows, n_expert_used); + <<>>(logits, weights, ids, n_rows, n_expert_used); break; case 64: topk_moe_cuda<64, with_norm> - <<>>(logits, weights, ids, n_rows, n_expert_used); + <<>>(logits, weights, ids, n_rows, n_expert_used); break; case 128: topk_moe_cuda<128, with_norm> - <<>>(logits, weights, ids, n_rows, n_expert_used); + <<>>(logits, weights, ids, n_rows, n_expert_used); break; case 256: topk_moe_cuda<256, with_norm> - <<>>(logits, weights, ids, n_rows, n_expert_used); + <<>>(logits, weights, ids, n_rows, n_expert_used); break; case 512: topk_moe_cuda<512, with_norm> - <<>>(logits, weights, ids, n_rows, n_expert_used); + <<>>(logits, weights, ids, n_rows, n_expert_used); break; default: GGML_ASSERT(false && "fatal error"); diff --git a/ggml/src/ggml-hip/CMakeLists.txt b/ggml/src/ggml-hip/CMakeLists.txt index 934aefdcb4..6b499320e7 100644 --- a/ggml/src/ggml-hip/CMakeLists.txt +++ b/ggml/src/ggml-hip/CMakeLists.txt @@ -28,8 +28,10 @@ if (CXX_IS_HIPCC) " Prefer setting the HIP compiler directly. See README for details.") endif() else() - # Forward AMDGPU_TARGETS to CMAKE_HIP_ARCHITECTURES. - if (AMDGPU_TARGETS AND NOT CMAKE_HIP_ARCHITECTURES) + # Forward (AMD)GPU_TARGETS to CMAKE_HIP_ARCHITECTURES. + if(GPU_TARGETS AND NOT CMAKE_HIP_ARCHITECTURES) + set(CMAKE_HIP_ARCHITECTURES ${GPU_TARGETS}) + elseif(AMDGPU_TARGETS AND NOT CMAKE_HIP_ARCHITECTURES) set(CMAKE_HIP_ARCHITECTURES ${AMDGPU_TARGETS}) endif() cmake_minimum_required(VERSION 3.21) diff --git a/ggml/src/ggml-impl.h b/ggml/src/ggml-impl.h index d0fb3bccad..18f095b896 100644 --- a/ggml/src/ggml-impl.h +++ b/ggml/src/ggml-impl.h @@ -565,14 +565,23 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) { #define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x) #define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x) +static inline int32_t ggml_node_get_use_count(const struct ggml_cgraph * cgraph, int node_idx) { + const struct ggml_tensor * node = cgraph->nodes[node_idx]; + + size_t hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node); + if (!ggml_bitset_get(cgraph->visited_hash_set.used, hash_pos)) { + return 0; + } + return cgraph->use_counts[hash_pos]; +} + // return true if the node's results are only used by N other nodes // and can be fused into their calculations. static inline bool ggml_node_has_n_uses(const struct ggml_cgraph * cgraph, int node_idx, int32_t n_uses) { const struct ggml_tensor * node = cgraph->nodes[node_idx]; // check the use count against how many we're replacing - size_t hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node); - if (!ggml_bitset_get(cgraph->visited_hash_set.used, hash_pos) || cgraph->use_counts[hash_pos] != n_uses) { + if (ggml_node_get_use_count(cgraph, node_idx) != n_uses) { return false; } diff --git a/ggml/src/ggml-metal/ggml-metal-device.cpp b/ggml/src/ggml-metal/ggml-metal-device.cpp index 866cd2da58..7581163422 100644 --- a/ggml/src/ggml-metal/ggml-metal-device.cpp +++ b/ggml/src/ggml-metal/ggml-metal-device.cpp @@ -1406,6 +1406,31 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_1d(ggml_met return res; } +ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_2d(ggml_metal_library_t lib, const ggml_tensor * op) { + assert(op->op == GGML_OP_CONV_TRANSPOSE_2D); + + GGML_ASSERT(ggml_is_contiguous(op->src[0])); + GGML_ASSERT(ggml_is_contiguous(op->src[1])); + GGML_ASSERT(op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32); + GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32); + GGML_ASSERT(op->type == GGML_TYPE_F32); + + char base[256]; + char name[256]; + + snprintf(base, 256, "kernel_conv_transpose_2d_%s_%s", ggml_type_name(op->src[0]->type), ggml_type_name(op->src[1]->type)); + snprintf(name, 256, "%s", base); + + ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name); + if (res) { + return res; + } + + res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr); + + return res; +} + ggml_metal_pipeline_t ggml_metal_library_get_pipeline_upscale(ggml_metal_library_t lib, const ggml_tensor * op) { assert(op->op == GGML_OP_UPSCALE); diff --git a/ggml/src/ggml-metal/ggml-metal-device.h b/ggml/src/ggml-metal/ggml-metal-device.h index 28ae2e1765..4d58297481 100644 --- a/ggml/src/ggml-metal/ggml-metal-device.h +++ b/ggml/src/ggml-metal/ggml-metal-device.h @@ -130,6 +130,7 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_norm (ggml_me ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rope (ggml_metal_library_t lib, const struct ggml_tensor * op); ggml_metal_pipeline_t ggml_metal_library_get_pipeline_im2col (ggml_metal_library_t lib, const struct ggml_tensor * op); ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_1d (ggml_metal_library_t lib, const struct ggml_tensor * op); +ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_2d (ggml_metal_library_t lib, const struct ggml_tensor * op); ggml_metal_pipeline_t ggml_metal_library_get_pipeline_upscale (ggml_metal_library_t lib, const struct ggml_tensor * op); ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad (ggml_metal_library_t lib, const struct ggml_tensor * op); ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad_reflect_1d (ggml_metal_library_t lib, const struct ggml_tensor * op); diff --git a/ggml/src/ggml-metal/ggml-metal-device.m b/ggml/src/ggml-metal/ggml-metal-device.m index c3c83abe4e..360fbe19f0 100644 --- a/ggml/src/ggml-metal/ggml-metal-device.m +++ b/ggml/src/ggml-metal/ggml-metal-device.m @@ -653,6 +653,11 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te case GGML_OP_SCALE: case GGML_OP_CONV_TRANSPOSE_1D: return true; + case GGML_OP_CONV_TRANSPOSE_2D: + return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]) && + (op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32) && + op->src[1]->type == GGML_TYPE_F32 && + op->type == GGML_TYPE_F32; case GGML_OP_CLAMP: return op->src[0]->type == GGML_TYPE_F32; case GGML_OP_SQR: diff --git a/ggml/src/ggml-metal/ggml-metal-impl.h b/ggml/src/ggml-metal/ggml-metal-impl.h index fa2d82cefb..96f43d260a 100644 --- a/ggml/src/ggml-metal/ggml-metal-impl.h +++ b/ggml/src/ggml-metal/ggml-metal-impl.h @@ -514,6 +514,19 @@ typedef struct { uint64_t nb1; } ggml_metal_kargs_conv_transpose_1d; +typedef struct { + int32_t IC; + int32_t IH; + int32_t IW; + int32_t KH; + int32_t KW; + int32_t OC; + int32_t s0; + uint64_t nb0; + uint64_t nb1; + uint64_t nb2; +} ggml_metal_kargs_conv_transpose_2d; + typedef struct { uint64_t ofs0; uint64_t ofs1; diff --git a/ggml/src/ggml-metal/ggml-metal-ops.cpp b/ggml/src/ggml-metal/ggml-metal-ops.cpp index 4f9f6bda00..7a85edbdcd 100644 --- a/ggml/src/ggml-metal/ggml-metal-ops.cpp +++ b/ggml/src/ggml-metal/ggml-metal-ops.cpp @@ -368,6 +368,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) { { n_fuse = ggml_metal_op_conv_transpose_1d(ctx, idx); } break; + case GGML_OP_CONV_TRANSPOSE_2D: + { + n_fuse = ggml_metal_op_conv_transpose_2d(ctx, idx); + } break; case GGML_OP_UPSCALE: { n_fuse = ggml_metal_op_upscale(ctx, idx); @@ -3118,6 +3122,62 @@ int ggml_metal_op_conv_transpose_1d(ggml_metal_op_t ctx, int idx) { return 1; } +int ggml_metal_op_conv_transpose_2d(ggml_metal_op_t ctx, int idx) { + ggml_tensor * op = ctx->node(idx); + + ggml_metal_library_t lib = ctx->lib; + ggml_metal_encoder_t enc = ctx->enc; + + GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne); + GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb); + GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne); + GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb); + GGML_TENSOR_LOCALS( int32_t, ne, op, ne); + GGML_TENSOR_LOCALS(uint32_t, nb, op, nb); + + const int32_t s0 = ((const int32_t *)(op->op_params))[0]; + + const int32_t IC = op->src[1]->ne[2]; + const int32_t IH = op->src[1]->ne[1]; + const int32_t IW = op->src[1]->ne[0]; + + const int32_t KH = op->src[0]->ne[1]; + const int32_t KW = op->src[0]->ne[0]; + + const int32_t OW = op->ne[0]; + const int32_t OH = op->ne[1]; + const int32_t OC = op->ne[2]; + + ggml_metal_kargs_conv_transpose_2d args = { + /*.IC =*/ IC, + /*.IH =*/ IH, + /*.IW =*/ IW, + /*.KH =*/ KH, + /*.KW =*/ KW, + /*.OC =*/ OC, + /*.s0 =*/ s0, + /*.nb0 =*/ nb0, + /*.nb1 =*/ nb1, + /*.nb2 =*/ nb2, + }; + + ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_conv_transpose_2d(lib, op); + + ggml_metal_encoder_set_pipeline(enc, pipeline); + ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0); + ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1); + ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2); + ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3); + + // Metal requires buffer size to be multiple of 16 bytes + const size_t smem = GGML_PAD(KW * KH * sizeof(float), 16); + ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0); + + ggml_metal_encoder_dispatch_threadgroups(enc, OW, OH, OC, KW, KH, 1); + + return 1; +} + int ggml_metal_op_upscale(ggml_metal_op_t ctx, int idx) { ggml_tensor * op = ctx->node(idx); diff --git a/ggml/src/ggml-metal/ggml-metal-ops.h b/ggml/src/ggml-metal/ggml-metal-ops.h index f352738698..0d9cb8af7c 100644 --- a/ggml/src/ggml-metal/ggml-metal-ops.h +++ b/ggml/src/ggml-metal/ggml-metal-ops.h @@ -71,6 +71,7 @@ int ggml_metal_op_norm (ggml_metal_op_t ctx, int idx); int ggml_metal_op_rope (ggml_metal_op_t ctx, int idx); int ggml_metal_op_im2col (ggml_metal_op_t ctx, int idx); int ggml_metal_op_conv_transpose_1d (ggml_metal_op_t ctx, int idx); +int ggml_metal_op_conv_transpose_2d (ggml_metal_op_t ctx, int idx); int ggml_metal_op_upscale (ggml_metal_op_t ctx, int idx); int ggml_metal_op_pad (ggml_metal_op_t ctx, int idx); int ggml_metal_op_pad_reflect_1d (ggml_metal_op_t ctx, int idx); diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal index 496610b154..2c2f014151 100644 --- a/ggml/src/ggml-metal/ggml-metal.metal +++ b/ggml/src/ggml-metal/ggml-metal.metal @@ -4179,6 +4179,97 @@ kernel void kernel_conv_transpose_1d( uint3 tgpig[[threadgroup_position_in_grid]], uint3 tgpg[[threadgroups_per_grid]]); + +typedef void (conv_transpose_2d_t)( + constant ggml_metal_kargs_conv_transpose_2d & args, + device const float * src0, + device const float * src1, + device char * dst, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tgpg[[threadgroups_per_grid]]); + +template +kernel void kernel_conv_transpose_2d( + constant ggml_metal_kargs_conv_transpose_2d & args, + device const T * src0, + device const float * src1, + device char * dst, + threadgroup float * shared_sum [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + const int64_t out_x = tgpig[0]; + const int64_t out_y = tgpig[1]; + const int64_t out_c = tgpig[2]; + + const int64_t kw = tpitg[0]; + const int64_t kh = tpitg[1]; + + float v = 0.0f; + + for (int64_t in_c = 0; in_c < args.IC; in_c++) { + int64_t in_y = out_y - kh; + + if (in_y < 0 || in_y % args.s0) continue; + + in_y /= args.s0; + + if (in_y >= args.IH) continue; + + int64_t in_x = out_x - kw; + + if (in_x < 0 || in_x % args.s0) continue; + + in_x /= args.s0; + + if (in_x >= args.IW) continue; + + const int64_t input_idx = (args.IW * args.IH) * in_c + (args.IW) * in_y + in_x; + const int64_t kernel_idx = (args.KH * args.KW * args.OC) * in_c + (args.KH * args.KW) * out_c + (args.KW) * kh + kw; + + v += (float)src0[kernel_idx] * src1[input_idx]; + } + + const uint tid = tpitg.y * ntg.x + tpitg.x; + shared_sum[tid] = v; + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tid == 0) { + float total = 0.0f; + const uint num_threads = ntg.x * ntg.y; + for (uint i = 0; i < num_threads; i++) { + total += shared_sum[i]; + } + + device float * dst_ptr = (device float *) (dst + out_x*args.nb0 + out_y * args.nb1 + out_c*args.nb2); + dst_ptr[0] = total; + } +} + +template [[host_name("kernel_conv_transpose_2d_f32_f32")]] +kernel void kernel_conv_transpose_2d( + constant ggml_metal_kargs_conv_transpose_2d & args, + device const float * src0, + device const float * src1, + device char * dst, + threadgroup float * shared_sum [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]); + +template [[host_name("kernel_conv_transpose_2d_f16_f32")]] +kernel void kernel_conv_transpose_2d( + constant ggml_metal_kargs_conv_transpose_2d & args, + device const half * src0, + device const float * src1, + device char * dst, + threadgroup float * shared_sum [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]); + kernel void kernel_upscale_f32( constant ggml_metal_kargs_upscale & args, device const char * src0, diff --git a/ggml/src/ggml-opencl/CMakeLists.txt b/ggml/src/ggml-opencl/CMakeLists.txt index 6f6bba55e2..d3d97f375e 100644 --- a/ggml/src/ggml-opencl/CMakeLists.txt +++ b/ggml/src/ggml-opencl/CMakeLists.txt @@ -91,6 +91,8 @@ set(GGML_OPENCL_KERNELS mul_mv_id_q8_0_f32_flat mul_mv_id_mxfp4_f32 mul_mv_id_mxfp4_f32_flat + gemm_moe_mxfp4_f32 + gemv_moe_mxfp4_f32 mul_mm_f32_f32_l4_lm mul_mm_f16_f32_l4_lm mul_mm_q8_0_f32_l4_lm diff --git a/ggml/src/ggml-opencl/ggml-opencl.cpp b/ggml/src/ggml-opencl/ggml-opencl.cpp index 2ec896fd0e..d9876e697a 100644 --- a/ggml/src/ggml-opencl/ggml-opencl.cpp +++ b/ggml/src/ggml-opencl/ggml-opencl.cpp @@ -402,6 +402,7 @@ struct ggml_backend_opencl_context { cl_program program_conv_2d_f32; cl_program program_conv_2d_f16_f32; cl_program program_tsembd; + cl_program program_gemv_moe_mxfp4_f32, program_gemm_moe_mxfp4_f32; cl_program program_mul_mv_id_q4_0_f32_8x_flat; cl_program program_mul_mv_id_q8_0_f32, program_mul_mv_id_q8_0_f32_flat; cl_program program_mul_mv_id_mxfp4_f32; @@ -452,7 +453,7 @@ struct ggml_backend_opencl_context { cl_kernel kernel_mul_mat_f16_f32_tiled; cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v; cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0; - cl_kernel kernel_convert_block_mxfp4, kernel_restore_block_mxfp4; + cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans; cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0; cl_kernel kernel_mul_mat_q4_0_f32_8x_flat; cl_kernel kernel_convert_block_q4_0_noshuffle; @@ -475,6 +476,7 @@ struct ggml_backend_opencl_context { cl_kernel kernel_conv_2d_f32; cl_kernel kernel_conv_2d_f16_f32; cl_kernel kernel_timestep_embedding; + cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32; cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat; cl_kernel kernel_mul_mv_id_q8_0_f32, kernel_mul_mv_id_q8_0_f32_flat; cl_kernel kernel_mul_mv_id_mxfp4_f32; @@ -559,14 +561,14 @@ struct ggml_backend_opencl_context { fprintf(ftrace, "[\n"); for (const ProfilingInfo & info : profiling_info) { - fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n", + fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %llu, \"pid\": \"\", \"tid\": \"Host\"},\n", info.kernel_name.c_str(), info.cmd_queued/1000); - fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n", + fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %llu, \"pid\": \"\", \"tid\": \"Host\"},\n", info.kernel_name.c_str(), info.cmd_submit/1000); - fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n", + fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %llu, \"pid\": \"\", \"tid\": \"Device\"},\n", info.kernel_name.c_str(), info.cmd_start/1000); - fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n", + fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %llu, \"pid\": \"\", \"tid\": \"Device\"},\n", info.kernel_name.c_str(), info.cmd_end/1000); } fclose(ftrace); @@ -777,6 +779,8 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err)); CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err)); CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err)); + CL_CHECK((backend_ctx->kernel_convert_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4_trans", &err), err)); + CL_CHECK((backend_ctx->kernel_restore_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4_trans", &err), err)); CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err)); CL_CHECK((backend_ctx->kernel_convert_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err)); CL_CHECK((backend_ctx->kernel_restore_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err)); @@ -1991,6 +1995,42 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err)); GGML_LOG_CONT("."); } + + std::string CL_moe_compile_opts = std::string("-cl-std=") + opencl_c_std + + " -cl-mad-enable " + " -cl-fast-relaxed-math"; + + // gemv_moe_mxfp4_f32 + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "gemv_moe_mxfp4_f32.cl.h" + }; +#else + const std::string kernel_src = read_file("gemv_moe_mxfp4_f32.cl"); +#endif + backend_ctx->program_gemv_moe_mxfp4_f32 = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts); + + CL_CHECK((backend_ctx->kernel_gemv_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemv_moe_mxfp4_f32, "kernel_gemv_moe_mxfp4_f32", &err), err)); + GGML_LOG_CONT("."); + } + + // gemm_moe_mxfp4_f32 + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "gemm_moe_mxfp4_f32.cl.h" + }; +#else + const std::string kernel_src = read_file("gemm_moe_mxfp4_f32.cl"); +#endif + backend_ctx->program_gemm_moe_mxfp4_f32 = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts); + + CL_CHECK((backend_ctx->kernel_gemm_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemm_moe_mxfp4_f32, "kernel_gemm_moe_mxfp4_f32", &err), err)); + GGML_LOG_CONT("."); + } #endif // GGML_OPENCL_USE_ADRENO_KERNELS GGML_LOG_CONT("\n"); } @@ -3299,6 +3339,12 @@ inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, c tensor->ne[2] == 1 && tensor->ne[3] == 1; } +inline bool use_adreno_moe_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) { + GGML_UNUSED(backend_ctx); + int ne01 = tensor->ne[1]; + return ((strstr(tensor->name, "ffn") != NULL) || (strstr(tensor->name, "as") != NULL)) && (ne01 % 64 == 0); +} + static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device); @@ -3601,14 +3647,39 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err); CL_CHECK(err); +#ifdef GGML_OPENCL_USE_ADRENO_KERNELS + if (use_adreno_moe_kernels(backend_ctx, tensor)) { + cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4_trans; + + int ne00 = tensor->ne[0]; + int ne01 = tensor->ne[1]; + int ne02 = tensor->ne[2]; + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); + + size_t global_work_size[3] = {static_cast(((ne01 + 63) / 64) * 64), static_cast(ne00 / 32), static_cast(ne02)}; + size_t local_work_size[3] = {64, 2, 1}; + + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + CL_CHECK(clWaitForEvents(1, &evt)); + CL_CHECK(clReleaseMemObject(data_device)); + tensor->extra = extra; + + return; + } +#endif cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4; CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device)); CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q)); CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e)); - size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1}; - size_t local_work_size[] = {64, 1, 1}; + size_t global_work_size[3] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1}; + size_t local_work_size[3] = {64, 1, 1}; cl_event evt; CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); @@ -3624,7 +3695,6 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, { extra->q } }; extra->q_img = clCreateImage(context, CL_MEM_READ_ONLY, &img_format_q, &img_desc_q, NULL, &err); - tensor->extra = extra; return; @@ -3751,6 +3821,33 @@ static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, ggml_nbytes(tensor), NULL, &err); CL_CHECK(err); +#ifdef GGML_OPENCL_USE_ADRENO_KERNELS + if (use_adreno_moe_kernels(backend_ctx, tensor)) { + cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4_trans; + + int ne00 = tensor->ne[0]; + int ne01 = tensor->ne[1]; + int ne02 = tensor->ne[2]; + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_int), &ne01)); + + size_t global_work_size[3] = {static_cast(((ne01 + 63) / 64) * 64), static_cast(ne00 / 32), static_cast(ne02)}; + size_t local_work_size[3] = {64, 2, 1}; + + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, + global_work_size, local_work_size, 0, NULL, &evt)); + CL_CHECK(clWaitForEvents(1, &evt)); + CL_CHECK(clEnqueueReadBuffer( + queue, data_device, CL_TRUE, offset, + size, data, 0, NULL, NULL)); + CL_CHECK(clReleaseMemObject(data_device)); + return; + } +#endif cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4; CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q)); CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e)); @@ -7553,6 +7650,7 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const int ne21 = src2->ne[1]; const cl_ulong nb21 = src2->nb[1]; + const cl_ulong nb20 = src2->nb[0]; const int ne0 = dst->ne[0]; const int ne1 = dst->ne[1]; @@ -7692,6 +7790,105 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, break; } case GGML_TYPE_MXFP4: { +#ifdef GGML_OPENCL_USE_ADRENO_KERNELS + if (use_adreno_moe_kernels(backend_ctx, src0)) { + cl_int status; + + size_t local_size[3] = {64, 2, 1}; + size_t global_size[3] = {64, 2, 1}; + + cl_mem src1_sub_buffer, buf_src1_image, buf_src2; + + int tile_size = 320; + if (ne12 == 1) { // for gemv + kernel = backend_ctx->kernel_gemv_moe_mxfp4_f32; + + // create a sub_buffer for src2 + cl_buffer_region region; + region.origin = offset2; + region.size = ne20 * ne21 * sizeof(int); + buf_src2 = clCreateSubBuffer(extra2->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status); + CL_CHECK(status); + + // set thread grid + global_size[0] = static_cast(ne01); + global_size[1] = 4; + global_size[2] = static_cast(ne20); + local_size[1] = 4; + } else { // for gemm + kernel = backend_ctx->kernel_gemm_moe_mxfp4_f32; + + // preprocess router table + int num_tiles_per_expert = (ne01 + tile_size - 1) / tile_size; + void * host_src2_reorder = malloc(ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short)); + void * host_src2 = malloc(ne21 * nb21); + CL_CHECK(clEnqueueReadBuffer(backend_ctx->queue, extra2->data_device, CL_TRUE, offset2, ne21 * nb21, host_src2, 0, NULL, NULL)); + int total_experts = nb21 / nb20; + int out_idx = 0; + for (int i_expert = 0; i_expert < ne02; i_expert++) { + for (int i_tile = 0; i_tile < num_tiles_per_expert; i_tile++) { + for (int j = 0; j < ne21; j++) { + for (int i = 0; i < ne20; i++) { + int expert = ((int *)host_src2)[j * total_experts + i]; + if (i_expert == expert) { + ((short *)host_src2_reorder)[out_idx] = static_cast(expert); + ((short *)host_src2_reorder)[out_idx + 1] = static_cast(j * ne11 + (i % ne11)); + ((short *)host_src2_reorder)[out_idx + 2] = static_cast(j * ne20 + i); + ((short *)host_src2_reorder)[out_idx + 3] = static_cast(i_tile); + out_idx += 4; + } + } + } + } + } + buf_src2 = clCreateBuffer(backend_ctx->context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short), host_src2_reorder, &status); + CL_CHECK(status); + + // set thread grid + global_size[0] = static_cast(tile_size); + global_size[2] = static_cast(ne20 * ne21 * num_tiles_per_expert); + } + + // create a sub_buffer for src1 + cl_buffer_region region; + region.origin = offset1; + region.size = ne10 * ne11 * ne12 * sizeof(float); + src1_sub_buffer = clCreateSubBuffer(extra1->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status); + CL_CHECK(status); + + // create image for src1 + cl_image_format image_format_buf_src1 = {CL_RGBA, CL_FLOAT}; + cl_image_desc image_desc_buf_src1 = {CL_MEM_OBJECT_IMAGE1D_BUFFER, static_cast(ne10 * ne11 * ne12 / 4), 0,0,0,0,0,0,0, {src1_sub_buffer}}; + buf_src1_image = clCreateImage(backend_ctx->context, CL_MEM_READ_ONLY, &image_format_buf_src1, &image_desc_buf_src1, NULL, &status); + CL_CHECK(status); + + // Set kernel args + int arg_idx = 0; + CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->q)); + CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->e)); + CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src1_image)); + CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src2)); + CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne01)); + if (ne12 == 1) { + CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne11)); + } else { + CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &tile_size)); + } + + // launch kernel + backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_size, local_size, dst); + + // deallocate sub buffers and images + CL_CHECK(clReleaseMemObject(src1_sub_buffer)); + CL_CHECK(clReleaseMemObject(buf_src1_image)); + CL_CHECK(clReleaseMemObject(buf_src2)); + return; + } // else fallback to generic kernel +#endif // GGML_OPENCL_USE_ADRENO_KERNELS + #ifdef GGML_OPENCL_SOA_Q kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat; diff --git a/ggml/src/ggml-opencl/kernels/cvt.cl b/ggml/src/ggml-opencl/kernels/cvt.cl index 045300eb3a..b26f9c5fb2 100644 --- a/ggml/src/ggml-opencl/kernels/cvt.cl +++ b/ggml/src/ggml-opencl/kernels/cvt.cl @@ -147,6 +147,27 @@ kernel void kernel_convert_block_mxfp4( } } +kernel void kernel_convert_block_mxfp4_trans( + global struct block_mxfp4 * src0, + __global uint4 * dst_q, + __global uchar * dst_e, + uint ne00, + uint ne01 +) { + int i00 = get_global_id(1); + uint i01 = get_global_id(0); + uint i02 = get_global_id(2); + + uint ne00_blk = ne00 / QK_MXFP4; + uint src_blk_offset = i00 + i01 * ne00_blk + i02 * ne00_blk * ne01; + uint dst_blk_offset = i01 + i00 * ne01 + i02 * ne00_blk * ne01; + + global struct block_mxfp4 * b = src0 + src_blk_offset; + + dst_q[dst_blk_offset] = ((global uint4 *)(&(b->qs[0])))[0]; + dst_e[dst_blk_offset] = b->e; +} + kernel void kernel_restore_block_mxfp4( global uchar * src_q, global half * src_e, @@ -162,6 +183,27 @@ kernel void kernel_restore_block_mxfp4( } } +kernel void kernel_restore_block_mxfp4_trans( + __global uint4 * src_q, + __global uchar * src_e, + global struct block_mxfp4 * dst, + uint ne00, + uint ne01 +) { + int i00 = get_global_id(1); + uint i01 = get_global_id(0); + uint i02 = get_global_id(2); + + uint ne00_blk = ne00 / QK_MXFP4; + uint src_blk_offset = i01 + i00 * ne01 + i02 * ne00_blk * ne01; + uint dst_blk_offset = i00 + i01 * ne00_blk + i02 * ne00_blk * ne01; + + global struct block_mxfp4 * b = dst + dst_blk_offset; + + ((global uint4 *)(&(b->qs[0])))[0] = src_q[src_blk_offset]; + b->e = src_e[src_blk_offset]; +} + //------------------------------------------------------------------------------ // block_q8_0 //------------------------------------------------------------------------------ diff --git a/ggml/src/ggml-opencl/kernels/gemm_moe_mxfp4_f32.cl b/ggml/src/ggml-opencl/kernels/gemm_moe_mxfp4_f32.cl new file mode 100644 index 0000000000..3917aa3fd9 --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/gemm_moe_mxfp4_f32.cl @@ -0,0 +1,162 @@ +#pragma OPENCL EXTENSION cl_khr_fp16 : enable +#pragma OPENCL EXTENSION cl_khr_subgroups : enable +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable + +#define QK_MXFP4 32 +#define N_SIMDGROUP 2 +#define SIMDGROUP_WIDTH 64 + +static inline half8 mxfp4_to_fp16_packed8(ushort2 fp4x8) { //, ushort 0x0E00, ushort 0x8000) { + ushort2 fp16_packed_a_0, fp16_packed_b_0, bias_a, bias_b, sign_a, sign_b; + fp16_packed_a_0.lo = (fp4x8.s0 << 9) & 0x0E00; + fp16_packed_a_0.hi = (fp4x8.s0 << 5) & 0x0E00; + fp16_packed_b_0.lo = (fp4x8.s0 << 1) & 0x0E00; + fp16_packed_b_0.hi = (fp4x8.s0 >> 3) & 0x0E00; + + bias_a.lo = (fp16_packed_a_0.lo != 0) ? 0x3800 : 0x0; + bias_a.hi = (fp16_packed_a_0.hi != 0) ? 0x3800 : 0x0; + bias_b.lo = (fp16_packed_b_0.lo != 0) ? 0x3800 : 0x0; + bias_b.hi = (fp16_packed_b_0.hi != 0) ? 0x3800 : 0x0; + + fp16_packed_a_0.lo = (fp16_packed_a_0.lo != 0x0200) ? fp16_packed_a_0.lo : 0x0; + fp16_packed_a_0.hi = (fp16_packed_a_0.hi != 0x0200) ? fp16_packed_a_0.hi : 0x0; + fp16_packed_b_0.lo = (fp16_packed_b_0.lo != 0x0200) ? fp16_packed_b_0.lo : 0x0; + fp16_packed_b_0.hi = (fp16_packed_b_0.hi != 0x0200) ? fp16_packed_b_0.hi : 0x0; + + sign_a.lo = (fp4x8.s0 << 12) & 0x8000; + sign_a.hi = (fp4x8.s0 << 8) & 0x8000; + sign_b.lo = (fp4x8.s0 << 4) & 0x8000; + sign_b.hi = fp4x8.s0 & 0x8000; + + fp16_packed_a_0 = sign_a + bias_a + fp16_packed_a_0; + fp16_packed_b_0 = sign_b + bias_b + fp16_packed_b_0; + + ushort2 fp16_packed_a_1, fp16_packed_b_1; + fp16_packed_a_1.lo = (fp4x8.s1 << 9) & 0x0E00; + fp16_packed_a_1.hi = (fp4x8.s1 << 5) & 0x0E00; + fp16_packed_b_1.lo = (fp4x8.s1 << 1) & 0x0E00; + fp16_packed_b_1.hi = (fp4x8.s1 >> 3) & 0x0E00; + + bias_a.lo = (fp16_packed_a_1.lo != 0) ? 0x3800 : 0x0; + bias_a.hi = (fp16_packed_a_1.hi != 0) ? 0x3800 : 0x0; + bias_b.lo = (fp16_packed_b_1.lo != 0) ? 0x3800 : 0x0; + bias_b.hi = (fp16_packed_b_1.hi != 0) ? 0x3800 : 0x0; + + fp16_packed_a_1.lo = (fp16_packed_a_1.lo != 0x0200) ? fp16_packed_a_1.lo : 0x0; + fp16_packed_a_1.hi = (fp16_packed_a_1.hi != 0x0200) ? fp16_packed_a_1.hi : 0x0; + fp16_packed_b_1.lo = (fp16_packed_b_1.lo != 0x0200) ? fp16_packed_b_1.lo : 0x0; + fp16_packed_b_1.hi = (fp16_packed_b_1.hi != 0x0200) ? fp16_packed_b_1.hi : 0x0; + + sign_a.lo = (fp4x8.s1 << 12) & 0x8000; + sign_a.hi = (fp4x8.s1 << 8) & 0x8000; + sign_b.lo = (fp4x8.s1 << 4) & 0x8000; + sign_b.hi = fp4x8.s1 & 0x8000; + + fp16_packed_a_1 = sign_a + bias_a + fp16_packed_a_1; + fp16_packed_b_1 = sign_b + bias_b + fp16_packed_b_1; + + return as_half8((ushort8)(fp16_packed_a_0, fp16_packed_b_0, fp16_packed_a_1, fp16_packed_b_1)); +} + +static inline float e8m0_to_fp32(uchar x) { + int bits; + bits = (x == 0) ? 0x00400000 : ((uint) x << 23); + return as_float(bits); +} + + +__attribute__((qcom_reqd_sub_group_size("half"))) +__kernel void kernel_gemm_moe_mxfp4_f32( + __global uint4 * src0_q, + __global uchar * src0_e, + __read_only image1d_buffer_t src1, + __global ushort4 * src2, + __global float * dst, + ulong offsetd, + int ne00, + int ne01, + int tile_size +) { + uint i01 = get_global_id(0); + uint i20 = get_global_id(2); + uint sgid = get_local_id(1); + uint slid = get_sub_group_local_id(); + + ushort4 router = src2[i20]; + ushort expert_id = router.x; + ushort i11 = router.y; + ushort i1 = router.z; + ushort tile_id = router.w; + + if (tile_id * tile_size + i01 >= ne01) { // handle edge case when ne01 is not multiple of tile_size + return; + } + + uint expert_offset = expert_id * ne00 * ne01 / 32; + uint tile_offset = expert_offset + tile_id * tile_size + i01; + + __private float sum = 0.0f; // each thread calculate partial sum of one output + + // loop along ne00 in block granularity, skip 4 blocks every iter + for (uint ib00 = sgid; ib00 < (ne00 / QK_MXFP4); ib00 += N_SIMDGROUP) { + // load one block of q + uint4 regQ = src0_q[tile_offset + ib00 * ne01]; + // convert 8 fp4 to fp16 + half8 fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s0)); + + uint offset = i11 * ne00 / 4 + ib00 * 8; + float4 shared_y4; + shared_y4 = read_imagef(src1, (offset + 0)); + float4 acc = shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6); + + shared_y4 = read_imagef(src1, (offset + 4)); + acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7); + + + fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s1)); + + shared_y4 = read_imagef(src1, (offset + 1)); + acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6); + + shared_y4 = read_imagef(src1, (offset + 5)); + acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7); + + + fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s2)); + + shared_y4 = read_imagef(src1, (offset + 2)); + acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6); + + shared_y4 = read_imagef(src1, (offset + 6)); + acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7); + + + fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s3)); + + shared_y4 = read_imagef(src1, (offset + 3)); + acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6); + + shared_y4 = read_imagef(src1, (offset + 7)); + acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7); + + uchar regE = src0_e[tile_offset + ib00 * ne01]; + sum += e8m0_to_fp32(regE) * ((acc.s0 + acc.s1) + (acc.s2 + acc.s3)); + } + + // reduction in local memory, assumes #subgroups=4 + __local float reduceLM[SIMDGROUP_WIDTH * (N_SIMDGROUP - 1)]; + if (sgid == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = sum; + // if (sgid == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = sum; + // if (sgid == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = sum; + barrier(CLK_LOCAL_MEM_FENCE); + if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 0 + slid]; + // if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 1 + slid]; + // if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 2 + slid]; + + // 1 outputs per thread in subgroup 0 + if (sgid == 0) { + dst = dst + (offsetd >> 2); + dst[i01 + tile_id * tile_size + i1 * ne01] = sum; + } + +} diff --git a/ggml/src/ggml-opencl/kernels/gemv_moe_mxfp4_f32.cl b/ggml/src/ggml-opencl/kernels/gemv_moe_mxfp4_f32.cl new file mode 100644 index 0000000000..b4b1e511f9 --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/gemv_moe_mxfp4_f32.cl @@ -0,0 +1,156 @@ +#pragma OPENCL EXTENSION cl_khr_fp16 : enable +#pragma OPENCL EXTENSION cl_khr_subgroups : enable +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable + +#define QK_MXFP4 32 +#define N_SIMDGROUP 4 +#define SIMDGROUP_WIDTH 64 + +static inline half8 mxfp4_to_fp16_packed8(ushort2 fp4x8) { //, ushort 0x0E00, ushort 0x8000) { + ushort2 fp16_packed_a_0, fp16_packed_b_0, bias_a, bias_b, sign_a, sign_b; + fp16_packed_a_0.lo = (fp4x8.s0 << 9) & 0x0E00; + fp16_packed_a_0.hi = (fp4x8.s0 << 5) & 0x0E00; + fp16_packed_b_0.lo = (fp4x8.s0 << 1) & 0x0E00; + fp16_packed_b_0.hi = (fp4x8.s0 >> 3) & 0x0E00; + + bias_a.lo = (fp16_packed_a_0.lo != 0) ? 0x3800 : 0x0; + bias_a.hi = (fp16_packed_a_0.hi != 0) ? 0x3800 : 0x0; + bias_b.lo = (fp16_packed_b_0.lo != 0) ? 0x3800 : 0x0; + bias_b.hi = (fp16_packed_b_0.hi != 0) ? 0x3800 : 0x0; + + fp16_packed_a_0.lo = (fp16_packed_a_0.lo != 0x0200) ? fp16_packed_a_0.lo : 0x0; + fp16_packed_a_0.hi = (fp16_packed_a_0.hi != 0x0200) ? fp16_packed_a_0.hi : 0x0; + fp16_packed_b_0.lo = (fp16_packed_b_0.lo != 0x0200) ? fp16_packed_b_0.lo : 0x0; + fp16_packed_b_0.hi = (fp16_packed_b_0.hi != 0x0200) ? fp16_packed_b_0.hi : 0x0; + + sign_a.lo = (fp4x8.s0 << 12) & 0x8000; + sign_a.hi = (fp4x8.s0 << 8) & 0x8000; + sign_b.lo = (fp4x8.s0 << 4) & 0x8000; + sign_b.hi = fp4x8.s0 & 0x8000; + + fp16_packed_a_0 = sign_a + bias_a + fp16_packed_a_0; + fp16_packed_b_0 = sign_b + bias_b + fp16_packed_b_0; + + ushort2 fp16_packed_a_1, fp16_packed_b_1; + fp16_packed_a_1.lo = (fp4x8.s1 << 9) & 0x0E00; + fp16_packed_a_1.hi = (fp4x8.s1 << 5) & 0x0E00; + fp16_packed_b_1.lo = (fp4x8.s1 << 1) & 0x0E00; + fp16_packed_b_1.hi = (fp4x8.s1 >> 3) & 0x0E00; + + bias_a.lo = (fp16_packed_a_1.lo != 0) ? 0x3800 : 0x0; + bias_a.hi = (fp16_packed_a_1.hi != 0) ? 0x3800 : 0x0; + bias_b.lo = (fp16_packed_b_1.lo != 0) ? 0x3800 : 0x0; + bias_b.hi = (fp16_packed_b_1.hi != 0) ? 0x3800 : 0x0; + + fp16_packed_a_1.lo = (fp16_packed_a_1.lo != 0x0200) ? fp16_packed_a_1.lo : 0x0; + fp16_packed_a_1.hi = (fp16_packed_a_1.hi != 0x0200) ? fp16_packed_a_1.hi : 0x0; + fp16_packed_b_1.lo = (fp16_packed_b_1.lo != 0x0200) ? fp16_packed_b_1.lo : 0x0; + fp16_packed_b_1.hi = (fp16_packed_b_1.hi != 0x0200) ? fp16_packed_b_1.hi : 0x0; + + sign_a.lo = (fp4x8.s1 << 12) & 0x8000; + sign_a.hi = (fp4x8.s1 << 8) & 0x8000; + sign_b.lo = (fp4x8.s1 << 4) & 0x8000; + sign_b.hi = fp4x8.s1 & 0x8000; + + fp16_packed_a_1 = sign_a + bias_a + fp16_packed_a_1; + fp16_packed_b_1 = sign_b + bias_b + fp16_packed_b_1; + + return as_half8((ushort8)(fp16_packed_a_0, fp16_packed_b_0, fp16_packed_a_1, fp16_packed_b_1)); +} + +static inline float e8m0_to_fp32(uchar x) { + int bits; + bits = (x == 0) ? 0x00400000 : ((uint) x << 23); + return as_float(bits); +} + + +__attribute__((qcom_reqd_sub_group_size("half"))) +__kernel void kernel_gemv_moe_mxfp4_f32( + __global uint4 * src0_q, + __global uchar * src0_e, + __read_only image1d_buffer_t src1, + __global uint * src2, + __global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne11 +) { + uint i01 = get_global_id(0); + uint i20 = get_global_id(2); + uint sgid = get_local_id(1); + uint slid = get_sub_group_local_id(); + + uint i11 = i20 % ne11; + + uint expert_id = src2[i20]; + uint expert_offset = expert_id * ne00 * ne01 / 32; + + __private float sum = 0.0f; // each thread calculate partial sum of one output + + // loop along ne00 in block granularity, skip 4 blocks every iter + for (uint ib00 = sgid; ib00 < (ne00 / QK_MXFP4); ib00 += N_SIMDGROUP) { + + // load one block of q + uint4 regQ = src0_q[expert_offset + ib00 * ne01 + i01]; + + uint offset = i11 * ne00 / 4 + ib00 * 8; + + half8 fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s0)); + + float4 shared_y4; + shared_y4 = read_imagef(src1, (offset + 0)); + float4 acc = shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6); + + shared_y4 = read_imagef(src1, (offset + 4)); + acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7); + + + fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s1)); + + shared_y4 = read_imagef(src1, (offset + 1)); + acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6); + + shared_y4 = read_imagef(src1, (offset + 5)); + acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7); + + + fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s2)); + + shared_y4 = read_imagef(src1, (offset + 2)); + acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6); + + shared_y4 = read_imagef(src1, (offset + 6)); + acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7); + + + fp16x8 = mxfp4_to_fp16_packed8(as_ushort2(regQ.s3)); + + shared_y4 = read_imagef(src1, (offset + 3)); + acc += shared_y4 * (float4)(fp16x8.s0, fp16x8.s2, fp16x8.s4, fp16x8.s6); + + shared_y4 = read_imagef(src1, (offset + 7)); + acc += shared_y4 * (float4)(fp16x8.s1, fp16x8.s3, fp16x8.s5, fp16x8.s7); + + uchar regE = src0_e[ib00 * ne01 + i01 + expert_offset]; + sum += e8m0_to_fp32(regE) * ((acc.s0 + acc.s1) + (acc.s2 + acc.s3)); + } + + // reduction in local memory, assumes #subgroups=4 + __local float reduceLM[SIMDGROUP_WIDTH * (N_SIMDGROUP - 1)]; + if (sgid == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = sum; + if (sgid == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = sum; + if (sgid == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = sum; + barrier(CLK_LOCAL_MEM_FENCE); + if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 0 + slid]; + if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 1 + slid]; + if (sgid == 0) sum += reduceLM[SIMDGROUP_WIDTH * 2 + slid]; + + // 1 outputs per thread in subgroup 0 + if (sgid == 0) { + dst = dst + (offsetd >> 2); + dst[i01 + i20 * ne01] = sum; + } + +} diff --git a/ggml/src/ggml-rpc/ggml-rpc.cpp b/ggml/src/ggml-rpc/ggml-rpc.cpp index aad48d62a8..a38df5a97e 100644 --- a/ggml/src/ggml-rpc/ggml-rpc.cpp +++ b/ggml/src/ggml-rpc/ggml-rpc.cpp @@ -939,6 +939,7 @@ public: bool graph_compute(const std::vector & input, rpc_msg_graph_compute_rsp & response); bool init_tensor(const rpc_msg_init_tensor_req & request); bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response); + bool get_device_memory(const rpc_msg_get_device_memory_req & request, rpc_msg_get_device_memory_rsp & response); private: bool get_cached_file(uint64_t hash, std::vector & data); @@ -1458,6 +1459,20 @@ bool rpc_server::graph_compute(const std::vector & input, rpc_msg_graph return true; } +bool rpc_server::get_device_memory(const rpc_msg_get_device_memory_req & request, rpc_msg_get_device_memory_rsp & response) { + uint32_t dev_id = request.device; + if (dev_id >= backends.size()) { + return false; + } + size_t free, total; + ggml_backend_dev_t dev = ggml_backend_get_device(backends[dev_id]); + ggml_backend_dev_memory(dev, &free, &total); + response.free_mem = free; + response.total_mem = total; + LOG_DBG("[%s] device: %u, free_mem: %" PRIu64 ", total_mem: %" PRIu64 "\n", __func__, dev_id, response.free_mem, response.total_mem); + return true; +} + rpc_server::~rpc_server() { for (auto buffer : buffers) { ggml_backend_buffer_free(buffer); @@ -1465,7 +1480,7 @@ rpc_server::~rpc_server() { } static void rpc_serve_client(const std::vector & backends, const char * cache_dir, - sockfd_t sockfd, const std::vector & free_mem, const std::vector & total_mem) { + sockfd_t sockfd) { rpc_server server(backends, cache_dir); uint8_t cmd; if (!recv_data(sockfd, &cmd, 1)) { @@ -1689,15 +1704,10 @@ static void rpc_serve_client(const std::vector & backends, const if (!recv_msg(sockfd, &request, sizeof(request))) { return; } - auto dev_id = request.device; - if (dev_id >= backends.size()) { + rpc_msg_get_device_memory_rsp response; + if (!server.get_device_memory(request, response)) { return; } - rpc_msg_get_device_memory_rsp response; - response.free_mem = free_mem[dev_id]; - response.total_mem = total_mem[dev_id]; - LOG_DBG("[get_device_mem] device: %u, free_mem: %" PRIu64 ", total_mem: %" PRIu64 "\n", dev_id, - response.free_mem, response.total_mem); if (!send_msg(sockfd, &response, sizeof(response))) { return; } @@ -1712,15 +1722,12 @@ static void rpc_serve_client(const std::vector & backends, const } void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir, - size_t n_threads, size_t n_devices, - ggml_backend_dev_t * devices, size_t * free_mem, size_t * total_mem) { - if (n_devices == 0 || devices == nullptr || free_mem == nullptr || total_mem == nullptr) { + size_t n_threads, size_t n_devices, ggml_backend_dev_t * devices) { + if (n_devices == 0 || devices == nullptr) { fprintf(stderr, "Invalid arguments to ggml_backend_rpc_start_server\n"); return; } std::vector backends; - std::vector free_mem_vec(free_mem, free_mem + n_devices); - std::vector total_mem_vec(total_mem, total_mem + n_devices); printf("Starting RPC server v%d.%d.%d\n", RPC_PROTO_MAJOR_VERSION, RPC_PROTO_MINOR_VERSION, @@ -1730,8 +1737,10 @@ void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir printf("Devices:\n"); for (size_t i = 0; i < n_devices; i++) { auto dev = devices[i]; + size_t free, total; + ggml_backend_dev_memory(dev, &free, &total); printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), - total_mem[i] / 1024 / 1024, free_mem[i] / 1024 / 1024); + total / 1024 / 1024, free / 1024 / 1024); auto backend = ggml_backend_dev_init(dev, nullptr); if (!backend) { fprintf(stderr, "Failed to create backend for device %s\n", dev->iface.get_name(dev)); @@ -1775,7 +1784,7 @@ void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir } printf("Accepted client connection\n"); fflush(stdout); - rpc_serve_client(backends, cache_dir, client_socket->fd, free_mem_vec, total_mem_vec); + rpc_serve_client(backends, cache_dir, client_socket->fd); printf("Client connection closed\n"); fflush(stdout); } diff --git a/ggml/src/ggml-sycl/element_wise.cpp b/ggml/src/ggml-sycl/element_wise.cpp index aeeb387595..810995d0cb 100644 --- a/ggml/src/ggml-sycl/element_wise.cpp +++ b/ggml/src/ggml-sycl/element_wise.cpp @@ -150,6 +150,26 @@ static __dpct_inline__ T op_clamp(T x, float min_val, float max_val) { return x < static_cast(min_val) ? static_cast(min_val) : (x > static_cast(max_val) ? static_cast(max_val) : x); } +template +static __dpct_inline__ T op_floor(T x) { + return sycl::floor(x); +} + +template +static __dpct_inline__ T op_ceil(T x) { + return sycl::ceil(x); +} + +template +static __dpct_inline__ T op_round(T x) { + return sycl::round(x); +} + +template +static __dpct_inline__ T op_trunc(T x) { + return sycl::trunc(x); +} + template static void unary_op_sgn_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { SYCL_GLOBAL_ID_LOOP(k, item_ct1) { @@ -304,6 +324,34 @@ static void unary_op_clamp_kernel(const T * x, T * dst, const int k, const sycl: } } +template +static void unary_op_floor_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { + SYCL_GLOBAL_ID_LOOP(k, item_ct1) { + dst[i] = op_floor(x[i]); + } +} + +template +static void unary_op_ceil_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { + SYCL_GLOBAL_ID_LOOP(k, item_ct1) { + dst[i] = op_ceil(x[i]); + } +} + +template +static void unary_op_round_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { + SYCL_GLOBAL_ID_LOOP(k, item_ct1) { + dst[i] = op_round(x[i]); + } +} + +template +static void unary_op_trunc_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { + SYCL_GLOBAL_ID_LOOP(k, item_ct1) { + dst[i] = op_trunc(x[i]); + } +} + template static void upscale(const T *x, T *dst, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, @@ -397,6 +445,14 @@ static void acc_f32_sycl(const float *x, const float *y, float *dst, }); } +template +static void arange_kernel(T * dst, const int k, T start, T step, + const sycl::nd_item<1> &item_ct1) { + SYCL_GLOBAL_ID_LOOP(k, item_ct1) { + dst[i] = start + static_cast(i) * step; + } +} + template static void upscale_sycl(const T *x, T *dst, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, @@ -565,6 +621,25 @@ static inline void dispatch_ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx } +static inline void ggml_sycl_op_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + GGML_ASSERT(dst->type == GGML_TYPE_F32); + float start, stop, step; + memcpy(&start, dst->op_params, sizeof(float)); + memcpy(&stop, (float *) dst->op_params + 1, sizeof(float)); + memcpy(&step, (float *) dst->op_params + 2, sizeof(float)); + dpct::queue_ptr stream = ctx.stream(); + SYCL_CHECK(ggml_sycl_set_device(ctx.device)); + float * dst_ptr = (float *)dst->data; + const int k = (int)ggml_nelements(dst); + const int num_blocks = ceil_div(k, SYCL_ARANGE_BLOCK_SIZE); + stream->parallel_for( + sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_ARANGE_BLOCK_SIZE), + sycl::range<1>(SYCL_ARANGE_BLOCK_SIZE)), + [=](sycl::nd_item<1> item_ct1) { + arange_kernel(dst_ptr, k, start, step, item_ct1); + }); +} + } // namespace ggml_sycl_detail @@ -870,6 +945,58 @@ static inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tens }, min_val, max_val); } +static inline void ggml_sycl_op_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst, + [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) { + const int num_blocks = ceil_div(k_elements, 256); + stream->parallel_for( + sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256), + sycl::range<1>(256)), + [=](sycl::nd_item<1> item_ct1) { + unary_op_floor_kernel(src, dst_ptr, k_elements, item_ct1); + }); + }); +} + +static inline void ggml_sycl_op_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst, + [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) { + const int num_blocks = ceil_div(k_elements, 256); + stream->parallel_for( + sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256), + sycl::range<1>(256)), + [=](sycl::nd_item<1> item_ct1) { + unary_op_ceil_kernel(src, dst_ptr, k_elements, item_ct1); + }); + }); +} + +static inline void ggml_sycl_op_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst, + [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) { + const int num_blocks = ceil_div(k_elements, 256); + stream->parallel_for( + sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256), + sycl::range<1>(256)), + [=](sycl::nd_item<1> item_ct1) { + unary_op_round_kernel(src, dst_ptr, k_elements, item_ct1); + }); + }); +} + +static inline void ggml_sycl_op_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst, + [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) { + const int num_blocks = ceil_div(k_elements, 256); + stream->parallel_for( + sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256), + sycl::range<1>(256)), + [=](sycl::nd_item<1> item_ct1) { + unary_op_trunc_kernel(src, dst_ptr, k_elements, item_ct1); + }); + }); +} + static inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32); @@ -1090,3 +1217,28 @@ void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_geglu_quick(ctx, dst); } + +void ggml_sycl_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/0); + ggml_sycl_detail::ggml_sycl_op_arange(ctx, dst); +} + +void ggml_sycl_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); + ggml_sycl_op_floor(ctx, dst); +} + +void ggml_sycl_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); + ggml_sycl_op_ceil(ctx, dst); +} + +void ggml_sycl_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); + ggml_sycl_op_round(ctx, dst); +} + +void ggml_sycl_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); + ggml_sycl_op_trunc(ctx, dst); +} diff --git a/ggml/src/ggml-sycl/element_wise.hpp b/ggml/src/ggml-sycl/element_wise.hpp index 4347431728..fcf93295cb 100644 --- a/ggml/src/ggml-sycl/element_wise.hpp +++ b/ggml/src/ggml-sycl/element_wise.hpp @@ -80,5 +80,11 @@ void ggml_sycl_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst); +void ggml_sycl_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst); +void ggml_sycl_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst); +void ggml_sycl_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst); +void ggml_sycl_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst); + +void ggml_sycl_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst); #endif // GGML_SYCL_ELEMENTWISE_HPP diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp index f3407a813d..1a007ffe2b 100644 --- a/ggml/src/ggml-sycl/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl/ggml-sycl.cpp @@ -42,6 +42,7 @@ #include "ggml-sycl/presets.hpp" #include "ggml-sycl/gemm.hpp" #include "ggml-sycl/set_rows.hpp" +#include "ggml-sycl/set.hpp" #include "ggml-sycl/sycl_hw.hpp" #include "ggml-sycl/getrows.hpp" #include "ggml-sycl/quantize.hpp" @@ -3619,6 +3620,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg case GGML_OP_GET_ROWS: ggml_sycl_get_rows(ctx, dst); break; + case GGML_OP_SET: + ggml_sycl_op_set(ctx, dst); + break; case GGML_OP_SET_ROWS: ggml_sycl_op_set_rows(ctx, dst); break; @@ -3694,6 +3698,18 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg case GGML_UNARY_OP_ELU: ggml_sycl_elu(ctx, dst); break; + case GGML_UNARY_OP_FLOOR: + ggml_sycl_floor(ctx, dst); + break; + case GGML_UNARY_OP_CEIL: + ggml_sycl_ceil(ctx, dst); + break; + case GGML_UNARY_OP_ROUND: + ggml_sycl_round(ctx, dst); + break; + case GGML_UNARY_OP_TRUNC: + ggml_sycl_trunc(ctx, dst); + break; default: return false; } @@ -3832,6 +3848,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg case GGML_OP_GATED_LINEAR_ATTN: ggml_sycl_op_gated_linear_attn(ctx, dst); break; + case GGML_OP_ARANGE: + ggml_sycl_arange(ctx, dst); + break; default: return false; } @@ -4255,6 +4274,10 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g case GGML_UNARY_OP_SGN: case GGML_UNARY_OP_ABS: case GGML_UNARY_OP_ELU: + case GGML_UNARY_OP_FLOOR: + case GGML_UNARY_OP_CEIL: + case GGML_UNARY_OP_ROUND: + case GGML_UNARY_OP_TRUNC: #if defined (GGML_SYCL_F16) return ggml_is_contiguous(op->src[0]) && (op->type == op->src[0]->type); #else @@ -4328,6 +4351,12 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g return false; } } + case GGML_OP_SET: + return (op->type == GGML_TYPE_F32) && + (op->src[0] && op->src[1]) && + (op->src[0]->type == GGML_TYPE_F32) && + (op->src[1]->type == GGML_TYPE_F32); + case GGML_OP_SET_ROWS: { return ((op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16 || @@ -4478,6 +4507,8 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g case GGML_OP_RWKV_WKV7: case GGML_OP_GATED_LINEAR_ATTN: return true; + case GGML_OP_ARANGE: + return op->type == GGML_TYPE_F32; default: return false; } diff --git a/ggml/src/ggml-sycl/presets.hpp b/ggml/src/ggml-sycl/presets.hpp index af1890727d..b651737423 100644 --- a/ggml/src/ggml-sycl/presets.hpp +++ b/ggml/src/ggml-sycl/presets.hpp @@ -31,6 +31,7 @@ #define SYCL_SQRT_BLOCK_SIZE 256 #define SYCL_SIN_BLOCK_SIZE 256 #define SYCL_SQR_BLOCK_SIZE 256 +#define SYCL_SET_BLOCK_SIZE 256 #define SYCL_CPY_BLOCK_SIZE 32 #define SYCL_SCALE_BLOCK_SIZE 256 #define SYCL_CLAMP_BLOCK_SIZE 256 @@ -49,6 +50,7 @@ #define SYCL_ARGMAX_BLOCK_SIZE 256 #define SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE 256 #define SYCL_TIMESTEP_EMBEDDING_BLOCK_SIZE 256 +#define SYCL_ARANGE_BLOCK_SIZE 256 // dmmv = dequantize_mul_mat_vec #ifndef GGML_SYCL_DMMV_X diff --git a/ggml/src/ggml-sycl/set.cpp b/ggml/src/ggml-sycl/set.cpp new file mode 100644 index 0000000000..381326d230 --- /dev/null +++ b/ggml/src/ggml-sycl/set.cpp @@ -0,0 +1,73 @@ +#include "presets.hpp" +#include "common.hpp" +#include "ggml.h" +#include "set.hpp" +#include +#include +using namespace sycl; + +// Internal function: perform element-wise set operation for each thread +inline void set_f32(const float* src, float* dst, + const int64_t ne0, const int64_t ne1, + const int64_t ne2, const int64_t ne3, + const int64_t nb[3], const int64_t src_nb[3], + const int64_t offset_elem, + const nd_item<1>& item) +{ + const size_t idx = item.get_global_id(0); + const size_t total = ne0 * ne1 * ne2 * ne3; + if (idx >= total) return; + + // Convert linear index to 4D indices + const size_t i3 = idx / (ne2 * ne1 * ne0); + const size_t rem = idx % (ne2 * ne1 * ne0); + const size_t i2 = rem / (ne1 * ne0); + const size_t rem2 = rem % (ne1 * ne0); + const size_t i1 = rem2 / ne0; + const size_t i0 = rem2 % ne0; + + // Compute source and destination indices and copy + dst[i0 + i1*nb[0] + i2*nb[1] + i3*nb[2] + offset_elem] = + src[i0 + i1*src_nb[0] + i2*src_nb[1] + i3*src_nb[2]]; +} + +// Main function: prepare GPU queue and launch parallel_for +void ggml_sycl_op_set(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { + const ggml_tensor* src0 = dst->src[0]; + const ggml_tensor* src1 = dst->src[1]; + + // Ensure shapes and types are compatible + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); + GGML_ASSERT(dst->type == src0->type && src0->type == src1->type && dst->type == GGML_TYPE_F32); + + const int32_t* opts = (const int32_t*) dst->op_params; + const int64_t nb[3] = {opts[0]/sizeof(float), opts[1]/sizeof(float), opts[2]/sizeof(float)}; + const int64_t offset_elem = opts[3] / sizeof(float); + const bool inplace = opts[4]; + + float* dst_ptr = (float*) dst->data; + const float* src0_ptr = (const float*) src0->data; + const float* src1_ptr = (const float*) src1->data; + + queue_ptr stream = ctx.stream(); + + // Copy src0 to dst if not inplace + if (!inplace) + stream->memcpy(dst_ptr, src0_ptr, ggml_nbytes(dst)); + + const int64_t ne[4] = {src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]}; + const int64_t src_nb[3] = {src1->nb[1]/sizeof(float), src1->nb[2]/sizeof(float), src1->nb[3]/sizeof(float)}; + + const size_t total_threads = ne[0]*ne[1]*ne[2]*ne[3]; + const size_t grid_size = ((total_threads + SYCL_SET_BLOCK_SIZE - 1) / SYCL_SET_BLOCK_SIZE) * SYCL_SET_BLOCK_SIZE; + + // Copy src0 to dst if not inplace + stream->parallel_for( + nd_range<1>(range<1>(grid_size), range<1>(SYCL_SET_BLOCK_SIZE)), + [=](nd_item<1> item) { + set_f32(src1_ptr, dst_ptr, + ne[0], ne[1], ne[2], ne[3], + nb, src_nb, offset_elem, item); } + ); +} diff --git a/ggml/src/ggml-sycl/set.hpp b/ggml/src/ggml-sycl/set.hpp new file mode 100644 index 0000000000..657d7ac9a7 --- /dev/null +++ b/ggml/src/ggml-sycl/set.hpp @@ -0,0 +1,5 @@ +#pragma once +#include "backend.hpp" +#include "ggml.h" + +void ggml_sycl_op_set(ggml_backend_sycl_context & ctx, ggml_tensor * dst); diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index 1674dc66ab..21bd052255 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -385,6 +385,14 @@ enum shader_reduction_mode { static constexpr uint32_t num_argsort_pipelines = 11; static constexpr uint32_t max_argsort_cols = 1 << (num_argsort_pipelines-1); +static constexpr uint32_t num_topk_moe_pipelines = 10; + +static constexpr std::array topk_moe_norm{ GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT, + GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE, + GGML_OP_SUM_ROWS, GGML_OP_DIV, GGML_OP_RESHAPE }; +static constexpr std::array topk_moe { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT, + GGML_OP_VIEW, GGML_OP_GET_ROWS }; + struct vk_device_struct { std::recursive_mutex mutex; @@ -582,6 +590,9 @@ struct vk_device_struct { vk_pipeline pipeline_pool2d_f32; vk_pipeline pipeline_rwkv_wkv6_f32; vk_pipeline pipeline_rwkv_wkv7_f32; + vk_pipeline pipeline_ssm_scan_f32_d128; + vk_pipeline pipeline_ssm_scan_f32_d256; + vk_pipeline pipeline_ssm_conv_f32; vk_pipeline pipeline_opt_step_adamw_f32; vk_pipeline pipeline_opt_step_sgd_f32; vk_pipeline pipeline_conv2d_f32[CONV_SHAPE_COUNT]; @@ -595,6 +606,9 @@ struct vk_device_struct { vk_pipeline pipeline_flash_attn_split_k_reduce; + // [2] is {!norm, norm} + vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][2]; + std::vector all_pipelines; std::vector> pinned_memory; @@ -938,6 +952,11 @@ struct vk_op_multi_add_push_constants { static_assert(MAX_PARAMETER_COUNT == 12); static_assert(sizeof(vk_op_multi_add_push_constants) <= 256); +struct vk_op_topk_moe_push_constants { + uint32_t n_rows; + uint32_t n_expert_used; +}; + struct vk_op_add_id_push_constants { uint32_t ne0; uint32_t ne1; @@ -1087,6 +1106,19 @@ struct vk_op_rwkv_wkv7_push_constants { uint32_t C; uint32_t H; }; +struct vk_op_ssm_scan_push_constants { + uint32_t nb02, nb03, nb12, nb13; + uint32_t nb21, nb22, nb31; + uint32_t nb42, nb43, nb52, nb53; + uint32_t s_off; + uint32_t n_head, d_head, n_group, n_tok; +}; +struct vk_op_ssm_conv_push_constants { + uint32_t nb01, nb02; + uint32_t nb11; + uint32_t dst_nb0, dst_nb1, dst_nb2; + uint32_t nc, ncs, nr, n_t, n_s; +}; struct vk_op_conv2d_push_constants { uint32_t Cout; @@ -3591,6 +3623,11 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv7_f32, "rwkv_wkv7_f32", rwkv_wkv7_f32_len, rwkv_wkv7_f32_data, "main", 8, sizeof(vk_op_rwkv_wkv7_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); + ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d128, "ssm_scan_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {128, device->subgroup_size, 16}, 1); + ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d256, "ssm_scan_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {256, device->subgroup_size, 16}, 1); + + ggml_vk_create_pipeline(device, device->pipeline_ssm_conv_f32, "ssm_conv_f32", ssm_conv_f32_len, ssm_conv_f32_data, "main", 3, sizeof(vk_op_ssm_conv_push_constants), {32, 1, 1}, {32}, 1); + ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_opt_step_sgd_f32, "opt_step_sgd_f32", opt_step_sgd_f32_len, opt_step_sgd_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); @@ -3701,6 +3738,11 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f16_f32, "conv2d_dw_whcn_f16_f32", conv2d_dw_whcn_f16_f32_len, conv2d_dw_whcn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f16_f32, "conv2d_dw_cwhn_f16_f32", conv2d_dw_cwhn_f16_f32_len, conv2d_dw_cwhn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1); + for (uint32_t i = 0; i < num_topk_moe_pipelines; ++i) { + ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][0], "topk_moe_f32_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<pipeline_topk_moe[i][1], "topk_moe_f32_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32); + if (ctx->num_additional_fused_ops) { + uint32_t idx = (uint32_t)ceilf(log2f(float(dst->ne[0]))); + GGML_ASSERT(idx < num_topk_moe_pipelines); + bool with_norm = ctx->num_additional_fused_ops == topk_moe_norm.size() - 1; + return ctx->device->pipeline_topk_moe[idx][with_norm]; + } + if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) { return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_wg512 : ctx->device->pipeline_soft_max_f32; } @@ -8098,6 +8147,21 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_rwkv_wkv7_f32; } return nullptr; + case GGML_OP_SSM_SCAN: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + const uint32_t d_state = src0->ne[0]; + if (d_state == 128) { + return ctx->device->pipeline_ssm_scan_f32_d128; + } else if (d_state == 256) { + return ctx->device->pipeline_ssm_scan_f32_d256; + } + } + return nullptr; + case GGML_OP_SSM_CONV: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_ssm_conv_f32; + } + return nullptr; case GGML_OP_OPT_STEP_ADAMW: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_opt_step_adamw_f32; @@ -8592,6 +8656,14 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co } } break; + case GGML_OP_SSM_CONV: + { + const uint32_t nr = src0->ne[1]; + const uint32_t n_t = dst->ne[1]; + const uint32_t n_s = dst->ne[2]; + elements = { nr, n_t, n_s }; + } + break; default: elements = { (uint32_t)ggml_nelements(src0), 1, 1 }; break; @@ -9038,6 +9110,117 @@ static void ggml_vk_rwkv_wkv7(ggml_backend_vk_context * ctx, vk_context& subctx, ); } +static void ggml_vk_ssm_scan(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + const ggml_tensor * src2 = dst->src[2]; + const ggml_tensor * src3 = dst->src[3]; + const ggml_tensor * src4 = dst->src[4]; + const ggml_tensor * src5 = dst->src[5]; + + GGML_ASSERT(dst->buffer != nullptr); + + const uint32_t head_dim = src0->ne[1]; + const uint32_t n_head = src1->ne[1]; + const uint32_t n_group = src4->ne[1]; + const uint32_t n_tok = src1->ne[2]; + const uint32_t n_seq = src1->ne[3]; + + bool is_mamba2 = (src3->nb[1] == sizeof(float)); + GGML_ASSERT(is_mamba2); + + vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, dst->op); + GGML_ASSERT(pipeline != nullptr); + + if (dryrun) { + ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1); + return; + } + + const int64_t s_off = ggml_nelements(src1) * sizeof(float); + + const vk_op_ssm_scan_push_constants pc = { + (uint32_t)src0->nb[2], (uint32_t)src0->nb[3], + (uint32_t)src1->nb[2], (uint32_t)src1->nb[3], + (uint32_t)src2->nb[1], (uint32_t)src2->nb[2], + (uint32_t)src3->nb[1], + (uint32_t)src4->nb[2], (uint32_t)src4->nb[3], + (uint32_t)src5->nb[2], (uint32_t)src5->nb[3], + (uint32_t)s_off, + n_head, head_dim, n_group, n_tok + }; + + ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; + ggml_backend_vk_buffer_context * src_buf_ctxs[GGML_MAX_SRC]; + for (int i = 0; i < GGML_MAX_SRC && dst->src[i] != nullptr; i++) { + src_buf_ctxs[i] = (ggml_backend_vk_buffer_context *)dst->src[i]->buffer->context; + } + + vk_buffer d_D = nullptr, d_srcs[GGML_MAX_SRC] = { nullptr }; + size_t dst_offset = 0, src_offsets[GGML_MAX_SRC] = { 0 }; + bool dst_uma = false, srcs_uma[GGML_MAX_SRC] = { false }; + + if (ctx->device->uma) { + for (int i = 0; i < GGML_MAX_SRC && dst->src[i] != nullptr; i++) { + ggml_vk_host_get(ctx->device, dst->src[i]->data, d_srcs[i], src_offsets[i]); + srcs_uma[i] = d_srcs[i] != nullptr; + } + ggml_vk_host_get(ctx->device, dst->data, d_D, dst_offset); + dst_uma = d_D != nullptr; + } + + if (!dst_uma) { + d_D = dst_buf_ctx->dev_buffer; + dst_offset = vk_tensor_offset(dst) + dst->view_offs; + } + for (int i = 0; i < GGML_MAX_SRC && dst->src[i] != nullptr; i++) { + if (!srcs_uma[i]) { + d_srcs[i] = src_buf_ctxs[i]->dev_buffer; + src_offsets[i] = vk_tensor_offset(dst->src[i]) + dst->src[i]->view_offs; + } + } + + size_t dst_size = ggml_nbytes(dst); + size_t src_sizes[GGML_MAX_SRC]; + for (int i = 0; i < GGML_MAX_SRC && dst->src[i] != nullptr; i++) { + src_sizes[i] = ggml_nbytes(dst->src[i]); + } + + std::array elements; + + const int splitH = 16; + const uint32_t num_workgroups_x = CEIL_DIV(n_head * head_dim, splitH); + const uint32_t num_workgroups_y = n_seq; + elements = { num_workgroups_x, num_workgroups_y, 1 }; + + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { + vk_subbuffer{ d_srcs[0], src_offsets[0], src_sizes[0] }, + vk_subbuffer{ d_srcs[1], src_offsets[1], src_sizes[1] }, + vk_subbuffer{ d_srcs[2], src_offsets[2], src_sizes[2] }, + vk_subbuffer{ d_srcs[3], src_offsets[3], src_sizes[3] }, + vk_subbuffer{ d_srcs[4], src_offsets[4], src_sizes[4] }, + vk_subbuffer{ d_srcs[5], src_offsets[5], src_sizes[5] }, + vk_subbuffer{ d_srcs[6], src_offsets[6], src_sizes[6] }, + vk_subbuffer{ d_D, dst_offset, dst_size } + }, pc, elements); +} + +static void ggml_vk_ssm_conv(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SSM_CONV, { + (uint32_t)src0->nb[1], (uint32_t)src0->nb[2], + (uint32_t)src1->nb[1], + (uint32_t)dst->nb[0], (uint32_t)dst->nb[1], (uint32_t)dst->nb[2], + (uint32_t)src1->ne[0], + (uint32_t)src0->ne[0], + (uint32_t)src0->ne[1], + (uint32_t)dst->ne[1], + (uint32_t)dst->ne[2], + }, dryrun); +} + static void ggml_vk_op_f32_opt_step_adamw(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_push_constants&& pc, bool dryrun = false) { const ggml_tensor * x = dst->src[0]; const ggml_tensor * g = dst->src[1]; @@ -9434,6 +9617,87 @@ static void ggml_vk_soft_max_back(ggml_backend_vk_context * ctx, vk_context& sub ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX_BACK, { (uint32_t)src0->ne[0], (uint32_t)ggml_nrows(src0), op_params[0], op_params[1] }, dryrun); } +static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_cgraph * cgraph, int node_idx, bool dryrun = false) { + + bool with_norm = ctx->num_additional_fused_ops == topk_moe_norm.size() - 1; + ggml_tensor * logits = cgraph->nodes[node_idx + 0]->src[0]; + ggml_tensor * weights = with_norm ? cgraph->nodes[node_idx + 8] : cgraph->nodes[node_idx + 4]; + ggml_tensor * ids = cgraph->nodes[node_idx + 3]; + + GGML_ASSERT(logits->type == GGML_TYPE_F32); + GGML_ASSERT(weights->type == GGML_TYPE_F32); + GGML_ASSERT(ids->type == GGML_TYPE_I32); + + const int n_experts = logits->ne[0]; + const int n_rows = logits->ne[1]; + const int n_expert_used = weights->ne[1]; + + GGML_ASSERT(ids->nb[1] / ggml_type_size(ids->type) == (size_t) n_experts); + + vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, nullptr, nullptr, nullptr, cgraph->nodes[node_idx], GGML_OP_SOFT_MAX); + + if (dryrun) { + ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1); + return; + } + + ggml_backend_vk_buffer_context * logits_buf_ctx = (ggml_backend_vk_buffer_context *)logits->buffer->context; + ggml_backend_vk_buffer_context * weights_buf_ctx = (ggml_backend_vk_buffer_context *)weights->buffer->context; + ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context; + + vk_buffer d_logits = nullptr; + size_t logits_buf_offset = 0; + vk_buffer d_weights = nullptr; + size_t weights_buf_offset = 0; + vk_buffer d_ids = nullptr; + size_t ids_buf_offset = 0; + + bool logits_uma = false; + bool weights_uma = false; + bool ids_uma = false; + + if (ctx->device->uma) { + ggml_vk_host_get(ctx->device, logits->data, d_logits, logits_buf_offset); + ggml_vk_host_get(ctx->device, weights->data, d_weights, weights_buf_offset); + ggml_vk_host_get(ctx->device, ids->data, d_ids, ids_buf_offset); + logits_uma = d_logits != nullptr; + weights_uma = d_weights != nullptr; + ids_uma = d_ids != nullptr; + } + + if (!logits_uma) { + d_logits = logits_buf_ctx->dev_buffer; + logits_buf_offset = vk_tensor_offset(logits) + logits->view_offs; + GGML_ASSERT(d_logits != nullptr); + } + if (!weights_uma) { + d_weights = weights_buf_ctx->dev_buffer; + weights_buf_offset = vk_tensor_offset(weights) + weights->view_offs; + GGML_ASSERT(d_weights != nullptr); + } + if (!ids_uma) { + d_ids = ids_buf_ctx->dev_buffer; + ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs; + GGML_ASSERT(d_ids != nullptr); + } + + vk_op_topk_moe_push_constants pc; + pc.n_rows = n_rows; + pc.n_expert_used = n_expert_used; + + GGML_ASSERT(n_expert_used <= n_experts); + + const uint32_t rows_per_block = 4; + std::array elements = { CEIL_DIV(n_rows, rows_per_block), 1, 1 }; + + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, + { + ggml_vk_subbuffer(ctx, d_logits, logits_buf_offset), + ggml_vk_subbuffer(ctx, d_weights, weights_buf_offset), + ggml_vk_subbuffer(ctx, d_ids, ids_buf_offset), + }, pc, elements); +} + static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool backprop, bool dryrun = false) { const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; @@ -10870,6 +11134,8 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr case GGML_OP_CONV_2D_DW: case GGML_OP_RWKV_WKV6: case GGML_OP_RWKV_WKV7: + case GGML_OP_SSM_SCAN: + case GGML_OP_SSM_CONV: case GGML_OP_LEAKY_RELU: case GGML_OP_FLASH_ATTN_EXT: case GGML_OP_OPT_STEP_ADAMW: @@ -11017,11 +11283,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr ctx->unsynced_nodes_read.clear(); ggml_vk_sync_buffers(ctx, compute_ctx); } - // Add the last fused node and all fused source nodes to the unsynchronized list. - const ggml_tensor * last_node = cgraph->nodes[node_idx + ctx->num_additional_fused_ops]; - ctx->unsynced_nodes_written.push_back(last_node); + // Add all fused nodes to the unsynchronized lists. for (int32_t i = 0; i < ctx->num_additional_fused_ops + 1; ++i) { const ggml_tensor *cur_node = cgraph->nodes[node_idx + i]; + // Multiple outputs could be written, e.g. in topk_moe. Add them all to the list. + ctx->unsynced_nodes_written.push_back(cur_node); for (uint32_t j = 0; j < GGML_MAX_SRC; ++j) { if (!cur_node->src[j]) { continue; @@ -11188,7 +11454,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr break; case GGML_OP_SOFT_MAX: - ggml_vk_soft_max(ctx, compute_ctx, src0, src1, src2, node, dryrun); + if (ctx->num_additional_fused_ops) { + ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx, dryrun); + } else { + ggml_vk_soft_max(ctx, compute_ctx, src0, src1, src2, node, dryrun); + } break; case GGML_OP_SOFT_MAX_BACK: @@ -11287,6 +11557,16 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr break; + case GGML_OP_SSM_SCAN: + ggml_vk_ssm_scan(ctx, compute_ctx, node, dryrun); + + break; + + case GGML_OP_SSM_CONV: + ggml_vk_ssm_conv(ctx, compute_ctx, node, dryrun); + + break; + case GGML_OP_OPT_STEP_ADAMW: ggml_vk_opt_step_adamw(ctx, compute_ctx, node, dryrun); @@ -11398,6 +11678,8 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph * case GGML_OP_CONV_2D_DW: case GGML_OP_RWKV_WKV6: case GGML_OP_RWKV_WKV7: + case GGML_OP_SSM_SCAN: + case GGML_OP_SSM_CONV: case GGML_OP_LEAKY_RELU: case GGML_OP_REPEAT: case GGML_OP_REPEAT_BACK: @@ -11972,6 +12254,120 @@ static bool ggml_vk_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, st return true; } +static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph, + int node_idx, bool with_norm) { + + if (with_norm) { + if (node_idx + (int)topk_moe_norm.size() > cgraph->n_nodes) { + return false; + } + for (size_t i = 0; i < topk_moe_norm.size(); ++i) { + if (cgraph->nodes[node_idx + i]->op != topk_moe_norm[i]) { + return false; + } + } + } else { + if (node_idx + (int)topk_moe.size() > cgraph->n_nodes) { + return false; + } + for (size_t i = 0; i < topk_moe.size(); ++i) { + if (cgraph->nodes[node_idx + i]->op != topk_moe[i]) { + return false; + } + } + } + + const ggml_tensor * softmax = cgraph->nodes[node_idx + 0]; + const ggml_tensor * weights = with_norm ? cgraph->nodes[node_idx + 8] : cgraph->nodes[node_idx + 4]; + + const float * op_params = (const float *)softmax->op_params; + + float scale = op_params[0]; + float max_bias = op_params[1]; + + if (!ggml_is_contiguous(softmax->src[0]) || !ggml_is_contiguous(weights)) { + return false; + } + + if (scale != 1.0f || max_bias != 0.0f) { + return false; + } + + // don't fuse when masks or sinks are present + if (softmax->src[1] || softmax->src[2]) { + return false; + } + + const int n_expert = softmax->ne[0]; + // n_expert must be a power of 2 + if (!is_pow2(n_expert) || n_expert > (1 << (num_topk_moe_pipelines-1))) { + return false; + } + + // Check that the nodes don't have any unexpected uses + const ggml_tensor * reshape1 = cgraph->nodes[node_idx + 1]; + const ggml_tensor * argsort = cgraph->nodes[node_idx + 2]; + const ggml_tensor * view = cgraph->nodes[node_idx + 3]; + const ggml_tensor * get_rows = cgraph->nodes[node_idx + 4]; + const ggml_tensor * reshape5 = with_norm ? cgraph->nodes[node_idx + 5] : nullptr; + const ggml_tensor * sum_rows = with_norm ? cgraph->nodes[node_idx + 6] : nullptr; + const ggml_tensor * div = with_norm ? cgraph->nodes[node_idx + 7] : nullptr; + const ggml_tensor * reshape8 = with_norm ? cgraph->nodes[node_idx + 8] : nullptr; + + // softmax is used by reshape and argsort + if (ggml_node_get_use_count(cgraph, node_idx) != 2 || + reshape1->src[0] != softmax || + argsort->src[0] != softmax) { + return false; + } + // reshape is used by get_rows + if (ggml_node_get_use_count(cgraph, node_idx + 1) != 1 || + get_rows->src[0] != reshape1) { + return false; + } + // argsort is used by view + if (ggml_node_get_use_count(cgraph, node_idx + 2) != 1 || + view->src[0] != argsort) { + return false; + } + // view is written (via argsort), we can skip checking it + + if (with_norm) { + // get_rows is used by reshape + if (ggml_node_get_use_count(cgraph, node_idx + 4) != 1 || + reshape5->src[0] != get_rows) { + return false; + } + + // reshape is used by sum_rows and div + if (ggml_node_get_use_count(cgraph, node_idx + 5) != 2 || + sum_rows->src[0] != reshape5 || + div->src[0] != reshape5) { + return false; + } + + // sum_rows is used by div + if (ggml_node_get_use_count(cgraph, node_idx + 6) != 1 || + div->src[1] != sum_rows) { + return false; + } + + // div/reshape are written + if (reshape8->src[0] != div) { + return false; + } + } + + if (!ctx->device->subgroup_arithmetic || + !ctx->device->subgroup_shuffle || + !ctx->device->subgroup_require_full_support || + ctx->device->disable_fusion) { + return false; + } + + return true; +} + static uint32_t ggml_vk_fuse_multi_add(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph, int node_idx) { const ggml_tensor *first_node = cgraph->nodes[node_idx]; @@ -12047,6 +12443,10 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg ctx->num_additional_fused_ops = num_adds - 1; } else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) { ctx->num_additional_fused_ops = 1; + } else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, true)) { + ctx->num_additional_fused_ops = topk_moe_norm.size() - 1; + } else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, false)) { + ctx->num_additional_fused_ops = topk_moe.size() - 1; } } ggml_vk_build_graph(ctx, cgraph, i, nullptr, 0, true, false, false, false); @@ -12144,6 +12544,10 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg ctx->num_additional_fused_ops = num_adds - 1; } else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) { ctx->num_additional_fused_ops = 1; + } else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, true)) { + ctx->num_additional_fused_ops = topk_moe_norm.size() - 1; + } else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, false)) { + ctx->num_additional_fused_ops = topk_moe.size() - 1; } } @@ -12151,10 +12555,10 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg bool almost_ready = (cgraph->n_nodes - i) < cgraph->n_nodes / 5; bool submit = (submitted_nodes >= nodes_per_submit) || (mul_mat_bytes >= mul_mat_bytes_per_submit) || - (i + ctx->num_additional_fused_ops == last_node) || + (i + ctx->num_additional_fused_ops >= last_node) || (almost_ready && !ctx->almost_ready_fence_pending); - bool enqueued = ggml_vk_build_graph(ctx, cgraph, i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i + ctx->num_additional_fused_ops == last_node, almost_ready, submit); + bool enqueued = ggml_vk_build_graph(ctx, cgraph, i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i + ctx->num_additional_fused_ops >= last_node, almost_ready, submit); if (vk_perf_logger_enabled) { if (ctx->compute_ctx.expired()) { @@ -12275,6 +12679,25 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph * while (first_unused < graph->n_nodes) { std::vector current_set; + // Avoid reordering topk_moe_norm + if (first_unused + (int)topk_moe_norm.size() <= graph->n_nodes) { + bool is_topk_moe_norm = true; + for (size_t j = 0; j < topk_moe_norm.size(); ++j) { + if (graph->nodes[first_unused + j]->op != topk_moe_norm[j] || used[first_unused + j]) { + is_topk_moe_norm = false; + } + } + if (is_topk_moe_norm) { + for (size_t j = 0; j < topk_moe_norm.size(); ++j) { + new_order.push_back(graph->nodes[first_unused + j]); + used[first_unused + j] = true; + } + while (first_unused < graph->n_nodes && used[first_unused]) { + first_unused++; + } + continue; + } + } // First, grab the next unused node. current_set.push_back(first_unused); @@ -12879,6 +13302,47 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm case GGML_OP_RWKV_WKV6: case GGML_OP_RWKV_WKV7: return true; + case GGML_OP_SSM_SCAN: + { + for (int i = 0; i < 6; i++) { + if (op->src[i] && ggml_is_quantized(op->src[i]->type)) { + return false; + } + } + if (op->src[6] && op->src[6]->type != GGML_TYPE_I32) { + return false; + } + if (op->src[0]->type != GGML_TYPE_F32 || op->type != GGML_TYPE_F32) { + return false; + } + + const uint32_t d_state = op->src[0]->ne[0]; + const uint32_t head_dim = op->src[0]->ne[1]; + + bool is_mamba2 = (op->src[3] && op->src[3]->nb[1] == sizeof(float)); + if (!is_mamba2) { + return false; + } + + if ((d_state != 128 && d_state != 256) || head_dim % 16 != 0) { + return false; + } + + ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context; + const vk_device& device = ggml_vk_get_device(ctx->device); + + const uint32_t SPLIT_H = 16; + + size_t stateC_size = SPLIT_H * d_state * sizeof(float); + + if (stateC_size > device->properties.limits.maxComputeSharedMemorySize) { + return false; + } + + return true; + } + case GGML_OP_SSM_CONV: + return true; case GGML_OP_CONV_TRANSPOSE_1D: return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32; case GGML_OP_CONV_2D: @@ -13223,14 +13687,14 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * struct ggml_context * ggml_ctx = ggml_init(iparams); - std::array src_clone = {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}; - std::array src_size = {0, 0, 0, 0, 0, 0}; - std::array src_buffer = {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}; - const char * srci_name[6] = {"src0", "src1", "src2", "src3", "src4", "src5"}; + std::array src_clone = {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}; + std::array src_size = {}; + std::array src_buffer = {}; + const char * srci_name[GGML_MAX_SRC] = {"src0", "src1", "src2", "src3", "src4", "src5", "src6", "src7", "src8", "src9"}; struct ggml_tensor * tensor_clone = nullptr; - for (int i = 0; i < 6; i++) { + for (int i = 0; i < GGML_MAX_SRC; i++) { ggml_tensor * srci = tensor->src[i]; if (fused_rms_norm_mul) { rms_norm_idx = tensor->src[0]->op == GGML_OP_RMS_NORM ? 0 : 1; @@ -13537,6 +14001,11 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * src_clone[2]); } else if (tensor->op == GGML_OP_ADD_ID) { tensor_clone = ggml_add_id(ggml_ctx, src_clone[0], src_clone[1], src_clone[2]); + } else if (tensor->op == GGML_OP_SSM_SCAN) { + tensor_clone = ggml_ssm_scan(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], + src_clone[3], src_clone[4], src_clone[5], src_clone[6]); + } else if (tensor->op == GGML_OP_SSM_CONV) { + tensor_clone = ggml_ssm_conv(ggml_ctx, src_clone[0], src_clone[1]); } else { std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; @@ -13558,7 +14027,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * memcpy(comp_result, tensor_clone->data, comp_size); memcpy(comp_nb, tensor_clone->nb, sizeof(size_t) * GGML_MAX_DIMS); - for (int i = 0; i < 6; i++) { + for (int i = 0; i < GGML_MAX_SRC; i++) { if (src_buffer[i] != nullptr) { free(src_buffer[i]); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/ssm_conv.comp b/ggml/src/ggml-vulkan/vulkan-shaders/ssm_conv.comp new file mode 100644 index 0000000000..d62696bcfa --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/ssm_conv.comp @@ -0,0 +1,44 @@ +#version 450 + +#extension GL_EXT_control_flow_attributes : require + +#include "types.glsl" + +layout(constant_id = 0) const uint BLOCK_SIZE = 32; + +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; + +layout(binding = 0) readonly buffer Src0 { float src0[]; }; +layout(binding = 1) readonly buffer Src1 { float src1[]; }; +layout(binding = 2) buffer Dst { float dst[]; }; + +layout(push_constant) uniform PushConstants { + uint nb01; uint nb02; + uint nb11; + uint dst_nb0; uint dst_nb1; uint dst_nb2; + uint nc; uint ncs; uint nr; uint n_t; uint n_s; +}; + +void main() { + const uint global_thread_id = gl_GlobalInvocationID.x; + const uint i2 = gl_WorkGroupID.y; + const uint i3 = gl_WorkGroupID.z; + + if (global_thread_id >= nr || i2 >= n_t || i3 >= n_s) { + return; + } + + const uint i1 = global_thread_id; + const uint src0_base = i3 * (nb02 / 4) + i2 + i1 * (nb01 / 4); + const uint src1_base = i1 * (nb11 / 4); + const uint dst_idx = i3 * (dst_nb2 / 4) + i2 * (dst_nb1 / 4) + i1; + + float sum = 0.0; + [[unroll]] for (uint i0 = 0; i0 < nc; i0++) { + const uint src0_idx = src0_base + i0; + const uint src1_idx = src1_base + i0; + sum += src0[src0_idx] * src1[src1_idx]; + } + + dst[dst_idx] = sum; +} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/ssm_scan.comp b/ggml/src/ggml-vulkan/vulkan-shaders/ssm_scan.comp new file mode 100644 index 0000000000..12bd174579 --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/ssm_scan.comp @@ -0,0 +1,125 @@ +#version 450 + +#extension GL_EXT_control_flow_attributes : require + +#include "types.glsl" + +layout(constant_id = 0) const uint D_STATE = 128; +layout(constant_id = 1) const uint SUBGROUP_SIZE = 32; +layout(constant_id = 2) const uint SPLIT_H = 16; + +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; + +layout(binding = 0) readonly buffer Src0 { float s0[]; }; +layout(binding = 1) readonly buffer Src1 { float x[]; }; +layout(binding = 2) readonly buffer Src2 { float dt[]; }; +layout(binding = 3) readonly buffer Src3 { float A[]; }; +layout(binding = 4) readonly buffer Src4 { float B[]; }; +layout(binding = 5) readonly buffer Src5 { float C[]; }; +layout(binding = 6) readonly buffer Src6 { int ids[]; }; +layout(binding = 7) buffer Dst { float d[]; }; + +layout(push_constant) uniform PushConstants { + uint nb02; uint nb03; uint nb12; uint nb13; + uint nb21; uint nb22; uint nb31; + uint nb42; uint nb43; uint nb52; uint nb53; + uint s_off; + uint n_head; + uint d_head; + uint n_group; + uint n_tok; +}; + +float softplus(float x) { + if (x <= 20.0) { + return log(1.0 + exp(x)); + } else { + return x; + } +} + +shared float stateC[SPLIT_H * D_STATE]; + +void main() { + const uint tid = gl_LocalInvocationID.x; + const uint head_idx = (gl_WorkGroupID.x * SPLIT_H) / d_head; + const uint head_off = ((gl_WorkGroupID.x * SPLIT_H) % d_head) * 4; + const uint seq_idx = gl_WorkGroupID.y; + + const uint group_off = (head_idx / (n_head / n_group)) * D_STATE * 4; + const uint s0_base_idx = (uint(ids[seq_idx]) * nb03 + head_idx * nb02 + head_off * D_STATE) / 4; + const uint x_base_idx = (seq_idx * nb13 + gl_WorkGroupID.x * SPLIT_H * 4) / 4; + const uint dt_base_idx = (seq_idx * nb22 + head_idx * 4) / 4; + const uint A_base_idx = (head_idx * nb31) / 4; + const uint B_base_idx = (seq_idx * nb43 + group_off) / 4; + const uint C_base_idx = (seq_idx * nb53 + group_off) / 4; + const uint y_base_idx = seq_idx * n_tok * n_head * d_head + gl_WorkGroupID.x * SPLIT_H; + const uint s_base_idx = (s_off + seq_idx * nb03 + head_idx * nb02 + head_off * D_STATE) / 4; + + const uint stride_x = nb12 / 4; + const uint stride_dt = nb21 / 4; + const uint stride_B = nb42 / 4; + const uint stride_C = nb52 / 4; + const uint stride_y = n_head * d_head; + + float state[SPLIT_H]; + [[unroll]] for (uint j = 0; j < SPLIT_H; j++) { + state[j] = s0[s0_base_idx + j * D_STATE + tid]; + } + + for (uint i = 0; i < n_tok; i++) { + const float dt_soft_plus = softplus(dt[dt_base_idx + i * stride_dt]); + + const float dA = exp(dt_soft_plus * A[A_base_idx]); + + const float B_val = B[B_base_idx + i * stride_B + tid]; + const float C_val = C[C_base_idx + i * stride_C + tid]; + + [[unroll]] for (uint j = 0; j < SPLIT_H; j++) { + const float x_dt = x[x_base_idx + i * stride_x + j] * dt_soft_plus; + + state[j] = (state[j] * dA) + (B_val * x_dt); + + stateC[j * D_STATE + tid] = state[j] * C_val; + } + + barrier(); + for (uint w = D_STATE; w > SUBGROUP_SIZE; w >>= 1) { + [[unroll]] for (uint j = 0; j < ((w >> 1) * SPLIT_H + D_STATE - 1) / D_STATE; j++) { + const uint k = (tid % (w >> 1)) + + (D_STATE * (tid / (w >> 1))) + + j * D_STATE * (D_STATE / (w >> 1)); + if (k < SPLIT_H * D_STATE && (k + (w >> 1)) < SPLIT_H * D_STATE) { + stateC[k] += stateC[k + (w >> 1)]; + } + } + barrier(); + } + + [[unroll]] for (uint j = 0; j <= SPLIT_H / (D_STATE / SUBGROUP_SIZE); j++) { + const uint idx = (tid % SUBGROUP_SIZE) + + D_STATE * (tid / SUBGROUP_SIZE) + + j * D_STATE * (D_STATE / SUBGROUP_SIZE); + + uint lane = tid % SUBGROUP_SIZE; + + [[unroll]] for (uint offset = SUBGROUP_SIZE / 2; offset > 0; offset >>= 1) { + if (idx + offset < SPLIT_H * D_STATE) { + stateC[idx] += stateC[idx + offset]; + } + barrier(); + } + + if (idx < SPLIT_H * D_STATE && tid % SUBGROUP_SIZE == 0) { + const uint k = tid / SUBGROUP_SIZE + j * (D_STATE / SUBGROUP_SIZE); + d[y_base_idx + i * stride_y + k] = stateC[idx]; + } + } + + barrier(); + } + + [[unroll]] for (uint j = 0; j < SPLIT_H; j++) { + d[s_base_idx + j * D_STATE + tid] = state[j]; + } +} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/topk_moe.comp b/ggml/src/ggml-vulkan/vulkan-shaders/topk_moe.comp new file mode 100644 index 0000000000..9e56d5f8a3 --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/topk_moe.comp @@ -0,0 +1,139 @@ +#version 450 + +#extension GL_EXT_control_flow_attributes : require +#extension GL_KHR_shader_subgroup_basic : enable +#extension GL_KHR_shader_subgroup_arithmetic : enable +#extension GL_KHR_shader_subgroup_shuffle : enable + +#include "types.glsl" + +layout (push_constant) uniform parameter +{ + uint n_rows; + uint n_expert_used; +}; + +layout(local_size_x_id = 0, local_size_y = 4, local_size_z = 1) in; + +layout(constant_id = 0) const uint WARP_SIZE = 32; +layout(constant_id = 1) const uint n_experts = 512; +layout(constant_id = 2) const bool with_norm = true; + +const uint experts_per_thread = (n_experts > WARP_SIZE) ? n_experts / WARP_SIZE : 1; + +layout (binding = 0, std430) readonly buffer Logits {float logits[];}; +layout (binding = 1, std430) writeonly buffer Weights {float weights[];}; +layout (binding = 2, std430) writeonly buffer Ids {uint ids[];}; + +void main() { + const uint row = gl_WorkGroupID.x * gl_WorkGroupSize.y + gl_LocalInvocationID.y; + if (row >= n_rows) { + return; + } + + const uint logits_offset = n_experts * row; + const uint weights_offset = n_expert_used * row; + const uint ids_offset = n_experts * row; + + float logits_r[experts_per_thread]; + + const float INFINITY = 1.0 / 0.0; + + [[unroll]] + for (uint i = 0; i < n_experts; i += WARP_SIZE) { + const uint expert = i + gl_LocalInvocationID.x; + logits_r[i / WARP_SIZE] = n_experts % WARP_SIZE == 0 || expert < n_experts ? logits[logits_offset + expert] : -INFINITY; + } + + float max_val = logits_r[0]; + + [[unroll]] + for (int i = 1; i < experts_per_thread; i++) { + const float val = logits_r[i]; + max_val = max(val, max_val); + } + + max_val = subgroupMax(max_val); + + float wt[experts_per_thread]; + float tmp = 0.f; + + [[unroll]] + for (int i = 0; i < experts_per_thread; i++) { + const float val = logits_r[i]; + wt[i] = exp(val - max_val); + tmp += wt[i]; + } + + tmp = subgroupAdd(tmp); + + const float inv_sum = 1.0f / tmp; + + [[unroll]] + for (int i = 0; i < experts_per_thread; i++) { + wt[i] = wt[i] * inv_sum; + } + + // at this point, each thread holds a portion of softmax, + // we do the argmax reduce over n_expert_used, each time marking + // the expert weight as -inf to exclude from the next iteration + + float wt_sum = 0.f; + + float output_weights[experts_per_thread]; + + for (int k = 0; k < n_expert_used; k++) { + float max_val = wt[0]; + uint max_expert = gl_LocalInvocationID.x; + + [[unroll]] + for (int i = 1; i < experts_per_thread; i++) { + const uint expert = gl_LocalInvocationID.x + i * WARP_SIZE; + if ((n_experts % WARP_SIZE == 0 || expert < n_experts) && wt[i] > max_val) { + max_val = wt[i]; + max_expert = expert; + } + } + + [[unroll]] + for (uint mask = WARP_SIZE / 2; mask > 0; mask /= 2) { + const float val = subgroupShuffleXor(max_val, mask); + const uint expert = subgroupShuffleXor(max_expert, mask); + if (val > max_val || (val == max_val && expert < max_expert)) { + max_val = val; + max_expert = expert; + } + } + + if ((k & (WARP_SIZE - 1)) == gl_LocalInvocationID.x) { + output_weights[k / WARP_SIZE] = max_val; + } + + if ((max_expert & (WARP_SIZE - 1)) == gl_LocalInvocationID.x) { + wt[max_expert / WARP_SIZE] = -INFINITY; + + ids[ids_offset + k] = max_expert; + if (with_norm) { + wt_sum += max_val; + } + } + } + + if (with_norm) { + wt_sum = subgroupAdd(wt_sum); + const float inv_sum = 1.0f / wt_sum; + + [[unroll]] + for (uint i = 0; i < experts_per_thread; ++i) { + output_weights[i] *= inv_sum; + } + } + + [[unroll]] + for (uint i = 0; i < experts_per_thread; ++i) { + uint idx = i * WARP_SIZE + gl_LocalInvocationID.x; + if (idx < n_expert_used) { + weights[weights_offset + idx] = output_weights[i]; + } + } +} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index 184f3f3a7d..49bf6c764f 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -916,6 +916,12 @@ void process_shaders() { string_to_spv("multi_add_f32", "multi_add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}, {"ADD_RMS" , "0"}}); string_to_spv("multi_add_rms_f32", "multi_add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}, {"ADD_RMS" , "1"}}); + string_to_spv("ssm_scan_f32", "ssm_scan.comp", {{"A_TYPE", "float"}}); + + string_to_spv("ssm_conv_f32", "ssm_conv.comp", {{"A_TYPE", "float"}}); + + string_to_spv("topk_moe_f32", "topk_moe.comp", {}); + for (auto &c : compiles) { c.wait(); } @@ -959,7 +965,7 @@ void write_output_files() { } std::string suffixes[2] = {"_f32", "_f16"}; - for (auto op : {"add", "sub", "mul", "div", "add_rms"}) { + for (std::string op : {"add", "sub", "mul", "div", "add_rms"}) { hdr << "extern const void * " << op << "_data[2][2][2][2];\n"; hdr << "extern const uint64_t " << op << "_len[2][2][2][2];\n"; diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index f5e5fba800..1b71fb3749 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -102,6 +102,8 @@ class Keys: EXPERT_COUNT = "{arch}.expert_count" EXPERT_USED_COUNT = "{arch}.expert_used_count" EXPERT_SHARED_COUNT = "{arch}.expert_shared_count" + EXPERT_GROUP_COUNT = "{arch}.expert_group_count" + EXPERT_GROUP_USED_COUNT = "{arch}.expert_group_used_count" EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale" EXPERT_WEIGHTS_NORM = "{arch}.expert_weights_norm" EXPERT_GATING_FUNC = "{arch}.expert_gating_func" @@ -400,6 +402,7 @@ class MODEL_ARCH(IntEnum): WAVTOKENIZER_DEC = auto() PLM = auto() BAILINGMOE = auto() + BAILINGMOE2 = auto() DOTS1 = auto() ARCEE = auto() ERNIE4_5 = auto() @@ -744,6 +747,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec", MODEL_ARCH.PLM: "plm", MODEL_ARCH.BAILINGMOE: "bailingmoe", + MODEL_ARCH.BAILINGMOE2: "bailingmoe2", MODEL_ARCH.DOTS1: "dots1", MODEL_ARCH.ARCEE: "arcee", MODEL_ARCH.ERNIE4_5: "ernie4_5", @@ -2533,6 +2537,35 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN_SHEXP, MODEL_TENSOR.FFN_UP_SHEXP, ], + MODEL_ARCH.BAILINGMOE2: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q_NORM, + MODEL_TENSOR.ATTN_K_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_EXP_PROBS_B, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + MODEL_TENSOR.FFN_GATE_SHEXP, + MODEL_TENSOR.FFN_DOWN_SHEXP, + MODEL_TENSOR.FFN_UP_SHEXP, + MODEL_TENSOR.NEXTN_EH_PROJ, + MODEL_TENSOR.NEXTN_EMBED_TOKENS, + MODEL_TENSOR.NEXTN_ENORM, + MODEL_TENSOR.NEXTN_HNORM, + MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD, + MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM, + MODEL_TENSOR.LAYER_OUT_NORM, + ], MODEL_ARCH.DOTS1: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 306679e218..d52d4f40f7 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -755,6 +755,12 @@ class GGUFWriter: def add_expert_shared_count(self, count: int) -> None: self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count) + def add_expert_group_count(self, count: int) -> None: + self.add_uint32(Keys.LLM.EXPERT_GROUP_COUNT.format(arch=self.arch), count) + + def add_expert_group_used_count(self, count: int) -> None: + self.add_uint32(Keys.LLM.EXPERT_GROUP_USED_COUNT.format(arch=self.arch), count) + def add_expert_weights_scale(self, value: float) -> None: self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index c05aa6cc48..d7dcd8efb8 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -174,6 +174,7 @@ class TensorNameMap: "h.{bid}.self_attention.query_key_value", # bloom "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon "model.layers.{bid}.self_attn.query_key_value", # persimmon + "model.layers.{bid}.attention.query_key_value", # bailingmoe2 "h.{bid}.attn.c_attn", # gpt2 "transformer.h.{bid}.mixer.Wqkv", # phi2 "encoder.layers.{bid}.attn.Wqkv", # nomic-bert @@ -260,6 +261,7 @@ class TensorNameMap: "transformer.h.{bid}.attn.out_proj", # gpt-j "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon "model.layers.{bid}.self_attn.dense", # persimmon + "model.layers.{bid}.attention.dense", # bailingmoe2 "h.{bid}.attn.c_proj", # gpt2 "transformer.h.{bid}.mixer.out_proj", # phi2 "model.layers.layers.{bid}.self_attn.o_proj", # plamo @@ -373,6 +375,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_EXP_PROBS_B: ( "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1 "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe + "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2 "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe ), @@ -549,6 +552,7 @@ class TensorNameMap: "language_model.encoder.layers.{bid}.self_attention.q_layernorm", "model.layers.{bid}.self_attn.q_layernorm", # persimmon "model.layers.{bid}.self_attn.query_layernorm", # hunyuan + "model.layers.{bid}.attention.query_layernorm", # bailingmoe2 "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2 "layers.{bid}.self_attn.q_norm", # embeddinggemma "transformer.blocks.{bid}.attn.q_ln", # sea-lion @@ -563,6 +567,7 @@ class TensorNameMap: "language_model.encoder.layers.{bid}.self_attention.k_layernorm", "model.layers.{bid}.self_attn.k_layernorm", # persimmon "model.layers.{bid}.self_attn.key_layernorm", # hunyuan + "model.layers.{bid}.attention.key_layernorm", # bailingmoe2 "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2 "layers.{bid}.self_attn.k_norm", # embeddinggemma "transformer.blocks.{bid}.attn.k_ln", # sea-lion @@ -584,6 +589,7 @@ class TensorNameMap: "transformer.decoder_layer.{bid}.rms_norm_3", # Grok "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2 "encoder.layer.{bid}.layer_norm_2", # jina-v2-code + "model.layers.{bid}.final_layernorm", # bailingmoe2 ), MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: ( diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index b7e00b275b..8ca769c5fd 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -85,6 +85,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" }, { LLM_ARCH_PLM, "plm" }, { LLM_ARCH_BAILINGMOE, "bailingmoe" }, + { LLM_ARCH_BAILINGMOE2, "bailingmoe2" }, { LLM_ARCH_DOTS1, "dots1" }, { LLM_ARCH_ARCEE, "arcee" }, { LLM_ARCH_ERNIE4_5, "ernie4_5" }, @@ -135,6 +136,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" }, + { LLM_KV_EXPERT_GROUP_COUNT, "%s.expert_group_count" }, + { LLM_KV_EXPERT_GROUP_USED_COUNT, "%s.expert_group_used_count" }, { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" }, { LLM_KV_EXPERT_WEIGHTS_NORM, "%s.expert_weights_norm" }, { LLM_KV_EXPERT_GATING_FUNC, "%s.expert_gating_func" }, @@ -1946,6 +1949,38 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, }, }, + { + LLM_ARCH_BAILINGMOE2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + { LLM_TENSOR_NEXTN_EH_PROJ, "blk.%d.nextn.eh_proj" }, + { LLM_TENSOR_NEXTN_EMBED_TOKENS, "blk.%d.nextn.embed_tokens" }, + { LLM_TENSOR_NEXTN_ENORM, "blk.%d.nextn.enorm" }, + { LLM_TENSOR_NEXTN_HNORM, "blk.%d.nextn.hnorm" }, + { LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "blk.%d.nextn.shared_head_head" }, + { LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "blk.%d.nextn.shared_head_norm" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + }, + }, { LLM_ARCH_DOTS1, { diff --git a/src/llama-arch.h b/src/llama-arch.h index c41de89859..dea725c1a7 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -89,6 +89,7 @@ enum llm_arch { LLM_ARCH_WAVTOKENIZER_DEC, LLM_ARCH_PLM, LLM_ARCH_BAILINGMOE, + LLM_ARCH_BAILINGMOE2, LLM_ARCH_DOTS1, LLM_ARCH_ARCEE, LLM_ARCH_ERNIE4_5, @@ -139,6 +140,8 @@ enum llm_kv { LLM_KV_EXPERT_COUNT, LLM_KV_EXPERT_USED_COUNT, LLM_KV_EXPERT_SHARED_COUNT, + LLM_KV_EXPERT_GROUP_COUNT, + LLM_KV_EXPERT_GROUP_USED_COUNT, LLM_KV_EXPERT_WEIGHTS_SCALE, LLM_KV_EXPERT_WEIGHTS_NORM, LLM_KV_EXPERT_GATING_FUNC, diff --git a/src/llama-batch.h b/src/llama-batch.h index d563adc66a..0dc8cebd2a 100644 --- a/src/llama-batch.h +++ b/src/llama-batch.h @@ -123,7 +123,7 @@ private: uint32_t n_seq_max; uint32_t n_outputs; - std::array seq_id_0 = { 0 }; // default sequence id + std::array seq_id_0 = {{ 0 }}; // default sequence id std::vector pos; std::vector n_seq_id; diff --git a/src/llama-chat.cpp b/src/llama-chat.cpp index 956c4e085e..0285006d73 100644 --- a/src/llama-chat.cpp +++ b/src/llama-chat.cpp @@ -63,6 +63,8 @@ static const std::map LLM_CHAT_TEMPLATES = { { "megrez", LLM_CHAT_TEMPLATE_MEGREZ }, { "yandex", LLM_CHAT_TEMPLATE_YANDEX }, { "bailing", LLM_CHAT_TEMPLATE_BAILING }, + { "bailing-think", LLM_CHAT_TEMPLATE_BAILING_THINK }, + { "bailing2", LLM_CHAT_TEMPLATE_BAILING2 }, { "llama4", LLM_CHAT_TEMPLATE_LLAMA4 }, { "smolvlm", LLM_CHAT_TEMPLATE_SMOLVLM }, { "hunyuan-moe", LLM_CHAT_TEMPLATE_HUNYUAN_MOE }, @@ -191,6 +193,10 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) { return LLM_CHAT_TEMPLATE_YANDEX; } else if (tmpl_contains("ASSISTANT") && tmpl_contains("'HUMAN'")) { return LLM_CHAT_TEMPLATE_BAILING; + } else if (tmpl_contains("ASSISTANT") && tmpl_contains("\"HUMAN\"") && tmpl_contains("")) { + return LLM_CHAT_TEMPLATE_BAILING_THINK; + } else if (tmpl_contains("ASSISTANT") && tmpl_contains("HUMAN") && tmpl_contains("<|role_end|>")) { + return LLM_CHAT_TEMPLATE_BAILING2; } else if (tmpl_contains("<|header_start|>") && tmpl_contains("<|header_end|>")) { return LLM_CHAT_TEMPLATE_LLAMA4; } else if (tmpl_contains("<|endofuserprompt|>")) { @@ -644,8 +650,8 @@ int32_t llm_chat_apply_template( if (add_ass) { ss << " Ассистент:[SEP]"; } - } else if (tmpl == LLM_CHAT_TEMPLATE_BAILING) { - // Bailing (Ling) template + } else if (tmpl == LLM_CHAT_TEMPLATE_BAILING || tmpl == LLM_CHAT_TEMPLATE_BAILING_THINK) { + // Bailing (Ling/Ring) template for (auto message : chat) { std::string role(message->role); @@ -658,6 +664,33 @@ int32_t llm_chat_apply_template( ss << "" << role << "" << message->content; } + if (add_ass) { + ss << "ASSISTANT"; + + if (tmpl == LLM_CHAT_TEMPLATE_BAILING_THINK) { + ss << ""; + } + } + } else if (tmpl == LLM_CHAT_TEMPLATE_BAILING2) { + // Bailing2 (Ling 2.0) template + bool has_system = !chat.empty() && std::string(chat[0]->role) == "system"; + + if (!has_system) { + ss << "SYSTEMdetailed thinking off<|role_end|>"; + } + + for (auto message : chat) { + std::string role(message->role); + + if (role == "user") { + role = "HUMAN"; + } else { + std::transform(role.begin(), role.end(), role.begin(), ::toupper); + } + + ss << "" << role << "" << message->content << "<|role_end|>"; + } + if (add_ass) { ss << "ASSISTANT"; } diff --git a/src/llama-chat.h b/src/llama-chat.h index 5a87d9ab62..da1b7c4799 100644 --- a/src/llama-chat.h +++ b/src/llama-chat.h @@ -42,6 +42,8 @@ enum llm_chat_template { LLM_CHAT_TEMPLATE_MEGREZ, LLM_CHAT_TEMPLATE_YANDEX, LLM_CHAT_TEMPLATE_BAILING, + LLM_CHAT_TEMPLATE_BAILING_THINK, + LLM_CHAT_TEMPLATE_BAILING2, LLM_CHAT_TEMPLATE_LLAMA4, LLM_CHAT_TEMPLATE_SMOLVLM, LLM_CHAT_TEMPLATE_DOTS1, diff --git a/src/llama-context.cpp b/src/llama-context.cpp index e7526e7d0a..bd348bcad3 100644 --- a/src/llama-context.cpp +++ b/src/llama-context.cpp @@ -2346,7 +2346,8 @@ llama_context * llama_init_from_model( return nullptr; } - if (params.pooling_type != model->hparams.pooling_type) { + if (params.pooling_type != LLAMA_POOLING_TYPE_UNSPECIFIED && + params.pooling_type != model->hparams.pooling_type) { //user-specified pooling-type is different from the model default LLAMA_LOG_WARN("%s: model default pooling_type is [%d], but [%d] was specified\n", __func__, model->hparams.pooling_type, params.pooling_type); diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp index f29a1e98c9..41fa689437 100644 --- a/src/llama-graph.cpp +++ b/src/llama-graph.cpp @@ -950,6 +950,31 @@ ggml_tensor * llm_graph_context::build_moe_ffn( cb(selection_probs, "ffn_moe_probs_biased", il); } + // select top n_group_used expert groups + // https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/e815299b0bcbac849fa540c768ef21845365c9eb/modeling_deepseek.py#L440-L457 + if (hparams.n_expert_groups > 1 && n_tokens > 0) { + const int64_t n_exp_per_group = n_expert / hparams.n_expert_groups; + + // organize experts into n_expert_groups + ggml_tensor * selection_groups = ggml_reshape_3d(ctx0, selection_probs, n_exp_per_group, hparams.n_expert_groups, n_tokens); // [n_exp_per_group, n_expert_groups, n_tokens] + + ggml_tensor * group_scores = ggml_top_k(ctx0, selection_groups, 2); // [2, n_expert_groups, n_tokens] + group_scores = ggml_get_rows(ctx0, ggml_reshape_4d(ctx0, selection_groups, 1, selection_groups->ne[0], selection_groups->ne[1], selection_groups->ne[2]), group_scores); // [1, 2, n_expert_groups, n_tokens] + + // get top n_group_used expert groups + group_scores = ggml_sum_rows(ctx0, ggml_reshape_3d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2], group_scores->ne[3])); // [1, n_expert_groups, n_tokens] + group_scores = ggml_reshape_2d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2]); // [n_expert_groups, n_tokens] + + ggml_tensor * expert_groups = ggml_top_k(ctx0, group_scores, hparams.n_group_used); // [n_group_used, n_tokens] + cb(expert_groups, "ffn_moe_group_topk", il); + + // mask out the other groups + selection_probs = ggml_get_rows(ctx0, selection_groups, expert_groups); // [n_exp_per_group, n_group_used, n_tokens] + selection_probs = ggml_set_rows(ctx0, ggml_scale_bias(ctx0, selection_groups, 0.0f, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens] + selection_probs = ggml_reshape_2d(ctx0, selection_probs, n_expert, n_tokens); // [n_expert, n_tokens] + cb(selection_probs, "ffn_moe_probs_masked", il); + } + // select experts ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens] cb(selected_experts->src[0], "ffn_moe_argsort", il); @@ -981,6 +1006,11 @@ ggml_tensor * llm_graph_context::build_moe_ffn( ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens] cb(weights_sum, "ffn_moe_weights_sum", il); + if (arch == LLM_ARCH_BAILINGMOE2) { + weights_sum = ggml_scale_bias(ctx0, weights_sum, 1.0, 1e-20); + cb(weights_sum, "ffn_moe_weights_sum_biased", il); + } + weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens] cb(weights, "ffn_moe_weights_norm", il); diff --git a/src/llama-hparams.h b/src/llama-hparams.h index 4e7f73ec23..6fcf91b7da 100644 --- a/src/llama-hparams.h +++ b/src/llama-hparams.h @@ -72,6 +72,8 @@ struct llama_hparams { uint32_t n_ff_chexp = 0; uint32_t n_expert_shared = 0; uint32_t n_norm_groups = 0; + uint32_t n_expert_groups = 0; + uint32_t n_group_used = 0; uint32_t n_group_experts = 0; float expert_group_scale = 0.05f; diff --git a/src/llama-model.cpp b/src/llama-model.cpp index 5002bd42ff..e460996330 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -114,9 +114,12 @@ const char * llm_type_name(llm_type type) { case LLM_TYPE_17B_16E: return "17Bx16E (Scout)"; case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)"; case LLM_TYPE_A13B: return "A13B"; + case LLM_TYPE_7B_A1B: return "7B.A1B"; case LLM_TYPE_8B_A1B: return "8B.A1B"; + case LLM_TYPE_16B_A1B: return "16B.A1B"; case LLM_TYPE_21B_A3B: return "21B.A3B"; case LLM_TYPE_30B_A3B: return "30B.A3B"; + case LLM_TYPE_100B_A6B: return "100B.A6B"; case LLM_TYPE_106B_A12B: return "106B.A12B"; case LLM_TYPE_235B_A22B: return "235B.A22B"; case LLM_TYPE_300B_A47B: return "300B.A47B"; @@ -421,11 +424,8 @@ struct llama_model::impl { llama_mlocks mlock_bufs; llama_mlocks mlock_mmaps; - // contexts where the model tensors metadata is stored - std::vector ctxs; - - // the model memory buffers for the tensor data - std::vector bufs; + // contexts where the model tensors metadata is stored as well ass the corresponding buffers: + std::vector> ctxs_bufs; buft_list_t cpu_buft_list; std::map gpu_buft_list; @@ -483,11 +483,13 @@ void llama_model::load_hparams(llama_model_loader & ml) { return; } - ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); - ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); - ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); - ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); - ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); + ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); + ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); + ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); + ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); + ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); + ml.get_key(LLM_KV_EXPERT_GROUP_COUNT, hparams.n_expert_groups, false); + ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used, false); if (arch == LLM_ARCH_WAVTOKENIZER_DEC) { ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features); @@ -503,8 +505,15 @@ void llama_model::load_hparams(llama_model_loader & ml) { GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert); if (hparams.n_expert > 0) { GGML_ASSERT(hparams.n_expert_used > 0); + GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert); + if (hparams.n_expert_groups > 1) { + GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0); + GGML_ASSERT(hparams.n_group_used > 0); + GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups); + } } else { GGML_ASSERT(hparams.n_expert_used == 0); + GGML_ASSERT(hparams.n_expert_groups == 0); } std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0); @@ -1846,8 +1855,10 @@ void llama_model::load_hparams(llama_model_loader & ml) { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - switch (hparams.n_layer) { - // TODO: Add llm type label (not sure this is useful) + switch (hparams.n_embd) { + case 1536: type = LLM_TYPE_7B_A1B; break; + case 2048: case 2560: type = LLM_TYPE_3B; break; + case 4096: type = LLM_TYPE_32B; break; default: type = LLM_TYPE_UNKNOWN; } @@ -1888,6 +1899,29 @@ void llama_model::load_hparams(llama_model_loader & ml) { default: type = LLM_TYPE_UNKNOWN; } } break; + case LLM_ARCH_BAILINGMOE2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp); + ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); + ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func); + ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false); + + // TODO: when MTP is implemented, this should probably be updated if needed + hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers; + + switch (hparams.n_layer) { + case 20: type = LLM_TYPE_16B_A1B; break; + case 21: type = LLM_TYPE_16B_A1B; break; + case 32: type = LLM_TYPE_100B_A6B; break; + case 33: type = LLM_TYPE_100B_A6B; break; + default: type = LLM_TYPE_UNKNOWN; + } + } break; case LLM_ARCH_DOTS1: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); @@ -2182,7 +2216,14 @@ bool llama_model::load_tensors(llama_model_loader & ml) { max_n_tensors += n_layer*2; // duplicated rope freq tensors const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors; - std::map ctx_map; + // define a comparator for the buft -> ctx map to ensure that the order is well-defined: + struct ggml_backend_buft_comparator { + bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const { + return ggml_backend_buft_name(lhs) < ggml_backend_buft_name(rhs); + } + }; + std::map ctx_map; + auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { auto it = ctx_map.find(buft); if (it == ctx_map.end()) { @@ -2197,12 +2238,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) { throw std::runtime_error(format("failed to create ggml context")); } - ctx_map[buft] = ctx; - pimpl->ctxs.emplace_back(ctx); + ctx_map.emplace(buft, ctx); return ctx; } - return it->second; + return it->second.get(); }; const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED; @@ -5492,6 +5532,70 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); } } break; + case LLM_ARCH_BAILINGMOE2: + { + const int64_t n_ff_exp = hparams.n_ff_exp; + const int64_t n_expert_shared = hparams.n_expert_shared; + + tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); + + GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2"); + GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2"); + + for (int i = 0; i < n_layer; ++i) { + int flags = 0; + if (hparams.nextn_predict_layers > 0 && static_cast(i) >= n_layer - hparams.nextn_predict_layers) { + // skip all tensors in the NextN layers + flags |= TENSOR_SKIP; + } + + auto & layer = layers[i]; + + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags); + + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags); + + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags); + + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags); + + if (static_cast(i) >= hparams.n_layer_dense_lead) { // MoE layers + const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared; + + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags); + layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags); + + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags); + + layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags); + layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags); + layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags); + } else { // Dense layers + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, flags); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, flags); + } + + // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers + if (hparams.nextn_predict_layers > 0 && static_cast(i) >= n_layer - hparams.nextn_predict_layers) { + layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags); + layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags); + layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags); + layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags); + layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags); + layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags); + layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags); + } + } + } break; case LLM_ARCH_DOTS1: { const int64_t n_ff_exp = hparams.n_ff_exp; @@ -6037,16 +6141,15 @@ bool llama_model::load_tensors(llama_model_loader & ml) { pimpl->mappings.reserve(ml.mappings.size()); // create the backend buffers - std::vector> ctx_bufs; - ctx_bufs.reserve(ctx_map.size()); + std::vector> ctx_buf_maps; + ctx_buf_maps.reserve(ctx_map.size()); // Ensure we have enough capacity for the maximum backend buffer we will potentially create const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size(); - pimpl->bufs.reserve(n_max_backend_buffer); + pimpl->ctxs_bufs.reserve(n_max_backend_buffer); - for (auto & it : ctx_map) { - ggml_backend_buffer_type_t buft = it.first; - ggml_context * ctx = it.second; + for (auto & [buft, ctx_ptr] : ctx_map) { + ggml_context * ctx = ctx_ptr.get(); // skip contexts without tensors if (ggml_get_first_tensor(ctx) == nullptr) { @@ -6070,6 +6173,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) { bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr; bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev); + ggml_backend_buffer_t buf = nullptr; if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) { for (uint32_t idx = 0; idx < ml.files.size(); idx++) { // only the mmap region containing the tensors in the model is mapped to the backend buffer @@ -6082,20 +6186,18 @@ bool llama_model::load_tensors(llama_model_loader & ml) { continue; } const size_t max_size = ggml_get_max_tensor_size(ctx); - ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size); + buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size); if (buf == nullptr) { throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft))); } - pimpl->bufs.emplace_back(buf); buf_map.emplace(idx, buf); } } else { - ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); + buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (buf == nullptr) { throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft))); } - pimpl->bufs.emplace_back(buf); if (use_mlock && ggml_backend_buffer_is_host(buf)) { pimpl->mlock_bufs.emplace_back(new llama_mlock); auto & mlock_buf = pimpl->mlock_bufs.back(); @@ -6106,10 +6208,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) { buf_map.emplace(idx, buf); } } - - if (pimpl->bufs.empty()) { - throw std::runtime_error("failed to allocate buffer"); - } + pimpl->ctxs_bufs.emplace_back(std::move(ctx_ptr), buf); for (auto & buf : buf_map) { // indicate that this buffer contains weights @@ -6117,7 +6216,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) { ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); } - ctx_bufs.emplace_back(ctx, buf_map); + ctx_buf_maps.emplace_back(ctx, buf_map); } if (llama_supports_gpu_offload()) { @@ -6135,22 +6234,20 @@ bool llama_model::load_tensors(llama_model_loader & ml) { } // print memory requirements per buffer type - for (auto & buf : pimpl->bufs) { + for (auto & [_, buf] : pimpl->ctxs_bufs) { LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0); } // populate tensors_by_name - for (auto & ctx : pimpl->ctxs) { + for (auto & [ctx, _] : pimpl->ctxs_bufs) { for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) { tensors_by_name.emplace_back(ggml_get_name(cur), cur); } } // load tensor data - for (auto & it : ctx_bufs) { - ggml_context * ctx = it.first; - auto & bufs = it.second; - if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) { + for (auto & [ctx, buf_map] : ctx_buf_maps) { + if (!ml.load_all_data(ctx, buf_map, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) { return false; } } @@ -6190,8 +6287,8 @@ size_t llama_model::n_devices() const { std::map llama_model::memory_breakdown() const { std::map ret; - for (const ggml_backend_buffer_ptr & buf_ptr : pimpl->bufs) { - ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get()); + for (const auto & [_, buf] : pimpl->ctxs_bufs) { + ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get()); } return ret; } @@ -6354,6 +6451,19 @@ void llama_model::print_info() const { LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm); } + if (arch == LLM_ARCH_BAILINGMOE2) { + LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); + LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); + LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); + LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); + LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups); + LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used); + LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); + LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm); + LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func)); + LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n", __func__, hparams.nextn_predict_layers); + } + if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) { LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func)); @@ -17043,6 +17153,150 @@ struct llm_build_bailingmoe : public llm_graph_context { } }; +struct llm_build_bailingmoe2 : public llm_graph_context { + llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + ggml_tensor * cur; + ggml_tensor * inpL; + + inpL = build_inp_embd(model.tok_embd); + + // inp_pos - contains the positions + ggml_tensor * inp_pos = build_inp_pos(); + + auto * inp_attn = build_attn_inp_kv(); + + ggml_tensor * inp_out_ids = build_inp_out_ids(); + + const int n_transformer_layers = n_layer - hparams.nextn_predict_layers; + for (int il = 0; il < n_transformer_layers; ++il) { + ggml_tensor * inpSA = inpL; + + // norm + cur = build_norm(inpL, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, il); + cb(cur, "attn_norm", il); + + // self_attention + { + cur = build_lora_mm(model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd)); + ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd)); + ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)); + + Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); + cb(Qcur, "Qcur_normed", il); + + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); + cb(Kcur, "Kcur_normed", il); + + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + cur = build_attn(inp_attn, + model.layers[il].wo, model.layers[il].bo, + Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); + } + + if (il == n_transformer_layers - 1 && inp_out_ids) { + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + ggml_tensor * sa_out = ggml_add(ctx0, cur, inpSA); + cb(sa_out, "sa_out", il); + + // MoE branch + cur = build_norm(sa_out, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, il); + cb(cur, "ffn_norm", il); + + if (static_cast(il) < hparams.n_layer_dense_lead) { + cur = build_ffn(cur, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(cur, "ffn_out", il); + } else { + ggml_tensor * moe_out = + build_moe_ffn(cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + model.layers[il].ffn_exp_probs_b, + n_expert, n_expert_used, + LLM_FFN_SILU, hparams.expert_weights_norm, + true, hparams.expert_weights_scale, + (llama_expert_gating_func_type) hparams.expert_gating_func, + il); + cb(moe_out, "ffn_moe_out", il); + + { + ggml_tensor * ffn_shexp = build_ffn(cur, + model.layers[il].ffn_up_shexp, NULL, NULL, + model.layers[il].ffn_gate_shexp, NULL, NULL, + model.layers[il].ffn_down_shexp, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(ffn_shexp, "ffn_shexp", il); + + cur = ggml_add(ctx0, moe_out, ffn_shexp); + cb(cur, "ffn_out", il); + } + } + + cur = ggml_add(ctx0, cur, sa_out); + + cur = build_cvec(cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = build_norm(cur, + model.output_norm, NULL, + LLM_NORM_RMS, -1); + + cb(cur, "result_norm", -1); + res->t_embd = cur; + + // lm_head + cur = build_lora_mm(model.output, cur); + + cb(cur, "result_output", -1); + res->t_logits = cur; + + ggml_build_forward_expand(gf, cur); + } +}; + struct llm_build_dots1 : public llm_graph_context { llm_build_dots1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; @@ -19839,6 +20093,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const { { llm = std::make_unique(*this, params); } break; + case LLM_ARCH_BAILINGMOE2: + { + llm = std::make_unique(*this, params); + } break; case LLM_ARCH_SEED_OSS: { llm = std::make_unique(*this, params); @@ -20105,6 +20363,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_EXAONE: case LLM_ARCH_EXAONE4: case LLM_ARCH_MINICPM3: + case LLM_ARCH_BAILINGMOE2: case LLM_ARCH_DOTS1: case LLM_ARCH_HUNYUAN_MOE: case LLM_ARCH_OPENAI_MOE: diff --git a/src/llama-model.h b/src/llama-model.h index 7f48662f28..248f854101 100644 --- a/src/llama-model.h +++ b/src/llama-model.h @@ -107,9 +107,12 @@ enum llm_type { LLM_TYPE_17B_16E, // llama4 Scout LLM_TYPE_17B_128E, // llama4 Maverick LLM_TYPE_A13B, + LLM_TYPE_7B_A1B, LLM_TYPE_8B_A1B, // lfm2moe + LLM_TYPE_16B_A1B, LLM_TYPE_21B_A3B, // Ernie MoE small LLM_TYPE_30B_A3B, + LLM_TYPE_100B_A6B, LLM_TYPE_106B_A12B, // GLM-4.5-Air LLM_TYPE_235B_A22B, LLM_TYPE_300B_A47B, // Ernie MoE big diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 7fffd17149..639fecbd31 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -1968,6 +1968,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { clean_spaces = false; } else if ( tokenizer_pre == "bailingmoe" || + tokenizer_pre == "bailingmoe2" || tokenizer_pre == "llada-moe") { pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE; clean_spaces = false; diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index d5c5a2a665..fa98db2982 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -3759,6 +3759,130 @@ struct test_clamp : public test_case { } }; +// GGML_OP_FLOOR +struct test_floor : public test_case { + const ggml_type type; + const std::array ne; + + std::string vars() override { + return VARS_TO_STR2(type, ne); + } + + test_floor(ggml_type type = GGML_TYPE_F32, + std::array ne = {10, 2, 2, 2}) + : type(type), ne(ne) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_param(a); + ggml_set_name(a, "a"); + + ggml_tensor * out = ggml_floor(ctx, a); + ggml_set_name(out, "out"); + + return out; + } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + init_tensor_uniform(t, -10.0f, 10.0f); + } + } +}; + +// GGML_OP_CEIL +struct test_ceil : public test_case { + const ggml_type type; + const std::array ne; + + std::string vars() override { + return VARS_TO_STR2(type, ne); + } + + test_ceil(ggml_type type = GGML_TYPE_F32, + std::array ne = {10, 2, 2, 2}) + : type(type), ne(ne) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_param(a); + ggml_set_name(a, "a"); + + ggml_tensor * out = ggml_ceil(ctx, a); + ggml_set_name(out, "out"); + + return out; + } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + init_tensor_uniform(t, -10.0f, 10.0f); + } + } +}; + +// GGML_OP_ROUND +struct test_round : public test_case { + const ggml_type type; + const std::array ne; + + std::string vars() override { + return VARS_TO_STR2(type, ne); + } + + test_round(ggml_type type = GGML_TYPE_F32, + std::array ne = {10, 2, 2, 2}) + : type(type), ne(ne) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_param(a); + ggml_set_name(a, "a"); + + ggml_tensor * out = ggml_round(ctx, a); + ggml_set_name(out, "out"); + + return out; + } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + init_tensor_uniform(t, -10.0f, 10.0f); + } + } +}; + +// GGML_OP_TRUNC +struct test_trunc : public test_case { + const ggml_type type; + const std::array ne; + + std::string vars() override { + return VARS_TO_STR2(type, ne); + } + + test_trunc(ggml_type type = GGML_TYPE_F32, + std::array ne = {10, 2, 2, 2}) + : type(type), ne(ne) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_param(a); + ggml_set_name(a, "a"); + + ggml_tensor * out = ggml_trunc(ctx, a); + ggml_set_name(out, "out"); + + return out; + } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + init_tensor_uniform(t, -10.0f, 10.0f); + } + } +}; + // GGML_OP_DIAG_MASK_INF struct test_diag_mask_inf : public test_case { const ggml_type type; @@ -6585,6 +6709,10 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_cos (type)); test_cases.emplace_back(new test_clamp (type)); test_cases.emplace_back(new test_leaky_relu(type)); + test_cases.emplace_back(new test_floor (type)); + test_cases.emplace_back(new test_ceil (type)); + test_cases.emplace_back(new test_round (type)); + test_cases.emplace_back(new test_trunc (type)); test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_log (type, {7, 1, 5, 3})); @@ -6592,6 +6720,10 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3})); + test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3})); + test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3})); + test_cases.emplace_back(new test_round (type, {7, 1, 5, 3})); + test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3})); } test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5)); @@ -6989,6 +7121,8 @@ static std::vector> make_test_cases_perf() { test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true)); test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1)); + test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1)); + test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2)); test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1})); diff --git a/tests/test-grammar-integration.cpp b/tests/test-grammar-integration.cpp index 6d64f07376..82fae671ed 100644 --- a/tests/test-grammar-integration.cpp +++ b/tests/test-grammar-integration.cpp @@ -301,6 +301,30 @@ static void test_simple_grammar() { "0123", } ); + test_schema( + "min 1 max 900719925474091", + // Schema + R"""({ + "type": "integer", + "exclusiveMinimum": 0, + "maximum": 900719925474091 + })""", + // Passing strings + { + "1", + "2", + "10", + "900719925474090", + "900719925474091", + }, + // Failing strings + { + "0", + "01", + "900719925474092", + "9007199254740910", + } + ); test_schema( "min -1 max 1", R"""({ diff --git a/tools/mtmd/clip-impl.h b/tools/mtmd/clip-impl.h index 7a7523851c..1669fad99b 100644 --- a/tools/mtmd/clip-impl.h +++ b/tools/mtmd/clip-impl.h @@ -30,6 +30,7 @@ #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon" // vision-specific +#define KEY_VISION_PROJ_TYPE "clip.vision.projector_type" // for models with mixed modalities #define KEY_IMAGE_SIZE "clip.vision.image_size" #define KEY_PREPROC_IMAGE_SIZE "clip.vision.preproc_image_size" #define KEY_PATCH_SIZE "clip.vision.patch_size" @@ -48,6 +49,7 @@ #define KEY_MINICPMV_QUERY_NUM "clip.minicpmv_query_num" // audio-specific +#define KEY_AUDIO_PROJ_TYPE "clip.audio.projector_type" // for models with mixed modalities #define KEY_A_NUM_MEL_BINS "clip.audio.num_mel_bins" #define KEY_A_PROJ_STACK_FACTOR "clip.audio.projector.stack_factor" diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp index 98e68af27a..f2abf88523 100644 --- a/tools/mtmd/clip.cpp +++ b/tools/mtmd/clip.cpp @@ -2221,15 +2221,27 @@ struct clip_model_loader { // projector type std::string proj_type; { + // default key get_string(KEY_PROJ_TYPE, proj_type, false); - if (!proj_type.empty()) { - model.proj_type = clip_projector_type_from_string(proj_type); + + // for models with mixed modalities + if (proj_type.empty()) { + if (modality == CLIP_MODALITY_VISION) { + get_string(KEY_VISION_PROJ_TYPE, proj_type, false); + } else if (modality == CLIP_MODALITY_AUDIO) { + get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false); + } else { + GGML_ABORT("unknown modality"); + } } + + model.proj_type = clip_projector_type_from_string(proj_type); + if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) { throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str())); } - // correct arch for multimodal models + // correct arch for multimodal models (legacy method) if (model.proj_type == PROJECTOR_TYPE_QWEN25O) { model.proj_type = modality == CLIP_MODALITY_VISION ? PROJECTOR_TYPE_QWEN25VL diff --git a/tools/rpc/rpc-server.cpp b/tools/rpc/rpc-server.cpp index 0885156127..58b93c7468 100644 --- a/tools/rpc/rpc-server.cpp +++ b/tools/rpc/rpc-server.cpp @@ -137,7 +137,6 @@ struct rpc_server_params { bool use_cache = false; int n_threads = std::max(1U, std::thread::hardware_concurrency()/2); std::vector devices; - std::vector dev_mem; }; static void print_usage(int /*argc*/, char ** argv, rpc_server_params params) { @@ -148,7 +147,6 @@ static void print_usage(int /*argc*/, char ** argv, rpc_server_params params) { fprintf(stderr, " -d, --device comma-separated list of devices\n"); fprintf(stderr, " -H, --host HOST host to bind to (default: %s)\n", params.host.c_str()); fprintf(stderr, " -p, --port PORT port to bind to (default: %d)\n", params.port); - fprintf(stderr, " -m, --mem memory size for each device (in MB)\n"); fprintf(stderr, " -c, --cache enable local file cache\n"); fprintf(stderr, "\n"); } @@ -197,23 +195,6 @@ static bool rpc_server_params_parse(int argc, char ** argv, rpc_server_params & } } else if (arg == "-c" || arg == "--cache") { params.use_cache = true; - } else if (arg == "-m" || arg == "--mem") { - if (++i >= argc) { - return false; - } - const std::regex regex{ R"([,/]+)" }; - std::string mem_str = argv[i]; - std::sregex_token_iterator iter(mem_str.begin(), mem_str.end(), regex, -1); - std::sregex_token_iterator end; - for ( ; iter != end; ++iter) { - try { - size_t mem = std::stoul(*iter) * 1024 * 1024; - params.dev_mem.push_back(mem); - } catch (const std::exception & ) { - fprintf(stderr, "error: invalid memory size: %s\n", iter->str().c_str()); - return false; - } - } } else if (arg == "-h" || arg == "--help") { print_usage(argc, argv, params); exit(0); @@ -293,18 +274,6 @@ int main(int argc, char * argv[]) { return 1; } std::string endpoint = params.host + ":" + std::to_string(params.port); - std::vector free_mem, total_mem; - for (size_t i = 0; i < devices.size(); i++) { - if (i < params.dev_mem.size()) { - free_mem.push_back(params.dev_mem[i]); - total_mem.push_back(params.dev_mem[i]); - } else { - size_t free, total; - ggml_backend_dev_memory(devices[i], &free, &total); - free_mem.push_back(free); - total_mem.push_back(total); - } - } const char * cache_dir = nullptr; std::string cache_dir_str; if (params.use_cache) { @@ -328,7 +297,6 @@ int main(int argc, char * argv[]) { return 1; } - start_server_fn(endpoint.c_str(), cache_dir, params.n_threads, devices.size(), - devices.data(), free_mem.data(), total_mem.data()); + start_server_fn(endpoint.c_str(), cache_dir, params.n_threads, devices.size(), devices.data()); return 0; } diff --git a/tools/server/public/index.html.gz b/tools/server/public/index.html.gz index 1c62ebe968..08450a93cb 100644 Binary files a/tools/server/public/index.html.gz and b/tools/server/public/index.html.gz differ diff --git a/tools/server/webui/package-lock.json b/tools/server/webui/package-lock.json index 9cd6ef9138..f86b9282c9 100644 --- a/tools/server/webui/package-lock.json +++ b/tools/server/webui/package-lock.json @@ -50,6 +50,7 @@ "eslint-plugin-svelte": "^3.0.0", "fflate": "^0.8.2", "globals": "^16.0.0", + "http-server": "^14.1.1", "mdast": "^3.0.0", "mdsvex": "^0.12.3", "playwright": "^1.53.0", @@ -2979,6 +2980,13 @@ "node": ">=4" } }, + "node_modules/async": { + "version": "3.2.6", + "resolved": "https://registry.npmjs.org/async/-/async-3.2.6.tgz", + "integrity": "sha512-htCUDlxyyCLMgaM3xXg0C0LW2xqfuQ6p05pCEIsXuyQ+a1koYKTuBMzRNwmybfLgvJDMd0r1LTn4+E0Ti6C2AA==", + "dev": true, + "license": "MIT" + }, "node_modules/axe-core": { "version": "4.10.3", "resolved": "https://registry.npmjs.org/axe-core/-/axe-core-4.10.3.tgz", @@ -3015,6 +3023,19 @@ "dev": true, "license": "MIT" }, + "node_modules/basic-auth": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/basic-auth/-/basic-auth-2.0.1.tgz", + "integrity": "sha512-NF+epuEdnUYVlGuhaxbbq+dvJttwLnGY+YixlXlME5KpQ5W3CnXA5cVTneY3SPbPDRkcjMbifrwmFYcClgOZeg==", + "dev": true, + "license": "MIT", + "dependencies": { + "safe-buffer": "5.1.2" + }, + "engines": { + "node": ">= 0.8" + } + }, "node_modules/better-opn": { "version": "3.0.2", "resolved": "https://registry.npmjs.org/better-opn/-/better-opn-3.0.2.tgz", @@ -3125,6 +3146,37 @@ "node": ">=8" } }, + "node_modules/call-bind-apply-helpers": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/call-bind-apply-helpers/-/call-bind-apply-helpers-1.0.2.tgz", + "integrity": "sha512-Sp1ablJ0ivDkSzjcaJdxEunN5/XvksFJ2sMBFfq6x0ryhQV/2b/KwFe21cMpmHtPOSij8K99/wSfoEuTObmuMQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "es-errors": "^1.3.0", + "function-bind": "^1.1.2" + }, + "engines": { + "node": ">= 0.4" + } + }, + "node_modules/call-bound": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/call-bound/-/call-bound-1.0.4.tgz", + "integrity": "sha512-+ys997U96po4Kx/ABpBCqhA9EuxJaQWDQg7295H4hBphv3IZg0boBKuwYpt4YXp6MZ5AmZQnU/tyMTlRpaSejg==", + "dev": true, + "license": "MIT", + "dependencies": { + "call-bind-apply-helpers": "^1.0.2", + "get-intrinsic": "^1.3.0" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/callsites": { "version": "3.1.0", "resolved": "https://registry.npmjs.org/callsites/-/callsites-3.1.0.tgz", @@ -3335,6 +3387,16 @@ "node": ">= 0.6" } }, + "node_modules/corser": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/corser/-/corser-2.0.1.tgz", + "integrity": "sha512-utCYNzRSQIZNPIcGZdQc92UVJYAhtGAteCFg0yRaFm8f0P+CPtyGyHXJcGXnffjCybUCEx3FQ2G7U3/o9eIkVQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4.0" + } + }, "node_modules/cross-spawn": { "version": "7.0.6", "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz", @@ -3520,6 +3582,21 @@ "dev": true, "license": "MIT" }, + "node_modules/dunder-proto": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/dunder-proto/-/dunder-proto-1.0.1.tgz", + "integrity": "sha512-KIN/nDJBQRcXw0MLVhZE9iQHmG68qAVIBg9CqmUYjmQIhgij9U5MFvrqkUL5FbtyyzZuOeOt0zdeRe4UY7ct+A==", + "dev": true, + "license": "MIT", + "dependencies": { + "call-bind-apply-helpers": "^1.0.1", + "es-errors": "^1.3.0", + "gopd": "^1.2.0" + }, + "engines": { + "node": ">= 0.4" + } + }, "node_modules/enhanced-resolve": { "version": "5.18.2", "resolved": "https://registry.npmjs.org/enhanced-resolve/-/enhanced-resolve-5.18.2.tgz", @@ -3547,6 +3624,26 @@ "url": "https://github.com/fb55/entities?sponsor=1" } }, + "node_modules/es-define-property": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/es-define-property/-/es-define-property-1.0.1.tgz", + "integrity": "sha512-e3nRfgfUZ4rNGL232gUgX06QNyyez04KdjFrF+LTRoOXmrOgFKDg4BCdsjW8EnT69eqdYGmRpJwiPVYNrCaW3g==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + } + }, + "node_modules/es-errors": { + "version": "1.3.0", + "resolved": "https://registry.npmjs.org/es-errors/-/es-errors-1.3.0.tgz", + "integrity": "sha512-Zf5H2Kxt2xjTvbJvP2ZWLEICxA6j+hAmMzIlypy4xcBg1vKVnx89Wy0GbS+kf5cwCVFFzdCFh2XSCFNULS6csw==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + } + }, "node_modules/es-module-lexer": { "version": "1.7.0", "resolved": "https://registry.npmjs.org/es-module-lexer/-/es-module-lexer-1.7.0.tgz", @@ -3554,6 +3651,19 @@ "dev": true, "license": "MIT" }, + "node_modules/es-object-atoms": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/es-object-atoms/-/es-object-atoms-1.1.1.tgz", + "integrity": "sha512-FGgH2h8zKNim9ljj7dankFPcICIK9Cp5bm+c2gQSYePhpaG5+esrLODihIorn+Pe6FGJzWhXQotPv73jTaldXA==", + "dev": true, + "license": "MIT", + "dependencies": { + "es-errors": "^1.3.0" + }, + "engines": { + "node": ">= 0.4" + } + }, "node_modules/es-toolkit": { "version": "1.39.7", "resolved": "https://registry.npmjs.org/es-toolkit/-/es-toolkit-1.39.7.tgz", @@ -3885,6 +3995,13 @@ "node": ">=0.10.0" } }, + "node_modules/eventemitter3": { + "version": "4.0.7", + "resolved": "https://registry.npmjs.org/eventemitter3/-/eventemitter3-4.0.7.tgz", + "integrity": "sha512-8guHBZCwKnFhYdHr2ysuRWErTwhoN2X8XELRlrRwpmfeY2jjuUN4taQMsULKUVo1K4DvZl+0pgfyoysHxvmvEw==", + "dev": true, + "license": "MIT" + }, "node_modules/expect-type": { "version": "1.2.2", "resolved": "https://registry.npmjs.org/expect-type/-/expect-type-1.2.2.tgz", @@ -4058,6 +4175,27 @@ "dev": true, "license": "ISC" }, + "node_modules/follow-redirects": { + "version": "1.15.11", + "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.11.tgz", + "integrity": "sha512-deG2P0JfjrTxl50XGCDyfI97ZGVCxIpfKYmfyrQ54n5FO/0gfIES8C/Psl6kWVDolizcaaxZJnTS0QSMxvnsBQ==", + "dev": true, + "funding": [ + { + "type": "individual", + "url": "https://github.com/sponsors/RubenVerborgh" + } + ], + "license": "MIT", + "engines": { + "node": ">=4.0" + }, + "peerDependenciesMeta": { + "debug": { + "optional": true + } + } + }, "node_modules/fsevents": { "version": "2.3.2", "resolved": "https://registry.npmjs.org/fsevents/-/fsevents-2.3.2.tgz", @@ -4073,6 +4211,55 @@ "node": "^8.16.0 || ^10.6.0 || >=11.0.0" } }, + "node_modules/function-bind": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/function-bind/-/function-bind-1.1.2.tgz", + "integrity": "sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA==", + "dev": true, + "license": "MIT", + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/get-intrinsic": { + "version": "1.3.0", + "resolved": "https://registry.npmjs.org/get-intrinsic/-/get-intrinsic-1.3.0.tgz", + "integrity": "sha512-9fSjSaos/fRIVIp+xSJlE6lfwhES7LNtKaCBIamHsjr2na1BiABJPo0mOjjz8GJDURarmCPGqaiVg5mfjb98CQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "call-bind-apply-helpers": "^1.0.2", + "es-define-property": "^1.0.1", + "es-errors": "^1.3.0", + "es-object-atoms": "^1.1.1", + "function-bind": "^1.1.2", + "get-proto": "^1.0.1", + "gopd": "^1.2.0", + "has-symbols": "^1.1.0", + "hasown": "^2.0.2", + "math-intrinsics": "^1.1.0" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/get-proto": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/get-proto/-/get-proto-1.0.1.tgz", + "integrity": "sha512-sTSfBjoXBp89JvIKIefqw7U2CCebsc74kiY6awiGogKtoSGbgjYE/G/+l9sF3MWFPNc9IcoOC4ODfKHfxFmp0g==", + "dev": true, + "license": "MIT", + "dependencies": { + "dunder-proto": "^1.0.1", + "es-object-atoms": "^1.0.0" + }, + "engines": { + "node": ">= 0.4" + } + }, "node_modules/glob-parent": { "version": "6.0.2", "resolved": "https://registry.npmjs.org/glob-parent/-/glob-parent-6.0.2.tgz", @@ -4099,6 +4286,19 @@ "url": "https://github.com/sponsors/sindresorhus" } }, + "node_modules/gopd": { + "version": "1.2.0", + "resolved": "https://registry.npmjs.org/gopd/-/gopd-1.2.0.tgz", + "integrity": "sha512-ZUKRh6/kUFoAiTAtTYPZJ3hw9wNxx+BIBOijnlG9PnrJsCcSjs1wyyD6vJpaYtgnzDrKYRSqf3OO6Rfa93xsRg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/graceful-fs": { "version": "4.2.11", "resolved": "https://registry.npmjs.org/graceful-fs/-/graceful-fs-4.2.11.tgz", @@ -4123,6 +4323,32 @@ "node": ">=8" } }, + "node_modules/has-symbols": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/has-symbols/-/has-symbols-1.1.0.tgz", + "integrity": "sha512-1cDNdwJ2Jaohmb3sg4OmKaMBwuC48sYni5HUw2DvsC8LjGTLK9h+eb1X6RyuOHe4hT0ULCW68iomhjUoKUqlPQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/hasown": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/hasown/-/hasown-2.0.2.tgz", + "integrity": "sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "function-bind": "^1.1.2" + }, + "engines": { + "node": ">= 0.4" + } + }, "node_modules/hast-util-from-dom": { "version": "5.0.1", "resolved": "https://registry.npmjs.org/hast-util-from-dom/-/hast-util-from-dom-5.0.1.tgz", @@ -4363,6 +4589,16 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/he": { + "version": "1.2.0", + "resolved": "https://registry.npmjs.org/he/-/he-1.2.0.tgz", + "integrity": "sha512-F/1DnUGPopORZi0ni+CvrCgHQ5FyEAHRLSApuYWMmrbSwoN2Mn/7k+Gl38gJnR7yyDZk6WLXwiGod1JOWNDKGw==", + "dev": true, + "license": "MIT", + "bin": { + "he": "bin/he" + } + }, "node_modules/highlight.js": { "version": "11.11.1", "resolved": "https://registry.npmjs.org/highlight.js/-/highlight.js-11.11.1.tgz", @@ -4372,6 +4608,19 @@ "node": ">=12.0.0" } }, + "node_modules/html-encoding-sniffer": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/html-encoding-sniffer/-/html-encoding-sniffer-3.0.0.tgz", + "integrity": "sha512-oWv4T4yJ52iKrufjnyZPkrN0CH3QnrUqdB6In1g5Fe1mia8GmF36gnfNySxoZtxD5+NmYw1EElVXiBk93UeskA==", + "dev": true, + "license": "MIT", + "dependencies": { + "whatwg-encoding": "^2.0.0" + }, + "engines": { + "node": ">=12" + } + }, "node_modules/html-void-elements": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/html-void-elements/-/html-void-elements-3.0.0.tgz", @@ -4382,6 +4631,62 @@ "url": "https://github.com/sponsors/wooorm" } }, + "node_modules/http-proxy": { + "version": "1.18.1", + "resolved": "https://registry.npmjs.org/http-proxy/-/http-proxy-1.18.1.tgz", + "integrity": "sha512-7mz/721AbnJwIVbnaSv1Cz3Am0ZLT/UBwkC92VlxhXv/k/BBQfM2fXElQNC27BVGr0uwUpplYPQM9LnaBMR5NQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "eventemitter3": "^4.0.0", + "follow-redirects": "^1.0.0", + "requires-port": "^1.0.0" + }, + "engines": { + "node": ">=8.0.0" + } + }, + "node_modules/http-server": { + "version": "14.1.1", + "resolved": "https://registry.npmjs.org/http-server/-/http-server-14.1.1.tgz", + "integrity": "sha512-+cbxadF40UXd9T01zUHgA+rlo2Bg1Srer4+B4NwIHdaGxAGGv59nYRnGGDJ9LBk7alpS0US+J+bLLdQOOkJq4A==", + "dev": true, + "license": "MIT", + "dependencies": { + "basic-auth": "^2.0.1", + "chalk": "^4.1.2", + "corser": "^2.0.1", + "he": "^1.2.0", + "html-encoding-sniffer": "^3.0.0", + "http-proxy": "^1.18.1", + "mime": "^1.6.0", + "minimist": "^1.2.6", + "opener": "^1.5.1", + "portfinder": "^1.0.28", + "secure-compare": "3.0.1", + "union": "~0.5.0", + "url-join": "^4.0.1" + }, + "bin": { + "http-server": "bin/http-server" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/iconv-lite": { + "version": "0.6.3", + "resolved": "https://registry.npmjs.org/iconv-lite/-/iconv-lite-0.6.3.tgz", + "integrity": "sha512-4fCk79wshMdzMp2rH06qWrJE4iolqLhCUH+OiuIgU++RB0+94NlDL81atO7GX55uUKueo0txHNtvEyI6D7WdMw==", + "dev": true, + "license": "MIT", + "dependencies": { + "safer-buffer": ">= 2.1.2 < 3.0.0" + }, + "engines": { + "node": ">=0.10.0" + } + }, "node_modules/ignore": { "version": "5.3.2", "resolved": "https://registry.npmjs.org/ignore/-/ignore-5.3.2.tgz", @@ -5008,6 +5313,16 @@ "url": "https://github.com/sponsors/wooorm" } }, + "node_modules/math-intrinsics": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/math-intrinsics/-/math-intrinsics-1.1.0.tgz", + "integrity": "sha512-/IXtbwEk5HTPyEwyKX6hGkYXxM9nbj64B+ilVJnC/R6B0pH5G4V3b0pVbL7DBj4tkhBAppbQUlf6F6Xl9LHu1g==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + } + }, "node_modules/mdast": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/mdast/-/mdast-3.0.0.tgz", @@ -5976,6 +6291,19 @@ "url": "https://github.com/sponsors/jonschlinkert" } }, + "node_modules/mime": { + "version": "1.6.0", + "resolved": "https://registry.npmjs.org/mime/-/mime-1.6.0.tgz", + "integrity": "sha512-x0Vn8spI+wuJ1O6S7gnbaQg8Pxh4NNHb7KSINmEWKiPE4RKOplvijn+NkmYmmRgP68mc70j2EbeTFRsrswaQeg==", + "dev": true, + "license": "MIT", + "bin": { + "mime": "cli.js" + }, + "engines": { + "node": ">=4" + } + }, "node_modules/min-indent": { "version": "1.0.1", "resolved": "https://registry.npmjs.org/min-indent/-/min-indent-1.0.1.tgz", @@ -6009,6 +6337,16 @@ "node": "*" } }, + "node_modules/minimist": { + "version": "1.2.8", + "resolved": "https://registry.npmjs.org/minimist/-/minimist-1.2.8.tgz", + "integrity": "sha512-2yyAR8qBkN3YuheJanUpWC5U3bb5osDywNB8RzDVlDwDHbocAJveqqj1u8+SVD7jkWT4yvsHCpWqqWqAxb0zCA==", + "dev": true, + "license": "MIT", + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/minipass": { "version": "7.1.2", "resolved": "https://registry.npmjs.org/minipass/-/minipass-7.1.2.tgz", @@ -6124,6 +6462,19 @@ "tslib": "^2.0.3" } }, + "node_modules/object-inspect": { + "version": "1.13.4", + "resolved": "https://registry.npmjs.org/object-inspect/-/object-inspect-1.13.4.tgz", + "integrity": "sha512-W67iLl4J2EXEGTbfeHCffrjDfitvLANg0UlX3wFUUSTx92KXRFegMHUVgSqE+wvhAbi4WqjGg9czysTV2Epbew==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/open": { "version": "8.4.2", "resolved": "https://registry.npmjs.org/open/-/open-8.4.2.tgz", @@ -6142,6 +6493,16 @@ "url": "https://github.com/sponsors/sindresorhus" } }, + "node_modules/opener": { + "version": "1.5.2", + "resolved": "https://registry.npmjs.org/opener/-/opener-1.5.2.tgz", + "integrity": "sha512-ur5UIdyw5Y7yEj9wLzhqXiy6GZ3Mwx0yGI+5sMn2r0N0v3cKJvUmFH5yPP+WXh9e0xfyzyJX95D8l088DNFj7A==", + "dev": true, + "license": "(WTFPL OR MIT)", + "bin": { + "opener": "bin/opener-bin.js" + } + }, "node_modules/optionator": { "version": "0.9.4", "resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.4.tgz", @@ -6330,6 +6691,20 @@ "node": ">=18" } }, + "node_modules/portfinder": { + "version": "1.0.38", + "resolved": "https://registry.npmjs.org/portfinder/-/portfinder-1.0.38.tgz", + "integrity": "sha512-rEwq/ZHlJIKw++XtLAO8PPuOQA/zaPJOZJ37BVuN97nLpMJeuDVLVGRwbFoBgLudgdTMP2hdRJP++H+8QOA3vg==", + "dev": true, + "license": "MIT", + "dependencies": { + "async": "^3.2.6", + "debug": "^4.3.6" + }, + "engines": { + "node": ">= 10.12" + } + }, "node_modules/postcss": { "version": "8.5.6", "resolved": "https://registry.npmjs.org/postcss/-/postcss-8.5.6.tgz", @@ -6680,6 +7055,22 @@ "node": ">=6" } }, + "node_modules/qs": { + "version": "6.14.0", + "resolved": "https://registry.npmjs.org/qs/-/qs-6.14.0.tgz", + "integrity": "sha512-YWWTjgABSKcvs/nWBi9PycY/JiPJqOD4JA6o9Sej2AtvSGarXxKC3OQSk4pAarbdQlKAh5D4FCQkJNkW+GAn3w==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "side-channel": "^1.1.0" + }, + "engines": { + "node": ">=0.6" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/queue-microtask": { "version": "1.2.3", "resolved": "https://registry.npmjs.org/queue-microtask/-/queue-microtask-1.2.3.tgz", @@ -6959,6 +7350,13 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/requires-port": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/requires-port/-/requires-port-1.0.0.tgz", + "integrity": "sha512-KigOCHcocU3XODJxsu8i/j8T9tzT4adHiecwORRQ0ZZFcp7ahwXuRU1m+yuO90C5ZUyGeGfocHDI14M3L3yDAQ==", + "dev": true, + "license": "MIT" + }, "node_modules/resolve-from": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/resolve-from/-/resolve-from-4.0.0.tgz", @@ -7072,6 +7470,20 @@ "node": ">=6" } }, + "node_modules/safe-buffer": { + "version": "5.1.2", + "resolved": "https://registry.npmjs.org/safe-buffer/-/safe-buffer-5.1.2.tgz", + "integrity": "sha512-Gd2UZBJDkXlY7GbJxfsE8/nvKkUEU1G38c1siN6QP6a9PT9MmHB8GnpscSmMJSoF8LOIrt8ud/wPtojys4G6+g==", + "dev": true, + "license": "MIT" + }, + "node_modules/safer-buffer": { + "version": "2.1.2", + "resolved": "https://registry.npmjs.org/safer-buffer/-/safer-buffer-2.1.2.tgz", + "integrity": "sha512-YZo3K82SD7Riyi0E1EQPojLz7kpepnSQI9IyPbHHg1XXXevb5dJI7tpyN2ADxGcQbHG7vcyRHk0cbwqcQriUtg==", + "dev": true, + "license": "MIT" + }, "node_modules/scheduler": { "version": "0.26.0", "resolved": "https://registry.npmjs.org/scheduler/-/scheduler-0.26.0.tgz", @@ -7079,6 +7491,13 @@ "dev": true, "license": "MIT" }, + "node_modules/secure-compare": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/secure-compare/-/secure-compare-3.0.1.tgz", + "integrity": "sha512-AckIIV90rPDcBcglUwXPF3kg0P0qmPsPXAj6BBEENQE1p5yA1xfmDJzfi1Tappj37Pv2mVbKpL3Z1T+Nn7k1Qw==", + "dev": true, + "license": "MIT" + }, "node_modules/semver": { "version": "7.7.2", "resolved": "https://registry.npmjs.org/semver/-/semver-7.7.2.tgz", @@ -7122,6 +7541,82 @@ "node": ">=8" } }, + "node_modules/side-channel": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.1.0.tgz", + "integrity": "sha512-ZX99e6tRweoUXqR+VBrslhda51Nh5MTQwou5tnUDgbtyM0dBgmhEDtWGP/xbKn6hqfPRHujUNwz5fy/wbbhnpw==", + "dev": true, + "license": "MIT", + "dependencies": { + "es-errors": "^1.3.0", + "object-inspect": "^1.13.3", + "side-channel-list": "^1.0.0", + "side-channel-map": "^1.0.1", + "side-channel-weakmap": "^1.0.2" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/side-channel-list": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/side-channel-list/-/side-channel-list-1.0.0.tgz", + "integrity": "sha512-FCLHtRD/gnpCiCHEiJLOwdmFP+wzCmDEkc9y7NsYxeF4u7Btsn1ZuwgwJGxImImHicJArLP4R0yX4c2KCrMrTA==", + "dev": true, + "license": "MIT", + "dependencies": { + "es-errors": "^1.3.0", + "object-inspect": "^1.13.3" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/side-channel-map": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/side-channel-map/-/side-channel-map-1.0.1.tgz", + "integrity": "sha512-VCjCNfgMsby3tTdo02nbjtM/ewra6jPHmpThenkTYh8pG9ucZ/1P8So4u4FGBek/BjpOVsDCMoLA/iuBKIFXRA==", + "dev": true, + "license": "MIT", + "dependencies": { + "call-bound": "^1.0.2", + "es-errors": "^1.3.0", + "get-intrinsic": "^1.2.5", + "object-inspect": "^1.13.3" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/side-channel-weakmap": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/side-channel-weakmap/-/side-channel-weakmap-1.0.2.tgz", + "integrity": "sha512-WPS/HvHQTYnHisLo9McqBHOJk2FkHO/tlpvldyrnem4aeQp4hai3gythswg6p01oSoTl58rcpiFAjF2br2Ak2A==", + "dev": true, + "license": "MIT", + "dependencies": { + "call-bound": "^1.0.2", + "es-errors": "^1.3.0", + "get-intrinsic": "^1.2.5", + "object-inspect": "^1.13.3", + "side-channel-map": "^1.0.1" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/siginfo": { "version": "2.0.0", "resolved": "https://registry.npmjs.org/siginfo/-/siginfo-2.0.0.tgz", @@ -7904,6 +8399,18 @@ "integrity": "sha512-ko/gIFJRv177XgZsZcBwnqJN5x/Gien8qNOn0D5bQU/zAzVf9Zt3BlcUiLqhV9y4ARk0GbT3tnUiPNgnTXzc/Q==", "license": "MIT" }, + "node_modules/union": { + "version": "0.5.0", + "resolved": "https://registry.npmjs.org/union/-/union-0.5.0.tgz", + "integrity": "sha512-N6uOhuW6zO95P3Mel2I2zMsbsanvvtgn6jVqJv4vbVcz/JN0OkL9suomjQGmWtxJQXOCqUJvquc1sMeNz/IwlA==", + "dev": true, + "dependencies": { + "qs": "^6.4.0" + }, + "engines": { + "node": ">= 0.8.0" + } + }, "node_modules/unist-util-find-after": { "version": "5.0.0", "resolved": "https://registry.npmjs.org/unist-util-find-after/-/unist-util-find-after-5.0.0.tgz", @@ -8073,6 +8580,13 @@ "punycode": "^2.1.0" } }, + "node_modules/url-join": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/url-join/-/url-join-4.0.1.tgz", + "integrity": "sha512-jk1+QP6ZJqyOiuEI9AEWQfju/nB2Pw466kbA0LEZljHwKeMgd9WrAEgEGxjPDD2+TNbbb37rTyhEfrCXfuKXnA==", + "dev": true, + "license": "MIT" + }, "node_modules/util-deprecate": { "version": "1.0.2", "resolved": "https://registry.npmjs.org/util-deprecate/-/util-deprecate-1.0.2.tgz", @@ -8447,6 +8961,19 @@ "dev": true, "license": "MIT" }, + "node_modules/whatwg-encoding": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/whatwg-encoding/-/whatwg-encoding-2.0.0.tgz", + "integrity": "sha512-p41ogyeMUrw3jWclHWTQg1k05DSVXPLcVxRTYsXUk+ZooOCZLcoYgPZ/HL/D/N+uQPOtcp1me1WhBEaX02mhWg==", + "dev": true, + "license": "MIT", + "dependencies": { + "iconv-lite": "0.6.3" + }, + "engines": { + "node": ">=12" + } + }, "node_modules/which": { "version": "2.0.2", "resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz", diff --git a/tools/server/webui/package.json b/tools/server/webui/package.json index e073cd32f0..376f690152 100644 --- a/tools/server/webui/package.json +++ b/tools/server/webui/package.json @@ -52,6 +52,7 @@ "eslint-plugin-svelte": "^3.0.0", "fflate": "^0.8.2", "globals": "^16.0.0", + "http-server": "^14.1.1", "mdast": "^3.0.0", "mdsvex": "^0.12.3", "playwright": "^1.53.0", diff --git a/tools/server/webui/playwright.config.ts b/tools/server/webui/playwright.config.ts index 90ca19b09f..51688b3941 100644 --- a/tools/server/webui/playwright.config.ts +++ b/tools/server/webui/playwright.config.ts @@ -2,8 +2,10 @@ import { defineConfig } from '@playwright/test'; export default defineConfig({ webServer: { - command: 'npm run build && npx http-server ../public -p 8181', - port: 8181 + command: 'npm run build && http-server ../public -p 8181', + port: 8181, + timeout: 120000, + reuseExistingServer: false }, testDir: 'e2e' }); diff --git a/tools/server/webui/src/app.d.ts b/tools/server/webui/src/app.d.ts index e9bb140939..eb14d6fe45 100644 --- a/tools/server/webui/src/app.d.ts +++ b/tools/server/webui/src/app.d.ts @@ -31,7 +31,8 @@ import type { DatabaseMessageExtraAudioFile, DatabaseMessageExtraImageFile, DatabaseMessageExtraTextFile, - DatabaseMessageExtraPdfFile + DatabaseMessageExtraPdfFile, + DatabaseMessageExtraLegacyContext } from '$lib/types/database'; import type { @@ -73,6 +74,7 @@ declare global { DatabaseMessageExtraImageFile, DatabaseMessageExtraTextFile, DatabaseMessageExtraPdfFile, + DatabaseMessageExtraLegacyContext, SettingsConfigValue, SettingsFieldConfig, SettingsConfigType, diff --git a/tools/server/webui/src/lib/components/app/chat/ChatAttachments/ChatAttachmentsList.svelte b/tools/server/webui/src/lib/components/app/chat/ChatAttachments/ChatAttachmentsList.svelte index 0007c4c0b4..e378139d1b 100644 --- a/tools/server/webui/src/lib/components/app/chat/ChatAttachments/ChatAttachmentsList.svelte +++ b/tools/server/webui/src/lib/components/app/chat/ChatAttachments/ChatAttachmentsList.svelte @@ -94,6 +94,17 @@ attachmentIndex: index, textContent: attachment.content }); + } else if (attachment.type === 'context') { + // Legacy format from old webui - treat as text file + items.push({ + id: `attachment-${index}`, + name: attachment.name, + type: 'text', + isImage: false, + attachment, + attachmentIndex: index, + textContent: attachment.content + }); } else if (attachment.type === 'audioFile') { items.push({ id: `attachment-${index}`, diff --git a/tools/server/webui/src/lib/components/app/chat/ChatForm/ChatForm.svelte b/tools/server/webui/src/lib/components/app/chat/ChatForm/ChatForm.svelte index 6a7c0dd366..67a7fff54c 100644 --- a/tools/server/webui/src/lib/components/app/chat/ChatForm/ChatForm.svelte +++ b/tools/server/webui/src/lib/components/app/chat/ChatForm/ChatForm.svelte @@ -26,6 +26,7 @@ MimeTypeImage, MimeTypeText } from '$lib/enums/files'; + import { isIMEComposing } from '$lib/utils/is-ime-composing'; interface Props { class?: string; @@ -97,7 +98,7 @@ } async function handleKeydown(event: KeyboardEvent) { - if (event.key === 'Enter' && !event.shiftKey) { + if (event.key === 'Enter' && !event.shiftKey && !isIMEComposing(event)) { event.preventDefault(); if ((!message.trim() && uploadedFiles.length === 0) || disabled || isLoading) return; diff --git a/tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte b/tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte index fed0cf7126..7ade6bc61f 100644 --- a/tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte +++ b/tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte @@ -1,6 +1,7 @@ + + + + + + + + + Select Conversations to {mode === 'export' ? 'Export' : 'Import'} + + + + {#if mode === 'export'} + Choose which conversations you want to export. Selected conversations will be downloaded + as a JSON file. + {:else} + Choose which conversations you want to import. Selected conversations will be merged + with your existing conversations. + {/if} + + + +
+
+ + + + + {#if searchQuery} + + {/if} +
+ +
+ + {selectedIds.size} of {conversations.length} selected + {#if searchQuery} + ({filteredConversations.length} shown) + {/if} + +
+ +
+ + + + + + + + + + + + + {#if filteredConversations.length === 0} + + + + {:else} + {#each filteredConversations as conv (conv.id)} + toggleConversation(conv.id, e.shiftKey)} + > + + + + + + + {/each} + {/if} + +
+ + Conversation NameMessages
+ {#if searchQuery} + No conversations found matching "{searchQuery}" + {:else} + No conversations available + {/if} +
+ { + e.preventDefault(); + e.stopPropagation(); + toggleConversation(conv.id, e.shiftKey); + }} + /> + +
+ {conv.name || 'Untitled conversation'} +
+
+ {messageCountMap.get(conv.id) ?? 0} +
+
+
+
+ + + + + + +
+
+
diff --git a/tools/server/webui/src/lib/components/app/chat/ChatSettings/ImportExportTab.svelte b/tools/server/webui/src/lib/components/app/chat/ChatSettings/ImportExportTab.svelte new file mode 100644 index 0000000000..19c982c7b4 --- /dev/null +++ b/tools/server/webui/src/lib/components/app/chat/ChatSettings/ImportExportTab.svelte @@ -0,0 +1,255 @@ + + +
+
+
+

Export Conversations

+ +

+ Download all your conversations as a JSON file. This includes all messages, attachments, and + conversation history. +

+ + + + {#if showExportSummary && exportedConversations.length > 0} +
+
+ Exported {exportedConversations.length} conversation{exportedConversations.length === 1 + ? '' + : 's'} +
+ +
    + {#each exportedConversations.slice(0, 10) as conv (conv.id)} +
  • • {conv.name || 'Untitled conversation'}
  • + {/each} + + {#if exportedConversations.length > 10} +
  • + ... and {exportedConversations.length - 10} more +
  • + {/if} +
+
+ {/if} +
+ +
+

Import Conversations

+ +

+ Import one or more conversations from a previously exported JSON file. This will merge with + your existing conversations. +

+ + + + {#if showImportSummary && importedConversations.length > 0} +
+
+ Imported {importedConversations.length} conversation{importedConversations.length === 1 + ? '' + : 's'} +
+ +
    + {#each importedConversations.slice(0, 10) as conv (conv.id)} +
  • • {conv.name || 'Untitled conversation'}
  • + {/each} + + {#if importedConversations.length > 10} +
  • + ... and {importedConversations.length - 10} more +
  • + {/if} +
+
+ {/if} +
+
+
+ + (showExportDialog = false)} + onConfirm={handleExportConfirm} +/> + + (showImportDialog = false)} + onConfirm={handleImportConfirm} +/> diff --git a/tools/server/webui/src/lib/components/app/chat/ChatSidebar/ChatSidebarActions.svelte b/tools/server/webui/src/lib/components/app/chat/ChatSidebar/ChatSidebarActions.svelte index e91673e98b..30d1f9d4b7 100644 --- a/tools/server/webui/src/lib/components/app/chat/ChatSidebar/ChatSidebarActions.svelte +++ b/tools/server/webui/src/lib/components/app/chat/ChatSidebar/ChatSidebarActions.svelte @@ -1,9 +1,8 @@ diff --git a/tools/server/webui/svelte.config.js b/tools/server/webui/svelte.config.js index c24f879dda..f25494236b 100644 --- a/tools/server/webui/svelte.config.js +++ b/tools/server/webui/svelte.config.js @@ -7,6 +7,7 @@ const config = { // Consult https://svelte.dev/docs/kit/integrations // for more information about preprocessors preprocess: [vitePreprocess(), mdsvex()], + kit: { paths: { relative: true @@ -23,6 +24,7 @@ const config = { bundleStrategy: 'inline' } }, + extensions: ['.svelte', '.svx'] }; diff --git a/tools/server/webui/vite.config.ts b/tools/server/webui/vite.config.ts index 7f7ce3bed3..b077e232ab 100644 --- a/tools/server/webui/vite.config.ts +++ b/tools/server/webui/vite.config.ts @@ -75,7 +75,12 @@ function llamaCppBuildPlugin() { } export default defineConfig({ + build: { + chunkSizeWarningLimit: 3072 + }, + plugins: [tailwindcss(), sveltekit(), devtoolsJson(), llamaCppBuildPlugin()], + test: { projects: [ { @@ -123,6 +128,7 @@ export default defineConfig({ } ] }, + server: { proxy: { '/v1': 'http://localhost:8080',