parent
5d6688de08
commit
c610b6c11b
|
|
@ -297,6 +297,9 @@ void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
|
||||||
|
|
||||||
float * data = (float *) kq_mask->data;
|
float * data = (float *) kq_mask->data;
|
||||||
|
|
||||||
|
// [TAG_NO_CACHE_ISWA]
|
||||||
|
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "TODO: implement");
|
||||||
|
|
||||||
for (int h = 0; h < 1; ++h) {
|
for (int h = 0; h < 1; ++h) {
|
||||||
for (int i1 = 0; i1 < n_tokens; ++i1) {
|
for (int i1 = 0; i1 < n_tokens; ++i1) {
|
||||||
const llama_seq_id s1 = ubatch->seq_id[i1][0];
|
const llama_seq_id s1 = ubatch->seq_id[i1][0];
|
||||||
|
|
@ -315,9 +318,10 @@ void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
|
||||||
continue; // skip future tokens for causal attention
|
continue; // skip future tokens for causal attention
|
||||||
}
|
}
|
||||||
|
|
||||||
if (hparams.is_masked_swa(ubatch->pos[i0], ubatch->pos[i1])) {
|
// TODO: this does not take into account that some layers are SWA and others are note (i.e. iSWA) [TAG_NO_CACHE_ISWA]
|
||||||
continue; // skip masked tokens for SWA
|
//if (hparams.is_masked_swa(ubatch->pos[i0], ubatch->pos[i1])) {
|
||||||
}
|
// continue; // skip masked tokens for SWA
|
||||||
|
//}
|
||||||
|
|
||||||
// TODO: reimplement this like in llama_kv_cache_unified
|
// TODO: reimplement this like in llama_kv_cache_unified
|
||||||
if (hparams.use_alibi) {
|
if (hparams.use_alibi) {
|
||||||
|
|
|
||||||
|
|
@ -180,7 +180,7 @@ uint32_t llama_hparams::n_layer_kv() const {
|
||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool llama_hparams::is_masked_swa(llama_pos p0, llama_pos p1) const {
|
bool llama_hparams::is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1) {
|
||||||
assert(p0 >= 0 && p1 >= 0);
|
assert(p0 >= 0 && p1 >= 0);
|
||||||
|
|
||||||
switch (swa_type) {
|
switch (swa_type) {
|
||||||
|
|
|
||||||
|
|
@ -229,7 +229,10 @@ struct llama_hparams {
|
||||||
// number of layers for which has_kv() returns true
|
// number of layers for which has_kv() returns true
|
||||||
uint32_t n_layer_kv() const;
|
uint32_t n_layer_kv() const;
|
||||||
|
|
||||||
bool is_masked_swa(llama_pos p0, llama_pos p1) const;
|
// note that this function uses different SWA parameters from those in the hparams
|
||||||
|
// TODO: think of a better place for this function
|
||||||
|
// TODO: pack the SWA params in a struct?
|
||||||
|
static bool is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1);
|
||||||
};
|
};
|
||||||
|
|
||||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||||
|
|
|
||||||
|
|
@ -60,14 +60,14 @@ llama_kv_cache_iswa::llama_kv_cache_iswa(
|
||||||
kv_base = std::make_unique<llama_kv_cache>(
|
kv_base = std::make_unique<llama_kv_cache>(
|
||||||
model, type_k, type_v,
|
model, type_k, type_v,
|
||||||
v_trans, offload, unified, size_base, n_seq_max, n_pad,
|
v_trans, offload, unified, size_base, n_seq_max, n_pad,
|
||||||
0, filter_base, reuse);
|
0, LLAMA_SWA_TYPE_NONE, filter_base, reuse);
|
||||||
|
|
||||||
LLAMA_LOG_INFO("%s: creating SWA KV cache, size = %u cells\n", __func__, size_swa);
|
LLAMA_LOG_INFO("%s: creating SWA KV cache, size = %u cells\n", __func__, size_swa);
|
||||||
|
|
||||||
kv_swa = std::make_unique<llama_kv_cache>(
|
kv_swa = std::make_unique<llama_kv_cache>(
|
||||||
model, type_k, type_v,
|
model, type_k, type_v,
|
||||||
v_trans, offload, unified, size_swa, n_seq_max, n_pad,
|
v_trans, offload, unified, size_swa, n_seq_max, n_pad,
|
||||||
hparams.n_swa, filter_swa, reuse);
|
hparams.n_swa, hparams.swa_type, filter_swa, reuse);
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_kv_cache_iswa::clear(bool data) {
|
void llama_kv_cache_iswa::clear(bool data) {
|
||||||
|
|
|
||||||
|
|
@ -27,10 +27,11 @@ llama_kv_cache::llama_kv_cache(
|
||||||
uint32_t n_seq_max,
|
uint32_t n_seq_max,
|
||||||
uint32_t n_pad,
|
uint32_t n_pad,
|
||||||
uint32_t n_swa,
|
uint32_t n_swa,
|
||||||
|
llama_swa_type swa_type,
|
||||||
const layer_filter_cb & filter,
|
const layer_filter_cb & filter,
|
||||||
const layer_reuse_cb & reuse) :
|
const layer_reuse_cb & reuse) :
|
||||||
model(model), hparams(model.hparams), v_trans(v_trans),
|
model(model), hparams(model.hparams), v_trans(v_trans),
|
||||||
n_seq_max(n_seq_max), n_stream(unified ? 1 : n_seq_max), n_pad(n_pad), n_swa(n_swa) {
|
n_seq_max(n_seq_max), n_stream(unified ? 1 : n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) {
|
||||||
|
|
||||||
GGML_ASSERT(kv_size % n_pad == 0);
|
GGML_ASSERT(kv_size % n_pad == 0);
|
||||||
|
|
||||||
|
|
@ -1392,7 +1393,7 @@ ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_co
|
||||||
}
|
}
|
||||||
|
|
||||||
bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const {
|
bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const {
|
||||||
return hparams.is_masked_swa(p0, p1);
|
return llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1);
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_kv_cache::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
|
void llama_kv_cache::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
|
||||||
|
|
|
||||||
|
|
@ -89,6 +89,7 @@ public:
|
||||||
uint32_t n_seq_max,
|
uint32_t n_seq_max,
|
||||||
uint32_t n_pad,
|
uint32_t n_pad,
|
||||||
uint32_t n_swa,
|
uint32_t n_swa,
|
||||||
|
llama_swa_type swa_type,
|
||||||
const layer_filter_cb & filter,
|
const layer_filter_cb & filter,
|
||||||
const layer_reuse_cb & reuse);
|
const layer_reuse_cb & reuse);
|
||||||
|
|
||||||
|
|
@ -211,6 +212,9 @@ private:
|
||||||
// env: LLAMA_KV_CACHE_DEBUG
|
// env: LLAMA_KV_CACHE_DEBUG
|
||||||
int debug = 0;
|
int debug = 0;
|
||||||
|
|
||||||
|
// this is the SWA type of the cache - not to be confused with the model SWA type
|
||||||
|
const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
|
||||||
|
|
||||||
std::vector<ggml_context_ptr> ctxs;
|
std::vector<ggml_context_ptr> ctxs;
|
||||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -17,6 +17,7 @@ llama_memory_hybrid::llama_memory_hybrid(
|
||||||
uint32_t kv_size,
|
uint32_t kv_size,
|
||||||
uint32_t n_pad,
|
uint32_t n_pad,
|
||||||
uint32_t n_swa,
|
uint32_t n_swa,
|
||||||
|
llama_swa_type swa_type,
|
||||||
/* recurrent */
|
/* recurrent */
|
||||||
ggml_type type_r,
|
ggml_type type_r,
|
||||||
ggml_type type_s,
|
ggml_type type_s,
|
||||||
|
|
@ -40,6 +41,7 @@ llama_memory_hybrid::llama_memory_hybrid(
|
||||||
n_seq_max,
|
n_seq_max,
|
||||||
n_pad,
|
n_pad,
|
||||||
n_swa,
|
n_swa,
|
||||||
|
swa_type,
|
||||||
filter_attn == nullptr ?
|
filter_attn == nullptr ?
|
||||||
[&](int32_t il) { return !hparams.is_recurrent(il); }
|
[&](int32_t il) { return !hparams.is_recurrent(il); }
|
||||||
: filter_attn,
|
: filter_attn,
|
||||||
|
|
|
||||||
|
|
@ -27,6 +27,7 @@ public:
|
||||||
uint32_t kv_size,
|
uint32_t kv_size,
|
||||||
uint32_t n_pad,
|
uint32_t n_pad,
|
||||||
uint32_t n_swa,
|
uint32_t n_swa,
|
||||||
|
llama_swa_type swa_type,
|
||||||
/* recurrent */
|
/* recurrent */
|
||||||
ggml_type type_r,
|
ggml_type type_r,
|
||||||
ggml_type type_s,
|
ggml_type type_s,
|
||||||
|
|
|
||||||
|
|
@ -11084,7 +11084,8 @@ struct llm_build_gemma_embedding_iswa : public llm_graph_context {
|
||||||
// inp_pos - contains the positions
|
// inp_pos - contains the positions
|
||||||
ggml_tensor * inp_pos = build_inp_pos();
|
ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
auto * inp_attn = build_attn_inp_no_cache();
|
// TODO: support cacheless iSWA embeddings [TAG_NO_CACHE_ISWA]
|
||||||
|
auto * inp_attn = build_attn_inp_kv_iswa();
|
||||||
|
|
||||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
|
||||||
|
|
@ -18632,7 +18633,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||||
case LLM_ARCH_NOMIC_BERT_MOE:
|
case LLM_ARCH_NOMIC_BERT_MOE:
|
||||||
case LLM_ARCH_NEO_BERT:
|
case LLM_ARCH_NEO_BERT:
|
||||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||||
case LLM_ARCH_GEMMA_EMBEDDING:
|
//case LLM_ARCH_GEMMA_EMBEDDING: // TODO: disabled until the cacheless SWA logic is fixed [TAG_NO_CACHE_ISWA]
|
||||||
case LLM_ARCH_DREAM:
|
case LLM_ARCH_DREAM:
|
||||||
case LLM_ARCH_LLADA:
|
case LLM_ARCH_LLADA:
|
||||||
{
|
{
|
||||||
|
|
@ -18681,6 +18682,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||||
/* attn_kv_size */ cparams.n_ctx,
|
/* attn_kv_size */ cparams.n_ctx,
|
||||||
/* attn_n_pad */ padding,
|
/* attn_n_pad */ padding,
|
||||||
/* attn_n_swa */ hparams.n_swa,
|
/* attn_n_swa */ hparams.n_swa,
|
||||||
|
/* attn_swa_type */ hparams.swa_type,
|
||||||
/* recurrent_type_k */ GGML_TYPE_F32,
|
/* recurrent_type_k */ GGML_TYPE_F32,
|
||||||
/* recurrent_type_v */ GGML_TYPE_F32,
|
/* recurrent_type_v */ GGML_TYPE_F32,
|
||||||
/* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max),
|
/* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max),
|
||||||
|
|
@ -18750,6 +18752,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||||
cparams.n_seq_max,
|
cparams.n_seq_max,
|
||||||
padding,
|
padding,
|
||||||
hparams.n_swa,
|
hparams.n_swa,
|
||||||
|
hparams.swa_type,
|
||||||
nullptr,
|
nullptr,
|
||||||
nullptr);
|
nullptr);
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue