This commit is contained in:
Piotr Wilkin (ilintar) 2025-12-17 05:51:06 +02:00 committed by GitHub
commit c53f82da8f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 32 additions and 9 deletions

View File

@ -5,7 +5,7 @@ import os
import importlib
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig
import torch
import numpy as np
@ -116,11 +116,11 @@ def debug_hook(name):
def fn(_m, input, output):
if isinstance(input, torch.Tensor):
summarize(input, name + "_in")
elif isinstance(input, (tuple, list)) and isinstance(input[0], torch.Tensor):
elif isinstance(input, (tuple, list)) and len(input) > 0 and isinstance(input[0], torch.Tensor):
summarize(input[0], name + "_in")
if isinstance(output, torch.Tensor):
summarize(output, name + "_out")
elif isinstance(output, (tuple, list)) and isinstance(output[0], torch.Tensor):
elif isinstance(output, (tuple, list)) and len(output) > 0 and isinstance(output[0], torch.Tensor):
summarize(output[0], name + "_out")
return fn
@ -130,6 +130,7 @@ unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
parser = argparse.ArgumentParser(description="Process model with specified path")
parser.add_argument("--model-path", "-m", help="Path to the model")
parser.add_argument("--prompt-file", "-f", help="Optional prompt file", required=False)
args = parser.parse_args()
model_path = os.environ.get("MODEL_PATH", args.model_path)
@ -142,8 +143,13 @@ if model_path is None:
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
multimodal = False
full_config = config
print("Model type: ", config.model_type)
if "vocab_size" not in config and "text_config" in config:
config = config.text_config
multimodal = True
print("Vocab size: ", config.vocab_size)
print("Hidden size: ", config.hidden_size)
print("Number of layers: ", config.num_hidden_layers)
@ -168,6 +174,11 @@ if unreleased_model_name:
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
if multimodal:
model = AutoModelForImageTextToText.from_pretrained(
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=full_config
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=config
@ -185,7 +196,10 @@ model_name = os.path.basename(model_path)
print(f"Model class: {model.__class__.__name__}")
device = next(model.parameters()).device
if os.getenv("MODEL_TESTING_PROMPT"):
if args.prompt_file:
with open(args.prompt_file, encoding='utf-8') as f:
prompt = f.read()
elif os.getenv("MODEL_TESTING_PROMPT"):
prompt = os.getenv("MODEL_TESTING_PROMPT")
else:
prompt = "Hello, my name is"
@ -195,9 +209,18 @@ print(f"Input tokens: {input_ids}")
print(f"Input text: {repr(prompt)}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
batch_size = 512
with torch.no_grad():
outputs = model(input_ids.to(model.device))
logits = outputs.logits
past = None
outputs = None
for i in range(0, input_ids.size(1), batch_size):
print(f"Processing chunk with tokens {i} to {i + batch_size}")
chunk = input_ids[:, i:i + batch_size]
outputs = model(chunk.to(model.device), past_key_values=past, use_cache=True)
past = outputs.past_key_values
logits = outputs.logits # type: ignore
# Extract logits for the last token (next token prediction)
last_logits = logits[0, -1, :].float().cpu().numpy()