Refactor pareto pruning and convexification
This commit is contained in:
parent
6b8cedf3bc
commit
c466c53808
|
|
@ -1146,8 +1146,7 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
|
|||
for (size_t i = 0; i < base_sz; ++i) {
|
||||
ggml_type ts_type = base_arr[i];
|
||||
if (is_iq(ts_type) && !has_valid_imatrix) {
|
||||
LLAMA_LOG_WARN("%s: skipping %s quantization for %s, no or mismatched imatrix provided\n",
|
||||
__func__, ggml_type_name(ts_type), name.c_str());
|
||||
LLAMA_LOG_WARN("%s: skipping %s quantization for %s, no or mismatched imatrix provided\n", __func__, ggml_type_name(ts_type), name.c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
|
|
@ -1214,60 +1213,54 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
|
|||
info.candidate.push_back(candidate_types{ tensor->type, bpw, ggml_nbytes(tensor), 0.0 });
|
||||
}
|
||||
|
||||
// Keep only the pareto‑optimal candidates: if A has >= bytes and >= error than B, drop A.
|
||||
// Keep only the pareto‑optimal candidates and enforce convexity in (bytes, error) curve
|
||||
{
|
||||
std::vector<candidate_types> pruned;
|
||||
pruned.reserve(info.candidate.size());
|
||||
|
||||
// Sort by bytes ascending, error ascending
|
||||
std::sort(info.candidate.begin(), info.candidate.end(), [](const candidate_types & a, const candidate_types & b) {
|
||||
auto & candidates = info.candidate;
|
||||
if (!candidates.empty()) {
|
||||
std::sort(candidates.begin(), candidates.end(), [](const candidate_types & a, const candidate_types & b) {
|
||||
if (a.bytes != b.bytes) { return a.bytes < b.bytes; }
|
||||
|
||||
return a.error < b.error;
|
||||
});
|
||||
|
||||
std::vector<candidate_types> pareto;
|
||||
pareto.reserve(candidates.size());
|
||||
double best_err = infinity;
|
||||
size_t last_bytes = std::numeric_limits<size_t>::max();
|
||||
for (const auto & c : info.candidate) {
|
||||
// Only keep the best error seen so far at strictly larger byte sizes
|
||||
for (const auto & c : candidates) {
|
||||
if (c.bytes != last_bytes) {
|
||||
// first time we see this byte size
|
||||
last_bytes = c.bytes;
|
||||
if (c.error < best_err) {
|
||||
pruned.push_back(c);
|
||||
best_err = c.error;
|
||||
pareto.push_back(c);
|
||||
}
|
||||
} else {
|
||||
// same bytes: we already sorted by error; skip
|
||||
}
|
||||
}
|
||||
|
||||
info.candidate.swap(pruned);
|
||||
}
|
||||
candidates.swap(pareto);
|
||||
|
||||
// Enforce convexity in (bytes, error) curve
|
||||
{
|
||||
const auto & c = info.candidate;
|
||||
if (c.size() >= 3) {
|
||||
std::vector<candidate_types> convex;
|
||||
convex.reserve(c.size());
|
||||
auto slope = [](const candidate_types & a, const candidate_types & b) -> double {
|
||||
const double dx = (double)b.bytes - (double)a.bytes;
|
||||
if (dx <= 0.0) { return infinity; }
|
||||
if (candidates.size() >= 3) {
|
||||
std::vector<candidate_types> hull;
|
||||
hull.reserve(candidates.size());
|
||||
auto slope = [](const candidate_types & a, const candidate_types & b) {
|
||||
const double dx = b.bytes - a.bytes;
|
||||
|
||||
return ((double)b.error - (double)a.error) / dx;
|
||||
return dx <= 0.0 ? infinity : (b.error - a.error) / dx;
|
||||
};
|
||||
|
||||
for (const auto & p : c) {
|
||||
while (convex.size() >= 2) {
|
||||
double s1 = slope(convex[convex.size() - 2], convex[convex.size() - 1]);
|
||||
double s2 = slope(convex[convex.size() - 1], p);
|
||||
if (s2 + epsilon < s1) { convex.pop_back(); }
|
||||
for (const auto & p : candidates) {
|
||||
while (hull.size() >= 2) {
|
||||
double s1 = slope(hull[hull.size() - 2], hull[hull.size() - 1]);
|
||||
double s2 = slope(hull[hull.size() - 1], p);
|
||||
if (s2 + epsilon < s1) { hull.pop_back(); }
|
||||
else { break; }
|
||||
}
|
||||
convex.push_back(p);
|
||||
|
||||
hull.push_back(p);
|
||||
}
|
||||
|
||||
info.candidate.swap(convex);
|
||||
candidates.swap(hull);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue