server: support multiple generations from one prompt (OAI "n" option) (#17775)

* backend support

* server: support multiple generations from one prompt (OAI "n" option)

* fix invalid batch

* format oai

* clean up

* disable ctx shift

* add test

* update comments

* fix style

* add n_cmpl to docs [no ci]

* allowing using both n_cmpl and n
This commit is contained in:
Xuan-Son Nguyen 2025-12-06 15:54:38 +01:00 committed by GitHub
parent 09c7c50e64
commit c42712b056
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 146 additions and 19 deletions

View File

@ -493,6 +493,8 @@ Note for `multimodal_data` in JSON object prompts. This should be an array of st
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded. The number excludes the BOS token.
By default, this value is set to `0`, meaning no tokens are kept. Use `-1` to retain all tokens from the prompt.
`n_cmpl`: Number of completions to generate from the current prompt. If input has multiple prompts, the output will have N prompts times `n_cmpl` entries.
`stream`: Allows receiving each predicted token in real-time instead of waiting for the completion to finish (uses a different response format). To enable this, set to `true`.
`stop`: Specify a JSON array of stopping strings.

View File

@ -494,6 +494,18 @@ int32_t server_tokens::process_chunk(
return 0;
}
server_tokens server_tokens::clone() const {
server_tokens res;
res.has_mtmd = has_mtmd;
res.tokens = tokens;
for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ++it) {
size_t idx = it->first;
const mtmd::input_chunk_ptr & chunk = it->second;
res.map_idx_to_media[idx] = mtmd::input_chunk_ptr(mtmd_input_chunk_copy(chunk.get()));
}
return res;
}
//
// tokenizer and input processing utils
//
@ -745,12 +757,6 @@ json oaicompat_completion_params_parse(const json & body) {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Handle "n" field
int n_choices = json_value(body, "n", 1);
if (n_choices != 1) {
throw std::runtime_error("Only one completion choice is allowed");
}
// Handle "echo" field
if (json_value(body, "echo", false)) {
throw std::runtime_error("Only no echo is supported");
@ -1049,12 +1055,6 @@ json oaicompat_chat_params_parse(
llama_params["chat_parser"] = chat_params.parser;
}
// Handle "n" field
int n_choices = json_value(body, "n", 1);
if (n_choices != 1) {
throw std::invalid_argument("Only one completion choice is allowed");
}
// Handle "logprobs" field
// TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
if (json_value(body, "logprobs", false)) {

View File

@ -215,6 +215,8 @@ public:
llama_pos pos,
int32_t seq_id,
size_t & n_tokens_out) const;
server_tokens clone() const;
};

View File

@ -35,7 +35,8 @@ constexpr int HTTP_POLLING_SECONDS = 1;
// state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
enum slot_state {
SLOT_STATE_IDLE,
SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
SLOT_STATE_WAIT_OTHER, // after assigning a task, but waiting for parent slot to process prompt
SLOT_STATE_STARTED, // after assigning a task and about to process prompt
SLOT_STATE_PROCESSING_PROMPT,
SLOT_STATE_DONE_PROMPT,
SLOT_STATE_GENERATING,
@ -254,6 +255,15 @@ struct server_slot {
generated_token_probs.push_back(token);
}
// note: a slot can also be either a parent or a child
bool is_parent() const {
return is_processing() && task->n_children > 0;
}
bool is_child() const {
return is_processing() && task->id_parent >= 0;
}
void release() {
if (is_processing()) {
GGML_ASSERT(task);
@ -383,6 +393,17 @@ struct server_slot {
return res;
}
void copy_state_to(server_slot & other) const {
llama_memory_seq_rm(llama_get_memory(ctx), other.id, 0, -1);
llama_memory_seq_cp(llama_get_memory(ctx), id, other.id, 0, -1);
other.n_decoded = n_decoded;
other.n_remaining = n_remaining;
other.i_batch = i_batch;
other.n_prompt_tokens_cache = n_prompt_tokens_cache;
other.n_prompt_tokens_processed = n_prompt_tokens_processed;
other.prompt = prompt.clone();
}
};
@ -1022,7 +1043,9 @@ struct server_context_impl {
slot.task = std::make_unique<const server_task>(std::move(task));
slot.state = SLOT_STATE_STARTED;
slot.state = slot.is_child()
? SLOT_STATE_WAIT_OTHER // wait for the parent to process prompt
: SLOT_STATE_STARTED;
SLT_INF(slot, "%s", "processing task\n");
@ -1684,6 +1707,12 @@ struct server_context_impl {
GGML_ABORT("not supported by multimodal");
}
if (slot.is_parent() || slot.is_child()) {
send_error(slot, "context shift cannot be used for shared prompt", ERROR_TYPE_SERVER);
slot.release();
continue;
}
// Shift context
int n_keep = slot.task->params.n_keep < 0 ? slot.task->n_tokens() : slot.task->params.n_keep;
@ -2308,6 +2337,26 @@ struct server_context_impl {
n_batch = llama_n_batch(ctx);
for (auto & slot : slots) {
// may need to copy state to other slots
if (slot.state == SLOT_STATE_DONE_PROMPT && slot.is_parent()) {
std::vector<server_slot *> child_slots;
for (auto & other : slots) {
if (other.state == SLOT_STATE_WAIT_OTHER && slot.task->id == other.task->id_parent) {
child_slots.push_back(&other);
}
}
// we can only proceed if all child slots are having the correct tasks
if (child_slots.size() == slot.task->n_children) {
// copy state to the child slots
for (auto & child : child_slots) {
SLT_INF(slot, "copying state to child %d\n", child->id);
slot.copy_state_to(*child);
child->state = SLOT_STATE_DONE_PROMPT;
}
}
}
// optionally send prompt processing progress
if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) {
if (slot.task->params.stream && slot.task->params.return_progress) {
@ -2593,11 +2642,12 @@ static std::unique_ptr<server_res_generator> handle_completions_impl(
}
tasks.reserve(inputs.size());
states.reserve(inputs.size());
int idx = 0;
for (size_t i = 0; i < inputs.size(); i++) {
server_task task = server_task(type);
task.id = ctx_server.queue_tasks.get_new_id();
task.index = i;
task.index = idx++;
task.tokens = std::move(inputs[i]);
task.params = server_task::params_from_json_cmpl(
@ -2612,6 +2662,18 @@ static std::unique_ptr<server_res_generator> handle_completions_impl(
task.params.oaicompat_model = ctx_server.model_name;
states.push_back(task.params.oaicompat_chat_syntax);
if (task.params.n_cmpl > 1) {
task.n_children = task.params.n_cmpl - 1;
for (size_t j = 0; j < task.n_children; j++) {
server_task child = task.create_child(
task.id,
ctx_server.queue_tasks.get_new_id(),
idx++);
states.push_back(child.params.oaicompat_chat_syntax);
tasks.push_back(std::move(child));
}
}
tasks.push_back(std::move(task));
}
@ -2638,8 +2700,21 @@ static std::unique_ptr<server_res_generator> handle_completions_impl(
GGML_ASSERT(dynamic_cast<server_task_result_cmpl_final*>(res.get()) != nullptr);
arr.push_back(res->to_json());
}
GGML_ASSERT(!arr.empty() && "empty results");
if (arr.size() == 1) {
// if single request, return single object instead of array
res->ok(arr.size() == 1 ? arr[0] : arr);
res->ok(arr[0]);
} else if (res_type == TASK_RESPONSE_TYPE_OAI_CHAT || res_type == TASK_RESPONSE_TYPE_OAI_CMPL) {
// if multiple results in OAI format, we need to re-format them
json & choices = arr[0]["choices"];
for (size_t i = 1; i < arr.size(); i++) {
choices.push_back(std::move(arr[i]["choices"][0]));
}
res->ok(arr[0]);
} else {
// multi-results, non-OAI compat
res->ok(arr);
}
}
} else {
// in streaming mode, the first error must be treated as non-stream response

View File

@ -175,6 +175,7 @@ task_params server_task::params_from_json_cmpl(
params.n_indent = json_value(data, "n_indent", defaults.n_indent);
params.n_keep = json_value(data, "n_keep", defaults.n_keep);
params.n_discard = json_value(data, "n_discard", defaults.n_discard);
params.n_cmpl = json_value(data, "n_cmpl", json_value(data, "n", 1));
//params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
@ -453,6 +454,10 @@ task_params server_task::params_from_json_cmpl(
}
}
if (params.n_cmpl > params_base.n_parallel) {
throw std::runtime_error("n_cmpl cannot be greater than the number of slots, please increase -np");
}
return params;
}
@ -664,7 +669,7 @@ json server_task_result_cmpl_final::to_json_oaicompat_chat() {
json choice {
{"finish_reason", finish_reason},
{"index", 0},
{"index", index},
{"message", msg.to_json_oaicompat<json>()},
};
@ -1064,7 +1069,7 @@ json server_task_result_cmpl_partial::to_json_oaicompat_chat() {
{"choices", json::array({
json {
{"finish_reason", nullptr},
{"index", 0},
{"index", index},
{"delta", delta},
},
})},

View File

@ -53,6 +53,7 @@ struct task_params {
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
int32_t n_predict = -1; // new tokens to predict
int32_t n_indent = 0; // minimum line indentation for the generated text in number of whitespace characters
int32_t n_cmpl = 1; // number of completions to generate from this prompt
int64_t t_max_prompt_ms = -1; // TODO: implement
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
@ -89,6 +90,10 @@ struct server_task {
int id_target = -1;
int id_slot = -1;
// used by parallel sampling (multiple completions from same prompt)
size_t n_children = 0; // number of tasks reusing this prompt
int id_parent = -1;
// used by SERVER_TASK_TYPE_INFERENCE
task_params params;
server_tokens tokens;
@ -130,6 +135,17 @@ struct server_task {
}
return ids;
}
server_task create_child(int id_parent, int id_child, int idx) const {
server_task copy;
copy.id = id_child;
copy.index = idx;
copy.id_parent = id_parent;
copy.params = params;
copy.type = type;
copy.tokens = tokens.clone();
return copy;
}
};
struct result_timings {
@ -466,6 +482,14 @@ struct server_prompt {
int n_tokens() const {
return tokens.size();
}
server_prompt clone() const {
return server_prompt {
tokens.clone(),
data,
checkpoints
};
}
};
struct server_prompt_cache {

View File

@ -477,3 +477,22 @@ def test_return_progress(n_batch, batch_count, reuse_cache):
assert last_progress["total"] > 0
assert last_progress["processed"] == last_progress["total"]
assert total_batch_count == batch_count
def test_chat_completions_multiple_choices():
global server
server.start()
res = server.make_request("POST", "/chat/completions", data={
"max_tokens": 8,
"n": 2,
"messages": [
{"role": "system", "content": "Book"},
{"role": "user", "content": "What is the best book"},
],
})
assert res.status_code == 200
assert len(res.body["choices"]) == 2
for choice in res.body["choices"]:
assert "assistant" == choice["message"]["role"]
assert match_regex("Suddenly", choice["message"]["content"])
assert choice["finish_reason"] == "length"