scripts: add script to compare logprobs of llama.cpp against other frameworks (#17947)
* scripts: add script to compare logits of llama.cpp against other frameworks * accept custom prompt file * fix code style * clarify endpoint * fix displaying * use abs for diff * fix vllm case * rm output file * rename to compare-logprobs * add "pattern"
This commit is contained in:
parent
4ed2bae50d
commit
c00ff929dc
|
|
@ -0,0 +1,281 @@
|
|||
import argparse
|
||||
import requests
|
||||
import json
|
||||
from pathlib import Path
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger("compare-logprobs")
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
|
||||
DESCRIPTION = """
|
||||
Compare logits between llama.cpp and another inference engine using OpenAI-compatible server endpoints.
|
||||
|
||||
Unlike compare-logits.py, it allows dumping logits from a hosted API endpoint. Useful when it's not possible to run both models locally.
|
||||
|
||||
Example usage:
|
||||
Step 1: Dump logits from two different servers
|
||||
python scripts/compare-logprobs.py dump logits_llama.log http://localhost:8080/v1/completions
|
||||
python scripts/compare-logprobs.py dump logits_other.log http://other-engine:8000/v1/completions
|
||||
|
||||
(optionally, you can add --api-key <key> if the endpoint requires authentication)
|
||||
|
||||
Step 2: Compare the dumped logits
|
||||
python scripts/compare-logprobs.py compare logits_llama.log logits_other.log report.md
|
||||
"""
|
||||
|
||||
|
||||
def generate_input_prompt(length: int) -> list[str]:
|
||||
CORPUS = """
|
||||
You are an advanced AI assistant capable of using tools to gather information, perform calculations, or execute tasks. Always think step by step before responding. If a user's query requires external data, computation, or actions beyond your internal knowledge, use the appropriate tools via function calls.
|
||||
|
||||
### Tool Call Format:
|
||||
When you need to use a tool, output the call in this exact XML format. Include the opening and closing tags. Do not escape arguments; they will be parsed as plain text.
|
||||
|
||||
You can make multiple calls in one go by placing them one after another.
|
||||
"""
|
||||
words = [w.strip() for w in CORPUS.strip().split(" ")]
|
||||
words = [w for w in words if len(w) > 0] # filter out empty strings
|
||||
while len(words) < length:
|
||||
words += words
|
||||
return words[:length]
|
||||
|
||||
|
||||
def dump_logits(
|
||||
endpoint: str,
|
||||
output_path: Path,
|
||||
input_words: list[str],
|
||||
pattern: list[tuple[bool, int]],
|
||||
api_key=None,
|
||||
):
|
||||
logger.info(f"Dumping logits to {output_path} from endpoint {endpoint}...")
|
||||
words = input_words
|
||||
curr_text = ""
|
||||
n_total = sum(n for get, n in pattern if get)
|
||||
n_done = 0
|
||||
i_cur = 0
|
||||
i_total = len(words)
|
||||
with output_path.open("w") as f:
|
||||
for get, n in pattern:
|
||||
if not get:
|
||||
# skip n words
|
||||
for i in range(n):
|
||||
curr_text += words.pop(0) + " "
|
||||
i_cur += 1
|
||||
continue
|
||||
# get n words
|
||||
for i in range(n):
|
||||
curr_text += words.pop(0) + " "
|
||||
payload = {
|
||||
"prompt": curr_text.strip(),
|
||||
"temperature": 0.0,
|
||||
"top_k": 1,
|
||||
"max_tokens": 1,
|
||||
"logprobs": 1,
|
||||
"stream": False,
|
||||
}
|
||||
response = requests.post(
|
||||
endpoint,
|
||||
json=payload,
|
||||
headers={"Authorization": f"Bearer {api_key}"} if api_key else {},
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
data["__index"] = i_cur # add index for easier debugging later
|
||||
data = json.dumps(data)
|
||||
f.write(f"{data}\n")
|
||||
n_done += 1
|
||||
i_cur += 1
|
||||
logger.info(
|
||||
f"\n\n{data}\n\n[Step: {n_done}/{n_total} | Word: {i_cur}/{i_total}]"
|
||||
)
|
||||
logger.info(f"Logits dumped to {output_path}")
|
||||
|
||||
|
||||
def get_token_logprobs(data: dict):
|
||||
logprobs = data["choices"][0]["logprobs"]
|
||||
if "content" in logprobs:
|
||||
# llama.cpp case
|
||||
top = logprobs["content"][0]["top_logprobs"][0]
|
||||
return top["token"], top["logprob"]
|
||||
else:
|
||||
# vllm case
|
||||
tokens = logprobs["tokens"]
|
||||
token_logprobs = logprobs["token_logprobs"]
|
||||
return tokens[0], token_logprobs[0]
|
||||
|
||||
|
||||
def clean_text(text: str) -> str:
|
||||
return (
|
||||
"'"
|
||||
+ text.replace("\n", "\\n")
|
||||
.replace("\t", "\\t")
|
||||
.replace("\r", "\\r")
|
||||
.replace("|", "\\|")
|
||||
+ "'"
|
||||
)
|
||||
|
||||
|
||||
def compare_logits(input1: Path, input2: Path, output_path: Path):
|
||||
with input1.open("r") as f1, input2.open("r") as f2, output_path.open("w") as fout:
|
||||
lines1 = f1.readlines()
|
||||
lines2 = f2.readlines()
|
||||
|
||||
tab_header = [
|
||||
"idx",
|
||||
input1.name,
|
||||
"logprob_1",
|
||||
input2.name,
|
||||
"logprob_2",
|
||||
"diff (abs)",
|
||||
]
|
||||
tab_entries = []
|
||||
tab_max_widths = [len(h) for h in tab_header]
|
||||
|
||||
assert len(lines1) == len(
|
||||
lines2
|
||||
), "Input files must have the same number of lines."
|
||||
|
||||
fout.write("# Logits Comparison Report\n\n")
|
||||
for i, (line1, line2) in enumerate(zip(lines1, lines2)):
|
||||
if not line1.strip() or not line2.strip():
|
||||
continue # skip empty lines
|
||||
|
||||
data1 = json.loads(line1)
|
||||
data2 = json.loads(line2)
|
||||
|
||||
idx1 = data1.get("__index", -1)
|
||||
idx2 = data2.get("__index", -1)
|
||||
if idx1 != idx2:
|
||||
logger.warning(
|
||||
f"Warning: Mismatched indices at line {i}: {idx1} vs {idx2}"
|
||||
)
|
||||
|
||||
token1, logprob1 = get_token_logprobs(data1)
|
||||
token2, logprob2 = get_token_logprobs(data2)
|
||||
|
||||
token1 = clean_text(token1)
|
||||
token2 = clean_text(token2)
|
||||
abs_diff = abs(logprob1 - logprob2)
|
||||
|
||||
tab_entries.append(
|
||||
(
|
||||
str(idx1 + 1),
|
||||
token1,
|
||||
f"{logprob1:.4f}",
|
||||
token2,
|
||||
f"{logprob2:.4f}",
|
||||
f"{(abs_diff):.4f}",
|
||||
)
|
||||
)
|
||||
|
||||
for i in range(len(tab_entries)):
|
||||
for j in range(len(tab_header)):
|
||||
tab_max_widths[j] = max(tab_max_widths[j], len(tab_entries[i][j]))
|
||||
|
||||
output = ""
|
||||
for j in range(len(tab_header)):
|
||||
output += f"| {tab_header[j]:<{tab_max_widths[j]}} "
|
||||
output += "|\n"
|
||||
for j in range(len(tab_header)):
|
||||
output += f"|{'-' * (tab_max_widths[j] + 2)}"
|
||||
output += "|\n"
|
||||
for entry in tab_entries:
|
||||
for j in range(len(tab_header)):
|
||||
output += f"| {entry[j]:<{tab_max_widths[j]}} "
|
||||
output += "|\n"
|
||||
|
||||
logger.info("\n" + output)
|
||||
fout.write(output)
|
||||
logger.info(f"Report written to {output_path}")
|
||||
|
||||
|
||||
def parse_pattern(pattern: str) -> list[tuple[bool, int]]:
|
||||
parts = pattern.split(",")
|
||||
result = []
|
||||
for i, part in enumerate(parts):
|
||||
n = int(part)
|
||||
if i % 2 == 0:
|
||||
result.append((True, n)) # get n words
|
||||
else:
|
||||
result.append((False, n)) # skip n words
|
||||
return result
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(
|
||||
description=DESCRIPTION, formatter_class=argparse.RawTextHelpFormatter
|
||||
)
|
||||
subparsers = parser.add_subparsers(
|
||||
dest="verb", required=True, help="action to perform"
|
||||
)
|
||||
|
||||
# dump subcommand
|
||||
parser_dump = subparsers.add_parser("dump", help="dump logits from an endpoint")
|
||||
parser_dump.add_argument(
|
||||
"output", type=Path, help="output path for dumped logits (.log)"
|
||||
)
|
||||
parser_dump.add_argument(
|
||||
"endpoint", type=str, help="OAI-compat /completions endpoint"
|
||||
)
|
||||
parser_dump.add_argument(
|
||||
"--api-key",
|
||||
type=str,
|
||||
default=None,
|
||||
help="API key for authentication (if required)",
|
||||
)
|
||||
parser_dump.add_argument(
|
||||
"--file",
|
||||
type=Path,
|
||||
default=None,
|
||||
help="File containing prompt to use instead of the default",
|
||||
)
|
||||
parser_dump.add_argument(
|
||||
"--pattern",
|
||||
type=str,
|
||||
default="10,1000,10,4000,10",
|
||||
help="Pattern n_get,n_skip,... where n_get is number of words to get and n_skip is number of words to skip (num of words, NOT num of tokens)",
|
||||
)
|
||||
|
||||
# compare subcommand
|
||||
parser_compare = subparsers.add_parser(
|
||||
"compare", help="compare two dumped logits files"
|
||||
)
|
||||
parser_compare.add_argument("input1", type=Path, help="first input file (.log)")
|
||||
parser_compare.add_argument("input2", type=Path, help="second input file (.log)")
|
||||
parser_compare.add_argument(
|
||||
"output", type=Path, help="output path for comparison report (.md)"
|
||||
)
|
||||
|
||||
try:
|
||||
return parser.parse_args()
|
||||
except Exception as e:
|
||||
parser.print_help()
|
||||
raise e
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
if args.verb == "dump":
|
||||
pattern = parse_pattern(args.pattern)
|
||||
input_length = sum(n for _, n in pattern)
|
||||
input_words = generate_input_prompt(input_length)
|
||||
if args.file is not None:
|
||||
with args.file.open("r") as f:
|
||||
input_words = f.read().strip().split(" ")
|
||||
if input_length < sum(n for _, n in pattern):
|
||||
raise ValueError(
|
||||
f"Input file has only {input_length} words, but pattern requires at least {input_length} words."
|
||||
)
|
||||
input_length = len(input_words)
|
||||
logger.info(f"Using {input_length} words")
|
||||
dump_logits(args.endpoint, args.output, input_words, pattern, args.api_key)
|
||||
elif args.verb == "compare":
|
||||
compare_logits(args.input1, args.input2, args.output)
|
||||
else:
|
||||
raise ValueError(f"Unknown verb: {args.verb}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in New Issue