Merge 7d0000edaf into 18ddaea2ae
This commit is contained in:
commit
bcac34cd9c
|
|
@ -1397,7 +1397,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
[](common_params & params, bool value) {
|
||||
params.warmup = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
|
||||
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_DEBUG}));
|
||||
add_opt(common_arg(
|
||||
{"--spm-infill"},
|
||||
string_format(
|
||||
|
|
@ -1706,7 +1706,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
|
||||
else { throw std::invalid_argument("invalid value"); }
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
|
||||
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_DEBUG}).set_env("LLAMA_ARG_POOLING"));
|
||||
add_opt(common_arg(
|
||||
{"--attention"}, "{causal,non-causal}",
|
||||
"attention type for embeddings, use model default if unspecified",
|
||||
|
|
@ -2579,7 +2579,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
[](common_params & params, int value) {
|
||||
params.embd_normalize = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
|
||||
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_DEBUG}));
|
||||
add_opt(common_arg(
|
||||
{"--embd-output-format"}, "FORMAT",
|
||||
"empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix, \"raw\" = plain whitespace-delimited output (one embedding per line)",
|
||||
|
|
@ -2657,7 +2657,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
[](common_params & params) {
|
||||
params.embedding = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_DEBUG}).set_env("LLAMA_ARG_EMBEDDINGS"));
|
||||
add_opt(common_arg(
|
||||
{"--rerank", "--reranking"},
|
||||
string_format("enable reranking endpoint on server (default: %s)", "disabled"),
|
||||
|
|
@ -3344,6 +3344,27 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
}
|
||||
}
|
||||
).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
|
||||
add_opt(common_arg(
|
||||
{"--save-logits"},
|
||||
string_format("save final logits to files for verification (default: %s)", params.save_logits ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.save_logits = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_DEBUG}));
|
||||
add_opt(common_arg(
|
||||
{"--logits-output-dir"}, "PATH",
|
||||
string_format("directory for saving logits output files (default: %s)", params.logits_output_dir.c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.logits_output_dir = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_DEBUG}));
|
||||
add_opt(common_arg(
|
||||
{"--tensor-filter"}, "REGEX",
|
||||
"filter tensor names for debug output (regex pattern, can be specified multiple times)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.tensor_filter.push_back(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_DEBUG}));
|
||||
|
||||
// presets
|
||||
add_opt(common_arg(
|
||||
|
|
|
|||
|
|
@ -80,6 +80,7 @@ int32_t cpu_get_num_math();
|
|||
//
|
||||
|
||||
enum llama_example {
|
||||
LLAMA_EXAMPLE_DEBUG,
|
||||
LLAMA_EXAMPLE_COMMON,
|
||||
LLAMA_EXAMPLE_SPECULATIVE,
|
||||
LLAMA_EXAMPLE_COMPLETION,
|
||||
|
|
@ -370,6 +371,11 @@ struct common_params {
|
|||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
std::string logits_file = ""; // file for saving *all* logits // NOLINT
|
||||
|
||||
// llama-debug specific options
|
||||
std::string logits_output_dir = "data"; // directory for saving logits output files // NOLINT
|
||||
bool save_logits = false; // whether to save logits to files // NOLINT
|
||||
std::vector<std::string> tensor_filter; // filter tensor names for debug output (regex) // NOLINT
|
||||
|
||||
std::vector<std::string> in_files; // all input files
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ llama_add_compile_flags()
|
|||
if (EMSCRIPTEN)
|
||||
else()
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(debug)
|
||||
add_subdirectory(embedding)
|
||||
add_subdirectory(eval-callback)
|
||||
|
||||
|
|
@ -34,7 +35,6 @@ else()
|
|||
add_subdirectory(gen-docs)
|
||||
add_subdirectory(training)
|
||||
add_subdirectory(diffusion)
|
||||
add_subdirectory(model-conversion)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
# these examples use the backends directly and cannot be built with dynamic loading
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
set(TARGET llama-logits)
|
||||
add_executable(${TARGET} logits.cpp)
|
||||
set(TARGET llama-debug)
|
||||
add_executable(${TARGET} debug.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
|
@ -0,0 +1,54 @@
|
|||
# llama.cpp/examples/debug
|
||||
|
||||
This is a utility intended to help debug a model by registering a callback that
|
||||
logs GGML operations and tensor data. It can also store the generated logits or
|
||||
embeddings as well as the prompt and token ids for comparision with the original
|
||||
model.
|
||||
|
||||
### Usage
|
||||
|
||||
```shell
|
||||
llama-debug \
|
||||
--hf-repo ggml-org/models \
|
||||
--hf-file phi-2/ggml-model-q4_0.gguf \
|
||||
--model phi-2-q4_0.gguf \
|
||||
--prompt hello \
|
||||
--save-logits \
|
||||
--verbose
|
||||
```
|
||||
The tensor data is logged as debug and required the --verbose flag. The reason
|
||||
for this is that while useful for a model with many layers there can be a lot of
|
||||
output. You can filter the tensor names using the `--tensor-filter` option.
|
||||
|
||||
A recommended approach is to first run without `--verbose` and see if the
|
||||
generated logits/embeddings are close to the original model. If they are not,
|
||||
then it might be required to inspect tensor by tensor and in that case it is
|
||||
useful to enable the `--verbose` flag along with `--tensor-filter` to focus on
|
||||
specific tensors.
|
||||
|
||||
### Options
|
||||
This example supports all standard `llama.cpp` options and also accepts the
|
||||
following options:
|
||||
```console
|
||||
$ llama-debug --help
|
||||
...
|
||||
|
||||
----- example-specific params -----
|
||||
|
||||
--save-logits save final logits to files for verification (default: false)
|
||||
--logits-output-dir PATH directory for saving logits output files (default: data)
|
||||
--tensor-filter REGEX filter tensor names for debug output (regex pattern, can be specified multiple times)
|
||||
```
|
||||
|
||||
### Output Files
|
||||
|
||||
When `--save-logits` is enabled, the following files are created in the output
|
||||
directory:
|
||||
|
||||
* `llamacpp-<model>[-embeddings].bin` - Binary output (logits or embeddings)
|
||||
* `llamacpp-<model>[-embeddings].txt` - Text output (logits or embeddings, one per line)
|
||||
* `llamacpp-<model>[-embeddings]-prompt.txt` - Prompt text and token IDs
|
||||
* `llamacpp-<model>[-embeddings]-tokens.bin` - Binary token IDs for programmatic comparison
|
||||
|
||||
These files can be compared against the original model's output to verify the
|
||||
converted model.
|
||||
|
|
@ -0,0 +1,399 @@
|
|||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdlib>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
|
||||
static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data);
|
||||
|
||||
struct callback_data {
|
||||
std::vector<uint8_t> data;
|
||||
std::vector<std::regex> tensor_filters;
|
||||
|
||||
callback_data() = default;
|
||||
|
||||
callback_data(common_params & params, const std::vector<std::string> & filter_patterns) {
|
||||
for (const auto & pattern : filter_patterns) {
|
||||
try {
|
||||
std::string anchored_pattern = "^" + pattern;
|
||||
tensor_filters.emplace_back(anchored_pattern, std::regex::optimize);
|
||||
} catch (const std::regex_error & e) {
|
||||
throw std::runtime_error("Invalid regex pattern '" + pattern + "': " + e.what());
|
||||
}
|
||||
}
|
||||
params.cb_eval = ggml_debug;
|
||||
params.cb_eval_user_data = this;
|
||||
}
|
||||
};
|
||||
|
||||
struct output_data {
|
||||
float * data_ptr = nullptr;
|
||||
int data_size = 0;
|
||||
std::string type_suffix;
|
||||
std::vector<float> storage;
|
||||
std::string prompt;
|
||||
std::vector<llama_token> tokens;
|
||||
|
||||
output_data(llama_context * ctx, const llama_model * model, const common_params & params) {
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
|
||||
tokens = common_tokenize(ctx, params.prompt, add_bos);
|
||||
prompt = params.prompt;
|
||||
|
||||
if (params.embedding) {
|
||||
const int n_embd = llama_model_n_embd(model);
|
||||
const bool pooling_enabled = llama_pooling_type(ctx) != LLAMA_POOLING_TYPE_NONE;
|
||||
const int n_embd_count = pooling_enabled ? 1 : tokens.size();
|
||||
const int n_embeddings = n_embd * n_embd_count;
|
||||
|
||||
float * embeddings;
|
||||
if (pooling_enabled) {
|
||||
embeddings = llama_get_embeddings_seq(ctx, 0);
|
||||
storage.resize(n_embeddings);
|
||||
common_embd_normalize(embeddings, storage.data(), n_embeddings, params.embd_normalize);
|
||||
embeddings = storage.data();
|
||||
} else {
|
||||
embeddings = llama_get_embeddings(ctx);
|
||||
}
|
||||
|
||||
data_ptr = embeddings;
|
||||
data_size = n_embeddings;
|
||||
type_suffix = "-embeddings";
|
||||
} else {
|
||||
const float * logits = llama_get_logits_ith(ctx, tokens.size() - 1);
|
||||
const int n_logits = llama_vocab_n_tokens(vocab);
|
||||
|
||||
data_ptr = const_cast<float*>(logits);
|
||||
data_size = n_logits;
|
||||
type_suffix = "";
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
static std::string ggml_ne_string(const ggml_tensor * t) {
|
||||
std::string str;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||
str += std::to_string(t->ne[i]);
|
||||
if (i + 1 < GGML_MAX_DIMS) {
|
||||
str += ", ";
|
||||
}
|
||||
}
|
||||
return str;
|
||||
}
|
||||
|
||||
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} u;
|
||||
u.i = (uint32_t)h.bits << 16;
|
||||
return u.f;
|
||||
}
|
||||
|
||||
static float ggml_get_float_value(const uint8_t * data, ggml_type type,
|
||||
const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
|
||||
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
||||
switch (type) {
|
||||
case GGML_TYPE_F16:
|
||||
return ggml_fp16_to_fp32(*(const ggml_fp16_t *) &data[i]);
|
||||
case GGML_TYPE_F32:
|
||||
return *(const float *) &data[i];
|
||||
case GGML_TYPE_I64:
|
||||
return (float) *(const int64_t *) &data[i];
|
||||
case GGML_TYPE_I32:
|
||||
return (float) *(const int32_t *) &data[i];
|
||||
case GGML_TYPE_I16:
|
||||
return (float) *(const int16_t *) &data[i];
|
||||
case GGML_TYPE_I8:
|
||||
return (float) *(const int8_t *) &data[i];
|
||||
case GGML_TYPE_BF16:
|
||||
return ggml_compute_bf16_to_fp32(*(const ggml_bf16_t *) &data[i]);
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
|
||||
GGML_ASSERT(n > 0);
|
||||
float sum = 0;
|
||||
float sum_sq = 0.0;
|
||||
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
||||
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
||||
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
||||
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
|
||||
sum += v;
|
||||
sum_sq += v * v;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
||||
LOG_DBG(" [\n");
|
||||
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
||||
if (i2 == n && ne[2] > 2*n) {
|
||||
LOG_DBG(" ..., \n");
|
||||
i2 = ne[2] - n;
|
||||
}
|
||||
LOG_DBG(" [\n");
|
||||
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
||||
if (i1 == n && ne[1] > 2*n) {
|
||||
LOG_DBG(" ..., \n");
|
||||
i1 = ne[1] - n;
|
||||
}
|
||||
LOG_DBG(" [");
|
||||
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
||||
if (i0 == n && ne[0] > 2*n) {
|
||||
LOG_DBG("..., ");
|
||||
i0 = ne[0] - n;
|
||||
}
|
||||
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
|
||||
LOG_DBG("%12.4f", v);
|
||||
if (i0 < ne[0] - 1) {
|
||||
LOG_DBG(", ");
|
||||
}
|
||||
}
|
||||
LOG_DBG("],\n");
|
||||
}
|
||||
LOG_DBG(" ],\n");
|
||||
}
|
||||
LOG_DBG(" ]\n");
|
||||
LOG_DBG(" sum = %f\n", sum);
|
||||
LOG_DBG(" sum_sq = %f\n", sum_sq);
|
||||
}
|
||||
|
||||
if (std::isnan(sum)) {
|
||||
LOG_ERR("encountered NaN - aborting\n");
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* GGML operations callback during the graph execution.
|
||||
*
|
||||
* @param t current tensor
|
||||
* @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
|
||||
* if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
|
||||
* see ggml_backend_sched_eval_callback
|
||||
* @param user_data user data to pass at each call back
|
||||
* @return true to receive data or continue the graph, false otherwise
|
||||
*/
|
||||
static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
auto * cb_data = (callback_data *) user_data;
|
||||
|
||||
const struct ggml_tensor * src0 = t->src[0];
|
||||
const struct ggml_tensor * src1 = t->src[1];
|
||||
|
||||
if (ask) {
|
||||
return true; // Always retrieve data
|
||||
}
|
||||
|
||||
bool matches_filter = cb_data->tensor_filters.empty();
|
||||
|
||||
if (!matches_filter) {
|
||||
for (const auto & filter : cb_data->tensor_filters) {
|
||||
if (std::regex_search(t->name, filter)) {
|
||||
matches_filter = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
char src1_str[128] = {0};
|
||||
if (src1) {
|
||||
snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
|
||||
}
|
||||
|
||||
if (matches_filter) {
|
||||
LOG_DBG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
|
||||
t->name,
|
||||
ggml_type_name(t->type),
|
||||
ggml_op_desc(t),
|
||||
src0->name,
|
||||
ggml_ne_string(src0).c_str(),
|
||||
src1 ? src1_str : "",
|
||||
ggml_ne_string(t).c_str());
|
||||
}
|
||||
|
||||
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
|
||||
|
||||
if (!is_host) {
|
||||
auto n_bytes = ggml_nbytes(t);
|
||||
cb_data->data.resize(n_bytes);
|
||||
ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
|
||||
}
|
||||
|
||||
if (!ggml_is_quantized(t->type) && matches_filter) {
|
||||
uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
|
||||
ggml_print_tensor(data, t->type, t->ne, t->nb, 3);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static void save_output_data(const output_data & output, const std::string & model_name, const std::string & output_dir) {
|
||||
std::filesystem::create_directory(output_dir);
|
||||
auto base_path = std::filesystem::path{output_dir} / ("llamacpp-" + model_name + output.type_suffix);
|
||||
|
||||
// Save logits/embeddings to binary file.
|
||||
{
|
||||
std::filesystem::path filepath{base_path.string() + ".bin"};
|
||||
std::ofstream file{filepath, std::ios::binary};
|
||||
if (!file) {
|
||||
throw std::runtime_error("failed to open binary output file: " + filepath.string());
|
||||
}
|
||||
file.write(reinterpret_cast<const char*>(output.data_ptr), output.data_size * sizeof(float));
|
||||
LOG("Data saved to %s\n", filepath.c_str());
|
||||
}
|
||||
|
||||
// Save logits/embeddings to text file.
|
||||
{
|
||||
std::filesystem::path filepath{base_path.string() + ".txt"};
|
||||
std::ofstream file{filepath};
|
||||
if (!file) {
|
||||
throw std::runtime_error("failed to open text output file: " + filepath.string());
|
||||
}
|
||||
for (int i = 0; i < output.data_size; i++) {
|
||||
file << i << ": " << output.data_ptr[i] << '\n';
|
||||
}
|
||||
LOG("Data saved to %s\n", filepath.c_str());
|
||||
}
|
||||
|
||||
// Save prompt and tokens to text file.
|
||||
{
|
||||
std::filesystem::path filepath{base_path.string() + "-prompt.txt"};
|
||||
std::ofstream file{filepath};
|
||||
if (!file) {
|
||||
throw std::runtime_error("failed to open prompt output file: " + filepath.string());
|
||||
}
|
||||
|
||||
file << "prompt: " << output.prompt << '\n';
|
||||
file << "n_tokens: " << output.tokens.size() << '\n';
|
||||
|
||||
file << "token ids: ";
|
||||
for (size_t i = 0; i < output.tokens.size(); i++) {
|
||||
file << output.tokens[i];
|
||||
if (i + 1 < output.tokens.size()) {
|
||||
file << ", ";
|
||||
}
|
||||
}
|
||||
file << '\n';
|
||||
LOG("Prompt saved to %s\n", filepath.c_str());
|
||||
}
|
||||
|
||||
// Save token ids to binary file.
|
||||
{
|
||||
std::filesystem::path filepath{base_path.string() + "-tokens.bin"};
|
||||
std::ofstream file{filepath, std::ios::binary};
|
||||
if (!file) {
|
||||
throw std::runtime_error("failed to open tokens binary file: " + filepath.string());
|
||||
}
|
||||
file.write(reinterpret_cast<const char*>(output.tokens.data()), output.tokens.size() * sizeof(llama_token));
|
||||
LOG("Tokens saved to %s\n", filepath.c_str());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static void print_tokenized_prompt(llama_context * ctx, const std::vector<llama_token> & tokens, const std::string & prompt) {
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
LOG("Model add_bos: %s\n", llama_vocab_get_add_bos(vocab) ? "true" : "false");
|
||||
LOG("Input prompt: \"%s\"\n", prompt.c_str());
|
||||
LOG("Token ids (%zu):\n", tokens.size());
|
||||
|
||||
for (auto id : tokens) {
|
||||
std::string piece(128, '\0');
|
||||
int n = llama_token_to_piece(vocab, id, piece.data(), piece.size(), 0, true);
|
||||
if (n < 0) {
|
||||
LOG_ERR("failed to convert token %d to piece\n", id);
|
||||
continue;
|
||||
}
|
||||
piece.resize(n);
|
||||
LOG("%s(%d) ", piece.c_str(), id);
|
||||
}
|
||||
LOG("\n");
|
||||
}
|
||||
|
||||
static bool run(llama_context * ctx, const common_params & params) {
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
if (tokens.empty()) {
|
||||
LOG_ERR("%s : there are not input tokens to process - (try to provide a prompt with '-p')\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
print_tokenized_prompt(ctx, tokens, params.prompt);
|
||||
|
||||
if (params.save_logits) {
|
||||
output_data output {ctx, model, params};
|
||||
std::filesystem::path model_path{params.model.path};
|
||||
std::string model_name{model_path.stem().string()};
|
||||
save_output_data(output, model_name, params.logits_output_dir);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_DEBUG)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
callback_data cb_data(params, params.tensor_filter);
|
||||
|
||||
auto llama_init = common_init_from_params(params);
|
||||
|
||||
auto * model = llama_init->model();
|
||||
auto * ctx = llama_init->context();
|
||||
|
||||
if (model == nullptr || ctx == nullptr) {
|
||||
LOG_ERR("%s : failed to init\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
LOG_INF("\n");
|
||||
}
|
||||
|
||||
if (!run(ctx, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -1,268 +0,0 @@
|
|||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <ctype.h>
|
||||
#include <filesystem>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
printf("\nexample usage:\n");
|
||||
printf("\n %s -m model.gguf [-ngl n_gpu_layers] -embd-mode [-pooling] [-embd-norm <norm>] [prompt]\n", argv[0]);
|
||||
printf("\n");
|
||||
printf(" -embd-norm: normalization type for pooled embeddings (default: 2)\n");
|
||||
printf(" -1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
std::string model_path;
|
||||
std::string prompt = "Hello, my name is";
|
||||
int ngl = 0;
|
||||
bool embedding_mode = false;
|
||||
bool pooling_enabled = false;
|
||||
int32_t embd_norm = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
|
||||
|
||||
{
|
||||
int i = 1;
|
||||
for (; i < argc; i++) {
|
||||
if (strcmp(argv[i], "-m") == 0) {
|
||||
if (i + 1 < argc) {
|
||||
model_path = argv[++i];
|
||||
} else {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
} else if (strcmp(argv[i], "-ngl") == 0) {
|
||||
if (i + 1 < argc) {
|
||||
try {
|
||||
ngl = std::stoi(argv[++i]);
|
||||
} catch (...) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
} else if (strcmp(argv[i], "-embd-mode") == 0) {
|
||||
embedding_mode = true;
|
||||
} else if (strcmp(argv[i], "-pooling") == 0) {
|
||||
pooling_enabled = true;
|
||||
} else if (strcmp(argv[i], "-embd-norm") == 0) {
|
||||
if (i + 1 < argc) {
|
||||
try {
|
||||
embd_norm = std::stoi(argv[++i]);
|
||||
} catch (...) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
// prompt starts here
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (model_path.empty()) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (i < argc) {
|
||||
prompt = argv[i++];
|
||||
for (; i < argc; i++) {
|
||||
prompt += " ";
|
||||
prompt += argv[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ggml_backend_load_all();
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
model_params.n_gpu_layers = ngl;
|
||||
|
||||
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Extract basename from model_path
|
||||
const char * basename = strrchr(model_path.c_str(), '/');
|
||||
basename = (basename == NULL) ? model_path.c_str() : basename + 1;
|
||||
|
||||
char model_name[256];
|
||||
strncpy(model_name, basename, 255);
|
||||
model_name[255] = '\0';
|
||||
|
||||
char * dot = strrchr(model_name, '.');
|
||||
if (dot != NULL && strcmp(dot, ".gguf") == 0) {
|
||||
*dot = '\0';
|
||||
}
|
||||
printf("Model name: %s\n", model_name);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
const int n_prompt = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
||||
|
||||
std::vector<llama_token> prompt_tokens(n_prompt);
|
||||
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
|
||||
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
ctx_params.n_ctx = n_prompt;
|
||||
ctx_params.n_batch = n_prompt;
|
||||
ctx_params.no_perf = false;
|
||||
if (embedding_mode) {
|
||||
ctx_params.embeddings = true;
|
||||
ctx_params.pooling_type = pooling_enabled ? LLAMA_POOLING_TYPE_MEAN : LLAMA_POOLING_TYPE_NONE;
|
||||
ctx_params.n_ubatch = ctx_params.n_batch;
|
||||
}
|
||||
|
||||
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
printf("Input prompt: \"%s\"\n", prompt.c_str());
|
||||
printf("Tokenized prompt (%d tokens): ", n_prompt);
|
||||
for (auto id : prompt_tokens) {
|
||||
char buf[128];
|
||||
int n = llama_token_to_piece(vocab, id, buf, sizeof(buf), 0, true);
|
||||
if (n < 0) {
|
||||
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
std::string s(buf, n);
|
||||
printf("%s (%d)", s.c_str(), id);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
|
||||
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
float * data_ptr;
|
||||
int data_size;
|
||||
const char * type;
|
||||
std::vector<float> embd_out;
|
||||
|
||||
if (embedding_mode) {
|
||||
const int n_embd = llama_model_n_embd(model);
|
||||
const int n_embd_count = pooling_enabled ? 1 : batch.n_tokens;
|
||||
const int n_embeddings = n_embd * n_embd_count;
|
||||
float * embeddings;
|
||||
type = "-embeddings";
|
||||
|
||||
if (llama_pooling_type(ctx) != LLAMA_POOLING_TYPE_NONE) {
|
||||
embeddings = llama_get_embeddings_seq(ctx, 0);
|
||||
embd_out.resize(n_embeddings);
|
||||
printf("Normalizing embeddings using norm: %d\n", embd_norm);
|
||||
common_embd_normalize(embeddings, embd_out.data(), n_embeddings, embd_norm);
|
||||
embeddings = embd_out.data();
|
||||
} else {
|
||||
embeddings = llama_get_embeddings(ctx);
|
||||
}
|
||||
|
||||
printf("Embedding dimension: %d\n", n_embd);
|
||||
printf("\n");
|
||||
|
||||
// Print embeddings in the specified format
|
||||
for (int j = 0; j < n_embd_count; j++) {
|
||||
printf("embedding %d: ", j);
|
||||
|
||||
// Print first 3 values
|
||||
for (int i = 0; i < 3 && i < n_embd; i++) {
|
||||
printf("%9.6f ", embeddings[j * n_embd + i]);
|
||||
}
|
||||
|
||||
printf(" ... ");
|
||||
|
||||
// Print last 3 values
|
||||
for (int i = n_embd - 3; i < n_embd; i++) {
|
||||
if (i >= 0) {
|
||||
printf("%9.6f ", embeddings[j * n_embd + i]);
|
||||
}
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
printf("Embeddings size: %d\n", n_embeddings);
|
||||
|
||||
data_ptr = embeddings;
|
||||
data_size = n_embeddings;
|
||||
} else {
|
||||
float * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
|
||||
const int n_logits = llama_vocab_n_tokens(vocab);
|
||||
type = "";
|
||||
printf("Vocab size: %d\n", n_logits);
|
||||
|
||||
data_ptr = logits;
|
||||
data_size = n_logits;
|
||||
}
|
||||
|
||||
std::filesystem::create_directory("data");
|
||||
|
||||
// Save data to binary file
|
||||
char bin_filename[512];
|
||||
snprintf(bin_filename, sizeof(bin_filename), "data/llamacpp-%s%s.bin", model_name, type);
|
||||
printf("Saving data to %s\n", bin_filename);
|
||||
|
||||
FILE * f = fopen(bin_filename, "wb");
|
||||
if (f == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to open binary output file\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
fwrite(data_ptr, sizeof(float), data_size, f);
|
||||
fclose(f);
|
||||
|
||||
// Also save as text for debugging
|
||||
char txt_filename[512];
|
||||
snprintf(txt_filename, sizeof(txt_filename), "data/llamacpp-%s%s.txt", model_name, type);
|
||||
f = fopen(txt_filename, "w");
|
||||
if (f == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to open text output file\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
for (int i = 0; i < data_size; i++) {
|
||||
fprintf(f, "%d: %.6f\n", i, data_ptr[i]);
|
||||
}
|
||||
fclose(f);
|
||||
|
||||
if (!embedding_mode) {
|
||||
printf("First 10 logits: ");
|
||||
for (int i = 0; i < 10 && i < data_size; i++) {
|
||||
printf("%.6f ", data_ptr[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
printf("Last 10 logits: ");
|
||||
for (int i = data_size - 10; i < data_size; i++) {
|
||||
if (i >= 0) printf("%.6f ", data_ptr[i]);
|
||||
}
|
||||
printf("\n\n");
|
||||
}
|
||||
|
||||
printf("Data saved to %s\n", bin_filename);
|
||||
printf("Data saved to %s\n", txt_filename);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_model_free(model);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -67,7 +67,7 @@ with torch.no_grad():
|
|||
last_hidden_states = outputs.hidden_states[-1]
|
||||
|
||||
# Get embeddings for all tokens
|
||||
token_embeddings = last_hidden_states[0].cpu().numpy() # Remove batch dimension
|
||||
token_embeddings = last_hidden_states[0].float().cpu().numpy() # Remove batch dimension
|
||||
|
||||
print(f"Hidden states shape: {last_hidden_states.shape}")
|
||||
print(f"Token embeddings shape: {token_embeddings.shape}")
|
||||
|
|
|
|||
|
|
@ -13,6 +13,6 @@ if [ -z "$CONVERTED_MODEL" ]; then
|
|||
exit 1
|
||||
fi
|
||||
|
||||
cmake --build ../../build --target llama-logits -j8
|
||||
cmake --build ../../build --target llama-debug -j8
|
||||
|
||||
../../build/bin/llama-logits -m $CONVERTED_MODEL -embd-mode "Hello world today"
|
||||
../../build/bin/llama-debug -m $CONVERTED_MODEL --embedding -p "Hello world today" --save-logits
|
||||
|
|
|
|||
|
|
@ -21,6 +21,6 @@ fi
|
|||
echo $CONVERTED_MODEL
|
||||
echo $MODEL_TESTING_PROMPT
|
||||
|
||||
cmake --build ../../build --target llama-logits -j8
|
||||
cmake --build ../../build --target llama-debug -j8
|
||||
|
||||
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "$MODEL_TESTING_PROMPT"
|
||||
../../build/bin/llama-debug -m "$CONVERTED_MODEL" -p "$MODEL_TESTING_PROMPT" --save-logits
|
||||
|
|
|
|||
|
|
@ -50,10 +50,9 @@ fi
|
|||
|
||||
echo $CONVERTED_MODEL
|
||||
|
||||
cmake --build ../../build --target llama-logits -j8
|
||||
# TODO: update logits.cpp to accept a --file/-f option for the prompt
|
||||
cmake --build ../../build --target llama-debug -j8
|
||||
if [ -n "$USE_POOLING" ]; then
|
||||
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode -pooling "$PROMPT"
|
||||
../../build/bin/llama-debug -m "$CONVERTED_MODEL" --embedding --pooling mean -p "$PROMPT" --save-logits
|
||||
else
|
||||
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "$PROMPT"
|
||||
../../build/bin/llama-debug -m "$CONVERTED_MODEL" --embedding --pooling none -p "$PROMPT" --save-logits
|
||||
fi
|
||||
|
|
|
|||
Loading…
Reference in New Issue