model: Add support for CogVLM model (#15002)

* Added GGUF mappings for CogVLM model

* Add tensor mapping for CogVLM visual encoder

* Add CogVLM to conversion script, no vision part yet

* Added CogVLM vision model to conversion script

* Add graph for CogVLM CLIP model

* Add graph for CogVLM

* Fixes for CogVLM. Now compiles.

* Model now runs

* Fixes for cogvlm graph

* Account for graph context change after rebase

* Changes for whitespace

* Changes in convert script according to comments

* Switch CogVLM LLM graph to merged QKV tensor

* Use rope_type variable instead of direct definition

* Change CogVLM CLIP encoder to use SWIGLU

* Switch CogVLM CLIP to use merged QKV

* Apply rebase edits and remove ggml_cont call that is now unnecessary

* clean up

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This commit is contained in:
Tianyue-Zhao 2025-10-30 07:18:50 -04:00 committed by GitHub
parent 229bf68628
commit bacddc049a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 501 additions and 26 deletions

View File

@ -1528,7 +1528,7 @@ class MmprojModel(ModelBase):
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"])) self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"])) self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys)) self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"])) self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
# preprocessor config # preprocessor config
image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"] image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
@ -9493,6 +9493,37 @@ class KimiVLModel(MmprojModel):
return [] # skip other tensors return [] # skip other tensors
@ModelBase.register("CogVLMForCausalLM")
class CogVLMVisionModel(MmprojModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if not name.startswith("model.vision."):
return []
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("CogVLMForCausalLM")
class CogVLMModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.COGVLM
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
# block vision tensors
if name.startswith("model.vision."):
return []
return [(self.map_tensor_name(name), data_torch)]
###### CONVERSION LOGIC ###### ###### CONVERSION LOGIC ######

View File

@ -420,6 +420,7 @@ class MODEL_ARCH(IntEnum):
SEED_OSS = auto() SEED_OSS = auto()
GROVEMOE = auto() GROVEMOE = auto()
APERTUS = auto() APERTUS = auto()
COGVLM = auto()
class VISION_PROJECTOR_TYPE(IntEnum): class VISION_PROJECTOR_TYPE(IntEnum):
@ -430,6 +431,7 @@ class VISION_PROJECTOR_TYPE(IntEnum):
GLM_EDGE = auto() GLM_EDGE = auto()
MERGER = auto() MERGER = auto()
GEMMA3 = auto() GEMMA3 = auto()
COGVLM = auto()
class MODEL_TENSOR(IntEnum): class MODEL_TENSOR(IntEnum):
@ -600,6 +602,11 @@ class MODEL_TENSOR(IntEnum):
SHORTCONV_CONV = auto() SHORTCONV_CONV = auto()
SHORTCONV_INPROJ = auto() SHORTCONV_INPROJ = auto()
SHORTCONV_OUTPROJ = auto() SHORTCONV_OUTPROJ = auto()
VISEXP_ATTN_QKV = auto()
VISEXP_ATTN_OUT = auto()
VISEXP_GATE = auto()
VISEXP_DOWN = auto()
VISEXP_UP = auto()
# vision # vision
V_MMPROJ = auto() V_MMPROJ = auto()
V_MMPROJ_FC = auto() V_MMPROJ_FC = auto()
@ -609,6 +616,7 @@ class MODEL_TENSOR(IntEnum):
V_ENC_EMBD_PATCH = auto() V_ENC_EMBD_PATCH = auto()
V_ENC_EMBD_POS = auto() V_ENC_EMBD_POS = auto()
V_ENC_INPUT_NORM = auto() V_ENC_INPUT_NORM = auto()
V_ENC_ATTN_QKV = auto()
V_ENC_ATTN_Q = auto() V_ENC_ATTN_Q = auto()
V_ENC_ATTN_Q_NORM = auto() V_ENC_ATTN_Q_NORM = auto()
V_ENC_ATTN_K = auto() V_ENC_ATTN_K = auto()
@ -640,6 +648,12 @@ class MODEL_TENSOR(IntEnum):
V_RESMPL_QUERY = auto() # minicpmv V_RESMPL_QUERY = auto() # minicpmv
V_TOK_EMBD_IMG_BREAK = auto() # pixtral V_TOK_EMBD_IMG_BREAK = auto() # pixtral
V_MM_PATCH_MERGER = auto() # mistral small 3.1 V_MM_PATCH_MERGER = auto() # mistral small 3.1
V_MM_POST_FC_NORM = auto() # cogvlm
V_MM_UP = auto() # cogvlm
V_MM_DOWN = auto() # cogvlm
V_MM_GATE = auto() # cogvlm
V_TOK_BOI = auto() # cogvlm
V_TOK_EOI = auto() # cogvlm
# audio (mtmd) # audio (mtmd)
A_ENC_EMBD_POS = auto() A_ENC_EMBD_POS = auto()
A_ENC_CONV1D = auto() A_ENC_CONV1D = auto()
@ -766,6 +780,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.SEED_OSS: "seed_oss", MODEL_ARCH.SEED_OSS: "seed_oss",
MODEL_ARCH.GROVEMOE: "grovemoe", MODEL_ARCH.GROVEMOE: "grovemoe",
MODEL_ARCH.APERTUS: "apertus", MODEL_ARCH.APERTUS: "apertus",
MODEL_ARCH.COGVLM: "cogvlm",
} }
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = { VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
@ -946,6 +961,11 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.SHORTCONV_CONV: "blk.{bid}.shortconv.conv", MODEL_TENSOR.SHORTCONV_CONV: "blk.{bid}.shortconv.conv",
MODEL_TENSOR.SHORTCONV_INPROJ: "blk.{bid}.shortconv.in_proj", MODEL_TENSOR.SHORTCONV_INPROJ: "blk.{bid}.shortconv.in_proj",
MODEL_TENSOR.SHORTCONV_OUTPROJ: "blk.{bid}.shortconv.out_proj", MODEL_TENSOR.SHORTCONV_OUTPROJ: "blk.{bid}.shortconv.out_proj",
MODEL_TENSOR.VISEXP_ATTN_QKV: "blk.{bid}.vis_attn_qkv",
MODEL_TENSOR.VISEXP_ATTN_OUT: "blk.{bid}.vis_attn_output",
MODEL_TENSOR.VISEXP_GATE: "blk.{bid}.vis_gate",
MODEL_TENSOR.VISEXP_DOWN: "blk.{bid}.vis_down",
MODEL_TENSOR.VISEXP_UP: "blk.{bid}.vis_up",
# vision # vision
MODEL_TENSOR.V_MMPROJ: "mm.{bid}", MODEL_TENSOR.V_MMPROJ: "mm.{bid}",
MODEL_TENSOR.V_MMPROJ_FC: "mm.model.fc", MODEL_TENSOR.V_MMPROJ_FC: "mm.model.fc",
@ -954,6 +974,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_ENC_EMBD_CLS: "v.class_embd", MODEL_TENSOR.V_ENC_EMBD_CLS: "v.class_embd",
MODEL_TENSOR.V_ENC_EMBD_PATCH: "v.patch_embd", MODEL_TENSOR.V_ENC_EMBD_PATCH: "v.patch_embd",
MODEL_TENSOR.V_ENC_EMBD_POS: "v.position_embd", MODEL_TENSOR.V_ENC_EMBD_POS: "v.position_embd",
MODEL_TENSOR.V_ENC_ATTN_QKV: "v.blk.{bid}.attn_qkv",
MODEL_TENSOR.V_ENC_ATTN_Q: "v.blk.{bid}.attn_q", MODEL_TENSOR.V_ENC_ATTN_Q: "v.blk.{bid}.attn_q",
MODEL_TENSOR.V_ENC_ATTN_Q_NORM: "v.blk.{bid}.attn_q_norm", MODEL_TENSOR.V_ENC_ATTN_Q_NORM: "v.blk.{bid}.attn_q_norm",
MODEL_TENSOR.V_ENC_ATTN_K: "v.blk.{bid}.attn_k", MODEL_TENSOR.V_ENC_ATTN_K: "v.blk.{bid}.attn_k",
@ -986,6 +1007,12 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_RESMPL_QUERY: "resampler.query", MODEL_TENSOR.V_RESMPL_QUERY: "resampler.query",
MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: "v.token_embd.img_break", # pixtral MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: "v.token_embd.img_break", # pixtral
MODEL_TENSOR.V_MM_PATCH_MERGER: "mm.patch_merger", # mistral small 3.1 MODEL_TENSOR.V_MM_PATCH_MERGER: "mm.patch_merger", # mistral small 3.1
MODEL_TENSOR.V_MM_POST_FC_NORM: "mm.post_fc_norm", # cogvlm
MODEL_TENSOR.V_MM_UP: "mm.up",
MODEL_TENSOR.V_MM_DOWN: "mm.down",
MODEL_TENSOR.V_MM_GATE: "mm.gate",
MODEL_TENSOR.V_TOK_BOI: "v.boi",
MODEL_TENSOR.V_TOK_EOI: "v.eoi",
# audio (mtmd) # audio (mtmd)
MODEL_TENSOR.A_ENC_EMBD_POS: "a.position_embd", MODEL_TENSOR.A_ENC_EMBD_POS: "a.position_embd",
MODEL_TENSOR.A_ENC_CONV1D: "a.conv1d.{bid}", MODEL_TENSOR.A_ENC_CONV1D: "a.conv1d.{bid}",
@ -1023,6 +1050,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_ENC_EMBD_PATCH, MODEL_TENSOR.V_ENC_EMBD_PATCH,
MODEL_TENSOR.V_ENC_EMBD_POS, MODEL_TENSOR.V_ENC_EMBD_POS,
MODEL_TENSOR.V_ENC_INPUT_NORM, MODEL_TENSOR.V_ENC_INPUT_NORM,
MODEL_TENSOR.V_ENC_ATTN_QKV,
MODEL_TENSOR.V_ENC_ATTN_Q, MODEL_TENSOR.V_ENC_ATTN_Q,
MODEL_TENSOR.V_ENC_ATTN_Q_NORM, MODEL_TENSOR.V_ENC_ATTN_Q_NORM,
MODEL_TENSOR.V_ENC_ATTN_K, MODEL_TENSOR.V_ENC_ATTN_K,
@ -1054,6 +1082,12 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_RESMPL_QUERY, MODEL_TENSOR.V_RESMPL_QUERY,
MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK, MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK,
MODEL_TENSOR.V_MM_PATCH_MERGER, MODEL_TENSOR.V_MM_PATCH_MERGER,
MODEL_TENSOR.V_MM_POST_FC_NORM,
MODEL_TENSOR.V_MM_UP,
MODEL_TENSOR.V_MM_DOWN,
MODEL_TENSOR.V_MM_GATE,
MODEL_TENSOR.V_TOK_BOI,
MODEL_TENSOR.V_TOK_EOI,
# audio # audio
MODEL_TENSOR.A_ENC_EMBD_POS, MODEL_TENSOR.A_ENC_EMBD_POS,
MODEL_TENSOR.A_ENC_CONV1D, MODEL_TENSOR.A_ENC_CONV1D,
@ -2837,6 +2871,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_CHEXP, MODEL_TENSOR.FFN_DOWN_CHEXP,
MODEL_TENSOR.FFN_UP_CHEXP, MODEL_TENSOR.FFN_UP_CHEXP,
], ],
MODEL_ARCH.COGVLM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.VISEXP_ATTN_QKV,
MODEL_TENSOR.VISEXP_ATTN_OUT,
MODEL_TENSOR.VISEXP_GATE,
MODEL_TENSOR.VISEXP_UP,
MODEL_TENSOR.VISEXP_DOWN,
],
# TODO # TODO
} }
@ -3063,6 +3114,7 @@ class VisionProjectorType:
LFM2 = "lfm2" LFM2 = "lfm2"
KIMIVL = "kimivl" KIMIVL = "kimivl"
LIGHTONOCR = "lightonocr" LIGHTONOCR = "lightonocr"
COGVLM = "cogvlm"
# Items here are (block size, type size) # Items here are (block size, type size)

View File

@ -104,6 +104,7 @@ class TensorNameMap:
"backbone.final_layer_norm", # wavtokenizer "backbone.final_layer_norm", # wavtokenizer
"model.norm", # llama4 "model.norm", # llama4
"model.transformer.ln_f", # llada "model.transformer.ln_f", # llada
"model.norm", # cogvlm
), ),
# Rope frequencies # Rope frequencies
@ -162,6 +163,7 @@ class TensorNameMap:
"encoder.layer.{bid}.layer_norm_1", # jina-v2-code "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
"rwkv.blocks.{bid}.ln2", # rwkv6 "rwkv.blocks.{bid}.ln2", # rwkv6
"model.layers.{bid}.ln2", # rwkv7 "model.layers.{bid}.ln2", # rwkv7
"model.layers.{bid}.post_attention_layernorm", # cogvlm
), ),
# Attention query-key-value # Attention query-key-value
@ -184,6 +186,7 @@ class TensorNameMap:
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
"transformer.layers.{bid}.attn.qkv_proj", # openelm "transformer.layers.{bid}.attn.qkv_proj", # openelm
"transformer_encoder.{bid}.qkv", # neobert "transformer_encoder.{bid}.qkv", # neobert
"model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
), ),
# Attention query # Attention query
@ -279,6 +282,7 @@ class TensorNameMap:
"model.transformer.blocks.{bid}.attn_out", # llada "model.transformer.blocks.{bid}.attn_out", # llada
"layers.{bid}.self_attn.o_proj", # qwen3-embedding "layers.{bid}.self_attn.o_proj", # qwen3-embedding
"backbone.layers.{bid}.mixer.o_proj", # nemotron-h "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
"model.layers.{bid}.self_attn.language_expert_dense", # cogvlm
), ),
# Attention output norm # Attention output norm
@ -418,6 +422,7 @@ class TensorNameMap:
"model.transformer.blocks.{bid}.up_proj", # llada "model.transformer.blocks.{bid}.up_proj", # llada
"layers.{bid}.mlp.up_proj", # qwen3-embedding "layers.{bid}.mlp.up_proj", # qwen3-embedding
"backbone.layers.{bid}.mixer.up_proj", # nemotron-h "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
"model.layers.{bid}.mlp.language_mlp.up_proj", # cogvlm
), ),
MODEL_TENSOR.FFN_UP_EXP: ( MODEL_TENSOR.FFN_UP_EXP: (
@ -450,21 +455,22 @@ class TensorNameMap:
# Feed-forward gate # Feed-forward gate
MODEL_TENSOR.FFN_GATE: ( MODEL_TENSOR.FFN_GATE: (
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2 "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
"layers.{bid}.mlp.gate_proj", # embeddinggemma "layers.{bid}.mlp.gate_proj", # embeddinggemma
"layers.{bid}.feed_forward.w1", # llama-pth "layers.{bid}.feed_forward.w1", # llama-pth
"transformer.h.{bid}.mlp.w2", # qwen "transformer.h.{bid}.mlp.w2", # qwen
"transformer.h.{bid}.mlp.c_fc2", # jais "transformer.h.{bid}.mlp.c_fc2", # jais
"model.layers.layers.{bid}.mlp.gate_proj", # plamo "model.layers.layers.{bid}.mlp.gate_proj", # plamo
"model.layers.{bid}.feed_forward.w1", # internlm2 "model.layers.{bid}.feed_forward.w1", # internlm2
"encoder.layers.{bid}.mlp.fc12", # nomic-bert "encoder.layers.{bid}.mlp.fc12", # nomic-bert
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used) "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
"transformer.h.{bid}.mlp.linear_1", # refact "transformer.h.{bid}.mlp.linear_1", # refact
"model.layers.{bid}.residual_mlp.w1", # arctic "model.layers.{bid}.residual_mlp.w1", # arctic
"transformer.h.{bid}.mlp.c_fc_0", # exaone "transformer.h.{bid}.mlp.c_fc_0", # exaone
"model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
"model.transformer.blocks.{bid}.ff_proj", # llada "model.transformer.blocks.{bid}.ff_proj", # llada
"layers.{bid}.mlp.gate_proj", # qwen3-embedding "layers.{bid}.mlp.gate_proj", # qwen3-embedding
"model.layers.{bid}.mlp.language_mlp.gate_proj", # cogvlm
), ),
MODEL_TENSOR.FFN_GATE_EXP: ( MODEL_TENSOR.FFN_GATE_EXP: (
@ -522,6 +528,7 @@ class TensorNameMap:
"model.transformer.blocks.{bid}.ff_out", # llada "model.transformer.blocks.{bid}.ff_out", # llada
"layers.{bid}.mlp.down_proj", # qwen3-embedding "layers.{bid}.mlp.down_proj", # qwen3-embedding
"backbone.layers.{bid}.mixer.down_proj", # nemotron-h "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
"model.layers.{bid}.mlp.language_mlp.down_proj", # cogvlm
), ),
MODEL_TENSOR.FFN_DOWN_EXP: ( MODEL_TENSOR.FFN_DOWN_EXP: (
@ -1047,6 +1054,26 @@ class TensorNameMap:
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5 "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
), ),
MODEL_TENSOR.VISEXP_UP: (
"model.layers.{bid}.mlp.vision_mlp.up_proj", # cogvlm
),
MODEL_TENSOR.VISEXP_GATE: (
"model.layers.{bid}.mlp.vision_mlp.gate_proj", # cogvlm
),
MODEL_TENSOR.VISEXP_DOWN: (
"model.layers.{bid}.mlp.vision_mlp.down_proj", # cogvlm
),
MODEL_TENSOR.VISEXP_ATTN_OUT: (
"model.layers.{bid}.self_attn.vision_expert_dense", # cogvlm
),
MODEL_TENSOR.VISEXP_ATTN_QKV: (
"model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
),
############################################################################ ############################################################################
# TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
MODEL_TENSOR.ENC_OUTPUT_NORM: ( MODEL_TENSOR.ENC_OUTPUT_NORM: (
@ -1148,6 +1175,7 @@ class TensorNameMap:
MODEL_TENSOR.V_MMPROJ_FC: ( MODEL_TENSOR.V_MMPROJ_FC: (
"model.connector.modality_projection.proj", # SmolVLM "model.connector.modality_projection.proj", # SmolVLM
"model.vision.linear_proj.linear_proj", # cogvlm
), ),
MODEL_TENSOR.V_MMPROJ_MLP: ( MODEL_TENSOR.V_MMPROJ_MLP: (
@ -1164,6 +1192,7 @@ class TensorNameMap:
"vision_tower.vision_model.embeddings.class_embedding", "vision_tower.vision_model.embeddings.class_embedding",
"model.vision_tower.embeddings.cls_token", # Intern-S1 "model.vision_tower.embeddings.cls_token", # Intern-S1
"vision_model.class_embedding", # llama 4 "vision_model.class_embedding", # llama 4
"model.vision.patch_embedding.cls_embedding", # cogvlm
), ),
MODEL_TENSOR.V_ENC_EMBD_PATCH: ( MODEL_TENSOR.V_ENC_EMBD_PATCH: (
@ -1176,6 +1205,7 @@ class TensorNameMap:
"vision_model.patch_embedding.linear", # llama 4 "vision_model.patch_embedding.linear", # llama 4
"visual.patch_embed.proj", # qwen2vl "visual.patch_embed.proj", # qwen2vl
"vision_tower.patch_embed.proj", # kimi-vl "vision_tower.patch_embed.proj", # kimi-vl
"model.vision.patch_embedding.proj", # cogvlm
), ),
MODEL_TENSOR.V_ENC_EMBD_POS: ( MODEL_TENSOR.V_ENC_EMBD_POS: (
@ -1185,6 +1215,11 @@ class TensorNameMap:
"model.vision_model.embeddings.position_embedding", # SmolVLM "model.vision_model.embeddings.position_embedding", # SmolVLM
"vision_model.positional_embedding_vlm", # llama 4 "vision_model.positional_embedding_vlm", # llama 4
"vision_tower.patch_embed.pos_emb", # kimi-vl "vision_tower.patch_embed.pos_emb", # kimi-vl
"model.vision.patch_embedding.position_embedding", # cogvlm
),
MODEL_TENSOR.V_ENC_ATTN_QKV: (
"model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
), ),
MODEL_TENSOR.V_ENC_ATTN_Q: ( MODEL_TENSOR.V_ENC_ATTN_Q: (
@ -1244,6 +1279,7 @@ class TensorNameMap:
"vision_model.model.layers.{bid}.input_layernorm", # llama4 "vision_model.model.layers.{bid}.input_layernorm", # llama4
"visual.blocks.{bid}.norm1", # qwen2vl "visual.blocks.{bid}.norm1", # qwen2vl
"vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1) "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
"model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
), ),
MODEL_TENSOR.V_ENC_ATTN_O: ( MODEL_TENSOR.V_ENC_ATTN_O: (
@ -1257,6 +1293,7 @@ class TensorNameMap:
"vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
"visual.blocks.{bid}.attn.proj", # qwen2vl "visual.blocks.{bid}.attn.proj", # qwen2vl
"vision_tower.encoder.blocks.{bid}.wo", # kimi-vl "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
"model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
), ),
MODEL_TENSOR.V_ENC_POST_ATTN_NORM: ( MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
@ -1270,6 +1307,7 @@ class TensorNameMap:
"vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
"visual.blocks.{bid}.norm2", # qwen2vl "visual.blocks.{bid}.norm2", # qwen2vl
"vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1) "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
"model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
), ),
MODEL_TENSOR.V_ENC_FFN_UP: ( MODEL_TENSOR.V_ENC_FFN_UP: (
@ -1283,6 +1321,7 @@ class TensorNameMap:
"visual.blocks.{bid}.mlp.fc1", # qwen2vl "visual.blocks.{bid}.mlp.fc1", # qwen2vl
"visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
"vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1) "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
"model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
), ),
MODEL_TENSOR.V_ENC_FFN_GATE: ( MODEL_TENSOR.V_ENC_FFN_GATE: (
@ -1302,6 +1341,7 @@ class TensorNameMap:
"visual.blocks.{bid}.mlp.fc2", # qwen2vl "visual.blocks.{bid}.mlp.fc2", # qwen2vl
"visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
"vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1) "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
"model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
), ),
MODEL_TENSOR.V_LAYER_SCALE_1: ( MODEL_TENSOR.V_LAYER_SCALE_1: (
@ -1338,6 +1378,7 @@ class TensorNameMap:
"multi_modal_projector.layer_norm", "multi_modal_projector.layer_norm",
"multi_modal_projector.pre_norm", "multi_modal_projector.pre_norm",
"pre_mm_projector_norm", "pre_mm_projector_norm",
"model.vision.linear_proj.norm1", # cogvlm
), ),
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: ( MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
@ -1397,6 +1438,30 @@ class TensorNameMap:
"patch_merger.merging_layer", # mistral "patch_merger.merging_layer", # mistral
), ),
MODEL_TENSOR.V_MM_POST_FC_NORM: (
"model.vision.linear_proj.norm1", # cogvlm
),
MODEL_TENSOR.V_MM_UP: (
"model.vision.linear_proj.dense_h_to_4h", # cogvlm
),
MODEL_TENSOR.V_MM_DOWN: (
"model.vision.linear_proj.dense_4h_to_h", # cogvlm
),
MODEL_TENSOR.V_MM_GATE: (
"model.vision.linear_proj.gate_proj", # cogvlm
),
MODEL_TENSOR.V_TOK_BOI: (
"model.vision.boi", # cogvlm
),
MODEL_TENSOR.V_TOK_EOI: (
"model.vision.eoi", # cogvlm
),
# audio (mtmd) # audio (mtmd)
MODEL_TENSOR.A_ENC_EMBD_POS: ( MODEL_TENSOR.A_ENC_EMBD_POS: (

View File

@ -103,6 +103,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_SEED_OSS, "seed_oss" }, { LLM_ARCH_SEED_OSS, "seed_oss" },
{ LLM_ARCH_GROVEMOE, "grovemoe" }, { LLM_ARCH_GROVEMOE, "grovemoe" },
{ LLM_ARCH_APERTUS, "apertus" }, { LLM_ARCH_APERTUS, "apertus" },
{ LLM_ARCH_COGVLM, "cogvlm" },
{ LLM_ARCH_UNKNOWN, "(unknown)" }, { LLM_ARCH_UNKNOWN, "(unknown)" },
}; };
@ -2312,6 +2313,26 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_CHEXPS, "blk.%d.ffn_up_chexps" }, { LLM_TENSOR_FFN_UP_CHEXPS, "blk.%d.ffn_up_chexps" },
}, },
}, },
{
LLM_ARCH_COGVLM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_VISEXP_ATTN_QKV, "blk.%d.vis_attn_qkv" },
{ LLM_TENSOR_VISEXP_ATTN_OUT, "blk.%d.vis_attn_output" },
{ LLM_TENSOR_VISEXP_FFN_GATE, "blk.%d.vis_gate" },
{ LLM_TENSOR_VISEXP_FFN_DOWN, "blk.%d.vis_down" },
{ LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" },
},
},
{ {
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
{ {
@ -2488,6 +2509,11 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_SHORTCONV_CONV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}}, {LLM_TENSOR_SHORTCONV_CONV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}},
{LLM_TENSOR_SHORTCONV_INPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, {LLM_TENSOR_SHORTCONV_INPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SHORTCONV_OUTPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, {LLM_TENSOR_SHORTCONV_OUTPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
// NextN/MTP tensors are currently ignored (reserved for future MTP support) // NextN/MTP tensors are currently ignored (reserved for future MTP support)
// These tensors only exist in the last layer(s) and are treated as output tensors // These tensors only exist in the last layer(s) and are treated as output tensors
{LLM_TENSOR_NEXTN_EH_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, {LLM_TENSOR_NEXTN_EH_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},

View File

@ -107,6 +107,7 @@ enum llm_arch {
LLM_ARCH_SEED_OSS, LLM_ARCH_SEED_OSS,
LLM_ARCH_GROVEMOE, LLM_ARCH_GROVEMOE,
LLM_ARCH_APERTUS, LLM_ARCH_APERTUS,
LLM_ARCH_COGVLM,
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
}; };
@ -455,6 +456,11 @@ enum llm_tensor {
LLM_TENSOR_SHORTCONV_CONV, LLM_TENSOR_SHORTCONV_CONV,
LLM_TENSOR_SHORTCONV_INPROJ, LLM_TENSOR_SHORTCONV_INPROJ,
LLM_TENSOR_SHORTCONV_OUTPROJ, LLM_TENSOR_SHORTCONV_OUTPROJ,
LLM_TENSOR_VISEXP_ATTN_QKV,
LLM_TENSOR_VISEXP_ATTN_OUT,
LLM_TENSOR_VISEXP_FFN_GATE,
LLM_TENSOR_VISEXP_FFN_DOWN,
LLM_TENSOR_VISEXP_FFN_UP,
LLM_TENSOR_NEXTN_EH_PROJ, LLM_TENSOR_NEXTN_EH_PROJ,
LLM_TENSOR_NEXTN_EMBED_TOKENS, LLM_TENSOR_NEXTN_EMBED_TOKENS,
LLM_TENSOR_NEXTN_ENORM, LLM_TENSOR_NEXTN_ENORM,

View File

@ -2124,6 +2124,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN; default: type = LLM_TYPE_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_COGVLM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 32: type = LLM_TYPE_13B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
default: throw std::runtime_error("unsupported model architecture"); default: throw std::runtime_error("unsupported model architecture");
} }
@ -6136,6 +6144,41 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED); layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
} }
} break; } break;
case LLM_ARCH_COGVLM:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
layer.visexp_attn_wqkv = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
layer.visexp_attn_wo = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.visexp_ffn_gate = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.visexp_ffn_down = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.visexp_ffn_up = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
} break;
default: default:
throw std::runtime_error("unknown architecture"); throw std::runtime_error("unknown architecture");
} }
@ -19641,6 +19684,104 @@ struct llm_build_apertus : public llm_graph_context {
} }
}; };
struct llm_build_cogvlm : public llm_graph_context {
llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
float kq_scale = 1.0f / sqrtf(float(n_embd_head));
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * inpL, * cur;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
// check ubatch to see if we have input tokens (text)
// or an input embedding vector (image)
bool is_text;
if (ubatch.token) {
is_text = true;
} else {
is_text = false;
}
for (int il = 0; il < n_layer; ++il) {
// get either the text or image weight tensors
ggml_tensor * wqkv, * wo;
ggml_tensor * ffn_gate, * ffn_down, * ffn_up;
if (is_text) {
wqkv = model.layers[il].wqkv;
wo = model.layers[il].wo;
ffn_gate = model.layers[il].ffn_gate;
ffn_down = model.layers[il].ffn_down;
ffn_up = model.layers[il].ffn_up;
} else {
wqkv = model.layers[il].visexp_attn_wqkv;
wo = model.layers[il].visexp_attn_wo;
ffn_gate = model.layers[il].visexp_ffn_gate;
ffn_down = model.layers[il].visexp_ffn_down;
ffn_up = model.layers[il].visexp_ffn_up;
}
ggml_tensor * inpSA = inpL;
cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
// build self attention
{
ggml_tensor * qkv = build_lora_mm(wqkv, cur);
// split qkv into Q, K, V along the first dimension
ggml_tensor * Qcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float),
qkv->nb[1], 0);
ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
qkv->nb[1], n_embd * ggml_element_size(qkv));
ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
qkv->nb[1], 2 * n_embd * ggml_element_size(qkv));
Qcur = ggml_rope(ctx0, Qcur, inp_pos, n_embd_head, rope_type);
Kcur = ggml_rope(ctx0, Kcur, inp_pos, n_embd_head, rope_type);
cur = build_attn(inp_attn, wo, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
ffn_up, NULL, NULL,
ffn_gate, NULL, NULL,
ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, const llama_cparams & cparams) const { llama_memory_i * llama_model::create_memory(const llama_memory_params & params, const llama_cparams & cparams) const {
llama_memory_i * res; llama_memory_i * res;
@ -20165,6 +20306,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{ {
llm = std::make_unique<llm_build_apertus>(*this, params); llm = std::make_unique<llm_build_apertus>(*this, params);
} break; } break;
case LLM_ARCH_COGVLM:
{
llm = std::make_unique<llm_build_cogvlm>(*this, params);
} break;
default: default:
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }
@ -20382,6 +20527,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_SEED_OSS: case LLM_ARCH_SEED_OSS:
case LLM_ARCH_GROVEMOE: case LLM_ARCH_GROVEMOE:
case LLM_ARCH_APERTUS: case LLM_ARCH_APERTUS:
case LLM_ARCH_COGVLM:
return LLAMA_ROPE_TYPE_NEOX; return LLAMA_ROPE_TYPE_NEOX;
case LLM_ARCH_QWEN2VL: case LLM_ARCH_QWEN2VL:

View File

@ -384,6 +384,13 @@ struct llama_layer {
// openai-moe // openai-moe
struct ggml_tensor * attn_sinks = nullptr; struct ggml_tensor * attn_sinks = nullptr;
// cogvlm
struct ggml_tensor * visexp_attn_wqkv = nullptr;
struct ggml_tensor * visexp_attn_wo = nullptr;
struct ggml_tensor * visexp_ffn_gate = nullptr;
struct ggml_tensor * visexp_ffn_down = nullptr;
struct ggml_tensor * visexp_ffn_up = nullptr;
// xIELU activation parameters for Apertus // xIELU activation parameters for Apertus
struct ggml_tensor * ffn_act_alpha_n = nullptr; struct ggml_tensor * ffn_act_alpha_n = nullptr;
struct ggml_tensor * ffn_act_alpha_p = nullptr; struct ggml_tensor * ffn_act_alpha_p = nullptr;

View File

@ -63,6 +63,7 @@
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat #define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1" #define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
#define TN_PATCH_BIAS "v.patch_embd.bias" #define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_ATTN_QKV "%s.blk.%d.attn_qkv.%s"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s" #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s" #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s" #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
@ -116,6 +117,14 @@
#define TN_MM_NORM_PRE "mm.a.norm_pre.%s" #define TN_MM_NORM_PRE "mm.a.norm_pre.%s"
#define TN_MM_NORM_MID "mm.a.norm_mid.%s" #define TN_MM_NORM_MID "mm.a.norm_mid.%s"
// cogvlm
#define TN_MM_POST_FC_NORM "mm.post_fc_norm.%s"
#define TN_MM_H_TO_4H "mm.up.%s"
#define TN_MM_GATE "mm.gate.%s"
#define TN_MM_4H_TO_H "mm.down.%s"
#define TN_TOK_BOI "v.boi"
#define TN_TOK_EOI "v.eoi"
// align x to upper multiple of n // align x to upper multiple of n
#define CLIP_ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n)) #define CLIP_ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))
@ -141,6 +150,7 @@ enum projector_type {
PROJECTOR_TYPE_KIMIVL, PROJECTOR_TYPE_KIMIVL,
PROJECTOR_TYPE_LIGHTONOCR, PROJECTOR_TYPE_LIGHTONOCR,
PROJECTOR_TYPE_UNKNOWN, PROJECTOR_TYPE_UNKNOWN,
PROJECTOR_TYPE_COGVLM,
}; };
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = { static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
@ -163,6 +173,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_LFM2, "lfm2"}, { PROJECTOR_TYPE_LFM2, "lfm2"},
{ PROJECTOR_TYPE_KIMIVL, "kimivl"}, { PROJECTOR_TYPE_KIMIVL, "kimivl"},
{ PROJECTOR_TYPE_LIGHTONOCR,"lightonocr"}, { PROJECTOR_TYPE_LIGHTONOCR,"lightonocr"},
{ PROJECTOR_TYPE_COGVLM, "cogvlm"},
}; };
static projector_type clip_projector_type_from_string(const std::string & str) { static projector_type clip_projector_type_from_string(const std::string & str) {

View File

@ -214,6 +214,8 @@ struct clip_layer {
ggml_tensor * q_b = nullptr; ggml_tensor * q_b = nullptr;
ggml_tensor * v_w = nullptr; ggml_tensor * v_w = nullptr;
ggml_tensor * v_b = nullptr; ggml_tensor * v_b = nullptr;
ggml_tensor * qkv_w = nullptr;
ggml_tensor * qkv_b = nullptr;
ggml_tensor * o_w = nullptr; ggml_tensor * o_w = nullptr;
ggml_tensor * o_b = nullptr; ggml_tensor * o_b = nullptr;
@ -286,8 +288,6 @@ struct clip_model {
// GLMV-Edge projection // GLMV-Edge projection
ggml_tensor * mm_model_adapter_conv_w = nullptr; ggml_tensor * mm_model_adapter_conv_w = nullptr;
ggml_tensor * mm_model_adapter_conv_b = nullptr; ggml_tensor * mm_model_adapter_conv_b = nullptr;
ggml_tensor * mm_glm_tok_boi = nullptr;
ggml_tensor * mm_glm_tok_eoi = nullptr;
// MobileVLM projection // MobileVLM projection
ggml_tensor * mm_model_mlp_1_w = nullptr; ggml_tensor * mm_model_mlp_1_w = nullptr;
@ -359,6 +359,15 @@ struct clip_model {
ggml_tensor * mm_norm_pre_w = nullptr; ggml_tensor * mm_norm_pre_w = nullptr;
ggml_tensor * mm_norm_mid_w = nullptr; ggml_tensor * mm_norm_mid_w = nullptr;
// cogvlm
ggml_tensor * mm_post_fc_norm_w = nullptr;
ggml_tensor * mm_post_fc_norm_b = nullptr;
ggml_tensor * mm_h_to_4h_w = nullptr;
ggml_tensor * mm_gate_w = nullptr;
ggml_tensor * mm_4h_to_h_w = nullptr;
ggml_tensor * mm_boi = nullptr;
ggml_tensor * mm_eoi = nullptr;
bool audio_has_avgpool() const { bool audio_has_avgpool() const {
return proj_type == PROJECTOR_TYPE_QWEN2A return proj_type == PROJECTOR_TYPE_QWEN2A
|| proj_type == PROJECTOR_TYPE_VOXTRAL; || proj_type == PROJECTOR_TYPE_VOXTRAL;
@ -1494,8 +1503,8 @@ struct clip_graph {
// note: these embeddings are not present in text model, hence we cannot process them as text tokens // note: these embeddings are not present in text model, hence we cannot process them as text tokens
// see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53 // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
{ {
embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
} }
} }
@ -1613,6 +1622,104 @@ struct clip_graph {
return gf; return gf;
} }
// cogvlm vision encoder
ggml_cgraph * build_cogvlm() {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
const int n_pos = n_patches + 1; // +1 for [CLS]
// build input and concatenate class embedding
ggml_tensor * inp = build_inp();
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
inp = ggml_add(ctx0, inp, model.position_embeddings);
cb(inp, "inp_pos", -1);
ggml_tensor * inpL = inp;
for (int il = 0; il < n_layer; il++) {
auto & layer = model.layers[il];
ggml_tensor * cur = inpL;
cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
cur = ggml_add(ctx0, cur, layer.qkv_b);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
cur->nb[1], 0);
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
cur->nb[1], n_embd * sizeof(float));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
cur->nb[1], 2 * n_embd * sizeof(float));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(layer.o_w, layer.o_b,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
cb(cur, "attn_post_norm", il);
cur = ggml_add(ctx0, cur, inpL);
inpL = cur;
cur = build_ffn(cur,
layer.ff_up_w, layer.ff_up_b,
layer.ff_gate_w, layer.ff_gate_b,
layer.ff_down_w, layer.ff_down_b,
hparams.ffn_op, il);
cb(cur, "ffn_out", il);
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
cb(cur, "ffn_post_norm", il);
cur = ggml_add(ctx0, cur, inpL);
cb(cur, "layer_out", il);
inpL = cur;
}
// remove CLS token (like build_llama4 does)
ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
n_embd, n_patches,
ggml_row_size(inpL->type, n_embd), 0);
// Multiply with mm_model_proj
cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
// Apply layernorm, weight, bias
cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
// Apply GELU
cur = ggml_gelu_inplace(ctx0, cur);
// Branch 1: multiply with mm_h_to_4h_w
ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
// Branch 2: multiply with mm_gate_w
ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
// Apply silu
gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
// Apply mm_4h_to_h_w
cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
// Concatenate with boi and eoi
cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
private: private:
// //
// utility functions // utility functions
@ -2126,6 +2233,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
{ {
res = graph.build_kimivl(); res = graph.build_kimivl();
} break; } break;
case PROJECTOR_TYPE_COGVLM:
{
res = graph.build_cogvlm();
} break;
default: default:
{ {
res = graph.build_llava(); res = graph.build_llava();
@ -2532,10 +2643,11 @@ struct clip_model_loader {
model.layers.resize(hparams.n_layer); model.layers.resize(hparams.n_layer);
for (int il = 0; il < hparams.n_layer; ++il) { for (int il = 0; il < hparams.n_layer; ++il) {
auto & layer = model.layers[il]; auto & layer = model.layers[il];
layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight")); layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false);
layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight")); layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false);
layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight")); layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false);
layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight")); layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false);
layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false); layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false); layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false); layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
@ -2547,6 +2659,7 @@ struct clip_model_loader {
layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false); layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false); layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false); layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false);
layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false); layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false); layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
@ -2682,8 +2795,8 @@ struct clip_model_loader {
model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight")); model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight")); model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight")); model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight")); model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight")); model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
} break; } break;
case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL: case PROJECTOR_TYPE_QWEN25VL:
@ -2777,6 +2890,17 @@ struct clip_model_loader {
model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight")); model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
} break; } break;
case PROJECTOR_TYPE_COGVLM:
{
model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight"));
model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight"));
model.mm_boi = get_tensor(TN_TOK_BOI);
model.mm_eoi = get_tensor(TN_TOK_EOI);
} break;
default: default:
GGML_ASSERT(false && "unknown projector type"); GGML_ASSERT(false && "unknown projector type");
} }
@ -3825,7 +3949,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
case PROJECTOR_TYPE_GLM_EDGE: case PROJECTOR_TYPE_GLM_EDGE:
{ {
n_patches /= 4; n_patches /= 4;
if (ctx->model.mm_glm_tok_boi) { if (ctx->model.mm_boi) {
n_patches += 2; // for BOI and EOI token embeddings n_patches += 2; // for BOI and EOI token embeddings
} }
} break; } break;
@ -3915,6 +4039,10 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
n_patches /= 2; n_patches /= 2;
} }
} break; } break;
case PROJECTOR_TYPE_COGVLM:
{
n_patches += 2; // for BOI and EOI token embeddings
} break;
default: default:
GGML_ABORT("unsupported projector type"); GGML_ABORT("unsupported projector type");
} }
@ -4323,6 +4451,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
case PROJECTOR_TYPE_ULTRAVOX: case PROJECTOR_TYPE_ULTRAVOX:
case PROJECTOR_TYPE_LFM2: case PROJECTOR_TYPE_LFM2:
case PROJECTOR_TYPE_VOXTRAL: case PROJECTOR_TYPE_VOXTRAL:
case PROJECTOR_TYPE_COGVLM:
{ {
// do nothing // do nothing
} break; } break;
@ -4427,6 +4556,8 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
case PROJECTOR_TYPE_LFM2: case PROJECTOR_TYPE_LFM2:
case PROJECTOR_TYPE_KIMIVL: case PROJECTOR_TYPE_KIMIVL:
return ctx->model.mm_2_w->ne[1]; return ctx->model.mm_2_w->ne[1];
case PROJECTOR_TYPE_COGVLM:
return ctx->model.mm_4h_to_h_w->ne[1];
default: default:
GGML_ABORT("Unknown projector type"); GGML_ABORT("Unknown projector type");
} }