vulkan: Fuse rope+set_rows (#16769)

This pattern appears in a lot of models, the rope operation is applied right
before storing into the KV cache (usually on the K tensor).

Add a path to some of the rope shaders that computes the destination address
based on the set_rows tensor. Compile variants of the shader with D_TYPE of
f16 (the usual KV cache type).

Add a src3 operand to ggml_vk_op_f32 - sometimes rope uses three srcs and needs
the fourth for the row indices.

Add fused_ops_write_mask to indicate which intermediate tensors need to write
their results to memory. Skipping writing the roped K value helps to allow more
nodes to run concurrently.

Add logic to ggml_vk_graph_optimize to make ROPE+VIEW+SET_ROWS consecutive. It
rarely starts out that way in the graph.

Add new backend tests.
This commit is contained in:
Jeff Bolz 2025-10-29 15:13:10 -05:00 committed by GitHub
parent 3464bdac37
commit b9ce940177
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 371 additions and 117 deletions

View File

@ -456,6 +456,11 @@ static topk_moe_mode ggml_vk_num_additional_ops_to_topk_moe_mode(uint32_t num) {
return mode;
}
static constexpr std::initializer_list<std::array<int, 3>> rope_view_set_rows_edges {
{ 1, 0, 0 }, // view->src[0] == rope
{ 2, 0, 1 }, // set_rows->src[0] == view
};
struct vk_device_struct {
std::recursive_mutex mutex;
@ -638,8 +643,8 @@ struct vk_device_struct {
vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16;
vk_pipeline pipeline_soft_max_f32_wg512, pipeline_soft_max_f32_f16_wg512;
vk_pipeline pipeline_soft_max_back_f32;
vk_pipeline pipeline_rope_norm_f32, pipeline_rope_norm_f16;
vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16;
vk_pipeline pipeline_rope_norm_f32, pipeline_rope_norm_f16, pipeline_rope_norm_f32_f16;
vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16, pipeline_rope_neox_f32_f16;
vk_pipeline pipeline_rope_multi_f32, pipeline_rope_multi_f16;
vk_pipeline pipeline_rope_vision_f32, pipeline_rope_vision_f16;
vk_pipeline pipeline_argsort_f32[num_argsort_pipelines];
@ -1052,6 +1057,7 @@ struct vk_op_rope_push_constants {
uint32_t s2;
int32_t sections[4];
uint32_t is_back;
uint32_t set_rows_stride;
};
struct vk_op_soft_max_push_constants {
@ -1562,6 +1568,10 @@ struct ggml_backend_vk_context {
// number of additional consecutive nodes that are being fused with the
// node currently being processed
int num_additional_fused_ops {};
// Bitmask of which fused ops need to write an intermediate value to memory.
// Bit 'i' means nodes[start_of_fusion + i] writes to memory.
// If there's no fusion, bit 0 is still set.
int fused_ops_write_mask {};
};
static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
@ -3695,21 +3705,27 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16_wg512, "soft_max_f32_f16_wg512", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_back_f32, "soft_max_back_f32", soft_max_back_f32_len, soft_max_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f32, "rope_multi_f32", rope_multi_f32_len, rope_multi_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f32, "rope_vision_f32", rope_vision_f32_len, rope_vision_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f32, "rope_multi_f32", rope_multi_f32_len, rope_multi_f32_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f32, "rope_vision_f32", rope_vision_f32_len, rope_vision_f32_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_rte_len, rope_norm_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_rte_len, rope_neox_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f16, "rope_multi_f16", rope_multi_f16_rte_len, rope_multi_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f16, "rope_vision_f16", rope_vision_f16_rte_len, rope_vision_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_rte_len, rope_norm_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_rte_len, rope_neox_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f16, "rope_multi_f16", rope_multi_f16_rte_len, rope_multi_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f16, "rope_vision_f16", rope_vision_f16_rte_len, rope_vision_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32_f16, "rope_norm_f32_f16", rope_norm_f32_f16_rte_len, rope_norm_f32_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32_f16, "rope_neox_f32_f16", rope_neox_f32_f16_rte_len, rope_neox_f32_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
} else {
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f16, "rope_multi_f16", rope_multi_f16_len, rope_multi_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f16, "rope_vision_f16", rope_vision_f16_len, rope_vision_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f16, "rope_multi_f16", rope_multi_f16_len, rope_multi_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f16, "rope_vision_f16", rope_vision_f16_len, rope_vision_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32_f16, "rope_norm_f32_f16", rope_norm_f32_f16_len, rope_norm_f32_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32_f16, "rope_neox_f32_f16", rope_neox_f32_f16_len, rope_neox_f32_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
}
for (uint32_t i = 0; i < num_argsort_pipelines; ++i) {
@ -8168,7 +8184,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
{
const int mode = ((const int32_t *) dst->op_params)[2];
const ggml_tensor *rope = ctx->num_additional_fused_ops == 2 ? dst->src[0]->src[0] : dst;
const int mode = ((const int32_t *) rope->op_params)[2];
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
@ -8177,6 +8194,9 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rope_neox_f32;
}
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_rope_neox_f32_f16;
}
if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_rope_neox_f16;
}
@ -8198,6 +8218,9 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_rope_norm_f32;
}
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_rope_norm_f32_f16;
}
if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_rope_norm_f16;
}
@ -8407,20 +8430,22 @@ static uint32_t get_misalign_bytes(ggml_backend_vk_context * ctx, const ggml_ten
return ((vk_tensor_offset(t) + t->view_offs) & (ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1));;
}
template <typename T> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, T &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
template <typename T> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, T &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
GGML_UNUSED(p);
GGML_UNUSED(src0);
GGML_UNUSED(src1);
GGML_UNUSED(src2);
GGML_UNUSED(src3);
GGML_UNUSED(dst);
static_assert(!std::is_const<T>::value, "unexpected type");
GGML_ASSERT(!src0 || get_misalign_bytes(ctx, src0) == 0);
GGML_ASSERT(!src1 || get_misalign_bytes(ctx, src1) == 0);
GGML_ASSERT(!src2 || get_misalign_bytes(ctx, src2) == 0);
GGML_ASSERT(!src3 || get_misalign_bytes(ctx, src3) == 0);
GGML_ASSERT(!dst || get_misalign_bytes(ctx, dst) == 0);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_unary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_unary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
@ -8428,9 +8453,10 @@ template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk
GGML_UNUSED(src1);
GGML_UNUSED(src2);
GGML_UNUSED(src3);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_sum_rows_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_sum_rows_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
@ -8438,9 +8464,10 @@ template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk
GGML_UNUSED(src1);
GGML_UNUSED(src2);
GGML_UNUSED(src3);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_pad_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_pad_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
@ -8448,9 +8475,10 @@ template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk
GGML_UNUSED(src1);
GGML_UNUSED(src2);
GGML_UNUSED(src3);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_im2col_3d_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_im2col_3d_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
@ -8458,9 +8486,10 @@ template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk
GGML_UNUSED(src0);
GGML_UNUSED(src2);
GGML_UNUSED(src3);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_binary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_binary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t b_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
@ -8470,9 +8499,10 @@ template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk
p.misalign_offsets = (a_offset << 16) | (b_offset << 8) | d_offset;
GGML_UNUSED(src2);
GGML_UNUSED(src3);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_upscale_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_upscale_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
@ -8481,10 +8511,11 @@ template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk
GGML_UNUSED(src1);
GGML_UNUSED(src2);
GGML_UNUSED(src3);
}
template<typename PC>
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, PC&& pc, bool dryrun = false) {
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst, ggml_op op, PC&& pc, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
if (src1 != nullptr) {
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
@ -8492,6 +8523,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
if (src2 != nullptr) {
std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3];
}
if (src3 != nullptr) {
std::cerr << "), (" << src3 << ", name=" << src3->name << ", type=" << src3->type << ", ne0=" << src3->ne[0] << ", ne1=" << src3->ne[1] << ", ne2=" << src3->ne[2] << ", ne3=" << src3->ne[3] << ", nb0=" << src3->nb[0] << ", nb1=" << src3->nb[1] << ", nb2=" << src3->nb[2] << ", nb3=" << src3->nb[3];
}
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
std::cerr << "), " << ggml_op_name(op) << ", " << (dryrun ? "dryrun" : "") << ")");
GGML_ASSERT(op == GGML_OP_GET_ROWS || op == GGML_OP_CPY || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
@ -8518,6 +8552,13 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
const uint64_t ne23 = use_src2 ? src2->ne[3] : 0;
const uint64_t ne2 = ne20 * ne21;
const bool use_src3 = src3 != nullptr;
const uint64_t ne30 = use_src3 ? src3->ne[0] : 0;
const uint64_t ne31 = use_src3 ? src3->ne[1] : 0;
const uint64_t ne32 = use_src3 ? src3->ne[2] : 0;
const uint64_t ne33 = use_src3 ? src3->ne[3] : 0;
const uint64_t ne3 = ne30 * ne31;
const uint64_t ned0 = dst->ne[0];
const uint64_t ned1 = dst->ne[1];
const uint64_t ned2 = dst->ne[2];
@ -8548,6 +8589,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = use_src1 ? (ggml_backend_vk_buffer_context *)src1->buffer->context : nullptr;
ggml_backend_vk_buffer_context * src2_buf_ctx = use_src2 ? (ggml_backend_vk_buffer_context *)src2->buffer->context : nullptr;
ggml_backend_vk_buffer_context * src3_buf_ctx = use_src3 ? (ggml_backend_vk_buffer_context *)src3->buffer->context : nullptr;
vk_buffer d_X = nullptr;
size_t x_buf_offset = 0;
@ -8555,10 +8597,13 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
size_t y_buf_offset = 0;
vk_buffer d_Z = nullptr;
size_t z_buf_offset = 0;
vk_buffer d_W = nullptr;
size_t w_buf_offset = 0;
bool src0_uma = false;
bool src1_uma = false;
bool src2_uma = false;
bool src3_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, src0->data, d_X, x_buf_offset);
@ -8571,6 +8616,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
ggml_vk_host_get(ctx->device, src2->data, d_Z, z_buf_offset);
src2_uma = d_Z != nullptr;
}
if (use_src3) {
ggml_vk_host_get(ctx->device, src3->data, d_W, w_buf_offset);
src3_uma = d_W != nullptr;
}
}
vk_buffer d_D = dst_buf_ctx->dev_buffer;
@ -8592,11 +8641,17 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
z_buf_offset = vk_tensor_offset(src2) + src2->view_offs;
GGML_ASSERT(d_Z != nullptr);
}
if (use_src3 && !src3_uma) {
d_W = src3_buf_ctx->dev_buffer;
w_buf_offset = vk_tensor_offset(src3) + src3->view_offs;
GGML_ASSERT(d_W != nullptr);
}
// Compute misalignment offset for descriptors and store it in in push constants, then align the descriptor offsets.
init_pushconst_tensor_offsets(ctx, pc, src0, src1, src2, dst);
init_pushconst_tensor_offsets(ctx, pc, src0, src1, src2, src3, dst);
x_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
y_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
z_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
w_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
d_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
std::array<uint32_t, 3> elements;
@ -8797,12 +8852,13 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
break;
}
uint64_t x_sz, y_sz, z_sz, d_sz;
uint64_t x_sz, y_sz, z_sz, w_sz, d_sz;
if (op_supports_incontiguous) {
x_sz = ggml_nbytes(src0) + get_misalign_bytes(ctx, src0);
y_sz = use_src1 ? ggml_nbytes(src1) + get_misalign_bytes(ctx, src1) : 0;
z_sz = use_src2 ? ggml_nbytes(src2) + get_misalign_bytes(ctx, src2) : 0;
w_sz = use_src3 ? ggml_nbytes(src3) + get_misalign_bytes(ctx, src3) : 0;
d_sz = ggml_nbytes(dst) + get_misalign_bytes(ctx, dst);
if (x_buf_offset + x_sz >= d_X->size) {
@ -8814,6 +8870,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
if (use_src2 && z_buf_offset + z_sz >= d_Z->size) {
z_sz = ggml_vk_get_max_buffer_range(ctx, d_Z, z_buf_offset);
}
if (use_src3 && w_buf_offset + w_sz >= d_W->size) {
w_sz = ggml_vk_get_max_buffer_range(ctx, d_W, w_buf_offset);
}
if (d_buf_offset + d_sz >= d_D->size) {
d_sz = ggml_vk_get_max_buffer_range(ctx, d_D, d_buf_offset);
}
@ -8821,6 +8880,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
x_sz = ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0 * ne02 * ne03;
y_sz = use_src1 ? ggml_type_size(src1->type) * ne1 * ne12 * ne13 : 0;
z_sz = use_src2 ? ggml_type_size(src2->type) * ne2 * ne22 * ne23 : 0;
w_sz = use_src3 ? ggml_type_size(src3->type) * ne3 * ne32 * ne33 : 0;
d_sz = ggml_type_size(dst->type) * ned * ned2 * ned3;
}
@ -8862,14 +8922,19 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
} else if (op == GGML_OP_ROPE || op == GGML_OP_ROPE_BACK) {
// Empty src2 is possible in rope, but the shader needs a buffer
vk_subbuffer subbuf_z;
vk_subbuffer subbuf_z, subbuf_w;
if (use_src2) {
subbuf_z = { d_Z, z_buf_offset, z_sz };
} else {
subbuf_z = { d_X, 0, x_sz };
}
if (use_src3) {
subbuf_w = { d_W, w_buf_offset, w_sz };
} else {
subbuf_w = { d_X, 0, x_sz };
}
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz }, subbuf_w }, pc, elements);
} else if (op == GGML_OP_IM2COL || op == GGML_OP_IM2COL_3D) {
if (ctx->device->shader_int64 && ctx->device->buffer_device_address) {
// buffer device address path doesn't use dst buffer
@ -8885,6 +8950,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
} else if (op == GGML_OP_OPT_STEP_SGD) {
// OPT_STEP_SGD works on src0, it does not need dst
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz } }, pc, elements);
} else if (use_src3) {
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz }, vk_subbuffer{ d_W, w_buf_offset, w_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
} else if (use_src2) {
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
} else if (use_src1) {
@ -8899,7 +8966,7 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx,
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_GET_ROWS, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -8919,7 +8986,7 @@ static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
int offset = dst->op_params[3] / 4; // offset in bytes
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ACC, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_ACC, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -9044,7 +9111,7 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_ADD, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -9059,7 +9126,7 @@ static void ggml_vk_sub(ggml_backend_vk_context * ctx, vk_context& subctx, const
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SUB, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SUB, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -9074,7 +9141,7 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context& subctx, const
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_MUL, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -9089,7 +9156,7 @@ static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_DIV, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_DIV, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -9104,7 +9171,7 @@ static void ggml_vk_add_id(ggml_backend_vk_context * ctx, vk_context& subctx, co
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t src2_type_size = ggml_type_size(src2->type);
ggml_vk_op_f32<vk_op_add_id_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_ADD_ID, {
ggml_vk_op_f32<vk_op_add_id_push_constants>(ctx, subctx, src0, src1, src2, nullptr, dst, GGML_OP_ADD_ID, {
(uint32_t)dst->ne[0],
(uint32_t)dst->ne[1],
(uint32_t)src0->nb[1] / src0_type_size,
@ -9337,7 +9404,7 @@ static void ggml_vk_ssm_conv(ggml_backend_vk_context * ctx, vk_context& subctx,
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
ggml_vk_op_f32<vk_op_ssm_conv_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SSM_CONV, {
ggml_vk_op_f32<vk_op_ssm_conv_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SSM_CONV, {
(uint32_t)src0->nb[1], (uint32_t)src0->nb[2],
(uint32_t)src1->nb[1],
(uint32_t)dst->nb[0], (uint32_t)dst->nb[1], (uint32_t)dst->nb[2],
@ -9455,7 +9522,7 @@ static void ggml_vk_opt_step_adamw(ggml_backend_vk_context * ctx, vk_context& su
static void ggml_vk_opt_step_sgd(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) {
const size_t n = ggml_nelements(dst->src[0]);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_OPT_STEP_SGD, { (uint32_t)n, 0, 0.0f, 0.0f }, dryrun);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, src2, nullptr, dst, GGML_OP_OPT_STEP_SGD, { (uint32_t)n, 0, 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
@ -9465,7 +9532,7 @@ static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, co
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONCAT, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONCAT, {
(uint32_t)ggml_nelements(dst),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -9493,7 +9560,7 @@ static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, c
pixel_offset = 0.0f;
}
ggml_vk_op_f32<vk_op_upscale_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, {
ggml_vk_op_f32<vk_op_upscale_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_UPSCALE, {
(uint32_t)ggml_nelements(dst), 0, 0,
(uint32_t)ne00, (uint32_t)ne01,
(uint32_t)nb00 / src0_type_size, (uint32_t)nb01 / src0_type_size, (uint32_t)nb02 / src0_type_size, (uint32_t)nb03 / src0_type_size,
@ -9507,23 +9574,23 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, con
p.param1 = ggml_get_op_params_f32(dst, 0);
p.param2 = ggml_get_op_params_f32(dst, 1);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, std::move(p), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SCALE, std::move(p), dryrun);
}
static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, vk_op_unary_push_constants_init(src0, dst), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SQR, vk_op_unary_push_constants_init(src0, dst), dryrun);
}
static void ggml_vk_sqrt(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQRT, vk_op_unary_push_constants_init(src0, dst), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SQRT, vk_op_unary_push_constants_init(src0, dst), dryrun);
}
static void ggml_vk_sin(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SIN, vk_op_unary_push_constants_init(src0, dst), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SIN, vk_op_unary_push_constants_init(src0, dst), dryrun);
}
static void ggml_vk_cos(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_COS, vk_op_unary_push_constants_init(src0, dst), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_COS, vk_op_unary_push_constants_init(src0, dst), dryrun);
}
static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
@ -9531,12 +9598,12 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, con
p.param1 = ggml_get_op_params_f32(dst, 0);
p.param2 = ggml_get_op_params_f32(dst, 1);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, std::move(p), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_CLAMP, std::move(p), dryrun);
}
static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
vk_op_pad_push_constants p = vk_op_pad_push_constants_init(src0, dst);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_PAD, std::move(p), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_PAD, std::move(p), dryrun);
}
static void ggml_vk_roll(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
@ -9551,17 +9618,17 @@ static void ggml_vk_roll(ggml_backend_vk_context * ctx, vk_context& subctx, cons
memcpy(&p.param1, &s01_packed, sizeof(float));
memcpy(&p.param2, &s23_packed, sizeof(float));
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ROLL, std::move(p), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_ROLL, std::move(p), dryrun);
}
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ggml_nelements(dst));
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, std::move(p), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_REPEAT, std::move(p), dryrun);
}
static void ggml_vk_repeat_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ggml_nelements(dst));
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT_BACK, std::move(p), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_REPEAT_BACK, std::move(p), dryrun);
}
static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
@ -9577,7 +9644,7 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const
}
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ne);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, std::move(p), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_CPY, std::move(p), dryrun);
}
static void ggml_vk_set_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
@ -9592,7 +9659,7 @@ static void ggml_vk_set_rows(ggml_backend_vk_context * ctx, vk_context& subctx,
return;
}
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SET_ROWS, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SET_ROWS, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -9603,13 +9670,13 @@ static void ggml_vk_set_rows(ggml_backend_vk_context * ctx, vk_context& subctx,
}
static void ggml_vk_silu_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SILU_BACK, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SILU_BACK, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
}
static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
@ -9620,7 +9687,7 @@ static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx
const float eps = float_op_params[1];
const uint32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f }, dryrun);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f }, dryrun);
}
static uint32_t ggml_vk_rms_num_partials(ggml_backend_vk_context * ctx, const ggml_tensor *node) {
@ -9643,7 +9710,7 @@ static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx,
uint32_t param3 = ctx->do_add_rms_partials ? ggml_vk_rms_num_partials(ctx, dst) : 0;
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_RMS_NORM, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_RMS_NORM, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -9660,16 +9727,16 @@ static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx,
static void ggml_vk_rms_norm_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_RMS_NORM_BACK, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_RMS_NORM_BACK, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
}
static void ggml_vk_l2_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_L2_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_L2_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
}
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_glu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
@ -9692,7 +9759,7 @@ static void ggml_vk_glu(ggml_backend_vk_context * ctx, vk_context& subctx, const
const uint32_t mode = split ? 2 : (swapped ? 1 : 0);
ggml_vk_op_f32<vk_op_glu_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GLU,
ggml_vk_op_f32<vk_op_glu_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_GLU,
{
(uint32_t)ggml_nelements(dst),
(uint32_t)src0->ne[0],
@ -9705,7 +9772,7 @@ static void ggml_vk_glu(ggml_backend_vk_context * ctx, vk_context& subctx, const
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
int32_t * op_params = (int32_t *)dst->op_params;
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }, dryrun);
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }, dryrun);
}
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) {
@ -9730,7 +9797,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx,
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_SOFT_MAX, {
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, src2, nullptr, dst, GGML_OP_SOFT_MAX, {
ncols,
src1 != nullptr ? nrows_y : (uint32_t)0,
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],
@ -9746,7 +9813,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx,
static void ggml_vk_soft_max_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX_BACK, { (uint32_t)src0->ne[0], (uint32_t)ggml_nrows(src0), op_params[0], op_params[1] }, dryrun);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SOFT_MAX_BACK, { (uint32_t)src0->ne[0], (uint32_t)ggml_nrows(src0), op_params[0], op_params[1] }, dryrun);
}
static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_cgraph * cgraph, int node_idx, bool dryrun = false) {
@ -9837,7 +9904,12 @@ static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx,
}, pc, elements);
}
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool backprop, bool dryrun = false) {
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_cgraph * cgraph, int node_idx, bool backprop, bool dryrun = false) {
ggml_tensor * dst = cgraph->nodes[node_idx];
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
const ggml_tensor * src3 = nullptr;
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
// const int n_ctx = ((int32_t *) dst->op_params)[3];
@ -9861,11 +9933,20 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, cons
uint32_t s1 = src0->nb[1] / ggml_type_size(src0->type);
uint32_t s2 = src0->nb[2] / ggml_type_size(src0->type);
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, {
uint32_t set_rows_stride = 0;
// Fused rope + view + set_rows passes the set_rows destination stride in set_rows_stride
// and overrides the dst and sets src3=row_indices
if (ctx->num_additional_fused_ops > 0) {
set_rows_stride = cgraph->nodes[node_idx + 2]->nb[1] / ggml_type_size(cgraph->nodes[node_idx + 2]->type);
src3 = cgraph->nodes[node_idx + 2]->src[1];
dst = cgraph->nodes[node_idx + 2];
}
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, src2, src3, dst, GGML_OP_ROPE, {
(uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1],
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1]}, theta_scale,
src2 != nullptr, (uint32_t)src0->ne[2], s1, s2,
{ sections[0], sections[1], sections[2], sections[3] }, backprop
{ sections[0], sections[1], sections[2], sections[3] }, backprop, set_rows_stride,
}, dryrun);
}
@ -9874,7 +9955,7 @@ static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, c
uint32_t ncols = src0->ne[0];
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, {
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_ARGSORT, {
ncols,
op_params[0],
}, dryrun);
@ -9882,26 +9963,26 @@ static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, c
static void ggml_vk_sum(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, ggml_nelements(src0));
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM, p, dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SUM, p, dryrun);
}
static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, src0->ne[0]);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, p, dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, p, dryrun);
}
static void ggml_vk_mean(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, src0->ne[0]);
p.weight = 1.0f / (float)src0->ne[0];
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_MEAN, p, dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_MEAN, p, dryrun);
}
static void ggml_vk_argmax(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGMAX, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], 0.0f, 0.0f }, dryrun);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_ARGMAX, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_count_equal(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_COUNT_EQUAL, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_COUNT_EQUAL, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
@ -9934,7 +10015,7 @@ static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, co
const vk::DeviceAddress dst_addr = d_buf->bda_addr + vk_tensor_offset(dst) + dst->view_offs;
ggml_vk_op_f32<vk_op_im2col_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_IM2COL, {
ggml_vk_op_f32<vk_op_im2col_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_IM2COL, {
dst_addr,
batch_offset, offset_delta,
IC, IW, IH, OW, OH, KW, KH,
@ -10007,7 +10088,7 @@ static void ggml_vk_im2col_3d(ggml_backend_vk_context * ctx, vk_context& subctx,
pc.OH_OW_IC_KD_KH_KW = OH*OW*IC*KD*KH*KW;
pc.OW_IC_KD_KH_KW = OW*IC*KD*KH*KW;
ggml_vk_op_f32<vk_op_im2col_3d_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_IM2COL_3D, std::move(pc), dryrun);
ggml_vk_op_f32<vk_op_im2col_3d_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_IM2COL_3D, std::move(pc), dryrun);
}
static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
@ -10015,7 +10096,7 @@ static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context
const uint32_t max_period = dst->op_params[1];
const uint32_t nb1 = dst->nb[1] / ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_timestep_embedding_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_TIMESTEP_EMBEDDING, {
ggml_vk_op_f32<vk_op_timestep_embedding_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_TIMESTEP_EMBEDDING, {
nb1, dim, max_period,
}, dryrun);
}
@ -10048,7 +10129,7 @@ static void ggml_vk_conv_transpose_1d(ggml_backend_vk_context * ctx, vk_context&
p.nb1 = static_cast<uint32_t>(nb1 / nb0);
p.s0 = static_cast<uint32_t>(s0);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_TRANSPOSE_1D, std::move(p), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_TRANSPOSE_1D, std::move(p), dryrun);
}
static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
@ -10071,7 +10152,7 @@ static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, c
const uint32_t parallel_elements = N * OC * OH * OW;
ggml_vk_op_f32<vk_op_pool2d_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_POOL_2D, {
ggml_vk_op_f32<vk_op_pool2d_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_POOL_2D, {
IW, IH, OW, OH, OC,
parallel_elements,
op,
@ -10125,7 +10206,7 @@ static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx,
GGML_ASSERT(ne03 == ne2);
GGML_ASSERT(ne02 == ne12);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_2D, std::move(p), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_2D, std::move(p), dryrun);
}
static void ggml_vk_conv_transpose_2d(ggml_backend_vk_context * ctx, vk_context & subctx, const ggml_tensor * src0,
@ -10174,7 +10255,7 @@ static void ggml_vk_conv_transpose_2d(ggml_backend_vk_context * ctx, vk_context
GGML_ASSERT(ne02 == ne2);
GGML_ASSERT(ne03 == ne12);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_TRANSPOSE_2D, std::move(p), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_TRANSPOSE_2D, std::move(p), dryrun);
}
static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
@ -10198,12 +10279,12 @@ static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx
GGML_ASSERT(src0->ne[3] == p.channels);
GGML_ASSERT(src1->ne[3] == p.batches);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_2D_DW, std::move(p), dryrun);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_2D_DW, std::move(p), dryrun);
}
static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const float * op_params = (const float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun);
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun);
}
#ifdef GGML_VULKAN_RUN_TESTS
@ -11329,7 +11410,6 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_ARGSORT:
case GGML_OP_SUM:
@ -11403,10 +11483,13 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
// nodes require synchronization.
for (int32_t i = 0; i < ctx->num_additional_fused_ops + 1 && !need_sync; ++i) {
const ggml_tensor *cur_node = cgraph->nodes[node_idx + i];
// If the node actually writes to memory, then check if it needs to sync
if (ctx->fused_ops_write_mask & (1 << i)) {
if (overlaps_unsynced(cur_node, ctx->unsynced_nodes_read) || overlaps_unsynced(cur_node, ctx->unsynced_nodes_written)) {
need_sync = true;
break;
}
}
for (uint32_t j = 0; j < GGML_MAX_SRC; ++j) {
if (!cur_node->src[j]) {
continue;
@ -11432,7 +11515,9 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
for (int32_t i = 0; i < ctx->num_additional_fused_ops + 1; ++i) {
const ggml_tensor *cur_node = cgraph->nodes[node_idx + i];
// Multiple outputs could be written, e.g. in topk_moe. Add them all to the list.
if (ctx->fused_ops_write_mask & (1 << i)) {
ctx->unsynced_nodes_written.push_back(cur_node);
}
for (uint32_t j = 0; j < GGML_MAX_SRC; ++j) {
if (!cur_node->src[j]) {
continue;
@ -11623,11 +11708,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
break;
case GGML_OP_ROPE:
ggml_vk_rope(ctx, compute_ctx, src0, src1, src2, node, false, dryrun);
ggml_vk_rope(ctx, compute_ctx, cgraph, node_idx, false, dryrun);
break;
case GGML_OP_ROPE_BACK:
ggml_vk_rope(ctx, compute_ctx, src0, src1, src2, node, true, dryrun);
ggml_vk_rope(ctx, compute_ctx, cgraph, node_idx, true, dryrun);
break;
case GGML_OP_ARGSORT:
@ -12464,6 +12549,41 @@ static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struc
return true;
}
static bool ggml_vk_can_fuse_rope_set_rows(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph,
int node_idx) {
GGML_UNUSED(ctx);
const ggml_tensor *rope = cgraph->nodes[node_idx + 0];
const ggml_tensor *view = cgraph->nodes[node_idx + 1];
const ggml_tensor *set_rows = cgraph->nodes[node_idx + 2];
// ne3 not tested
if (rope->src[0]->ne[3] != 1) {
return false;
}
if (set_rows->type != GGML_TYPE_F32 && set_rows->type != GGML_TYPE_F16) {
return false;
}
if (set_rows->src[1]->type != GGML_TYPE_I64) {
return false;
}
// The view should flatten two dims of rope into one dim
if (!ggml_is_contiguous(view) ||
view->ne[0] != rope->ne[0] * rope->ne[1]) {
return false;
}
// Only norm/neox shaders have the fusion code
const int mode = ((const int32_t *) rope->op_params)[2];
if (mode != GGML_ROPE_TYPE_NORMAL && mode != GGML_ROPE_TYPE_NEOX) {
return false;
}
return true;
}
static uint32_t ggml_vk_fuse_multi_add(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph, int node_idx) {
const ggml_tensor *first_node = cgraph->nodes[node_idx];
@ -12539,6 +12659,10 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
ctx->num_additional_fused_ops = num_adds - 1;
} else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1;
} else if (ggml_can_fuse_subgraph(cgraph, i, { GGML_OP_ROPE, GGML_OP_VIEW, GGML_OP_SET_ROWS }, { i + 2 }) &&
ggml_check_edges(cgraph, i, rope_view_set_rows_edges) &&
ggml_vk_can_fuse_rope_set_rows(ctx, cgraph, i)) {
ctx->num_additional_fused_ops = 2;
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_early_softmax_norm, { i + 3, i + 9 }) &&
ggml_check_edges(cgraph, i, topk_moe_early_softmax_norm_edges) &&
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_EARLY_SOFTMAX_NORM)) {
@ -12648,20 +12772,31 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
ctx->num_additional_fused_ops = num_adds - 1;
} else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1;
} else if (ggml_can_fuse_subgraph(cgraph, i, { GGML_OP_ROPE, GGML_OP_VIEW, GGML_OP_SET_ROWS }, { i + 2 }) &&
ggml_check_edges(cgraph, i, rope_view_set_rows_edges) &&
ggml_vk_can_fuse_rope_set_rows(ctx, cgraph, i)) {
ctx->num_additional_fused_ops = 2;
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_early_softmax_norm, { i + 3, i + 9 }) &&
ggml_check_edges(cgraph, i, topk_moe_early_softmax_norm_edges) &&
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_EARLY_SOFTMAX_NORM)) {
ctx->num_additional_fused_ops = topk_moe_early_softmax_norm.size() - 1;
// view of argsort writes to memory
ctx->fused_ops_write_mask |= 1 << 3;
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_early_softmax, { i + 3, i + 4 }) &&
ggml_check_edges(cgraph, i, topk_moe_early_softmax_edges) &&
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_EARLY_SOFTMAX)) {
ctx->num_additional_fused_ops = topk_moe_early_softmax.size() - 1;
// view of argsort writes to memory
ctx->fused_ops_write_mask |= 1 << 3;
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_late_softmax, { i + 1, i + 5 }) &&
ggml_check_edges(cgraph, i, topk_moe_late_softmax_edges) &&
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_LATE_SOFTMAX)) {
ctx->num_additional_fused_ops = topk_moe_late_softmax.size() - 1;
// view of argsort writes to memory
ctx->fused_ops_write_mask |= 1 << 1;
}
}
ctx->fused_ops_write_mask |= 1 << ctx->num_additional_fused_ops;
// Signal the almost_ready fence when the graph is mostly complete (< 20% remaining)
bool almost_ready = (cgraph->n_nodes - i) < cgraph->n_nodes / 5;
@ -12707,6 +12842,7 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
}
i += ctx->num_additional_fused_ops;
ctx->num_additional_fused_ops = 0;
ctx->fused_ops_write_mask = 0;
}
if (vk_perf_logger_enabled) {
@ -12863,6 +12999,32 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
}
if (ok) {
current_set.push_back(j);
// Look for ROPE + VIEW + SET_ROWS and make them consecutive
if (graph->nodes[j]->op == GGML_OP_ROPE) {
int view_idx = -1;
int set_rows_idx = -1;
for (int k = j+1; k < std::min(j + 10, graph->n_nodes); ++k) {
if (view_idx == -1 &&
graph->nodes[k]->op == GGML_OP_VIEW &&
graph->nodes[k]->src[0] == graph->nodes[j]) {
view_idx = k;
continue;
}
if (view_idx != -1 &&
set_rows_idx == -1 &&
graph->nodes[k]->op == GGML_OP_SET_ROWS &&
graph->nodes[k]->src[0] == graph->nodes[view_idx]) {
set_rows_idx = k;
break;
}
}
if (set_rows_idx != -1) {
current_set.push_back(view_idx);
current_set.push_back(set_rows_idx);
used[view_idx] = true;
used[set_rows_idx] = true;
}
}
}
}
// Second pass grabs view nodes.

View File

@ -10,6 +10,7 @@ layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {int data_pos[];};
layout (binding = 2) readonly buffer Z {float data_ff[];};
layout (binding = 3) writeonly buffer D {D_TYPE data_d[];};
layout (binding = 4) readonly buffer I {uvec2 data_i[];}; // indices for set_rows
layout (push_constant) uniform parameter {
uint ncols;
@ -27,6 +28,7 @@ layout (push_constant) uniform parameter {
uint s2;
int sections[4];
uint is_back;
uint set_rows_stride;
} p;
float rope_yarn_ramp(const float low, const float high, const uint i0) {

View File

@ -16,12 +16,19 @@ void main() {
const uint row_x = row_dst % ne1;
const uint channel_x = row_dst / ne1;
const uint idst = row_dst*ne0 + i0/2;
uint idst = row_dst*ne0 + i0/2;
const uint ix = channel_x*p.s2 + row_x*p.s1 + i0/2;
// Fusion optimization: ROPE + VIEW + SET_ROWS..
// The rope output is viewed as a 1D tensor and offset based on a row index in data_i.
if (p.set_rows_stride != 0) {
idst = row_x*ne0 + i0/2;
idst += data_i[channel_x].x * p.set_rows_stride;
}
if (i0 >= p.n_dims) {
data_d[idst + i0/2 + 0] = data_a[ix + i0/2 + 0];
data_d[idst + i0/2 + 1] = data_a[ix + i0/2 + 1];
data_d[idst + i0/2 + 0] = D_TYPE(data_a[ix + i0/2 + 0]);
data_d[idst + i0/2 + 1] = D_TYPE(data_a[ix + i0/2 + 1]);
return;
}

View File

@ -16,12 +16,19 @@ void main() {
const uint row_x = row_dst % ne1;
const uint channel_x = row_dst / ne1;
const uint idst = row_dst*ne0 + i0;
uint idst = row_dst*ne0 + i0;
const uint ix = channel_x*p.s2 + row_x*p.s1 + i0;
// Fusion optimization: ROPE + VIEW + SET_ROWS..
// The rope output is viewed as a 1D tensor and offset based on a row index in data_i.
if (p.set_rows_stride != 0) {
idst = row_x*ne0 + i0;
idst += data_i[channel_x].x * p.set_rows_stride;
}
if (i0 >= p.n_dims) {
data_d[idst + 0] = data_a[ix + 0];
data_d[idst + 1] = data_a[ix + 1];
data_d[idst + 0] = D_TYPE(data_a[ix + 0]);
data_d[idst + 1] = D_TYPE(data_a[ix + 1]);
return;
}

View File

@ -842,10 +842,14 @@ void process_shaders() {
string_to_spv("rope_norm_f32", "rope_norm.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("rope_norm_f16", "rope_norm.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("rope_norm_f16_rte", "rope_norm.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", "1"}});
string_to_spv("rope_norm_f32_f16", "rope_norm.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
string_to_spv("rope_norm_f32_f16_rte", "rope_norm.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"RTE16", "1"}});
string_to_spv("rope_neox_f32", "rope_neox.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("rope_neox_f16", "rope_neox.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("rope_neox_f16_rte", "rope_neox.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", "1"}});
string_to_spv("rope_neox_f32_f16", "rope_neox.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
string_to_spv("rope_neox_f32_f16_rte", "rope_neox.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"RTE16", "1"}});
string_to_spv("rope_multi_f32", "rope_multi.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("rope_multi_f16", "rope_multi.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});

View File

@ -2125,6 +2125,34 @@ struct test_get_rows_back : public test_case {
}
};
static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) {
std::random_device rd;
std::default_random_engine rng(rd());
for (int i2 = 0; i2 < t->ne[2]; i2++) {
for (int i1 = 0; i1 < t->ne[1]; i1++) {
// generate a shuffled subset of row indices
std::vector<int64_t> data(num_rows);
for (int i = 0; i < num_rows; i++) {
data[i] = i;
}
std::shuffle(data.begin(), data.end(), rng);
data.resize(t->ne[0]);
const size_t offs = i1*t->nb[1] + i2*t->nb[2];
if (t->type == GGML_TYPE_I32) {
// TODO: Make a template or something
std::vector<int32_t> data_i32(t->ne[0]);
for (int i = 0; i < t->ne[0]; i++) {
data_i32[i] = static_cast<int32_t>(data[i]);
}
ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
} else {
ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
}
}
}
}
// GGML_OP_SET_ROWS
struct test_set_rows : public test_case {
const ggml_type type;
@ -2168,37 +2196,13 @@ struct test_set_rows : public test_case {
}
void initialize_tensors(ggml_context * ctx) override {
std::random_device rd;
std::default_random_engine rng(rd());
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
if (ggml_is_view_op(t->op)) {
continue;
}
for (int i2 = 0; i2 < t->ne[2]; i2++) {
for (int i1 = 0; i1 < t->ne[1]; i1++) {
// generate a shuffled subset of row indices
std::vector<int64_t> data(ne[1]);
for (int i = 0; i < ne[1]; i++) {
data[i] = i;
}
std::shuffle(data.begin(), data.end(), rng);
data.resize(t->ne[0]);
const size_t offs = i1*t->nb[1] + i2*t->nb[2];
if (t->type == GGML_TYPE_I32) {
// TODO: Make a template or something
std::vector<int32_t> data_i32(t->ne[0]);
for (int i = 0; i < t->ne[0]; i++) {
data_i32[i] = static_cast<int32_t>(data[i]);
}
ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
} else {
ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
}
}
}
init_set_rows_row_ids(t, ne[1]);
} else {
init_tensor_uniform(t);
}
@ -2227,6 +2231,67 @@ struct test_set_rows : public test_case {
}
};
// GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS
struct test_rope_set_rows : public test_case {
const ggml_type type;
const ggml_type type_idx;
const std::array<int64_t, 4> ne;
int mode;
std::string vars() override {
return VARS_TO_STR4(type, type_idx, ne, mode);
}
std::string op_desc(ggml_tensor * t) override {
GGML_UNUSED(t);
return "ROPE_SET_ROWS";
}
bool run_whole_graph() override { return true; }
test_rope_set_rows(ggml_type type,
ggml_type type_idx,
std::array<int64_t, 4> ne,
int mode)
: type(type), type_idx(type_idx), ne(ne), mode(mode) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
ggml_set_name(src, "src");
ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
ggml_tensor * rope = ggml_rope(ctx, src, pos, ne[0], mode);
ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
ggml_set_name(dst, "dst");
ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, ne[2], 1, 1);
ggml_set_name(row_idxs, "row_idxs");
ggml_tensor * out = ggml_set_rows(ctx, dst, view, row_idxs);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
if (ggml_is_view_op(t->op)) {
continue;
}
init_set_rows_row_ids(t, ne[2]);
} else {
init_tensor_uniform(t);
}
}
}
};
// GGML_OP_ARGMAX
struct test_argmax : public test_case {
const ggml_type type;
@ -6163,6 +6228,13 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
}
}
for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX }) {
for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 1, 100 }, mode));
test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 512, 1 }, mode));
}
}
for (ggml_type type_input : {GGML_TYPE_F32}) {
for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
for (int k0 : {1, 3}) {