Compute cosine similarity based on activations
This commit is contained in:
parent
cce514a392
commit
b7fb362d8e
|
|
@ -224,27 +224,60 @@ static int compute_tensor_statistics(std::vector<tensor_statistics> & tstats, co
|
||||||
return calc_mode;
|
return calc_mode;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void compute_cossim(std::vector<tensor_statistics> & tstats) {
|
static void compute_layer_statistics(std::vector<tensor_statistics> & tstats) {
|
||||||
static const std::regex pattern(R"(blk\.(\d+)\.)");
|
static const std::regex pattern(R"(blk\.(\d+)\.)");
|
||||||
|
|
||||||
|
auto build_avg = [](const Stats & s) -> std::vector<float> {
|
||||||
|
if (s.counts.empty()) return {};
|
||||||
|
const size_t n_mat = s.counts.size();
|
||||||
|
const size_t len = !s.in_sum.empty() ? s.in_sum.size()
|
||||||
|
: s.in_sum2.size();
|
||||||
|
if (len == 0 || len % n_mat != 0) return {};
|
||||||
|
const size_t row = len / n_mat;
|
||||||
|
std::vector<float> v;
|
||||||
|
v.reserve(len);
|
||||||
|
if (!s.in_sum.empty()) {
|
||||||
|
for (size_t m = 0; m < n_mat; ++m) {
|
||||||
|
const float c = (float)s.counts[m];
|
||||||
|
if (c <= 0) return {};
|
||||||
|
const size_t off = m*row;
|
||||||
|
for (size_t j = 0; j < row; ++j) v.push_back(s.in_sum[off+j]/c);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (size_t m = 0; m < n_mat; ++m) {
|
||||||
|
const float c = (float)s.counts[m];
|
||||||
|
if (c <= 0) return {};
|
||||||
|
const size_t off = m*row;
|
||||||
|
for (size_t j = 0; j < row; ++j) v.push_back(s.in_sum2[off+j]/c);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return v;
|
||||||
|
};
|
||||||
|
// compute the cosine similarity between the same tensors in consecutive layers
|
||||||
for (auto & ts : tstats) {
|
for (auto & ts : tstats) {
|
||||||
|
ts.cossim = 0;
|
||||||
|
|
||||||
if (std::smatch match; std::regex_search(ts.tensor, match, pattern)) {
|
if (std::smatch match; std::regex_search(ts.tensor, match, pattern)) {
|
||||||
const int blk = std::stoi(match[1]);
|
const int blk = std::stoi(match[1]);
|
||||||
|
if (blk <= 0) continue;
|
||||||
std::string tname(ts.tensor);
|
std::string tname(ts.tensor);
|
||||||
tname.replace(match.position(1), match.length(1), std::to_string(blk-1));
|
tname.replace(match.position(1), match.length(1), std::to_string(blk-1));
|
||||||
auto prev = std::find_if(tstats.begin(), tstats.end(),
|
auto prev = std::find_if(tstats.begin(), tstats.end(),
|
||||||
[tname](const tensor_statistics & t) { return t.tensor == tname; });
|
[tname](const tensor_statistics & t) { return t.tensor == tname; });
|
||||||
if (prev != tstats.end()) {
|
if (prev == tstats.end()) continue;
|
||||||
const float dot_product = std::inner_product(ts.stats.in_sum2.begin(), ts.stats.in_sum2.end(),
|
const auto curr_avg = build_avg(ts.stats);
|
||||||
prev->stats.in_sum2.begin(), 0.0f);
|
const auto prev_avg = build_avg(prev->stats);
|
||||||
const float magnitude = std::sqrt(std::inner_product(ts.stats.in_sum2.begin(), ts.stats.in_sum2.end(),
|
if (curr_avg.size() == prev_avg.size() && !curr_avg.empty()) {
|
||||||
ts.stats.in_sum2.begin(), 0.0f));
|
float dot_prod = 0.0f, vec1 = 0.0f, vec2 = 0.0f;
|
||||||
const float prev_magnitude = std::sqrt(std::inner_product(prev->stats.in_sum2.begin(), prev->stats.in_sum2.end(),
|
for (size_t i = 0; i < curr_avg.size(); ++i) {
|
||||||
prev->stats.in_sum2.begin(), 0.0f));
|
dot_prod += curr_avg[i]*prev_avg[i];
|
||||||
const float cos_sim = dot_product / (magnitude * prev_magnitude);
|
vec1 += curr_avg[i]*curr_avg[i];
|
||||||
ts.cossim = cos_sim;
|
vec2 += prev_avg[i]*prev_avg[i];
|
||||||
|
}
|
||||||
|
if (vec1 > 0 && vec2 > 0) ts.cossim = dot_prod / (std::sqrt(vec1)*std::sqrt(vec2));
|
||||||
}
|
}
|
||||||
} else {
|
}
|
||||||
ts.cossim = 0;
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue