parent
48f47565a7
commit
b63509262a
|
|
@ -0,0 +1,77 @@
|
|||
#include "convert.cuh"
|
||||
#include "diag.cuh"
|
||||
#include "ggml.h"
|
||||
|
||||
template <typename T>
|
||||
static __global__ void diag_kernel(T * __restrict__ dst,
|
||||
const T * __restrict__ src,
|
||||
const int64_t ne0,
|
||||
const int64_t ne1,
|
||||
const int64_t ne2,
|
||||
const int64_t ne3,
|
||||
const int64_t total_elements) {
|
||||
const int64_t global_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (global_idx >= total_elements) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i0 = global_idx % ne0;
|
||||
const int64_t i1 = (global_idx / ne0) % ne1;
|
||||
const int64_t i2 = (global_idx / (ne0 * ne1)) % ne2;
|
||||
const int64_t i3 = global_idx / (ne0 * ne1 * ne2);
|
||||
|
||||
const int64_t dst_idx = ((i3 * ne2 + i2) * ne1 + i1) * ne0 + i0;
|
||||
|
||||
if (i0 == i1) {
|
||||
const int64_t batch_idx = i3 * ne2 + i2;
|
||||
const int64_t src_idx = batch_idx * ne0 + i0;
|
||||
dst[dst_idx] = src[src_idx];
|
||||
} else {
|
||||
dst[dst_idx] = ggml_cuda_cast<T>(0);
|
||||
}
|
||||
GGML_UNUSED_VARS(ne3);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_diag(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
void * dst_d = dst->data;
|
||||
const void * src0_d = src0->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
const int64_t ne2 = dst->ne[2];
|
||||
const int64_t ne3 = dst->ne[3];
|
||||
|
||||
GGML_ASSERT(ne00 == ne0);
|
||||
GGML_ASSERT(ne01 == 1);
|
||||
GGML_ASSERT(ne02 == ne2);
|
||||
GGML_ASSERT(ne03 == ne3);
|
||||
|
||||
const int64_t n_elems = ggml_nelements(dst);
|
||||
const int64_t num_blocks = (n_elems + CUDA_DIAG_BLOCK_SIZE - 1) / CUDA_DIAG_BLOCK_SIZE;
|
||||
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F32:
|
||||
diag_kernel<<<num_blocks, CUDA_DIAG_BLOCK_SIZE, 0, stream>>>((float *) dst_d, (const float *) src0_d, ne0,
|
||||
ne1, ne2, ne3, n_elems);
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
diag_kernel<<<num_blocks, CUDA_DIAG_BLOCK_SIZE, 0, stream>>>((half *) dst_d, (const half *) src0_d, ne0,
|
||||
ne1, ne2, ne3, n_elems);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("unsupported type");
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,5 @@
|
|||
#include "common.cuh"
|
||||
|
||||
#define CUDA_DIAG_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_diag(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
@ -20,6 +20,7 @@
|
|||
#include "ggml-cuda/cpy.cuh"
|
||||
#include "ggml-cuda/cross-entropy-loss.cuh"
|
||||
#include "ggml-cuda/diagmask.cuh"
|
||||
#include "ggml-cuda/diag.cuh"
|
||||
#include "ggml-cuda/fattn.cuh"
|
||||
#include "ggml-cuda/getrows.cuh"
|
||||
#include "ggml-cuda/im2col.cuh"
|
||||
|
|
@ -2641,6 +2642,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
break;
|
||||
case GGML_OP_DIAG:
|
||||
ggml_cuda_op_diag(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
ggml_cuda_op_diag_mask_inf(ctx, dst);
|
||||
break;
|
||||
|
|
@ -4624,6 +4628,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
case GGML_OP_FILL:
|
||||
case GGML_OP_CUMSUM:
|
||||
case GGML_OP_TRI:
|
||||
case GGML_OP_DIAG:
|
||||
return true;
|
||||
case GGML_OP_SOLVE_TRI:
|
||||
return op->src[0]->ne[0] <= 64 && op->src[1]->ne[0] <= 32;
|
||||
|
|
|
|||
|
|
@ -6253,6 +6253,31 @@ struct test_solve_tri : public test_case {
|
|||
}
|
||||
};
|
||||
|
||||
// GGML_OP_DIAG
|
||||
struct test_diag : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne;
|
||||
|
||||
std::string vars() override { return VARS_TO_STR2(type, ne); }
|
||||
|
||||
test_diag(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = { 10, 1, 4, 3 })
|
||||
: type(type), ne(ne) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
GGML_ASSERT(ne[1] == 1);
|
||||
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
|
||||
ggml_set_param(a);
|
||||
ggml_set_name(a, "a");
|
||||
|
||||
ggml_tensor * out = ggml_diag(ctx, a);
|
||||
ggml_set_name(out, "out");
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
enum llm_norm_type {
|
||||
LLM_NORM,
|
||||
LLM_NORM_RMS,
|
||||
|
|
@ -7826,6 +7851,10 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||
test_cases.emplace_back(new test_fill(-152.0f, GGML_TYPE_F32, { 800, 600, 4, 4 }));
|
||||
test_cases.emplace_back(new test_fill(3.5f, GGML_TYPE_F32, { 2048, 512, 2, 2 }));
|
||||
|
||||
test_cases.emplace_back(new test_diag());
|
||||
test_cases.emplace_back(new test_diag(GGML_TYPE_F32, { 79, 1, 19, 13 }));
|
||||
test_cases.emplace_back(new test_diag(GGML_TYPE_F32, { 256, 1, 8, 16 }));
|
||||
|
||||
test_cases.emplace_back(new test_solve_tri());
|
||||
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 11, 11, 1, 1 }, { 5, 11, 1, 1 }));
|
||||
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 17, 17, 2, 4 }, { 9, 17, 2, 4 }));
|
||||
|
|
|
|||
Loading…
Reference in New Issue