llama : add support for qwen3 reranker (#15824)
This commit is contained in:
parent
dfcd53f7ec
commit
b5bd037832
|
|
@ -961,15 +961,13 @@ struct common_init_result common_init_from_params(common_params & params) {
|
|||
|
||||
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
|
||||
bool has_rerank_prompt = llama_model_chat_template(model, "rerank") != NULL;
|
||||
|
||||
if (!has_eos && !has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
|
||||
if (!has_eos && !has_sep && !has_rerank_prompt) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, SEP token, or rerank prompt. Reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
} else if (!has_eos) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
|
||||
} else if (!has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
|
|
|
|||
|
|
@ -3717,11 +3717,29 @@ class Qwen2MoeModel(TextModel):
|
|||
class Qwen3Model(Qwen2Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN3
|
||||
|
||||
# extra logic for rerank models
|
||||
is_rerank: bool = False
|
||||
is_tied_embeddings: bool = False
|
||||
token_false_id: int | None = None
|
||||
token_true_id: int | None = None
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# track for intern-s1-mini
|
||||
hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
|
||||
self.origin_hf_arch = hparams.get('architectures', [None])[0]
|
||||
|
||||
# a bit hacky, but currently the only way to detect if this is a rerank model
|
||||
# ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
|
||||
readme_path = self.dir_model / "README.md"
|
||||
readme_text = ""
|
||||
if readme_path.exists():
|
||||
with readme_path.open("r", encoding="utf-8") as f:
|
||||
readme_text = f.read()
|
||||
if "# Qwen3-Reranker" in readme_text:
|
||||
self._find_rerank_config()
|
||||
|
||||
def set_vocab(self):
|
||||
# deal with intern-s1-mini
|
||||
if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
|
||||
|
|
@ -3730,6 +3748,53 @@ class Qwen3Model(Qwen2Model):
|
|||
|
||||
super().set_vocab()
|
||||
|
||||
def _find_rerank_config(self):
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
|
||||
|
||||
self.is_rerank = True
|
||||
self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
|
||||
self.token_false_id = tokenizer.convert_tokens_to_ids("no")
|
||||
self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
|
||||
self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
|
||||
|
||||
assert self.token_false_id is not None and self.token_true_id is not None
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
if self.is_rerank:
|
||||
self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
|
||||
self.gguf_writer.add_classifier_output_labels(["yes", "no"])
|
||||
self.gguf_writer.add_chat_template([{
|
||||
"name": "rerank",
|
||||
"template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
|
||||
"<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
|
||||
"<|im_start|>assistant\n<think>\n\n</think>\n\n"
|
||||
}])
|
||||
|
||||
def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
|
||||
# extract "yes" and "no" tokens from the output lm_head tensor
|
||||
false_row = data_torch[self.token_false_id]
|
||||
true_row = data_torch[self.token_true_id]
|
||||
return torch.stack([true_row, false_row], dim=0)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if self.is_rerank:
|
||||
is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
|
||||
is_real_head = not self.is_tied_embeddings and "lm_head" in name
|
||||
if is_tied_head or is_real_head:
|
||||
cls_out_head = (
|
||||
gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
|
||||
self._get_cls_out_tensor(data_torch),
|
||||
)
|
||||
if is_tied_head:
|
||||
embed = (self.map_tensor_name(name), data_torch)
|
||||
return [cls_out_head, embed]
|
||||
if is_real_head:
|
||||
return [cls_out_head]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen3MoeForCausalLM")
|
||||
class Qwen3MoeModel(Qwen2MoeModel):
|
||||
|
|
|
|||
|
|
@ -95,8 +95,13 @@ int main(int argc, char ** argv) {
|
|||
params.n_batch = params.n_ctx;
|
||||
}
|
||||
|
||||
// For non-causal models, batch size must be equal to ubatch size
|
||||
// for non-causal models, batch size must be equal to ubatch size
|
||||
if (params.attention_type != LLAMA_ATTENTION_TYPE_CAUSAL) {
|
||||
params.n_ubatch = params.n_batch;
|
||||
}
|
||||
|
||||
// get max number of sequences per batch
|
||||
const int n_seq_max = llama_max_parallel_sequences();
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
|
@ -144,6 +149,7 @@ int main(int argc, char ** argv) {
|
|||
// get added sep and eos token, if any
|
||||
const std::string added_sep_token = llama_vocab_get_add_sep(vocab) ? llama_vocab_get_text(vocab, llama_vocab_sep(vocab)) : "";
|
||||
const std::string added_eos_token = llama_vocab_get_add_eos(vocab) ? llama_vocab_get_text(vocab, llama_vocab_eos(vocab)) : "";
|
||||
const char * rerank_prompt = llama_model_chat_template(model, "rerank");
|
||||
|
||||
// tokenize the prompts and trim
|
||||
std::vector<std::vector<int32_t>> inputs;
|
||||
|
|
@ -153,8 +159,15 @@ int main(int argc, char ** argv) {
|
|||
// split classification pairs and insert expected separator tokens
|
||||
if (pooling_type == LLAMA_POOLING_TYPE_RANK && prompt.find(params.cls_sep) != std::string::npos) {
|
||||
std::vector<std::string> pairs = split_lines(prompt, params.cls_sep);
|
||||
if (rerank_prompt != nullptr) {
|
||||
const std::string query = pairs[0];
|
||||
const std::string doc = pairs[1];
|
||||
std::string final_prompt = rerank_prompt;
|
||||
string_replace_all(final_prompt, "{query}" , query);
|
||||
string_replace_all(final_prompt, "{document}", doc );
|
||||
inp = common_tokenize(vocab, final_prompt, true, true);
|
||||
} else {
|
||||
std::string final_prompt;
|
||||
|
||||
for (size_t i = 0; i < pairs.size(); i++) {
|
||||
final_prompt += pairs[i];
|
||||
if (i != pairs.size() - 1) {
|
||||
|
|
@ -166,8 +179,8 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
inp = common_tokenize(ctx, final_prompt, true, true);
|
||||
}
|
||||
} else {
|
||||
inp = common_tokenize(ctx, prompt, true, true);
|
||||
}
|
||||
|
|
@ -229,7 +242,7 @@ int main(int argc, char ** argv) {
|
|||
const uint64_t n_toks = inp.size();
|
||||
|
||||
// encode if at capacity
|
||||
if (batch.n_tokens + n_toks > n_batch) {
|
||||
if (batch.n_tokens + n_toks > n_batch || s >= n_seq_max) {
|
||||
float * out = emb + e * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
|
||||
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
|
||||
|
|
|
|||
|
|
@ -721,6 +721,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_CLS_OUT, "cls.output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
|
|
|
|||
|
|
@ -204,7 +204,10 @@ void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
|
|||
std::vector<int> target_pos(n_seqs_unq, -1);
|
||||
std::vector<int> target_row(n_seqs_unq, -1);
|
||||
|
||||
bool last = cparams.pooling_type == LLAMA_POOLING_TYPE_LAST;
|
||||
const bool last = (
|
||||
cparams.pooling_type == LLAMA_POOLING_TYPE_LAST ||
|
||||
(cparams.pooling_type == LLAMA_POOLING_TYPE_RANK && arch == LLM_ARCH_QWEN3) // qwen3 reranking & embedding models use last token
|
||||
);
|
||||
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
const llama_pos pos = ubatch->pos[i];
|
||||
|
|
@ -1177,7 +1180,7 @@ ggml_tensor * llm_graph_context::build_inp_mean() const {
|
|||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_cls() const {
|
||||
auto inp = std::make_unique<llm_graph_input_cls>(cparams);
|
||||
auto inp = std::make_unique<llm_graph_input_cls>(cparams, arch);
|
||||
|
||||
auto & cur = inp->cls;
|
||||
|
||||
|
|
@ -1877,34 +1880,32 @@ void llm_graph_context::build_pooling(
|
|||
case LLAMA_POOLING_TYPE_RANK:
|
||||
{
|
||||
ggml_tensor * inp_cls = build_inp_cls();
|
||||
inp = ggml_get_rows(ctx0, inp, inp_cls);
|
||||
cur = ggml_get_rows(ctx0, inp, inp_cls);
|
||||
|
||||
if (cls) {
|
||||
// classification head
|
||||
// https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
|
||||
cur = ggml_mul_mat(ctx0, cls, inp);
|
||||
if (cls) {
|
||||
cur = ggml_mul_mat(ctx0, cls, cur);
|
||||
if (cls_b) {
|
||||
cur = ggml_add(ctx0, cur, cls_b);
|
||||
}
|
||||
cur = ggml_tanh(ctx0, cur);
|
||||
}
|
||||
|
||||
// some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
|
||||
// https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
|
||||
// Single layer classification head (direct projection)
|
||||
// https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
|
||||
if (cls_out) {
|
||||
cur = ggml_mul_mat(ctx0, cls_out, cur);
|
||||
if (cls_out_b) {
|
||||
cur = ggml_add(ctx0, cur, cls_out_b);
|
||||
}
|
||||
}
|
||||
} else if (cls_out) {
|
||||
// Single layer classification head (direct projection)
|
||||
// https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
|
||||
cur = ggml_mul_mat(ctx0, cls_out, inp);
|
||||
if (cls_out_b) {
|
||||
cur = ggml_add(ctx0, cur, cls_out_b);
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("RANK pooling requires either cls+cls_b or cls_out+cls_out_b");
|
||||
|
||||
// softmax for qwen3 reranker
|
||||
if (arch == LLM_ARCH_QWEN3) {
|
||||
cur = ggml_soft_max(ctx0, cur);
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
|
|
|
|||
|
|
@ -206,7 +206,7 @@ public:
|
|||
|
||||
class llm_graph_input_cls : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_cls(const llama_cparams & cparams) : cparams(cparams) {}
|
||||
llm_graph_input_cls(const llama_cparams & cparams, const llm_arch arch) : cparams(cparams), arch(arch) {}
|
||||
virtual ~llm_graph_input_cls() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
|
@ -214,6 +214,7 @@ public:
|
|||
ggml_tensor * cls; // I32 [n_batch]
|
||||
|
||||
const llama_cparams cparams;
|
||||
const llm_arch arch;
|
||||
};
|
||||
|
||||
class llm_graph_input_rs : public llm_graph_input_i {
|
||||
|
|
|
|||
|
|
@ -3167,6 +3167,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
// output rerank head
|
||||
cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
|
|
|
|||
|
|
@ -5093,21 +5093,15 @@ int main(int argc, char ** argv) {
|
|||
return;
|
||||
}
|
||||
|
||||
std::vector<server_tokens> tokenized_queries = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, query, /* add_special */ false, true);
|
||||
if (tokenized_queries.size() != 1) {
|
||||
res_error(res, format_error_response("\"query\" must contain only a single prompt", ERROR_TYPE_INVALID_REQUEST));
|
||||
}
|
||||
|
||||
// create and queue the task
|
||||
json responses = json::array();
|
||||
bool error = false;
|
||||
std::unordered_set<int> task_ids;
|
||||
{
|
||||
std::vector<server_task> tasks;
|
||||
auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, documents, /* add_special */ false, true);
|
||||
tasks.reserve(tokenized_docs.size());
|
||||
for (size_t i = 0; i < tokenized_docs.size(); i++) {
|
||||
auto tmp = format_rerank(ctx_server.vocab, tokenized_queries[0], tokenized_docs[i]);
|
||||
tasks.reserve(documents.size());
|
||||
for (size_t i = 0; i < documents.size(); i++) {
|
||||
auto tmp = format_rerank(ctx_server.model, ctx_server.vocab, ctx_server.mctx, query, documents[i]);
|
||||
server_task task = server_task(SERVER_TASK_TYPE_RERANK);
|
||||
task.id = ctx_server.queue_tasks.get_new_id();
|
||||
task.index = i;
|
||||
|
|
|
|||
|
|
@ -1368,34 +1368,6 @@ static std::string fnv_hash(const uint8_t * data, size_t len) {
|
|||
return std::to_string(hash);
|
||||
}
|
||||
|
||||
|
||||
// format rerank task: [BOS]query[EOS][SEP]doc[EOS].
|
||||
static server_tokens format_rerank(const struct llama_vocab * vocab, server_tokens & query, server_tokens & doc) {
|
||||
server_tokens result = {};
|
||||
|
||||
// Get EOS token - use SEP token as fallback if EOS is not available
|
||||
llama_token eos_token = llama_vocab_eos(vocab);
|
||||
if (eos_token == LLAMA_TOKEN_NULL) {
|
||||
eos_token = llama_vocab_sep(vocab);
|
||||
}
|
||||
if (llama_vocab_get_add_bos(vocab)) {
|
||||
result.push_back(llama_vocab_bos(vocab));
|
||||
}
|
||||
result.push_back(query);
|
||||
if (llama_vocab_get_add_eos(vocab)) {
|
||||
result.push_back(eos_token);
|
||||
}
|
||||
if (llama_vocab_get_add_sep(vocab)) {
|
||||
result.push_back(llama_vocab_sep(vocab));
|
||||
}
|
||||
result.push_back(doc);
|
||||
if (llama_vocab_get_add_eos(vocab)) {
|
||||
result.push_back(eos_token);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
static server_tokens process_mtmd_prompt(mtmd_context * mctx, std::string prompt, std::vector<raw_buffer> files) {
|
||||
mtmd::bitmaps bitmaps;
|
||||
for (auto & file : files) {
|
||||
|
|
@ -1501,3 +1473,43 @@ static std::vector<server_tokens> tokenize_input_prompts(const llama_vocab * voc
|
|||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// format rerank task: [BOS]query[EOS][SEP]doc[EOS].
|
||||
static server_tokens format_rerank(const struct llama_model * model, const struct llama_vocab * vocab, mtmd_context * mctx, const std::string & query, const std::string & doc) {
|
||||
server_tokens result = {};
|
||||
|
||||
const char * rerank_prompt = llama_model_chat_template(model, "rerank");
|
||||
|
||||
if (rerank_prompt != nullptr) {
|
||||
std::string prompt = rerank_prompt;
|
||||
string_replace_all(prompt, "{query}" , query);
|
||||
string_replace_all(prompt, "{document}", doc );
|
||||
server_tokens tokens = tokenize_input_subprompt(vocab, mctx, prompt, false, true);
|
||||
result.push_back(tokens);
|
||||
} else {
|
||||
// Get EOS token - use SEP token as fallback if EOS is not available
|
||||
server_tokens query_tokens = tokenize_input_subprompt(vocab, mctx, query, false, false);
|
||||
server_tokens doc_tokens = tokenize_input_subprompt(vocab, mctx, doc, false, false);
|
||||
llama_token eos_token = llama_vocab_eos(vocab);
|
||||
if (eos_token == LLAMA_TOKEN_NULL) {
|
||||
eos_token = llama_vocab_sep(vocab);
|
||||
}
|
||||
|
||||
if (llama_vocab_get_add_bos(vocab)) {
|
||||
result.push_back(llama_vocab_bos(vocab));
|
||||
}
|
||||
result.push_back(query_tokens);
|
||||
if (llama_vocab_get_add_eos(vocab)) {
|
||||
result.push_back(eos_token);
|
||||
}
|
||||
if (llama_vocab_get_add_sep(vocab)) {
|
||||
result.push_back(llama_vocab_sep(vocab));
|
||||
}
|
||||
result.push_back(doc_tokens);
|
||||
if (llama_vocab_get_add_eos(vocab)) {
|
||||
result.push_back(eos_token);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue