vulkan: Implement GGML_OP_CUMSUM (#17479)

This commit is contained in:
Jeff Bolz 2025-11-26 00:08:10 -06:00 committed by GitHub
parent 583cb83416
commit b3b03a7baf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 125 additions and 24 deletions

View File

@ -705,6 +705,7 @@ struct vk_device_struct {
vk_pipeline pipeline_argsort_f32[num_argsort_pipelines];
vk_pipeline pipeline_argsort_large_f32[num_argsort_pipelines];
vk_pipeline pipeline_sum_rows_f32;
vk_pipeline pipeline_cumsum_f32;
vk_pipeline pipeline_argmax_f32;
vk_pipeline pipeline_count_equal_i32;
vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16;
@ -3968,6 +3969,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_cumsum_f32, "cumsum_f32", cumsum_f32_len, cumsum_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { 128, device->subgroup_size }, 1, true, true, device->subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_count_equal_i32, "count_equal_i32", count_equal_i32_len, count_equal_i32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, { device->subgroup_size }, 1);
#define IM2COL(bda) \
@ -8457,6 +8460,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_sum_rows_f32;
}
return nullptr;
case GGML_OP_CUMSUM:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_cumsum_f32;
}
return nullptr;
case GGML_OP_ARGMAX:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_I32) {
return ctx->device->pipeline_argmax_f32;
@ -8821,6 +8829,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_SUM_ROWS:
case GGML_OP_CUMSUM:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
{
@ -10150,6 +10159,11 @@ static void ggml_vk_mean(ggml_backend_vk_context * ctx, vk_context& subctx, cons
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_MEAN, p);
}
static void ggml_vk_cumsum(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, src0->ne[0]);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_CUMSUM, p);
}
static void ggml_vk_argmax(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_ARGMAX, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], 0.0f, 0.0f });
}
@ -11749,6 +11763,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_SUM_ROWS:
ggml_vk_sum_rows(ctx, compute_ctx, src0, node);
break;
case GGML_OP_CUMSUM:
ggml_vk_cumsum(ctx, compute_ctx, src0, node);
break;
case GGML_OP_MEAN:
ggml_vk_mean(ctx, compute_ctx, src0, node);
@ -13786,6 +13804,15 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_CUMSUM:
{
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
auto device = ggml_vk_get_device(ctx->device);
if (device->subgroup_arithmetic && device->subgroup_require_full_support) {
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous_rows(op->src[0]);
}
return false;
}
case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
@ -14436,6 +14463,8 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
tensor_clone = ggml_sum(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_SUM_ROWS) {
tensor_clone = ggml_sum_rows(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_CUMSUM) {
tensor_clone = ggml_cumsum(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_MEAN) {
tensor_clone = ggml_mean(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_ARGMAX) {

View File

@ -0,0 +1,69 @@
#version 450
#include "types.glsl"
#include "sum_rows.glsl"
#extension GL_EXT_control_flow_attributes : enable
#extension GL_KHR_shader_subgroup_arithmetic : enable
#extension GL_KHR_shader_subgroup_basic : enable
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
layout (constant_id = 0) const uint BLOCK_SIZE = 128;
layout (constant_id = 1) const uint SUBGROUP_SIZE = 32;
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
shared FLOAT_TYPE partial[BLOCK_SIZE / SUBGROUP_SIZE];
shared FLOAT_TYPE last_sum;
void main() {
const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
const uint tid = gl_LocalInvocationID.x;
const uint i03 = fastdiv(row, p.ne0_12mp, p.ne0_12L);
const uint i03_offset = i03 * p.ne01*p.ne02;
const uint i02 = fastdiv(row - i03_offset, p.ne0_1mp, p.ne0_1L);
const uint i01 = row - i03_offset - i02*p.ne01;
const uint src_idx = get_aoffset() + i01 * p.nb01 + i02 * p.nb02 + i03 * p.nb03;
const uint dst_idx = get_doffset() + i01 * p.nb11 + i02 * p.nb12 + i03 * p.nb13;
uint subgroup_id = tid / SUBGROUP_SIZE;
if (tid == 0) {
last_sum = 0;
}
uint col = tid;
uint num_iter = CEIL_DIV(p.n_cols, BLOCK_SIZE);
for (int i = 0; i < num_iter; ++i) {
FLOAT_TYPE v = 0;
if (col < p.n_cols) {
v = FLOAT_TYPE(data_a[src_idx + col]);
}
v = subgroupInclusiveAdd(v);
// Store the largest partial sum for each subgroup, then add the partials for all
// lower subgroups and the final partial sum from the previous iteration.
if (gl_SubgroupInvocationID == SUBGROUP_SIZE - 1) {
partial[subgroup_id] = v;
}
barrier();
for (int j = 0; j < subgroup_id; ++j) {
v += partial[j];
}
v += last_sum;
barrier();
if (tid == BLOCK_SIZE - 1) {
last_sum = v;
}
if (col < p.n_cols) {
data_d[dst_idx + col] = D_TYPE(v);
}
col += BLOCK_SIZE;
}
}

View File

@ -1,6 +1,7 @@
#version 450
#include "types.glsl"
#include "sum_rows.glsl"
#extension GL_EXT_control_flow_attributes : enable
@ -11,30 +12,6 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (push_constant) uniform parameter
{
uint n_cols;
uint ne01, ne02;
uint nb01, nb02, nb03;
uint nb11, nb12, nb13;
float weight;
uint misalign_offsets;
uint ne0_12mp, ne0_12L;
uint ne0_1mp, ne0_1L;
} p;
uint get_aoffset() { return p.misalign_offsets >> 16; }
uint get_doffset() { return p.misalign_offsets & 0xFFFF; }
// see init_fastdiv_values in ggml-vulkan.cpp
uint fastdiv(uint n, uint mp, uint L) {
uint msbs, lsbs;
// msbs = mulhi(n, mp)
umulExtended(n, mp, msbs, lsbs);
return (msbs + n) >> L;
}
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {

View File

@ -0,0 +1,25 @@
// vk_op_sum_rows_push_constants
layout (push_constant) uniform parameter
{
uint n_cols;
uint ne01, ne02;
uint nb01, nb02, nb03;
uint nb11, nb12, nb13;
float weight;
uint misalign_offsets;
uint ne0_12mp, ne0_12L;
uint ne0_1mp, ne0_1L;
} p;
uint get_aoffset() { return p.misalign_offsets >> 16; }
uint get_doffset() { return p.misalign_offsets & 0xFFFF; }
// see init_fastdiv_values in ggml-vulkan.cpp
uint fastdiv(uint n, uint mp, uint L) {
uint msbs, lsbs;
// msbs = mulhi(n, mp)
umulExtended(n, mp, msbs, lsbs);
return (msbs + n) >> L;
}

View File

@ -916,6 +916,7 @@ void process_shaders() {
string_to_spv("argmax_f32", "argmax.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "int"}}));
string_to_spv("sum_rows_f32", "sum_rows.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("count_equal_i32", "count_equal.comp", merge_maps(base_dict, {{"A_TYPE", "int"}, {"B_TYPE", "int"}, {"D_TYPE", "int"}}));
string_to_spv("cumsum_f32", "cumsum.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
for (std::string dim_str : {"", "_3d"}) {
for (bool bda : {false, true}) {