Merge branch 'master' into riscv

This commit is contained in:
Taimur Ahmad 2025-11-25 17:08:04 +05:00 committed by GitHub
commit addf578543
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
78 changed files with 5788 additions and 3937 deletions

View File

@ -1,9 +1,7 @@
ARG UBUNTU_VERSION=25.10 ARG UBUNTU_VERSION=26.04
FROM ubuntu:$UBUNTU_VERSION AS build FROM ubuntu:$UBUNTU_VERSION AS build
# Ref: https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html
# Install build tools # Install build tools
RUN apt update && apt install -y git build-essential cmake wget xz-utils RUN apt update && apt install -y git build-essential cmake wget xz-utils

View File

@ -69,13 +69,6 @@ jobs:
key: macOS-latest-cmake-arm64 key: macOS-latest-cmake-arm64
evict-old-files: 1d evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
brew install curl
- name: Build - name: Build
id: cmake_build id: cmake_build
run: | run: |
@ -83,6 +76,8 @@ jobs:
cmake -B build \ cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \ -DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \ -DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_BORINGSSL=ON \
-DGGML_METAL_USE_BF16=ON \ -DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=OFF \ -DGGML_METAL_EMBED_LIBRARY=OFF \
-DGGML_METAL_SHADER_DEBUG=ON \ -DGGML_METAL_SHADER_DEBUG=ON \
@ -110,13 +105,6 @@ jobs:
key: macOS-latest-cmake-x64 key: macOS-latest-cmake-x64
evict-old-files: 1d evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
brew install curl
- name: Build - name: Build
id: cmake_build id: cmake_build
run: | run: |
@ -126,6 +114,8 @@ jobs:
cmake -B build \ cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \ -DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \ -DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_BORINGSSL=ON \
-DGGML_METAL=OFF \ -DGGML_METAL=OFF \
-DGGML_RPC=ON \ -DGGML_RPC=ON \
-DCMAKE_OSX_DEPLOYMENT_TARGET=13.3 -DCMAKE_OSX_DEPLOYMENT_TARGET=13.3
@ -151,13 +141,6 @@ jobs:
key: macOS-latest-cmake-arm64-webgpu key: macOS-latest-cmake-arm64-webgpu
evict-old-files: 1d evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
brew install curl
- name: Dawn Dependency - name: Dawn Dependency
id: dawn-depends id: dawn-depends
run: | run: |
@ -217,7 +200,7 @@ jobs:
sudo apt-get update sudo apt-get update
sudo apt-get install -y --no-install-recommends \ sudo apt-get install -y --no-install-recommends \
python3 python3-pip python3-dev \ python3 python3-pip python3-dev \
libjpeg-dev build-essential libcurl4-openssl-dev \ libjpeg-dev build-essential libssl-dev \
git-lfs git-lfs
- name: Python Dependencies - name: Python Dependencies
@ -238,6 +221,8 @@ jobs:
id: cmake_build id: cmake_build
run: | run: |
cmake -B build \ cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_FATAL_WARNINGS=ON \ -DLLAMA_FATAL_WARNINGS=ON \
-DGGML_RPC=ON -DGGML_RPC=ON
cmake --build build --config Release -j $(nproc) cmake --build build --config Release -j $(nproc)
@ -294,13 +279,15 @@ jobs:
id: depends id: depends
run: | run: |
sudo apt-get update sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev sudo apt-get install build-essential libssl-dev
- name: Build - name: Build
id: cmake_build id: cmake_build
if: ${{ matrix.sanitizer != 'THREAD' }} if: ${{ matrix.sanitizer != 'THREAD' }}
run: | run: |
cmake -B build \ cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_FATAL_WARNINGS=ON \ -DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \ -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
@ -311,6 +298,8 @@ jobs:
if: ${{ matrix.sanitizer == 'THREAD' }} if: ${{ matrix.sanitizer == 'THREAD' }}
run: | run: |
cmake -B build \ cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_FATAL_WARNINGS=ON \ -DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \ -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \ -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
@ -335,7 +324,7 @@ jobs:
id: depends id: depends
run: | run: |
sudo apt-get update sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev sudo apt-get install build-essential libssl-dev
- name: Build - name: Build
id: cmake_build id: cmake_build
@ -343,6 +332,8 @@ jobs:
mkdir build mkdir build
cd build cd build
cmake .. \ cmake .. \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_FATAL_WARNINGS=ON \ -DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_LLGUIDANCE=ON -DLLAMA_LLGUIDANCE=ON
cmake --build . --config Release -j $(nproc) cmake --build . --config Release -j $(nproc)
@ -373,12 +364,14 @@ jobs:
id: depends id: depends
run: | run: |
sudo apt-get update sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev sudo apt-get install build-essential libssl-dev
- name: Build - name: Build
id: cmake_build id: cmake_build
run: | run: |
cmake -B build \ cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_RPC=ON -DGGML_RPC=ON
cmake --build build --config Release -j $(nproc) cmake --build build --config Release -j $(nproc)
@ -405,12 +398,14 @@ jobs:
- name: Dependencies - name: Dependencies
id: depends id: depends
run: | run: |
sudo apt-get install -y glslc libvulkan-dev libcurl4-openssl-dev sudo apt-get install -y glslc libvulkan-dev libssl-dev
- name: Configure - name: Configure
id: cmake_configure id: cmake_configure
run: | run: |
cmake -B build \ cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_BUILD_TYPE=RelWithDebInfo \ -DCMAKE_BUILD_TYPE=RelWithDebInfo \
-DGGML_BACKEND_DL=ON \ -DGGML_BACKEND_DL=ON \
-DGGML_CPU_ALL_VARIANTS=ON \ -DGGML_CPU_ALL_VARIANTS=ON \
@ -440,7 +435,7 @@ jobs:
run: | run: |
sudo add-apt-repository -y ppa:kisak/kisak-mesa sudo add-apt-repository -y ppa:kisak/kisak-mesa
sudo apt-get update -y sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libssl-dev
- name: Get latest Vulkan SDK version - name: Get latest Vulkan SDK version
id: vulkan_sdk_version id: vulkan_sdk_version
@ -466,6 +461,8 @@ jobs:
run: | run: |
source ./vulkan_sdk/setup-env.sh source ./vulkan_sdk/setup-env.sh
cmake -B build \ cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_VULKAN=ON -DGGML_VULKAN=ON
cmake --build build --config Release -j $(nproc) cmake --build build --config Release -j $(nproc)
@ -497,7 +494,7 @@ jobs:
run: | run: |
sudo add-apt-repository -y ppa:kisak/kisak-mesa sudo add-apt-repository -y ppa:kisak/kisak-mesa
sudo apt-get update -y sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libssl-dev
- name: Get latest Vulkan SDK version - name: Get latest Vulkan SDK version
id: vulkan_sdk_version id: vulkan_sdk_version
@ -537,7 +534,10 @@ jobs:
id: cmake_build id: cmake_build
run: | run: |
export Dawn_DIR=dawn/lib64/cmake/Dawn export Dawn_DIR=dawn/lib64/cmake/Dawn
cmake -B build -DGGML_WEBGPU=ON cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_WEBGPU=ON
cmake --build build --config Release -j $(nproc) cmake --build build --config Release -j $(nproc)
- name: Test - name: Test
@ -560,7 +560,7 @@ jobs:
id: depends id: depends
run: | run: |
sudo apt-get update sudo apt-get update
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev rocwmma-dev sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libssl-dev rocwmma-dev
- name: ccache - name: ccache
uses: ggml-org/ccache-action@v1.2.16 uses: ggml-org/ccache-action@v1.2.16
@ -572,6 +572,8 @@ jobs:
id: cmake_build id: cmake_build
run: | run: |
cmake -B build -S . \ cmake -B build -S . \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" \ -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" \
-DGGML_HIP_ROCWMMA_FATTN=ON \ -DGGML_HIP_ROCWMMA_FATTN=ON \
-DGGML_HIP=ON -DGGML_HIP=ON
@ -590,7 +592,7 @@ jobs:
id: depends id: depends
run: | run: |
apt-get update apt-get update
apt-get install -y build-essential git cmake libcurl4-openssl-dev apt-get install -y build-essential git cmake libssl-dev
- name: ccache - name: ccache
uses: ggml-org/ccache-action@v1.2.16 uses: ggml-org/ccache-action@v1.2.16
@ -602,6 +604,8 @@ jobs:
id: cmake_build id: cmake_build
run: | run: |
cmake -B build -S . \ cmake -B build -S . \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_MUSA=ON -DGGML_MUSA=ON
cmake --build build --config Release -j $(nproc) cmake --build build --config Release -j $(nproc)
@ -626,7 +630,7 @@ jobs:
shell: bash shell: bash
run: | run: |
sudo apt update sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev sudo apt install intel-oneapi-compiler-dpcpp-cpp libssl-dev
- name: install oneAPI MKL library - name: install oneAPI MKL library
shell: bash shell: bash
@ -648,6 +652,8 @@ jobs:
run: | run: |
source /opt/intel/oneapi/setvars.sh source /opt/intel/oneapi/setvars.sh
cmake -B build \ cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_SYCL=ON \ -DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \ -DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx -DCMAKE_CXX_COMPILER=icpx
@ -674,7 +680,7 @@ jobs:
shell: bash shell: bash
run: | run: |
sudo apt update sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev sudo apt install intel-oneapi-compiler-dpcpp-cpp libssl-dev
- name: install oneAPI MKL library - name: install oneAPI MKL library
shell: bash shell: bash
@ -696,6 +702,8 @@ jobs:
run: | run: |
source /opt/intel/oneapi/setvars.sh source /opt/intel/oneapi/setvars.sh
cmake -B build \ cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_SYCL=ON \ -DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \ -DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx \ -DCMAKE_CXX_COMPILER=icpx \
@ -722,12 +730,6 @@ jobs:
key: macOS-latest-cmake-ios key: macOS-latest-cmake-ios
evict-old-files: 1d evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build - name: Build
id: cmake_build id: cmake_build
run: | run: |
@ -759,12 +761,6 @@ jobs:
key: macOS-latest-cmake-tvos key: macOS-latest-cmake-tvos
evict-old-files: 1d evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build - name: Build
id: cmake_build id: cmake_build
run: | run: |
@ -790,12 +786,6 @@ jobs:
id: checkout id: checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build - name: Build
id: cmake_build id: cmake_build
run: | run: |
@ -838,12 +828,6 @@ jobs:
name: llama-xcframework name: llama-xcframework
path: build-apple/llama.xcframework/ path: build-apple/llama.xcframework/
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build llama.cpp with CMake - name: Build llama.cpp with CMake
id: cmake_build id: cmake_build
run: | run: |
@ -995,21 +979,12 @@ jobs:
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release" -DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build build-arm64-release --target install --config release cmake --build build-arm64-release --target install --config release
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
with:
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
- name: Build - name: Build
id: cmake_build id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: | run: |
cmake -S . -B build ${{ matrix.defines }} ` cmake -S . -B build ${{ matrix.defines }} `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" -DLLAMA_CURL=OFF -DLLAMA_BUILD_BORINGSSL=ON
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
cp $env:CURL_PATH/bin/libcurl-*.dll build/bin/Release
- name: Add libopenblas.dll - name: Add libopenblas.dll
id: add_libopenblas_dll id: add_libopenblas_dll
@ -1053,7 +1028,7 @@ jobs:
DEBIAN_FRONTEND: noninteractive DEBIAN_FRONTEND: noninteractive
run: | run: |
apt update apt update
apt install -y cmake build-essential ninja-build libgomp1 git libcurl4-openssl-dev apt install -y cmake build-essential ninja-build libgomp1 git libssl-dev
- name: ccache - name: ccache
uses: ggml-org/ccache-action@v1.2.16 uses: ggml-org/ccache-action@v1.2.16
@ -1064,10 +1039,12 @@ jobs:
- name: Build with CMake - name: Build with CMake
run: | run: |
cmake -S . -B build -G Ninja \ cmake -S . -B build -G Ninja \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_FATAL_WARNINGS=ON \
-DCMAKE_BUILD_TYPE=Release \ -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_CUDA_ARCHITECTURES=89-real \ -DCMAKE_CUDA_ARCHITECTURES=89-real \
-DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined \ -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_NATIVE=OFF \ -DGGML_NATIVE=OFF \
-DGGML_CUDA=ON -DGGML_CUDA=ON
cmake --build build cmake --build build
@ -1101,25 +1078,20 @@ jobs:
run: | run: |
choco install ninja choco install ninja
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build - name: Build
id: cmake_build id: cmake_build
shell: cmd shell: cmd
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: | run: |
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64 call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
cmake -S . -B build -G "Ninja Multi-Config" ^ cmake -S . -B build -G "Ninja Multi-Config" ^
-DLLAMA_BUILD_SERVER=ON ^ -DLLAMA_BUILD_SERVER=ON ^
-DLLAMA_CURL=OFF ^
-DLLAMA_BUILD_BORINGSSL=ON ^
-DGGML_NATIVE=OFF ^ -DGGML_NATIVE=OFF ^
-DGGML_BACKEND_DL=ON ^ -DGGML_BACKEND_DL=ON ^
-DGGML_CPU_ALL_VARIANTS=ON ^ -DGGML_CPU_ALL_VARIANTS=ON ^
-DGGML_CUDA=ON ^ -DGGML_CUDA=ON ^
-DGGML_RPC=ON ^ -DGGML_RPC=ON
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1 set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release cmake --build build --config Release
@ -1151,7 +1123,7 @@ jobs:
run: | run: |
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args # TODO: add ssl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
- name: Build - name: Build
id: cmake_build id: cmake_build
@ -1208,14 +1180,8 @@ jobs:
key: ${{ github.job }} key: ${{ github.job }}
evict-old-files: 1d evict-old-files: 1d
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build - name: Build
id: cmake_build id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: | run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path) $env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}" $env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
@ -1224,11 +1190,12 @@ jobs:
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" ` -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-${{ env.ROCM_VERSION }}/include/" ` -DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-${{ env.ROCM_VERSION }}/include/" `
-DCMAKE_BUILD_TYPE=Release ` -DCMAKE_BUILD_TYPE=Release `
-DLLAMA_CURL=OFF `
-DLLAMA_BUILD_BORINGSSL=ON `
-DROCM_DIR="${env:HIP_PATH}" ` -DROCM_DIR="${env:HIP_PATH}" `
-DGGML_HIP=ON ` -DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON ` -DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON ` -DGGML_RPC=ON
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake --build build -j ${env:NUMBER_OF_PROCESSORS} cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
ios-xcode-build: ios-xcode-build:

View File

@ -56,7 +56,7 @@ jobs:
curl \ curl \
wget \ wget \
language-pack-en \ language-pack-en \
libcurl4-openssl-dev libssl-dev
- name: Clone - name: Clone
id: checkout id: checkout
@ -242,7 +242,7 @@ jobs:
curl \ curl \
wget \ wget \
language-pack-en \ language-pack-en \
libcurl4-openssl-dev libssl-dev
- name: Clone - name: Clone
id: checkout id: checkout
@ -283,6 +283,8 @@ jobs:
run: | run: |
cmake -B build \ cmake -B build \
-DGGML_NATIVE=OFF \ -DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \ -DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \ -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \ -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
@ -295,6 +297,8 @@ jobs:
run: | run: |
cmake -B build \ cmake -B build \
-DGGML_NATIVE=OFF \ -DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \ -DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \ -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ; -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
@ -306,6 +310,8 @@ jobs:
run: | run: |
cmake -B build \ cmake -B build \
-DGGML_NATIVE=OFF \ -DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \ -DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ; -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
@ -345,16 +351,10 @@ jobs:
fetch-depth: 0 fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }} ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build - name: Build
id: cmake_build id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: | run: |
cmake -B build -DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" cmake -B build -DLLAMA_CURL=OFF -DLLAMA_BUILD_BORINGSSL=ON
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
- name: Python setup - name: Python setup
@ -368,13 +368,6 @@ jobs:
run: | run: |
pip install -r tools/server/tests/requirements.txt pip install -r tools/server/tests/requirements.txt
- name: Copy Libcurl
id: prepare_libcurl
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
- name: Tests - name: Tests
id: server_integration_tests id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }} if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}

View File

@ -2,10 +2,8 @@
# multiplie collaborators per item can be specified # multiplie collaborators per item can be specified
/.devops/*.Dockerfile @ngxson /.devops/*.Dockerfile @ngxson
/.github/actions/ @slaren @CISC /.github/actions/ @CISC
/.github/workflows/ @CISC /.github/workflows/ @CISC
/.github/workflows/release.yml @slaren
/.github/workflows/winget.yml @slaren
/ci/ @ggerganov /ci/ @ggerganov
/cmake/ @ggerganov /cmake/ @ggerganov
/common/CMakeLists.txt @ggerganov /common/CMakeLists.txt @ggerganov
@ -40,21 +38,14 @@
/examples/passkey/ @ggerganov /examples/passkey/ @ggerganov
/examples/retrieval/ @ggerganov /examples/retrieval/ @ggerganov
/examples/save-load-state/ @ggerganov /examples/save-load-state/ @ggerganov
/examples/simple-chat/ @slaren
/examples/simple/ @slaren
/examples/speculative-simple/ @ggerganov /examples/speculative-simple/ @ggerganov
/examples/speculative/ @ggerganov /examples/speculative/ @ggerganov
/ggml/cmake/ @ggerganov /ggml/cmake/ @ggerganov
/ggml/include/ @ggerganov @slaren /ggml/include/ @ggerganov
/ggml/src/ggml-alloc.c @slaren /ggml/src/ggml-common.h @ggerganov
/ggml/src/ggml-backend* @slaren /ggml/src/ggml-cpu/ @ggerganov
/ggml/src/ggml-blas/ @slaren
/ggml/src/ggml-common.h @ggerganov @slaren
/ggml/src/ggml-cpu/ @ggerganov @slaren
/ggml/src/ggml-cpu/spacemit/ @alex-spacemit /ggml/src/ggml-cpu/spacemit/ @alex-spacemit
/ggml/src/ggml-cuda/common.cuh @slaren
/ggml/src/ggml-cuda/fattn* @JohannesGaessler /ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/ggml-cuda.cu @slaren
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler @am17an /ggml/src/ggml-cuda/mmf.* @JohannesGaessler @am17an
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler /ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler /ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
@ -62,19 +53,19 @@
/ggml/src/ggml-cuda/fattn-wmma* @IMbackK /ggml/src/ggml-cuda/fattn-wmma* @IMbackK
/ggml/src/ggml-hip/ @IMbackK /ggml/src/ggml-hip/ @IMbackK
/ggml/src/ggml-cuda/vendors/hip.h @IMbackK /ggml/src/ggml-cuda/vendors/hip.h @IMbackK
/ggml/src/ggml-impl.h @ggerganov @slaren /ggml/src/ggml-impl.h @ggerganov
/ggml/src/ggml-metal/ @ggerganov /ggml/src/ggml-metal/ @ggerganov
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky /ggml/src/ggml-opencl/ @lhez @max-krasnyansky
/ggml/src/ggml-hexagon/ @max-krasnyansky @lhez /ggml/src/ggml-hexagon/ @max-krasnyansky @lhez
/ggml/src/ggml-opt.cpp @JohannesGaessler /ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/ggml-quants.* @ggerganov /ggml/src/ggml-quants.* @ggerganov
/ggml/src/ggml-rpc/ @rgerganov /ggml/src/ggml-rpc/ @rgerganov
/ggml/src/ggml-threading.* @ggerganov @slaren /ggml/src/ggml-threading.* @ggerganov
/ggml/src/ggml-vulkan/ @0cc4m /ggml/src/ggml-vulkan/ @0cc4m
/ggml/src/ggml-webgpu/ @reeselevine /ggml/src/ggml-webgpu/ @reeselevine
/ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM /ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM
/ggml/src/ggml.c @ggerganov @slaren /ggml/src/ggml.c @ggerganov
/ggml/src/ggml.cpp @ggerganov @slaren /ggml/src/ggml.cpp @ggerganov
/ggml/src/gguf.cpp @JohannesGaessler @Green-Sky /ggml/src/gguf.cpp @JohannesGaessler @Green-Sky
/gguf-py/ @CISC /gguf-py/ @CISC
/media/ @ggerganov /media/ @ggerganov
@ -86,15 +77,11 @@
/src/llama-arch.* @CISC /src/llama-arch.* @CISC
/src/llama-chat.* @ngxson /src/llama-chat.* @ngxson
/src/llama-graph.* @CISC /src/llama-graph.* @CISC
/src/llama-model-loader.* @slaren
/src/llama-model.* @CISC /src/llama-model.* @CISC
/src/llama-vocab.* @CISC /src/llama-vocab.* @CISC
/src/models/ @CISC /src/models/ @CISC
/tests/ @ggerganov /tests/ @ggerganov
/tests/test-backend-ops.cpp @slaren
/tests/test-thread-safety.cpp @slaren
/tools/batched-bench/ @ggerganov /tools/batched-bench/ @ggerganov
/tools/llama-bench/ @slaren
/tools/main/ @ggerganov /tools/main/ @ggerganov
/tools/mtmd/ @ngxson /tools/mtmd/ @ngxson
/tools/perplexity/ @ggerganov /tools/perplexity/ @ggerganov
@ -106,8 +93,6 @@
/tools/tokenize/ @ggerganov /tools/tokenize/ @ggerganov
/tools/tts/ @ggerganov /tools/tts/ @ggerganov
/vendor/ @ggerganov /vendor/ @ggerganov
/.clang-format @slaren
/.clang-tidy @slaren
/AUTHORS @ggerganov /AUTHORS @ggerganov
/CMakeLists.txt @ggerganov /CMakeLists.txt @ggerganov
/CONTRIBUTING.md @ggerganov /CONTRIBUTING.md @ggerganov

View File

@ -242,6 +242,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [crashr/gppm](https://github.com/crashr/gppm) launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption - [crashr/gppm](https://github.com/crashr/gppm) launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage - [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage
- [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example) - [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
- [unslothai/unsloth](https://github.com/unslothai/unsloth) 🦥 exports/saves fine-tuned and trained models to GGUF (Apache-2.0)
</details> </details>

View File

@ -1232,6 +1232,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) { [](common_params & params, const std::string & value) {
const auto sampler_names = string_split<std::string>(value, ';'); const auto sampler_names = string_split<std::string>(value, ';');
params.sampling.samplers = common_sampler_types_from_names(sampler_names, true); params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(
@ -1261,6 +1262,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) { [](common_params & params, const std::string & value) {
params.sampling.temp = std::stof(value); params.sampling.temp = std::stof(value);
params.sampling.temp = std::max(params.sampling.temp, 0.0f); params.sampling.temp = std::max(params.sampling.temp, 0.0f);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(
@ -1268,6 +1270,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k), string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
[](common_params & params, int value) { [](common_params & params, int value) {
params.sampling.top_k = value; params.sampling.top_k = value;
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(
@ -1275,6 +1278,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p), string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
[](common_params & params, const std::string & value) { [](common_params & params, const std::string & value) {
params.sampling.top_p = std::stof(value); params.sampling.top_p = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(
@ -1282,6 +1286,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p), string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
[](common_params & params, const std::string & value) { [](common_params & params, const std::string & value) {
params.sampling.min_p = std::stof(value); params.sampling.min_p = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(
@ -1296,6 +1301,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability), string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
[](common_params & params, const std::string & value) { [](common_params & params, const std::string & value) {
params.sampling.xtc_probability = std::stof(value); params.sampling.xtc_probability = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(
@ -1303,6 +1309,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold), string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
[](common_params & params, const std::string & value) { [](common_params & params, const std::string & value) {
params.sampling.xtc_threshold = std::stof(value); params.sampling.xtc_threshold = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(
@ -1321,6 +1328,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
} }
params.sampling.penalty_last_n = value; params.sampling.penalty_last_n = value;
params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n); params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(
@ -1328,6 +1336,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat), string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
[](common_params & params, const std::string & value) { [](common_params & params, const std::string & value) {
params.sampling.penalty_repeat = std::stof(value); params.sampling.penalty_repeat = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(
@ -1425,6 +1434,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat), "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
[](common_params & params, int value) { [](common_params & params, int value) {
params.sampling.mirostat = value; params.sampling.mirostat = value;
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(
@ -1432,6 +1442,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta), string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
[](common_params & params, const std::string & value) { [](common_params & params, const std::string & value) {
params.sampling.mirostat_eta = std::stof(value); params.sampling.mirostat_eta = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(
@ -1439,6 +1450,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau), string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
[](common_params & params, const std::string & value) { [](common_params & params, const std::string & value) {
params.sampling.mirostat_tau = std::stof(value); params.sampling.mirostat_tau = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU;
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg( add_opt(common_arg(

View File

@ -8,6 +8,7 @@
#include "common.h" #include "common.h"
#include "log.h" #include "log.h"
#include "llama.h" #include "llama.h"
#include "sampling.h"
#include <algorithm> #include <algorithm>
#include <cinttypes> #include <cinttypes>
@ -949,6 +950,58 @@ std::vector<common_file_info> fs_list_files(const std::string & path) {
// Model utils // Model utils
// //
static inline void common_init_sampler_from_model(
const llama_model * model,
common_params_sampling & sparams) {
const uint64_t config = sparams.user_sampling_config;
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
if (config & user_config) return;
char buf[64] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
int32_t v = strtol(buf, &end, 10);
if (end && end != buf) dst = v;
}
};
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
if (config & user_config) return;
char buf[128] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
float v = strtof(buf, &end);
if (end && end != buf) dst = v;
}
};
// Sampling sequence
if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
char buf[512] = {0};
if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
if (!sampler_names.empty()) {
sparams.samplers = common_sampler_types_from_names(sampler_names, true);
}
}
}
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K), sparams.top_k, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P), sparams.top_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P), sparams.min_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD), sparams.xtc_threshold, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP), sparams.temp, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N), sparams.penalty_last_n, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT), sparams.penalty_repeat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT), sparams.mirostat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU), sparams.mirostat_tau, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
}
struct common_init_result common_init_from_params(common_params & params) { struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams; common_init_result iparams;
auto mparams = common_model_params_to_llama(params); auto mparams = common_model_params_to_llama(params);
@ -960,6 +1013,8 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams; return iparams;
} }
common_init_sampler_from_model(model, params.sampling);
const llama_vocab * vocab = llama_model_get_vocab(model); const llama_vocab * vocab = llama_model_get_vocab(model);
auto cparams = common_context_params_to_llama(params); auto cparams = common_context_params_to_llama(params);

View File

@ -140,6 +140,22 @@ struct common_grammar_trigger {
llama_token token = LLAMA_TOKEN_NULL; llama_token token = LLAMA_TOKEN_NULL;
}; };
enum common_params_sampling_config : uint64_t {
COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
};
// sampling parameters // sampling parameters
struct common_params_sampling { struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
@ -172,6 +188,8 @@ struct common_params_sampling {
bool no_perf = false; // disable performance metrics bool no_perf = false; // disable performance metrics
bool timing_per_token = false; bool timing_per_token = false;
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY

View File

@ -565,7 +565,7 @@ class ModelBase:
gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF, gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
) )
) )
or not new_name.endswith(".weight") or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
): ):
data_qtype = gguf.GGMLQuantizationType.F32 data_qtype = gguf.GGMLQuantizationType.F32
@ -4183,6 +4183,21 @@ class Qwen3MoeModel(Qwen2MoeModel):
super().set_vocab() super().set_vocab()
@ModelBase.register("RND1")
class RND1Model(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.RND1
def set_gguf_parameters(self):
super().set_gguf_parameters()
# RND1 specific parameters
# RND1 uses bidirectional attention
self.gguf_writer.add_causal_attention(False)
if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
self.gguf_writer.add_mask_token_id(mask_token_id)
@ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration") @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
class Qwen3VLVisionModel(MmprojModel): class Qwen3VLVisionModel(MmprojModel):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):

View File

@ -242,7 +242,7 @@ def parse_args() -> argparse.Namespace:
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.", help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
) )
parser.add_argument( parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16", "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f32",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type", help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
) )
parser.add_argument( parser.add_argument(

View File

@ -3,7 +3,7 @@
The example demonstrates batched generation from a given prompt The example demonstrates batched generation from a given prompt
```bash ```bash
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4 ./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4 --kv-unified
... ...

View File

@ -6,8 +6,54 @@ More Info:
- https://github.com/ggml-org/llama.cpp/pull/14644 - https://github.com/ggml-org/llama.cpp/pull/14644
- https://github.com/ggml-org/llama.cpp/pull/14771 - https://github.com/ggml-org/llama.cpp/pull/14771
## Parameters
The diffusion CLI supports various parameters to control the generation process:
Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual` ### Core Diffusion Parameters
- `--diffusion-steps`: Number of diffusion steps (default: 256)
- `--diffusion-algorithm`: Algorithm for token selection
- `0`: ORIGIN - Token will be generated in a purely random order from https://arxiv.org/abs/2107.03006.
- `1`: ENTROPY_BASED - Entropy-based selection
- `2`: MARGIN_BASED - Margin-based selection
- `3`: RANDOM - Random selection
- `4`: CONFIDENCE_BASED - Confidence-based selection (default)
- More documentation here https://github.com/DreamLM/Dream
- `--diffusion-visual`: Enable live visualization during generation
Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual` ### Scheduling Parameters
Choose one of the following scheduling methods:
**Timestep-based scheduling:**
- `--diffusion-eps`: Epsilon value for timestep scheduling (e.g., 0.001)
**Block-based scheduling:**
- `--diffusion-block-length`: Block size for block-based scheduling (e.g., 32)
### Sampling Parameters
- `--temp`: Temperature for sampling (0.0 = greedy/deterministic, higher = more random)
- `--top-k`: Top-k filtering for sampling
- `--top-p`: Top-p (nucleus) filtering for sampling
- `--seed`: Random seed for reproducibility
### Model Parameters
- `-m`: Path to the GGUF model file
- `-p`: Input prompt text
- `-ub`: Maximum sequence length (ubatch size)
- `-c`: Context size
- `-b`: Batch size
### Examples
#### Dream architechture:
```
llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual
```
#### LLaDA architechture:
```
llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual
```
#### RND1 architecture:
```
llama-diffusion-cli -m RND1-Base-0910.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-algorithm 1 --diffusion-steps 256 --diffusion-visual --temp 0.5 --diffusion-eps 0.001
```

View File

@ -25,16 +25,17 @@ if(GIT_EXE)
) )
endif() endif()
# Build the version string with optional dirty flag
set(GGML_VERSION "${GGML_VERSION_BASE}") set(GGML_VERSION "${GGML_VERSION_BASE}")
if(GGML_GIT_DIRTY AND NOT GGML_GIT_DIRTY EQUAL 0)
set(GGML_VERSION "${GGML_VERSION}-dirty")
endif()
if(NOT GGML_BUILD_COMMIT) if(NOT GGML_BUILD_COMMIT)
set(GGML_BUILD_COMMIT "unknown") set(GGML_BUILD_COMMIT "unknown")
endif() endif()
# Build the commit string with optional dirty flag
if(DEFINED GGML_GIT_DIRTY AND GGML_GIT_DIRTY EQUAL 1)
set(GGML_BUILD_COMMIT "${GGML_BUILD_COMMIT}-dirty")
endif()
include(CheckIncludeFileCXX) include(CheckIncludeFileCXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON) set(CMAKE_EXPORT_COMPILE_COMMANDS ON)

View File

@ -328,6 +328,14 @@ function(ggml_add_cpu_backend_variant tag_name)
set(GGML_INTERNAL_${feat} OFF) set(GGML_INTERNAL_${feat} OFF)
endforeach() endforeach()
foreach (feat ${ARGN})
set(GGML_INTERNAL_${feat} ON)
endforeach()
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
foreach (feat RVV)
set(GGML_INTERNAL_${feat} OFF)
endforeach()
foreach (feat ${ARGN}) foreach (feat ${ARGN})
set(GGML_INTERNAL_${feat} ON) set(GGML_INTERNAL_${feat} ON)
endforeach() endforeach()
@ -402,6 +410,13 @@ if (GGML_CPU_ALL_VARIANTS)
else() else()
message(FATAL_ERROR "Unsupported s390x target OS: ${CMAKE_SYSTEM_NAME}") message(FATAL_ERROR "Unsupported s390x target OS: ${CMAKE_SYSTEM_NAME}")
endif() endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
ggml_add_cpu_backend_variant(riscv64_0)
ggml_add_cpu_backend_variant(riscv64_v RVV)
else()
message(FATAL_ERROR "Unsupported RISC-V target OS: ${CMAKE_SYSTEM_NAME}")
endif()
else() else()
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}") message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
endif() endif()

View File

@ -42,6 +42,7 @@
#include <aclnnop/aclnn_exp.h> #include <aclnnop/aclnn_exp.h>
#include <aclnnop/aclnn_fill_scalar.h> #include <aclnnop/aclnn_fill_scalar.h>
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h> #include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
#include <aclnnop/aclnn_ger.h>
#include <aclnnop/aclnn_group_norm.h> #include <aclnnop/aclnn_group_norm.h>
#include <aclnnop/aclnn_grouped_matmul_v3.h> #include <aclnnop/aclnn_grouped_matmul_v3.h>
#include <aclnnop/aclnn_gt_scalar.h> #include <aclnnop/aclnn_gt_scalar.h>
@ -3236,3 +3237,64 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context & ctx, ggml_tensor * dst
GGML_ABORT("Function is not implemented."); GGML_ABORT("Function is not implemented.");
} }
} }
static void ggml_cann_out_prod_fp(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor * src0 = dst->src[0]; // weight
ggml_tensor * src1 = dst->src[1]; // input
GGML_TENSOR_BINARY_OP_LOCALS
acl_tensor_ptr acl_dst = ggml_cann_create_tensor(dst);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceZero, acl_dst.get());
const int64_t dps2 = ne2 / ne02;
const int64_t dps3 = ne3 / ne03;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
const int64_t i02 = i2 / dps2;
const int64_t i03 = i3 / dps3;
const int64_t i12 = i2;
const int64_t i13 = i3;
acl_tensor_ptr accumulator =
ggml_cann_create_tensor((char *) dst->data + i2 * nb2 + i3 * nb3, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), dst->ne, dst->nb, 2);
// The outer product needs to be accumulated in this dimension.
for (int64_t i1 = 0; i1 < ne11; i1++) {
acl_tensor_ptr acl_input = ggml_cann_create_tensor(
(char *) src1->data + i1 * nb11 + i12 * nb12 + i13 * nb13, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src1->ne, src1->nb, 1);
acl_tensor_ptr acl_weight = ggml_cann_create_tensor(
(char *) src0->data + i1 * nb01 + i02 * nb02 + i03 * nb03, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, src0->nb, 1);
ggml_cann_pool_alloc output_allocator(ctx.pool());
void * output_buffer = output_allocator.alloc(ggml_nbytes(dst));
acl_tensor_ptr acl_out = ggml_cann_create_tensor(output_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), dst->ne, dst->nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, Ger, acl_input.get(), acl_weight.get(), acl_out.get());
float alpha_value = 1.0f;
aclScalar * alpha = aclCreateScalar(&alpha_value, ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdd, accumulator.get(), acl_out.get(), alpha);
}
}
}
}
void ggml_cann_out_prod(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor * src0 = dst->src[0];
const enum ggml_type type = src0->type;
switch (type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
ggml_cann_out_prod_fp(ctx, dst);
break;
default:
GGML_ABORT("Unsupport type for GGML_OP_OUT_PROD");
break;
}
}

View File

@ -1125,3 +1125,23 @@ void ggml_cann_op_unary_gated(std::function<void(ggml_backend_cann_context &, ac
} while (0) } while (0)
#endif // CANN_ACLNN_OPS #endif // CANN_ACLNN_OPS
/**
* @brief Performs outer product operation on two ggml tensors using the CANN backend.
*
* @details This function computes the outer product of two input tensors (src0 and src1)
* and stores the result in the destination tensor. The outer product operation is defined as:
* dst[i,j,k,l] = sum_m (src0[i,m,k,l] * src1[j,m,k,l])
*
* The function supports multiple data types including F32, F16. For floating-point
* types, it uses batch matrix multiplication for efficient computation.
*
* The implementation handles 4D tensor broadcasting and batch processing automatically.
*
* @param ctx The CANN backend context for operation execution and memory management.
* @param dst The destination ggml_tensor where the outer product result will be stored.
* The input tensors are assumed to be `dst->src[0]` and `dst->src[1]`.
*
* @see GGML_CANN_CALL_ACLNN_OP for CANN operator invocation
*/
void ggml_cann_out_prod(ggml_backend_cann_context & ctx, ggml_tensor * dst);

View File

@ -1886,6 +1886,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context & ctx, struct gg
case GGML_OP_FLASH_ATTN_EXT: case GGML_OP_FLASH_ATTN_EXT:
ggml_cann_flash_attn_ext(ctx, dst); ggml_cann_flash_attn_ext(ctx, dst);
break; break;
case GGML_OP_OUT_PROD:
ggml_cann_out_prod(ctx, dst);
break;
default: default:
return false; return false;
} }
@ -2246,8 +2249,7 @@ static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx
bool & use_cann_graph, bool & use_cann_graph,
bool & cann_graph_update_required) { bool & cann_graph_update_required) {
#ifdef USE_ACL_GRAPH #ifdef USE_ACL_GRAPH
ggml_cann_graph * matched_graph = cann_ctx->graph_lru_cache.cache_list.front(); if (use_cann_graph && cann_graph_update_required) { // Begin CANN graph capture
if (use_cann_graph && cann_graph_update_required) {
ACL_CHECK(aclmdlRICaptureBegin(cann_ctx->stream(), ACL_MODEL_RI_CAPTURE_MODE_GLOBAL)); ACL_CHECK(aclmdlRICaptureBegin(cann_ctx->stream(), ACL_MODEL_RI_CAPTURE_MODE_GLOBAL));
} }
#endif // USE_ACL_GRAPH #endif // USE_ACL_GRAPH
@ -2271,12 +2273,14 @@ static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx
} }
#ifdef USE_ACL_GRAPH #ifdef USE_ACL_GRAPH
if (use_cann_graph && cann_graph_update_required) { // End CANN graph capture
ACL_CHECK(aclmdlRICaptureEnd(cann_ctx->stream(), &matched_graph->graph));
}
if (use_cann_graph) { if (use_cann_graph) {
// Execute graph ggml_cann_graph * matched_graph = cann_ctx->graph_lru_cache.cache_list.front();
if (cann_graph_update_required) { // End CANN graph capture
ACL_CHECK(aclmdlRICaptureEnd(cann_ctx->stream(), &matched_graph->graph));
}
// Execute CANN graph
ACL_CHECK(aclmdlRIExecuteAsync(matched_graph->graph, cann_ctx->stream())); ACL_CHECK(aclmdlRIExecuteAsync(matched_graph->graph, cann_ctx->stream()));
} }
#endif // USE_ACL_GRAPH #endif // USE_ACL_GRAPH
@ -2302,9 +2306,9 @@ static enum ggml_status ggml_backend_cann_graph_compute(ggml_backend_t backend,
// calculate rope cache for fist layer in current device. // calculate rope cache for fist layer in current device.
cann_ctx->rope_cache.cached = false; cann_ctx->rope_cache.cached = false;
bool cann_graph_update_required = false;
#ifdef USE_ACL_GRAPH #ifdef USE_ACL_GRAPH
bool use_cann_graph = true; bool use_cann_graph = true;
bool cann_graph_update_required = false;
static bool prefill_use_graph = parse_bool(get_env("GGML_CANN_PREFILL_USE_GRAPH").value_or("")); static bool prefill_use_graph = parse_bool(get_env("GGML_CANN_PREFILL_USE_GRAPH").value_or(""));
if (!prefill_use_graph) { if (!prefill_use_graph) {
@ -2335,7 +2339,6 @@ static enum ggml_status ggml_backend_cann_graph_compute(ggml_backend_t backend,
} }
#else #else
bool use_cann_graph = false; bool use_cann_graph = false;
bool cann_graph_update_required = false;
#endif // USE_ACL_GRAPH #endif // USE_ACL_GRAPH
evaluate_and_capture_cann_graph(cann_ctx, cgraph, use_cann_graph, cann_graph_update_required); evaluate_and_capture_cann_graph(cann_ctx, cgraph, use_cann_graph, cann_graph_update_required);
@ -2563,6 +2566,16 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
case GGML_OP_PAD_REFLECT_1D: case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_COUNT_EQUAL: case GGML_OP_COUNT_EQUAL:
return true; return true;
case GGML_OP_OUT_PROD:
{
switch (op->src[0]->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return true;
default:
return false;
}
}
case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_CONV_TRANSPOSE_1D:
// TODO: ((weightL - 1) * dilationW - padLeft)=1336 should not be larger than 255. // TODO: ((weightL - 1) * dilationW - padLeft)=1336 should not be larger than 255.
return (op->src[0]->ne[0] - 1) <= 255; return (op->src[0]->ne[0] - 1) <= 255;

View File

@ -452,25 +452,39 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
ggml-cpu/spacemit/ime_kernels.h ggml-cpu/spacemit/ime_kernels.h
) )
endif() endif()
set(MARCH_STR "rv64gc") if(NOT GGML_CPU_ALL_VARIANTS)
if (GGML_RV_ZFH) set(MARCH_STR "rv64gc")
string(APPEND MARCH_STR "_zfh") if (GGML_RV_ZFH)
endif() string(APPEND MARCH_STR "_zfh")
if (GGML_XTHEADVECTOR)
string(APPEND MARCH_STR "_xtheadvector")
elseif (GGML_RVV)
string(APPEND MARCH_STR "_v")
if (GGML_RV_ZVFH)
string(APPEND MARCH_STR "_zvfh")
endif() endif()
if (GGML_RV_ZVFBFWMA)
string(APPEND MARCH_STR "_zvfbfwma") if (GGML_XTHEADVECTOR)
string(APPEND MARCH_STR "_xtheadvector")
elseif (GGML_RVV)
string(APPEND MARCH_STR "_v")
if (GGML_RV_ZVFH)
string(APPEND MARCH_STR "_zvfh")
endif()
if (GGML_RV_ZVFBFWMA)
string(APPEND MARCH_STR "_zvfbfwma")
endif()
endif() endif()
if (GGML_RV_ZICBOP)
string(APPEND MARCH_STR "_zicbop")
endif()
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
else()
# Begin with the lowest baseline
set(ARCH_DEFINITIONS "")
if (GGML_INTERNAL_RVV)
message(STATUS "RVV enabled")
list(APPEND ARCH_DEFINITIONS GGML_USE_RVV)
list(APPEND ARCH_FLAGS -march=rv64gc_v -mabi=lp64d)
endif()
ggml_add_cpu_backend_features(${GGML_CPU_NAME} riscv ${ARCH_DEFINITIONS})
endif() endif()
if (GGML_RV_ZICBOP)
string(APPEND MARCH_STR "_zicbop")
endif()
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x") elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
message(STATUS "s390x detected") message(STATUS "s390x detected")
list(APPEND GGML_CPU_SOURCES list(APPEND GGML_CPU_SOURCES

View File

@ -51,10 +51,8 @@
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64) #elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
// repack.cpp // repack.cpp
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8 #define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0 #define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K #define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0 #define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K #define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64) #elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)

View File

@ -24,6 +24,29 @@
#define UNUSED GGML_UNUSED #define UNUSED GGML_UNUSED
static inline void decode_q4_Kx8_scales_mins(const uint8_t * scales_in,
int16x8_t * out_mins,
int8_t * out_scales) {
constexpr uint32_t kmask1 = 0x3f3f3f3f;
constexpr uint32_t kmask2 = 0x0f0f0f0f;
constexpr uint32_t kmask3 = 0x03030303;
constexpr uint8_t scales_size = 12;
uint32_t sm[3];
memcpy(sm, scales_in, scales_size);
const uint32_t mins_0_3 = sm[1] & kmask1;
const uint32_t mins_4_7 = ((sm[2] >> 4) & kmask2) | (((sm[1] >> 6) & kmask3) << 4);
const uint32x2_t mins_u32 = { mins_0_3, mins_4_7 };
*out_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins_u32)));
uint32_t scales_u32[2];
scales_u32[0] = sm[0] & kmask1;
scales_u32[1] = (sm[2] & kmask2) | (((sm[0] >> 6) & kmask3) << 4);
memcpy(out_scales, scales_u32, 8);
}
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK8_0 == 32); assert(QK8_0 == 32);
assert(k % QK8_0 == 0); assert(k % QK8_0 == 0);
@ -474,6 +497,162 @@ void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
ggml_gemv_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc); ggml_gemv_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
} }
void ggml_gemv_q4_K_8x8_q8_K(int n,
float * GGML_RESTRICT s,
size_t bs,
const void * GGML_RESTRICT vx,
const void * GGML_RESTRICT vy,
int nr,
int nc) {
constexpr int qk = QK_K;
const int nb = n / qk;
constexpr int ncols_interleaved = 8;
constexpr int blocklen = 8;
assert(n % qk == 0);
assert(nr % 4 == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined(__aarch64__) && defined(__ARM_NEON)
constexpr int col_pairs = ncols_interleaved / 2;
const uint8x16_t m4b = vdupq_n_u8(0x0f);
// 1x8 tile = 2 x 4
float32x4_t acc_f32[ncols_interleaved / 4];
const block_q8_K * GGML_RESTRICT q8_ptr = (const block_q8_K *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int i = 0; i < ncols_interleaved / 4; i++) {
acc_f32[i] = vdupq_n_f32(0);
}
for (int b = 0; b < nb; b++) {
float32x4_t q4_d_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d)); // d0 d1 d2 d3
float32x4_t q4_d_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d + 4)); // d4 d5 d6 d7
float32x4_t q8_d = vdupq_n_f32(q8_ptr[b].d);
float32x4_t sb_scale_0 = vmulq_f32(q4_d_0, q8_d);
float32x4_t sb_scale_1 = vmulq_f32(q4_d_1, q8_d);
float32x4_t q4_dmin_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin)); // dmin 0..3
float32x4_t q4_dmin_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin + 4)); // dmin 4..7
float32x4_t sb_min_0 = vmulq_f32(q4_dmin_0, q8_d);
float32x4_t sb_min_1 = vmulq_f32(q4_dmin_1, q8_d);
// interleaved bias_acc: [0]->r0 0123, [1]->r0 4567
int32x4_t bias_acc[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// 2 sb each iteration
int32x4_t acc_lo[col_pairs];
int32x4_t acc_hi[col_pairs];
// Each bsum is 16 elements, pairwise add leaves us with the 8 bsums of the entire block
const int16x8_t bsums = vpaddq_s16(vld1q_s16(q8_ptr[b].bsums), vld1q_s16(q8_ptr[b].bsums + 8));
int16_t bsums_arr[8];
vst1q_s16(bsums_arr, bsums);
for (int sb = 0; sb < QK_K / 64; sb++) {
for (int i = 0; i < col_pairs; i++) {
acc_lo[i] = vdupq_n_s32(0);
acc_hi[i] = vdupq_n_s32(0);
}
// Need scales for the low and high nibbles
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
int16x8_t q4sb_mins[2]; // int16 as its needed for bias_acc later
int16x8_t q4sb_scales[2];
for (int i = 0; i < 2; i++) {
int8_t aux_q4sb[8];
const int offset = sb * 24 + i * 12;
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], aux_q4sb);
q4sb_scales[i] = vmovl_s8(vld1_s8(aux_q4sb));
}
const uint8_t * q4_base = q4_ptr[b].qs + sb * QK_K;
// Load the 64 quants from q8K duplicated to use vecdots with the interelaved columns
// but still need the qs to use the low and hi bits from q4
const int8_t * q8_base = q8_ptr[b].qs + sb * 64;
int8x16_t q8_qs[8];
for (int i = 0; i < 8; i++) {
q8_qs[i] = (int8x16_t) vld1q_dup_s64((const int64_t *) (q8_base + i * 8));
}
// Q4s columns iterated in pairs (01, 23, 45, 67)
for (int cp = 0; cp < col_pairs; cp++) {
uint8x16_t q4_qs_cp_0 = vld1q_u8(q4_base + 16 * cp);
uint8x16_t q4_qs_cp_1 = vld1q_u8(q4_base + 16 * cp + 64);
uint8x16_t q4_qs_cp_2 = vld1q_u8(q4_base + 16 * cp + 128);
uint8x16_t q4_qs_cp_3 = vld1q_u8(q4_base + 16 * cp + 192);
acc_lo[cp] =
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_0, m4b)), q8_qs[0]); // 0 .. 7
acc_lo[cp] =
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_1, m4b)), q8_qs[1]); // 8 ..15
acc_lo[cp] =
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_2, m4b)), q8_qs[2]); // 16..23
acc_lo[cp] =
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_3, m4b)), q8_qs[3]); // 24..31
acc_hi[cp] =
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_0, 4)), q8_qs[4]); // 32..39
acc_hi[cp] =
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_1, 4)), q8_qs[5]); // 40..47
acc_hi[cp] =
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_2, 4)), q8_qs[6]); // 48..55
acc_hi[cp] =
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_3, 4)), q8_qs[7]); // 56..63
}
// Iterates over a pair of column pairs (4 columns) to use a single 128 register
// p = 0 -> 0123 p2 -> 4567
for (int i = 0, p = 0; p < col_pairs; i++, p += 2) {
int16x4_t group_scales_lo = p == 0 ? vget_low_s16(q4sb_scales[0]) : vget_high_s16(q4sb_scales[0]);
int16x4_t group_scales_hi = p == 0 ? vget_low_s16(q4sb_scales[1]) : vget_high_s16(q4sb_scales[1]);
float32x4_t sb_scale = p == 0 ? sb_scale_0 : sb_scale_1;
// 0123 or 4567
// TODO: Single superblock mul at the end of the superblock
float32x4_t sumf_0 =
vcvtq_f32_s32(vmulq_s32(vmovl_s16(group_scales_lo), vpaddq_s32(acc_lo[p], acc_lo[p + 1])));
acc_f32[i] = vfmaq_f32(acc_f32[i], sb_scale, sumf_0);
float32x4_t sumf_1 =
vcvtq_f32_s32(vmulq_s32(vmovl_s16(group_scales_hi), vpaddq_s32(acc_hi[p], acc_hi[p + 1])));
acc_f32[i] = vfmaq_f32(acc_f32[i], sb_scale, sumf_1);
}
// Multiply Acc bsum + mins
// Each pair of subblocks share the same bsums
// Load scalar bsum → broadcast to a vector (vdupq_n_s16(s)).
int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[2 * sb + 0]);
int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[2 * sb + 1]);
// cols 0-3 bias
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
// cols 4-7 bias
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
} // for sb
acc_f32[0] = vmlsq_f32(acc_f32[0], vcvtq_f32_s32(bias_acc[0]), sb_min_0);
acc_f32[1] = vmlsq_f32(acc_f32[1], vcvtq_f32_s32(bias_acc[1]), sb_min_1);
} // for b
int base = x * ncols_interleaved;
vst1q_f32(s + base, acc_f32[0]);
vst1q_f32(s + base + 4, acc_f32[1]);
} // for x
return;
#endif // defined(__aarch64__) && defined(__ARM_NEON)
ggml_gemv_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0; const int qk = QK8_0;
const int nb = n / qk; const int nb = n / qk;
@ -1889,3 +2068,212 @@ void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) #endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
ggml_gemm_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc); ggml_gemm_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
} }
void ggml_gemm_q4_K_8x8_q8_K(int n,
float * GGML_RESTRICT s,
size_t bs,
const void * GGML_RESTRICT vx,
const void * GGML_RESTRICT vy,
int nr,
int nc) {
constexpr int qk = QK_K;
const int nb = n / qk;
constexpr int ncols_interleaved = 8;
constexpr int blocklen = 8;
assert(n % qk == 0);
assert(nr % 4 == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
constexpr int q8_k_blocklen = 4;
const uint8x16_t m4b = vdupq_n_u8(0x0f);
// 8 accumulators: 2 row pairs × 4 col pairs
float32x4_t acc_f32[blocklen];
for (int y = 0; y < nr / q8_k_blocklen; y++) {
const block_q8_Kx4 * GGML_RESTRICT q8_ptr = (const block_q8_Kx4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int i = 0; i < blocklen; i++) {
acc_f32[i] = vdupq_n_f32(0);
}
for (int b = 0; b < nb; b++) {
// bsums pairs belongs to the same q8_k subblock
const int16x8_t bsums[4]{
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 0), vld1q_s16(q8_ptr[b].bsums + 16 * 0 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 1), vld1q_s16(q8_ptr[b].bsums + 16 * 1 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 2), vld1q_s16(q8_ptr[b].bsums + 16 * 2 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 3), vld1q_s16(q8_ptr[b].bsums + 16 * 3 + 8)),
};
int16_t bsums_arr[4][8];
for (int q8_row = 0; q8_row < 4; q8_row++) {
vst1q_s16(bsums_arr[q8_row], bsums[q8_row]);
}
int32x4_t sb_acc[4]; // Aux accumulators to store subblock (partial) results
int32x4_t acc[8]; // rows 01 stored in [0][1][2][3] rows 23 stored in [4][5][6][7]
int32x4_t bias_acc[8]; // interleaved bias_acc: [0]->r0 0123, [1]->r0 4567, [2]->r1 0123 ...
for (int i = 0; i < 8; i++) {
acc[i] = vdupq_n_s32(0);
bias_acc[i] = vdupq_n_s32(0);
}
for (int sb = 0; sb < QK_K / 64; sb++) {
// Need scales for the low and high nibbles
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
int8_t q4sb_scales[2][8];
int16x8_t q4sb_mins[2]; // int16 as its needed for bias_acc later
for (int i = 0; i < 2; i++) {
const int offset = sb * 24 + i * 12;
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], q4sb_scales[i]);
}
// q8_ptr[b].qs has interleaved Q8 rows (01, 23)
const int8_t * q8_base = q8_ptr[b].qs + sb * 256;
int8x16_t q8_qs_01[8];
int8x16_t q8_qs_23[8];
// Load 32-byte per row pair, 1 subblock each time
for (int i = 0; i < 8; i++) {
const int offset = i * 32; // 16 for row 01, 16 for row 23
q8_qs_01[i] = vld1q_s8(q8_base + offset);
q8_qs_23[i] = vld1q_s8(q8_base + offset + 16);
}
const int8x16_t q8s[2][8] = {
{ q8_qs_01[0], q8_qs_01[1], q8_qs_01[2], q8_qs_01[3],
q8_qs_01[4], q8_qs_01[5], q8_qs_01[6], q8_qs_01[7] },
{ q8_qs_23[0], q8_qs_23[1], q8_qs_23[2], q8_qs_23[3],
q8_qs_23[4], q8_qs_23[5], q8_qs_23[6], q8_qs_23[7] },
};
// Q4s columns iterated in pairs (01, 23, 45, 67)
for (int cp = 0; cp < ncols_interleaved / 2; cp++) {
for (int i = 0; i < 4; i++) {
sb_acc[i] = vdupq_n_s32(0);
}
uint8x16_t q4_qs_cp_0 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 0); // 0 .. 7 & 32..39
uint8x16_t q4_qs_cp_1 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 64); // 8 ..15 & 40..47
uint8x16_t q4_qs_cp_2 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 128); // 16..23 & 48..55
uint8x16_t q4_qs_cp_3 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 192); // 24..31 & 56..63
const int8x16_t q4_nibbles[2][4] = {
{
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_0, m4b)),
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_1, m4b)),
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_2, m4b)),
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_3, m4b)),
},
{
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_0, 4)),
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_1, 4)),
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_2, 4)),
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_3, 4)),
}
};
// Calculates the Qs muladd of every row pair (rp) rows 01 and 23 of q8
// for each of the internal 32 qs subblock (blk)
for (int rp = 0; rp < 2; rp++) {
for (int blk = 0; blk < 2; blk++) {
const int8x16_t * q8 = &q8s[rp][4 * blk];
const int8x16_t * q4 = q4_nibbles[blk];
int32x4_t acc = sb_acc[2 * rp + blk];
// mul add for each qs in the same subblock
for (int qs_offset = 0; qs_offset < 4; qs_offset++) {
acc = vmmlaq_s32(acc, q4[qs_offset], q8[qs_offset]);
}
sb_acc[2 * rp + blk] = acc;
}
}
// Scales[i] corresponds to column i
const int scale_offset = cp * 2;
for (int blk = 0; blk < 2; blk++) {
const int32x4_t block_scale = {
(int32_t) q4sb_scales[blk][scale_offset],
(int32_t) q4sb_scales[blk][scale_offset],
(int32_t) q4sb_scales[blk][scale_offset + 1],
(int32_t) q4sb_scales[blk][scale_offset + 1],
};
acc[cp] = vmlaq_s32(acc[cp], sb_acc[blk], block_scale);
acc[cp + 4] = vmlaq_s32(acc[cp + 4], sb_acc[blk + 2], block_scale);
}
}
// Multiply Acc bsum + mins
for (int q8_row = 0; q8_row < 4; q8_row++) {
// Each pair of subblocks share the same bsums
// Load scalar bsum → broadcast to a vector (vdupq_n_s16(s)).
int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[sb][q8_row * 2]);
int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[sb][q8_row * 2 + 1]);
bias_acc[2 * q8_row] =
vmlal_s16(bias_acc[2 * q8_row], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
bias_acc[2 * q8_row] =
vmlal_s16(bias_acc[2 * q8_row], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
bias_acc[2 * q8_row + 1] =
vmlal_s16(bias_acc[2 * q8_row + 1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
bias_acc[2 * q8_row + 1] =
vmlal_s16(bias_acc[2 * q8_row + 1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
}
} // for sb
// Reorder of i8mm output with bias and output layout
for (int i = 0; i < 8; i++) {
int32x2x2_t aux = vzip_s32(vget_low_s32(acc[i]), vget_high_s32(acc[i]));
acc[i] = vcombine_s32(aux.val[0], aux.val[1]);
}
int32x4_t reorder_acc[8] = {
vcombine_s32(vget_low_s32(acc[0]), vget_low_s32(acc[1])),
vcombine_s32(vget_low_s32(acc[2]), vget_low_s32(acc[3])),
vcombine_s32(vget_high_s32(acc[0]), vget_high_s32(acc[1])),
vcombine_s32(vget_high_s32(acc[2]), vget_high_s32(acc[3])),
vcombine_s32(vget_low_s32(acc[4]), vget_low_s32(acc[5])),
vcombine_s32(vget_low_s32(acc[6]), vget_low_s32(acc[7])),
vcombine_s32(vget_high_s32(acc[4]), vget_high_s32(acc[5])),
vcombine_s32(vget_high_s32(acc[6]), vget_high_s32(acc[7])),
};
for (int i = 0; i < q8_k_blocklen; i++) {
for (int j = 0; j < 2; j++) {
float32x4_t q8_d = vdupq_n_f32(q8_ptr[b].d[i]);
float32x4_t q4_dmin = vcvt_f32_f16(vld1_f16((const __fp16 *) (q4_ptr[b].dmin + j * 4)));
const float32x4_t dmins = vmulq_f32(q4_dmin, q8_d);
float32x4_t q4_d = vcvt_f32_f16(vld1_f16((const __fp16 *) (q4_ptr[b].d + j * 4)));
const float32x4_t scale = vmulq_f32(q4_d, q8_d);
acc_f32[2 * i + j] = vmlsq_f32(acc_f32[2 * i + j], vcvtq_f32_s32(bias_acc[2 * i + j]), dmins);
acc_f32[2 * i + j] =
vmlaq_f32(acc_f32[2 * i + j], vcvtq_f32_s32(reorder_acc[2 * i + j]), scale);
}
}
} // for b
// With the previous reorder, the tile is already in the correct memory layout.
for (int i = 0; i < q8_k_blocklen; i++) {
int row = y * q8_k_blocklen + i;
for (int j = 0; j < 2; j++) {
int col = x * ncols_interleaved + j * 4;
int offset = row * bs + col;
vst1q_f32(s + offset, acc_f32[2 * i + j]);
}
}
} // for x
} // for y
return;
#endif // defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
ggml_gemm_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
}

View File

@ -0,0 +1,35 @@
#include "ggml-backend-impl.h"
#if defined(__riscv) && __riscv_xlen == 64
#include <sys/auxv.h>
//https://github.com/torvalds/linux/blob/master/arch/riscv/include/uapi/asm/hwcap.h#L24
#ifndef COMPAT_HWCAP_ISA_V
#define COMPAT_HWCAP_ISA_V (1 << ('V' - 'A'))
#endif
struct riscv64_features {
bool has_rvv = false;
riscv64_features() {
uint32_t hwcap = getauxval(AT_HWCAP);
has_rvv = !!(hwcap & COMPAT_HWCAP_ISA_V);
}
};
static int ggml_backend_cpu_riscv64_score() {
int score = 1;
riscv64_features rf;
#ifdef GGML_USE_RVV
if (!rf.has_rvv) { return 0; }
score += 1 << 1;
#endif
return score;
}
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_riscv64_score)
#endif // __riscv && __riscv_xlen == 64

View File

@ -1961,6 +1961,11 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
return &q4_K_8x8_q8_K; return &q4_K_8x8_q8_K;
} }
} }
if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
if (cur->ne[1] % 8 == 0) {
return &q4_K_8x8_q8_K;
}
}
} else if (cur->type == GGML_TYPE_Q2_K) { } else if (cur->type == GGML_TYPE_Q2_K) {
if (ggml_cpu_has_avx512()) { if (ggml_cpu_has_avx512()) {
if (cur->ne[1] % 8 == 0) { if (cur->ne[1] % 8 == 0) {

View File

@ -224,6 +224,10 @@ static const char * cu_get_error_str(CUresult err) {
#define AMD_MFMA_AVAILABLE #define AMD_MFMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA) #endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
#if defined(GGML_USE_HIP) && defined(RDNA4)
#define AMD_WMMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(RDNA4)
// The Volta instructions are in principle available on Turing or newer but they are effectively unusable: // The Volta instructions are in principle available on Turing or newer but they are effectively unusable:
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA #if !defined(GGML_USE_HIP) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#define VOLTA_MMA_AVAILABLE #define VOLTA_MMA_AVAILABLE
@ -283,6 +287,10 @@ static bool amd_mfma_available(const int cc) {
#endif //!defined(GGML_HIP_NO_MMQ_MFMA) #endif //!defined(GGML_HIP_NO_MMQ_MFMA)
} }
static bool amd_wmma_available(const int cc) {
return GGML_CUDA_CC_IS_RDNA4(cc);
}
static bool volta_mma_available(const int cc) { static bool volta_mma_available(const int cc) {
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_VOLTA; return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_VOLTA;
} }

View File

@ -39,6 +39,15 @@ template<typename dst_t, typename src_t>
return __float2bfloat16(float(x)); return __float2bfloat16(float(x));
} else if constexpr(std::is_same_v<src_t, nv_bfloat16>) { } else if constexpr(std::is_same_v<src_t, nv_bfloat16>) {
return __bfloat162float(x); return __bfloat162float(x);
} else if constexpr(std::is_same_v<src_t, float2> && std::is_same_v<dst_t, half2>) {
return __float22half2_rn(x);
} else if constexpr(std::is_same_v<src_t, float2> && std::is_same_v<dst_t, nv_bfloat162>) {
// bypass compile error on cuda 12.0.1
#ifdef GGML_USE_HIP
return __float22bfloat162_rn(x);
#else
return {x.x, x.y};
#endif // GGML_USE_HIP
} else if constexpr(std::is_same_v<dst_t, int32_t>) { } else if constexpr(std::is_same_v<dst_t, int32_t>) {
return int32_t(x); return int32_t(x);
} else { } else {

View File

@ -212,6 +212,6 @@ static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
} }
template<typename src_t, typename dst_t> template<typename src_t, typename dst_t>
static __device__ void cpy_1_flt(const char * cxi, char * cdsti) { static __device__ void cpy_1_scalar(const char * cxi, char * cdsti) {
*(dst_t *) cdsti = ggml_cuda_cast<dst_t>(*(const src_t *) cxi); *(dst_t *) cdsti = ggml_cuda_cast<dst_t>(*(const src_t *) cxi);
} }

View File

@ -12,10 +12,10 @@ const int CUDA_CPY_BLOCK_NM = 8; // block size of 3rd dimension if available
const int CUDA_CPY_BLOCK_ROWS = 8; // block dimension for marching through rows const int CUDA_CPY_BLOCK_ROWS = 8; // block dimension for marching through rows
template <cpy_kernel_t cpy_1> template <cpy_kernel_t cpy_1>
static __global__ void cpy_flt(const char * cx, char * cdst, const int ne, static __global__ void cpy_scalar(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13) { const int nb12, const int nb13) {
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x; const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= ne) { if (i >= ne) {
@ -40,7 +40,7 @@ static __global__ void cpy_flt(const char * cx, char * cdst, const int ne,
} }
template <typename T> template <typename T>
static __global__ void cpy_flt_transpose(const char * cx, char * cdst, const int ne, static __global__ void cpy_scalar_transpose(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13) { const int nb12, const int nb13) {
@ -166,7 +166,7 @@ static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
} }
template<typename src_t, typename dst_t> template<typename src_t, typename dst_t>
static __global__ void cpy_flt_contiguous(const char * cx, char * cdst, const int64_t ne) { static __global__ void cpy_scalar_contiguous(const char * cx, char * cdst, const int64_t ne) {
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x; const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= ne) { if (i >= ne) {
@ -180,17 +180,17 @@ static __global__ void cpy_flt_contiguous(const char * cx, char * cdst, const in
} }
template<typename src_t, typename dst_t> template<typename src_t, typename dst_t>
static void ggml_cpy_flt_contiguous_cuda( static void ggml_cpy_scalar_contiguous_cuda(
const char * cx, char * cdst, const int64_t ne, const char * cx, char * cdst, const int64_t ne,
cudaStream_t stream) { cudaStream_t stream) {
const int64_t num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; const int64_t num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_flt_contiguous<src_t, dst_t><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>> cpy_scalar_contiguous<src_t, dst_t><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne); (cx, cdst, ne);
} }
template<typename src_t, typename dst_t, bool transposed = false> template<typename src_t, typename dst_t, bool transposed = false>
static void ggml_cpy_flt_cuda( static void ggml_cpy_scalar_cuda(
const char * cx, char * cdst, const int ne, const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
@ -212,11 +212,11 @@ static void ggml_cpy_flt_cuda(
(ne00n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D, (ne00n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D,
(ne/(ne01n*ne00n) + CUDA_CPY_BLOCK_NM - 1) / CUDA_CPY_BLOCK_NM); (ne/(ne01n*ne00n) + CUDA_CPY_BLOCK_NM - 1) / CUDA_CPY_BLOCK_NM);
dim3 dimBlock(CUDA_CPY_TILE_DIM_2D, CUDA_CPY_BLOCK_ROWS, 1); dim3 dimBlock(CUDA_CPY_TILE_DIM_2D, CUDA_CPY_BLOCK_ROWS, 1);
cpy_flt_transpose<dst_t><<<dimGrid, dimBlock, 0, stream>>> cpy_scalar_transpose<dst_t><<<dimGrid, dimBlock, 0, stream>>>
(cx, cdst, ne, ne00n, ne01n, ne02n, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); (cx, cdst, ne, ne00n, ne01n, ne02n, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
} else { } else {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_flt<cpy_1_flt<src_t, dst_t>><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>> cpy_scalar<cpy_1_scalar<src_t, dst_t>><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
} }
} }
@ -399,94 +399,132 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
} }
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
if (can_be_transposed) { if (can_be_transposed) {
ggml_cpy_flt_cuda<float, float, true> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<float, float, true>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else { } else {
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<float, float>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} }
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
if (contiguous_srcs) { if (contiguous_srcs) {
ggml_cpy_flt_contiguous_cuda<float, nv_bfloat16> (src0_ddc, src1_ddc, ne, main_stream); ggml_cpy_scalar_contiguous_cuda<float, nv_bfloat16>
(src0_ddc, src1_ddc, ne, main_stream);
} else { } else {
ggml_cpy_flt_cuda<float, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<float, nv_bfloat16>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} }
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
if (contiguous_srcs) { if (contiguous_srcs) {
ggml_cpy_flt_contiguous_cuda<float, half> (src0_ddc, src1_ddc, ne, main_stream); ggml_cpy_scalar_contiguous_cuda<float, half>
(src0_ddc, src1_ddc, ne, main_stream);
} else { } else {
ggml_cpy_flt_cuda<float, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<float, half>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} }
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_f32_q8_0_cuda
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_q8_0_f32_cuda
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_f32_q4_0_cuda
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q4_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, ggml_cpy_q4_0_f32_cuda
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_f32_q4_1_cuda
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q4_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, ggml_cpy_q4_1_f32_cuda
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_f32_q5_0_cuda
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q5_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, ggml_cpy_q5_0_f32_cuda
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_f32_iq4_nl_cuda
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_f32_q5_1_cuda
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_q5_1_f32_cuda
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) { } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
if (can_be_transposed) { if (can_be_transposed) {
ggml_cpy_flt_cuda<half, half, true> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<half, half, true>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else { } else {
ggml_cpy_flt_cuda<half, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<half, half>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} }
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_BF16) { } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_BF16) {
if (contiguous_srcs) { if (contiguous_srcs) {
ggml_cpy_flt_contiguous_cuda<half, nv_bfloat16> (src0_ddc, src1_ddc, ne, main_stream); ggml_cpy_scalar_contiguous_cuda<half, nv_bfloat16>
(src0_ddc, src1_ddc, ne, main_stream);
} else { } else {
ggml_cpy_flt_cuda<half, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<half, nv_bfloat16>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} }
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
if (contiguous_srcs) { if (contiguous_srcs) {
ggml_cpy_flt_contiguous_cuda<half, float> (src0_ddc, src1_ddc, ne, main_stream); ggml_cpy_scalar_contiguous_cuda<half, float>
(src0_ddc, src1_ddc, ne, main_stream);
} else { } else {
ggml_cpy_flt_cuda<half, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<half, float>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} }
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16) { } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16) {
if (can_be_transposed) { if (can_be_transposed) {
ggml_cpy_flt_cuda<nv_bfloat16, nv_bfloat16, true> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<nv_bfloat16, nv_bfloat16, true>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else { } else {
ggml_cpy_flt_cuda<nv_bfloat16, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<nv_bfloat16, nv_bfloat16>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} }
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F16) { } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F16) {
if (contiguous_srcs) { if (contiguous_srcs) {
ggml_cpy_flt_contiguous_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, main_stream); ggml_cpy_scalar_contiguous_cuda<nv_bfloat16, half>
(src0_ddc, src1_ddc, ne, main_stream);
} else { } else {
ggml_cpy_flt_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<nv_bfloat16, half>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} }
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) {
if (contiguous_srcs) { if (contiguous_srcs) {
ggml_cpy_flt_contiguous_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, main_stream); ggml_cpy_scalar_contiguous_cuda<nv_bfloat16, float>
(src0_ddc, src1_ddc, ne, main_stream);
} else { } else {
ggml_cpy_flt_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<nv_bfloat16, float>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
}
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
if (can_be_transposed) {
ggml_cpy_scalar_cuda<int32_t, int32_t, true>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else {
ggml_cpy_scalar_cuda<int32_t, int32_t>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} }
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I32) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I32) {
if (contiguous_srcs) { if (contiguous_srcs) {
ggml_cpy_flt_contiguous_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, main_stream); ggml_cpy_scalar_contiguous_cuda<float, int32_t>
(src0_ddc, src1_ddc, ne, main_stream);
} else { } else {
ggml_cpy_flt_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<float, int32_t>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} }
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_F32) {
if (contiguous_srcs) { if (contiguous_srcs) {
ggml_cpy_flt_contiguous_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, main_stream); ggml_cpy_scalar_contiguous_cuda<int32_t, float>
(src0_ddc, src1_ddc, ne, main_stream);
} else { } else {
ggml_cpy_flt_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_scalar_cuda<int32_t, float>
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} }
} else { } else {
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__, GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,

View File

@ -4115,6 +4115,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (src0_type == GGML_TYPE_I32 && src1_type == GGML_TYPE_F32) { if (src0_type == GGML_TYPE_I32 && src1_type == GGML_TYPE_F32) {
return true; return true;
} }
if (src0_type == GGML_TYPE_I32 && src1_type == GGML_TYPE_I32) {
return true;
}
if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) { if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) {
return true; return true;
} }

View File

@ -73,7 +73,7 @@ namespace ggml_cuda_mma {
static constexpr int I = I_; static constexpr int I = I_;
static constexpr int J = J_; static constexpr int J = J_;
#if defined(GGML_USE_HIP) #if defined(AMD_MFMA_AVAILABLE)
static constexpr int ne = I * J / 64; static constexpr int ne = I * J / 64;
T x[ne] = {0}; T x[ne] = {0};
@ -149,6 +149,34 @@ namespace ggml_cuda_mma {
return -1; return -1;
} }
} }
#elif defined(AMD_WMMA_AVAILABLE)
#if defined(RDNA4)
static constexpr int ne = I * J / 32;
T x[ne] = {0};
static constexpr __device__ bool supported() {
if (I == 16 && J == 16) return true;
return false;
}
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 16 && J == 16) {
return 8 * (threadIdx.x / 16) + l;
} else {
NO_DEVICE_CODE;
return -1;
}
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 16 && J == 16) {
return threadIdx.x % 16;
} else {
NO_DEVICE_CODE;
return -1;
}
}
#endif
#else #else
static constexpr int ne = I * J / 32; static constexpr int ne = I * J / 32;
T x[ne] = {0}; T x[ne] = {0};
@ -236,6 +264,32 @@ namespace ggml_cuda_mma {
return -1; return -1;
} }
} }
#elif defined(AMD_WMMA_AVAILABLE)
static constexpr int ne = I * J / 32;
half2 x[ne] = {{0.0f, 0.0f}};
static constexpr __device__ bool supported() {
if (I == 16 && J == 8) return true;
return false;
}
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 16 && J == 8) {
return threadIdx.x % 16;
} else {
NO_DEVICE_CODE;
return -1;
}
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 16 && J == 8) {
return 4 * (threadIdx.x / 16) + l;
} else {
NO_DEVICE_CODE;
return -1;
}
}
#else #else
static constexpr int ne = I * J / WARP_SIZE; static constexpr int ne = I * J / WARP_SIZE;
half2 x[ne] = {{0.0f, 0.0f}}; half2 x[ne] = {{0.0f, 0.0f}};
@ -285,6 +339,34 @@ namespace ggml_cuda_mma {
struct tile<I_, J_, nv_bfloat162> { struct tile<I_, J_, nv_bfloat162> {
static constexpr int I = I_; static constexpr int I = I_;
static constexpr int J = J_; static constexpr int J = J_;
#if defined(AMD_WMMA_AVAILABLE)
static constexpr int ne = I * J / 32;
nv_bfloat162 x[ne] = {{0.0f, 0.0f}};
static constexpr __device__ bool supported() {
if (I == 16 && J == 8) return true;
return false;
}
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 16 && J == 8) {
return threadIdx.x % 16;
} else {
NO_DEVICE_CODE;
return -1;
}
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 16 && J == 8) {
return 4 * (threadIdx.x / 16) + l;
} else {
NO_DEVICE_CODE;
return -1;
}
}
#else
static constexpr int ne = I * J / WARP_SIZE; static constexpr int ne = I * J / WARP_SIZE;
nv_bfloat162 x[ne] = {{0.0f, 0.0f}}; nv_bfloat162 x[ne] = {{0.0f, 0.0f}};
@ -320,6 +402,7 @@ namespace ggml_cuda_mma {
return -1; return -1;
} }
} }
#endif // defined(AMD_WMMA_AVAILABLE)
}; };
template <int I, int J> template <int I, int J>
@ -353,6 +436,21 @@ namespace ggml_cuda_mma {
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 2 * (threadIdx.x / t.I)); const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 2 * (threadIdx.x / t.I));
xi[0] = xs[0]; xi[0] = xs[0];
} }
#elif defined(AMD_WMMA_AVAILABLE)
if constexpr (I == 16 && J == 4) {
int64_t * xi = (int64_t *) t.x;
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 2 * (threadIdx.x / t.I));
xi[0] = xs[0];
}else if constexpr (I == 16 && J == 8) {
int64_t * xi = (int64_t *) t.x;
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 4 * (threadIdx.x / t.I));
xi[0] = xs[0];
const int64_t * xs1 = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 4 * (threadIdx.x / t.I) + 2);
xi[1] = xs1[0];
}else{
NO_DEVICE_CODE;
}
#else #else
#pragma unroll #pragma unroll
for (int l = 0; l < t.ne; ++l) { for (int l = 0; l < t.ne; ++l) {
@ -639,12 +737,34 @@ namespace ggml_cuda_mma {
: "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7]) : "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[3])); : "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[3]));
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE #endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#elif defined(AMD_WMMA_AVAILABLE)
using halfx8_t = __attribute__((ext_vector_type(8))) _Float16;
using floatx8_t = __attribute__((ext_vector_type(8))) float;
floatx8_t& acc_frag = reinterpret_cast<floatx8_t&>(D.x[0]);
const halfx8_t& a_frag = reinterpret_cast<const halfx8_t&>(A.x[0]);
const halfx8_t& b_frag = reinterpret_cast<const halfx8_t&>(B.x[0]);
acc_frag = __builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12(a_frag, b_frag, acc_frag);
#else #else
GGML_UNUSED_VARS(D, A, B); GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE; NO_DEVICE_CODE;
#endif // TURING_MMA_AVAILABLE #endif // TURING_MMA_AVAILABLE
} }
static __device__ __forceinline__ void mma(
tile<16, 16, float> & D, const tile<16, 8, nv_bfloat162> & A, const tile<16, 8, nv_bfloat162> & B) {
#if defined(AMD_WMMA_AVAILABLE)
using bf16x8_t = __attribute__((ext_vector_type(8))) __bf16;
using floatx8_t = __attribute__((ext_vector_type(8))) float;
floatx8_t& acc_frag = reinterpret_cast<floatx8_t&>(D.x[0]);
const bf16x8_t& a_frag = reinterpret_cast<const bf16x8_t&>(A.x[0]);
const bf16x8_t& b_frag = reinterpret_cast<const bf16x8_t&>(B.x[0]);
acc_frag = __builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12(a_frag, b_frag, acc_frag);
#else
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
#endif // AMPERE_MMA_AVAILABLE
}
static __device__ __forceinline__ void mma( static __device__ __forceinline__ void mma(
tile<16, 16, int> & D, const tile<16, 8, int> & A, const tile<16, 8, int> & B) { tile<16, 16, int> & D, const tile<16, 8, int> & A, const tile<16, 8, int> & B) {
#if defined(AMD_MFMA_AVAILABLE) #if defined(AMD_MFMA_AVAILABLE)
@ -665,6 +785,36 @@ namespace ggml_cuda_mma {
acc[0], acc[0],
0, 0, 0); 0, 0, 0);
#endif // defined(CDNA3) #endif // defined(CDNA3)
#elif defined(AMD_WMMA_AVAILABLE)
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
int32x2_t * a_vec = (int32x2_t *) A.x;
int32x2_t * b_vec = (int32x2_t *) B.x;
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
int32x8_t * acc = (int32x8_t *) D.x;
#if defined(RDNA4)
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
true,
a_vec[0],
true,
b_vec[0],
acc[0],
true
);
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
true,
a_vec[1],
true,
b_vec[1],
acc[0],
true
);
#endif // defined(RDNA4)
#else #else
GGML_UNUSED_VARS(D, A, B); GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE; NO_DEVICE_CODE;
@ -691,6 +841,7 @@ namespace ggml_cuda_mma {
acc[0], acc[0],
0, 0, 0); 0, 0, 0);
#endif // defined(CDNA3) #endif // defined(CDNA3)
#else #else
GGML_UNUSED_VARS(D, A, B); GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE; NO_DEVICE_CODE;
@ -735,4 +886,31 @@ namespace ggml_cuda_mma {
mma(D16[1], A16[1], B); mma(D16[1], A16[1], B);
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE #endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
} }
static __device__ __forceinline__ void mma(
tile<16, 16, int> & D, const tile<16, 4, int> & A, const tile<16, 4, int> & B) {
#if defined(AMD_WMMA_AVAILABLE)
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
int32x2_t * a_vec = (int32x2_t *) A.x;
int32x2_t * b_vec = (int32x2_t *) B.x;
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
int32x8_t * acc = (int32x8_t *) D.x;
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
true,
a_vec[0],
true,
b_vec[0],
acc[0],
false
);
#else
GGML_UNUSED(D);
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif
}
} }

View File

@ -151,7 +151,7 @@ bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const
return false; return false;
} }
} else { } else {
if (src1_ncols > 16) { if (src1_ncols > 16 || GGML_CUDA_CC_IS_RDNA4(cc)) {
return false; return false;
} }
} }
@ -160,9 +160,9 @@ bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const
case GGML_TYPE_F32: case GGML_TYPE_F32:
return ampere_mma_available(cc); return ampere_mma_available(cc);
case GGML_TYPE_F16: case GGML_TYPE_F16:
return volta_mma_available(cc) || turing_mma_available(cc); return volta_mma_available(cc) || turing_mma_available(cc) || amd_wmma_available(cc);
case GGML_TYPE_BF16: case GGML_TYPE_BF16:
return ampere_mma_available(cc); return ampere_mma_available(cc) || amd_wmma_available(cc);
default: default:
return false; return false;
} }

View File

@ -2,6 +2,7 @@
#include "mma.cuh" #include "mma.cuh"
#include "common.cuh" #include "common.cuh"
#include "convert.cuh"
using namespace ggml_cuda_mma; using namespace ggml_cuda_mma;
@ -27,20 +28,35 @@ static __global__ void mul_mat_f(
const int stride_col_id, const int stride_row_id, const int stride_col_id, const int stride_row_id,
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst, const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) { const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) // TODO: handle this in a consistent and simpler way after AMD MFMA support has been added
#if (!defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)) || defined(AMD_WMMA_AVAILABLE)
#if defined(AMD_WMMA_AVAILABLE)
// Special case for tf32, just dummy mma layout as wmma doesn't support it.
constexpr int tile_B_I = std::is_same_v<T, float> ? 8 : 16;
constexpr int tile_C_J = std::is_same_v<T, float> ? 8 : 16;
typedef tile<16, 8, T> tile_A;
typedef tile<tile_B_I, 8, T> tile_B;
typedef tile<16, tile_C_J, float> tile_C;
constexpr bool a_supported = tile_A::supported();
constexpr bool b_supported = tile_B::supported();
constexpr bool c_supported = tile_C::supported();
constexpr bool supported = a_supported && b_supported && c_supported;
#else
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported(); constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported(); constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();
constexpr bool supported = I_16_supported || I_32_supported;
if (!I_16_supported && !I_32_supported) {
NO_DEVICE_CODE;
return;
}
constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work but 16 is ~1% faster. constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work but 16 is ~1% faster.
typedef tile<I_preferred, 8, T> tile_A; typedef tile<I_preferred, 8, T> tile_A;
typedef tile<8, 8, T> tile_B; typedef tile<8, 8, T> tile_B;
typedef tile<I_preferred, 8, float> tile_C; typedef tile<I_preferred, 8, float> tile_C;
#endif // defined(AMD_WMMA_AVAILABLE)
if constexpr (!supported) {
NO_DEVICE_CODE;
return;
}
constexpr int warp_size = ggml_cuda_get_physical_warp_size(); constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr int tile_k_padded = warp_size + 4; constexpr int tile_k_padded = warp_size + 4;
@ -161,11 +177,11 @@ static __global__ void mul_mat_f(
if constexpr (!has_ids) { if constexpr (!has_ids) {
const float2 tmp = j < cols_per_block ? y2[j*stride_col_y + col] : make_float2(0.0f, 0.0f); const float2 tmp = j < cols_per_block ? y2[j*stride_col_y + col] : make_float2(0.0f, 0.0f);
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y}; tile_xy[j0*tile_k_padded + threadIdx.x] = ggml_cuda_cast<T>(tmp);
} else { } else {
const bool valid = j < cols_per_block && (col_base + j) < ncols_dst_total && slot_map[j] >= 0; const bool valid = j < cols_per_block && (col_base + j) < ncols_dst_total && slot_map[j] >= 0;
float2 tmp = valid ? *(const float2*) &y[slot_map[j]*stride_channel_y + 2*(j*stride_col_y + col)] : make_float2(0.0f, 0.0f); float2 tmp = valid ? *(const float2*) &y[slot_map[j]*stride_channel_y + 2*(j*stride_col_y + col)] : make_float2(0.0f, 0.0f);
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y}; tile_xy[j0*tile_k_padded + threadIdx.x] = ggml_cuda_cast<T>(tmp);
} }
} }
} else { } else {
@ -239,7 +255,7 @@ static __global__ void mul_mat_f(
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
NO_DEVICE_CODE; NO_DEVICE_CODE;
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) #endif // (!defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)) || defined(AMD_WMMA_AVAILABLE)
} }
//This kernel is for larger batch sizes of mul_mat_id //This kernel is for larger batch sizes of mul_mat_id
@ -253,20 +269,35 @@ static __global__ void mul_mat_f_ids(
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst, const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst, const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
const uint3 sis1_fd, const uint3 nch_fd) { const uint3 sis1_fd, const uint3 nch_fd) {
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) // TODO: handle this in a consistent and simpler way after AMD MFMA support has been added
#if (!defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)) || defined(AMD_WMMA_AVAILABLE)
#if defined(AMD_WMMA_AVAILABLE)
// Special case for tf32, just dummy mma layout as wmma doesn't support it.
constexpr int tile_B_I = std::is_same_v<T, float> ? 8 : 16;
constexpr int tile_C_J = std::is_same_v<T, float> ? 8 : 16;
typedef tile<16, 8, T> tile_A;
typedef tile<tile_B_I, 8, T> tile_B;
typedef tile<16, tile_C_J, float> tile_C;
constexpr bool a_supported = tile_A::supported();
constexpr bool b_supported = tile_B::supported();
constexpr bool c_supported = tile_C::supported();
constexpr bool supported = a_supported && b_supported && c_supported;
#else
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported(); constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported(); constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();
constexpr bool supported = I_16_supported || I_32_supported;
if (!I_16_supported && !I_32_supported) { constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work but 16 is ~1% faster.
NO_DEVICE_CODE;
return;
}
constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work butr 16 is ~1% faster.
typedef tile<I_preferred, 8, T> tile_A; typedef tile<I_preferred, 8, T> tile_A;
typedef tile<8, 8, T> tile_B; typedef tile<8, 8, T> tile_B;
typedef tile<I_preferred, 8, float> tile_C; typedef tile<I_preferred, 8, float> tile_C;
#endif // defined(AMD_WMMA_AVAILABLE)
if constexpr (!supported) {
NO_DEVICE_CODE;
return;
}
constexpr int warp_size = ggml_cuda_get_physical_warp_size(); constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr int tile_k_padded = warp_size + 4; constexpr int tile_k_padded = warp_size + 4;
@ -408,7 +439,7 @@ static __global__ void mul_mat_f_ids(
#pragma unroll #pragma unroll
for (int j0 = 0; j0 < tile_B::I; ++j0) { for (int j0 = 0; j0 < tile_B::I; ++j0) {
const float2 tmp = vals_buf[curr_buf][j0]; const float2 tmp = vals_buf[curr_buf][j0];
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y}; tile_xy[j0*tile_k_padded + threadIdx.x] = ggml_cuda_cast<T>(tmp);
} }
if (itB + 1 < ntB) { if (itB + 1 < ntB) {
@ -492,7 +523,7 @@ static __global__ void mul_mat_f_ids(
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, sis1_fd, nch_fd); sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, sis1_fd, nch_fd);
NO_DEVICE_CODE; NO_DEVICE_CODE;
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) #endif // (!defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)) || defined(AMD_WMMA_AVAILABLE)
} }
template<typename T, int cols_per_block, int nwarps> template<typename T, int cols_per_block, int nwarps>
@ -554,7 +585,8 @@ void mul_mat_f_cuda(
cudaStream_t stream, const mmf_ids_data * ids_data) { cudaStream_t stream, const mmf_ids_data * ids_data) {
typedef tile<16, 8, T> tile_A_16; typedef tile<16, 8, T> tile_A_16;
typedef tile<32, 8, T> tile_A_32; typedef tile<32, 8, T> tile_A_32;
typedef tile< 8, 8, T> tile_B; typedef tile<16, 8, T> tile_B_16;
typedef tile< 8, 8, T> tile_B_8;
GGML_ASSERT(ncols_x % 2 == 0); GGML_ASSERT(ncols_x % 2 == 0);
GGML_ASSERT(stride_row % 2 == 0); GGML_ASSERT(stride_row % 2 == 0);
@ -581,7 +613,8 @@ void mul_mat_f_cuda(
constexpr int rows_per_block = MMF_ROWS_PER_BLOCK; constexpr int rows_per_block = MMF_ROWS_PER_BLOCK;
const int nbytes_shared_iter = nwarps_best * (volta_mma_available(cc) ? tile_A_32::I : tile_A_16::I) * (warp_size + 4) * 4; const int nbytes_shared_iter = nwarps_best * (volta_mma_available(cc) ? tile_A_32::I : tile_A_16::I) * (warp_size + 4) * 4;
const int nbytes_shared_combine = GGML_PAD(cols_per_block, tile_B::I) * (nwarps_best*rows_per_block + 4) * 4; const int nbytes_cols_per_block_pad = amd_wmma_available(cc) ? tile_B_16::I : tile_B_8::I;
const int nbytes_shared_combine = GGML_PAD(cols_per_block, nbytes_cols_per_block_pad) * (nwarps_best*rows_per_block + 4) * 4;
const int nbytes_shared = std::max(nbytes_shared_iter, nbytes_shared_combine); const int nbytes_shared = std::max(nbytes_shared_iter, nbytes_shared_combine);
const int nbytes_slotmap = ids ? GGML_PAD(cols_per_block, 16) * sizeof(int) : 0; const int nbytes_slotmap = ids ? GGML_PAD(cols_per_block, 16) * sizeof(int) : 0;
const int nbytes_shared_total = nbytes_shared + nbytes_slotmap; const int nbytes_shared_total = nbytes_shared + nbytes_slotmap;

View File

@ -306,5 +306,11 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return false; return false;
} }
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; if (amd_wmma_available(cc)) {
if (GGML_CUDA_CC_IS_RDNA4(cc)) {
return true;
}
}
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
} }

File diff suppressed because it is too large Load Diff

View File

@ -43,6 +43,14 @@ set(HTP_CMAKE_ARGS
-DHEXAGON_TOOLS_ROOT=$ENV{HEXAGON_TOOLS_ROOT} -DHEXAGON_TOOLS_ROOT=$ENV{HEXAGON_TOOLS_ROOT}
-DHEXAGON_HTP_DEBUG=${GGML_HEXAGON_HTP_DEBUG}) -DHEXAGON_HTP_DEBUG=${GGML_HEXAGON_HTP_DEBUG})
ExternalProject_Add(htp-v68
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v68 -DPREBUILT_LIB_DIR="toolv19_v68")
ExternalProject_Add(htp-v69
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v69 -DPREBUILT_LIB_DIR="toolv19_v69")
ExternalProject_Add(htp-v73 ExternalProject_Add(htp-v73
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v73 -DPREBUILT_LIB_DIR="toolv19_v73") CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v73 -DPREBUILT_LIB_DIR="toolv19_v73")
@ -61,6 +69,8 @@ ExternalProject_Add(htp-v81
# Install Hexagon skels required at runtime # Install Hexagon skels required at runtime
install(FILES install(FILES
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v68.so
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v69.so
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v73.so ${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v73.so
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v75.so ${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v75.so
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v79.so ${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v79.so

View File

@ -9,6 +9,7 @@
#include <chrono> #include <chrono>
#include <mutex> #include <mutex>
#include <string> #include <string>
#include <stdexcept>
#ifdef _WIN32 #ifdef _WIN32
# include <sal.h> # include <sal.h>
@ -240,6 +241,23 @@ struct ggml_hexagon_session {
uint32_t prof_pkts; uint32_t prof_pkts;
}; };
static inline void hex_print_op_info(const ggml_tensor * op, ggml_hexagon_session * sess, const uint32_t req_flags) {
char dims[64 * GGML_MAX_SRC];
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req_flags);
}
void ggml_hexagon_session::enqueue(struct htp_general_req &req, struct dspqueue_buffer *bufs, uint32_t n_bufs, bool sync) { void ggml_hexagon_session::enqueue(struct htp_general_req &req, struct dspqueue_buffer *bufs, uint32_t n_bufs, bool sync) {
// Bump pending flag (cleared in the session::flush once we get the responce) // Bump pending flag (cleared in the session::flush once we get the responce)
this->op_pending++; // atomic inc this->op_pending++; // atomic inc
@ -1912,6 +1930,15 @@ static bool hex_supported_dims(const struct ggml_tensor * x, const struct ggml_t
return true; return true;
} }
template <typename... _TTensor>
static inline bool hex_supported_buffer(const struct ggml_hexagon_session * sess, _TTensor... tensors) {
return ([&]() -> bool {
return !tensors || !tensors->buffer ||
(ggml_backend_buffer_is_hexagon(tensors->buffer) &&
ggml_backend_hexagon_buffer_get_sess(tensors->buffer) == sess);
}() && ...);
}
static bool ggml_hexagon_supported_mul_mat(const struct ggml_hexagon_session * sess, const struct ggml_tensor * dst) { static bool ggml_hexagon_supported_mul_mat(const struct ggml_hexagon_session * sess, const struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1]; const struct ggml_tensor * src1 = dst->src[1];
@ -1959,16 +1986,7 @@ static bool ggml_hexagon_supported_mul_mat(const struct ggml_hexagon_session * s
} }
// src0 & src1 & dst must be mapped to the same session // src0 & src1 & dst must be mapped to the same session
if (src0->buffer && if (!hex_supported_buffer(sess, src0, src1, dst)) {
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false; return false;
} }
@ -2016,20 +2034,7 @@ static bool ggml_hexagon_supported_mul_mat_id(const struct ggml_hexagon_session
// src0 (weights) must be repacked and mapped to the same session // src0 (weights) must be repacked and mapped to the same session
// src1 & sr2 & dst must be mapped to the same session // src1 & sr2 & dst must be mapped to the same session
if (src0->buffer && if (!hex_supported_buffer(sess, src0, src1, src2, dst)) {
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (src2->buffer &&
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false; return false;
} }
@ -2063,16 +2068,7 @@ static bool ggml_hexagon_supported_binary(const struct ggml_hexagon_session * se
} }
// src0, src1 & dst must be mapped to the same session // src0, src1 & dst must be mapped to the same session
if (src0->buffer && if (!hex_supported_buffer(sess, src0, src1, dst)) {
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false; return false;
} }
@ -2104,20 +2100,7 @@ static bool ggml_hexagon_supported_add_id(const struct ggml_hexagon_session * se
} }
// src0, src1 & dst must be mapped to the same session // src0, src1 & dst must be mapped to the same session
if (src0->buffer && if (!hex_supported_buffer(sess, src0, src1, src2, dst)) {
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (src2->buffer &&
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false; return false;
} }
@ -2144,12 +2127,7 @@ static bool ggml_hexagon_supported_unary(const struct ggml_hexagon_session * ses
} }
// src0 & dst must be mapped to the same session // src0 & dst must be mapped to the same session
if (src0->buffer && if (!hex_supported_buffer(sess, src0, dst)) {
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false; return false;
} }
@ -2186,16 +2164,7 @@ static bool ggml_hexagon_supported_activations(const struct ggml_hexagon_session
} }
// src0, src1 & dst must be mapped to the same session // src0, src1 & dst must be mapped to the same session
if (src0->buffer && if (!hex_supported_buffer(sess, src0, src1, dst)) {
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1 && src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false; return false;
} }
@ -2248,16 +2217,7 @@ static bool ggml_hexagon_supported_softmax(const struct ggml_hexagon_session * s
} }
// src0, src1 & dst must be mapped to the same session // src0, src1 & dst must be mapped to the same session
if (src0->buffer && if (!hex_supported_buffer(sess, src0, src1, dst)) {
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1 && src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false; return false;
} }
@ -2269,7 +2229,7 @@ static bool ggml_hexagon_supported_rope(const struct ggml_hexagon_session * sess
int mode = op_params[2]; int mode = op_params[2];
if ((mode & GGML_ROPE_TYPE_NEOX) || (mode & GGML_ROPE_TYPE_MROPE) || (mode & GGML_ROPE_TYPE_VISION)) { if ((mode & GGML_ROPE_TYPE_MROPE) || (mode & GGML_ROPE_TYPE_VISION)) {
return false; return false;
} }
if (mode & 1) { if (mode & 1) {
@ -2312,20 +2272,7 @@ static bool ggml_hexagon_supported_rope(const struct ggml_hexagon_session * sess
} }
// src0, src1, src2 & dst must be mapped to the same session // src0, src1, src2 & dst must be mapped to the same session
if (src0->buffer && if (!hex_supported_buffer(sess, src0, src1, src2, dst)) {
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (src2 && src2->buffer &&
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false; return false;
} }
@ -2346,6 +2293,26 @@ static void init_htp_tensor(htp_tensor * h, const ggml_tensor * t) {
h->nb[3] = t->nb[3]; h->nb[3] = t->nb[3];
} }
static size_t dspqueue_buffers_init(dspqueue_buffer * buf, const ggml_tensor * t, bool flush_host, bool flush_htp) {
if (!t) {
return 0;
}
memset(buf, 0, sizeof(*buf));
auto tensor_buf = static_cast<ggml_backend_hexagon_buffer_context *>(t->buffer->context);
buf->fd = tensor_buf->fd;
buf->ptr = t->data;
buf->offset = (uint8_t *) t->data - tensor_buf->base;
buf->size = ggml_nbytes(t);
buf->flags = (flush_host ? DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER : 0); // Flush CPU
buf->flags |= (flush_htp ? DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT : 0); // Invalidate DSP
return 1;
}
static ggml_hexagon_session * get_session_from_tensor(const ggml_tensor * t) {
return static_cast<ggml_backend_hexagon_buffer_context *>(t->buffer->context)->sess;
}
static void hex_dump_dspbuf(const struct ggml_tensor * t, const dspqueue_buffer * d) { static void hex_dump_dspbuf(const struct ggml_tensor * t, const dspqueue_buffer * d) {
auto buf = static_cast<ggml_backend_hexagon_buffer_context *>(t->buffer->context); auto buf = static_cast<ggml_backend_hexagon_buffer_context *>(t->buffer->context);
auto sess = buf->sess; auto sess = buf->sess;
@ -2360,10 +2327,6 @@ static void ggml_hexagon_mul_mat(const struct ggml_tensor * op, uint32_t flags)
const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * dst = op; const struct ggml_tensor * dst = op;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1, t2; uint64_t t1, t2;
t1 = ggml_time_us(); t1 = ggml_time_us();
@ -2385,55 +2348,27 @@ static void ggml_hexagon_mul_mat(const struct ggml_tensor * op, uint32_t flags)
} }
dspqueue_buffer bufs[3]; dspqueue_buffer bufs[3];
memset(bufs, 0, sizeof(bufs));
// First buffer Weights. // First buffer Weights.
// The content is static, there is no need to do any cache management // The content is static, there is no need to do any cache management
bufs[0].fd = src0_buf->fd; dspqueue_buffers_init(bufs, src0, false, false);
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = 0;
// Second buffer Input Activations. This is a buffer that the CPU // Second buffer Input Activations. This is a buffer that the CPU
// writes and the DSP reads, so we'll need to flush CPU caches and // writes and the DSP reads, so we'll need to flush CPU caches and
// invalidate DSP ones. On platforms with I/O coherency support the // invalidate DSP ones. On platforms with I/O coherency support the
// framework will automatically skip cache operations where possible. // framework will automatically skip cache operations where possible.
bufs[1].fd = src1_buf->fd; dspqueue_buffers_init(&bufs[1], src1, true, true);
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Third buffer Output Activations. We'll handle DSP // Third buffer Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush // cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are // CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start. // written out before writes from the DSP start.
bufs[2].fd = dst_buf->fd; dspqueue_buffers_init(&bufs[2], dst, true, false);
bufs[2].ptr = dst->data;
bufs[2].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[2].size = ggml_nbytes(dst);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
// Primary DSP session from the src0 (normally weight) tensor auto * sess = get_session_from_tensor(src0);
auto sess = src0_buf->sess;
if (opt_verbose) { if (opt_verbose) {
char dims[64 * GGML_MAX_SRC]; hex_print_op_info(op, sess, req.flags);
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) { if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]); hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]); hex_dump_dspbuf(src1, &bufs[1]);
@ -2463,11 +2398,6 @@ static void ggml_hexagon_mul_mat_id(const struct ggml_tensor * op, uint32_t flag
const struct ggml_tensor * src2 = op->src[2]; const struct ggml_tensor * src2 = op->src[2];
const struct ggml_tensor * dst = op; const struct ggml_tensor * dst = op;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1, t2; uint64_t t1, t2;
t1 = ggml_time_us(); t1 = ggml_time_us();
@ -2490,66 +2420,32 @@ static void ggml_hexagon_mul_mat_id(const struct ggml_tensor * op, uint32_t flag
} }
dspqueue_buffer bufs[4]; dspqueue_buffer bufs[4];
memset(bufs, 0, sizeof(bufs));
// First buffer Weights. // First buffer Weights.
// The content is static, there is no need to do any cache management // The content is static, there is no need to do any cache management
bufs[0].fd = src0_buf->fd; dspqueue_buffers_init(bufs, src0, false, false);
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = 0;
// Second buffer Input Activations. This is a buffer that the CPU // Second buffer Input Activations. This is a buffer that the CPU
// writes and the DSP reads, so we'll need to flush CPU caches and // writes and the DSP reads, so we'll need to flush CPU caches and
// invalidate DSP ones. On platforms with I/O coherency support the // invalidate DSP ones. On platforms with I/O coherency support the
// framework will automatically skip cache operations where possible. // framework will automatically skip cache operations where possible.
bufs[1].fd = src1_buf->fd; dspqueue_buffers_init(&bufs[1], src1, true, true);
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Third buffer expert IDs. This is a buffer that the CPU // Third buffer expert IDs. This is a buffer that the CPU
// writes and the DSP reads, so we'll need to flush CPU caches and // writes and the DSP reads, so we'll need to flush CPU caches and
// invalidate DSP ones. On platforms with I/O coherency support the // invalidate DSP ones. On platforms with I/O coherency support the
// framework will automatically skip cache operations where possible. // framework will automatically skip cache operations where possible.
bufs[2].fd = src2_buf->fd; dspqueue_buffers_init(&bufs[2], src2, true, true);
bufs[2].ptr = src2->data;
bufs[2].offset = (uint8_t *) src2->data - src2_buf->base;
bufs[2].size = ggml_nbytes(src2);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Forth buffer Output Activations. We'll handle DSP // Forth buffer Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush // cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are // CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start. // written out before writes from the DSP start.
bufs[3].fd = dst_buf->fd; dspqueue_buffers_init(&bufs[3], dst, true, false);
bufs[3].ptr = dst->data;
bufs[3].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[3].size = ggml_nbytes(dst);
bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
// Primary DSP session from the src0 (normally weight) tensor auto * sess = get_session_from_tensor(src0);
auto sess = src0_buf->sess;
if (opt_verbose) { if (opt_verbose) {
char dims[64 * GGML_MAX_SRC]; hex_print_op_info(op, sess, req.flags);
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) { if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]); hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]); hex_dump_dspbuf(src1, &bufs[1]);
@ -2581,10 +2477,6 @@ static void ggml_hexagon_binary(const struct ggml_tensor * op, uint32_t flags) {
const struct ggml_tensor * src1 = node->src[1]; const struct ggml_tensor * src1 = node->src[1];
const struct ggml_tensor * dst = node; const struct ggml_tensor * dst = node;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1 = 0; uint64_t t1 = 0;
uint64_t t2 = 0; uint64_t t2 = 0;
@ -2621,60 +2513,30 @@ static void ggml_hexagon_binary(const struct ggml_tensor * op, uint32_t flags) {
init_htp_tensor(&req.dst, dst); init_htp_tensor(&req.dst, dst);
dspqueue_buffer bufs[3]; dspqueue_buffer bufs[3];
memset(bufs, 0, sizeof(bufs));
// First buffer = First Operand of Binary op // First buffer = First Operand of Binary op
// This is a buffer that the CPU writes and the DSP reads, so we'll // This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms // need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip // with I/O coherency support the framework will automatically skip
// cache operations where possible. // cache operations where possible.
bufs[0].fd = src0_buf->fd; dspqueue_buffers_init(bufs, src0, true, true);
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
// Second buffer = Second Operand of Binary op // Second buffer = Second Operand of Binary op
// This is a buffer that the CPU writes and the DSP reads, so we'll // This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms // need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip // with I/O coherency support the framework will automatically skip
// cache operations where possible. // cache operations where possible.
bufs[1].fd = src1_buf->fd; dspqueue_buffers_init(&bufs[1], src1, true, true);
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Third buffer = Output Activations. We'll handle DSP // Third buffer = Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush // cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are // CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start. // written out before writes from the DSP start.
bufs[2].fd = dst_buf->fd; dspqueue_buffers_init(&bufs[2], dst, true, false);
bufs[2].ptr = dst->data;
bufs[2].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[2].size = ggml_nbytes(dst);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
// Primary DSP session from the src0 tensor auto * sess = get_session_from_tensor(src0);
ggml_hexagon_session * sess = src0_buf->sess;
if (opt_verbose) { if (opt_verbose) {
char dims[64 * GGML_MAX_SRC]; hex_print_op_info(op, sess, req.flags);
char strides[16 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(),
ggml_op_name(node->op), names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) { if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]); hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]); hex_dump_dspbuf(src1, &bufs[1]);
@ -2705,11 +2567,6 @@ static void ggml_hexagon_add_id(const struct ggml_tensor * op, uint32_t flags) {
const struct ggml_tensor * src2 = node->src[2]; const struct ggml_tensor * src2 = node->src[2];
const struct ggml_tensor * dst = node; const struct ggml_tensor * dst = node;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1 = 0; uint64_t t1 = 0;
uint64_t t2 = 0; uint64_t t2 = 0;
@ -2741,58 +2598,19 @@ static void ggml_hexagon_add_id(const struct ggml_tensor * op, uint32_t flags) {
init_htp_tensor(&req.dst, dst); init_htp_tensor(&req.dst, dst);
dspqueue_buffer bufs[4]; dspqueue_buffer bufs[4];
memset(bufs, 0, sizeof(bufs));
// First buffer = input activations // First buffer = input activations
bufs[0].fd = src0_buf->fd; dspqueue_buffers_init(bufs, src0, true, true);
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
// Second buffer = experts bias // Second buffer = experts bias
bufs[1].fd = src1_buf->fd; dspqueue_buffers_init(&bufs[1], src1, true, true);
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Third buffer = activated experts // Third buffer = activated experts
bufs[2].fd = src2_buf->fd; dspqueue_buffers_init(&bufs[2], src2, true, true);
bufs[2].ptr = src2->data;
bufs[2].offset = (uint8_t *) src2->data - src2_buf->base;
bufs[2].size = ggml_nbytes(src2);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Forth buffer = output activations // Forth buffer = output activations
bufs[3].fd = dst_buf->fd; dspqueue_buffers_init(&bufs[3], dst, true, true);
bufs[3].ptr = dst->data;
bufs[3].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[3].size = ggml_nbytes(dst);
bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
// Primary DSP session from the src0 tensor auto * sess = get_session_from_tensor(src0);
ggml_hexagon_session * sess = src0_buf->sess;
if (opt_verbose) { if (opt_verbose) {
char dims[64 * GGML_MAX_SRC]; hex_print_op_info(op, sess, req.flags);
char strides[16 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(),
ggml_op_name(node->op), names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) { if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]); hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]); hex_dump_dspbuf(src1, &bufs[1]);
@ -2886,71 +2704,33 @@ static void ggml_hexagon_unary(const struct ggml_tensor * op, uint32_t flags) {
} }
dspqueue_buffer bufs[3]; dspqueue_buffer bufs[3];
int n_bufs = 0;
memset(bufs, 0, sizeof(bufs));
// First buffer = Only Operand of Unary op // First buffer = Only Operand of Unary op
// This is a buffer that the CPU writes and the DSP reads, so we'll // This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms // need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip // with I/O coherency support the framework will automatically skip
// cache operations where possible. // cache operations where possible.
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context); size_t n_bufs = dspqueue_buffers_init(bufs, src0, true, true);
bufs[n_bufs].fd = src0_buf->fd;
bufs[n_bufs].ptr = src0->data;
bufs[n_bufs].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[n_bufs].size = ggml_nbytes(src0);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
++n_bufs;
if (src1) { // Second buffer(nullable) = Second Operand of Binary op
// Second buffer = Second Operand of Binary op // This is a buffer that the CPU writes and the DSP reads, so we'll
// This is a buffer that the CPU writes and the DSP reads, so we'll // need to flush CPU caches and invalidate DSP ones. On platforms
// need to flush CPU caches and invalidate DSP ones. On platforms // with I/O coherency support the framework will automatically skip
// with I/O coherency support the framework will automatically skip // cache operations where possible.
// cache operations where possible. n_bufs += dspqueue_buffers_init(&bufs[n_bufs], src1, true, true);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
bufs[n_bufs].fd = src1_buf->fd;
bufs[n_bufs].ptr = src1->data;
bufs[n_bufs].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[n_bufs].size = ggml_nbytes(src1);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
++n_bufs;
}
// Second or third buffer = Output Activations. We'll handle DSP // Second or third buffer = Output Activations. We'll handle DSP
// Second buffer = Output Activations. We'll handle DSP // Second buffer = Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush // cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are // CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start. // written out before writes from the DSP start.
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context); n_bufs += dspqueue_buffers_init(&bufs[n_bufs], dst, true, false);
bufs[n_bufs].fd = dst_buf->fd;
bufs[n_bufs].ptr = dst->data;
bufs[n_bufs].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[n_bufs].size = ggml_nbytes(dst);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
++n_bufs;
// Primary DSP session from the src0 tensor // Primary DSP session from the src0 tensor
ggml_hexagon_session * sess = src0_buf->sess; auto * sess = get_session_from_tensor(src0);
if (opt_verbose) { if (opt_verbose) {
char dims[64 * GGML_MAX_SRC]; hex_print_op_info(op, sess, req.flags);
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) { if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]); hex_dump_dspbuf(src0, &bufs[0]);
if (src1) { if (src1) {
@ -3023,85 +2803,40 @@ static void ggml_hexagon_rope(const struct ggml_tensor * op, uint32_t flags) {
} }
dspqueue_buffer bufs[4]; dspqueue_buffer bufs[4];
int n_bufs = 0;
memset(bufs, 0, sizeof(bufs));
// First buffer // First buffer
// This is a buffer that the CPU writes and the DSP reads, so we'll // This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms // need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip // with I/O coherency support the framework will automatically skip
// cache operations where possible. // cache operations where possible.
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context); size_t n_bufs = dspqueue_buffers_init(bufs, src0, true, true);
bufs[n_bufs].fd = src0_buf->fd;
bufs[n_bufs].ptr = src0->data;
bufs[n_bufs].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[n_bufs].size = ggml_nbytes(src0);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
++n_bufs;
// Second buffer // Second buffer
// This is a buffer that the CPU writes and the DSP reads, so we'll // This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms // need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip // with I/O coherency support the framework will automatically skip
// cache operations where possible. // cache operations where possible.
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context); n_bufs += dspqueue_buffers_init(&bufs[n_bufs], src1, true, true);
bufs[n_bufs].fd = src1_buf->fd;
bufs[n_bufs].ptr = src1->data;
bufs[n_bufs].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[n_bufs].size = ggml_nbytes(src1);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
++n_bufs;
if (src2) { // Third buffer(nullable)
// Third buffer // This is a buffer that the CPU writes and the DSP reads, so we'll
// This is a buffer that the CPU writes and the DSP reads, so we'll // need to flush CPU caches and invalidate DSP ones. On platforms
// need to flush CPU caches and invalidate DSP ones. On platforms // with I/O coherency support the framework will automatically skip
// with I/O coherency support the framework will automatically skip // cache operations where possible.
// cache operations where possible. n_bufs += dspqueue_buffers_init(&bufs[n_bufs], src2, true, true);
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
bufs[n_bufs].fd = src2_buf->fd;
bufs[n_bufs].ptr = src2->data;
bufs[n_bufs].offset = (uint8_t *) src2->data - src2_buf->base;
bufs[n_bufs].size = ggml_nbytes(src2);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
++n_bufs;
}
// Final buffer = Output Activations. We'll handle DSP // Final buffer = Output Activations. We'll handle DSP
// Second buffer = Output Activations. We'll handle DSP // Second buffer = Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush // cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are // CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start. // written out before writes from the DSP start.
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context); n_bufs += dspqueue_buffers_init(&bufs[n_bufs], dst, true, false);
bufs[n_bufs].fd = dst_buf->fd;
bufs[n_bufs].ptr = dst->data;
bufs[n_bufs].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[n_bufs].size = ggml_nbytes(dst);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
++n_bufs;
// Primary DSP session from the src0 tensor // Primary DSP session from the src0 tensor
ggml_hexagon_session * sess = src0_buf->sess; auto * sess = get_session_from_tensor(src0);
if (opt_verbose) { if (opt_verbose) {
char dims[64 * GGML_MAX_SRC]; hex_print_op_info(op, sess, req.flags);
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) { if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]); hex_dump_dspbuf(src0, &bufs[0]);
if (src1) { if (src1) {

View File

@ -390,6 +390,12 @@ int get_hex_arch_ver(int domain, int * arch) {
} }
switch (arch_ver.capability & 0xff) { switch (arch_ver.capability & 0xff) {
case 0x68:
*arch = 68;
return 0;
case 0x69:
*arch = 69;
return 0;
case 0x73: case 0x73:
*arch = 73; *arch = 73;
return 0; return 0;

View File

@ -106,33 +106,32 @@ static void glu_swiglu_fp32_per_thread(const struct htp_tensor * src0,
t1 = HAP_perf_get_qtimer_count(); t1 = HAP_perf_get_qtimer_count();
int is_aligned = 1; int is_aligned = 1;
int opt_path = 0;
if (!htp_is_aligned((void *) src0->data, VLEN) || !htp_is_aligned((void *) dst->data, VLEN)) { if (!htp_is_aligned((void *) src0->data, VLEN) || !htp_is_aligned((void *) dst->data, VLEN)) {
is_aligned = 0; is_aligned = 0;
FARF(HIGH, "swiglu-f32: unaligned addresses in elementwise op, possibly slower execution\n"); FARF(HIGH, "swiglu-f32: unaligned addresses in elementwise op, possibly slower execution\n");
} }
if ((1 == is_aligned) && !(nb01 & (VLEN - 1))) {
opt_path = 1;
}
const uint8_t * restrict data_src0 = (const uint8_t *) src0->data; const uint8_t * restrict data_src0 = (const uint8_t *) src0->data;
const uint8_t * restrict data_src1 = (const uint8_t *) src1->data; const uint8_t * restrict data_src1 = (const uint8_t *) src1->data;
uint8_t * restrict data_dst = (uint8_t *) dst->data; uint8_t * restrict data_dst = (uint8_t *) dst->data;
bool src1_valid = src1->ne[0]; const bool src1_valid = src1->ne[0];
const int nc = (src1_valid) ? ne00 : ne00 / 2;
if (!src1_valid) { if (!src1_valid) {
data_src1 = data_src0; const int32_t swapped = op_params[1];
src1_row_size = src0_row_size; data_src1 = data_src0;
src1_row_size = src0_row_size;
const size_t nc_in_bytes = nc * SIZEOF_FP32;
data_src0 += swapped ? nc_in_bytes : 0;
data_src1 += swapped ? 0 : nc_in_bytes;
} }
uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_row_size); uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_row_size);
uint8_t * restrict src1_spad_data = src1_spad->data + (ith * src1_row_size); uint8_t * restrict src1_spad_data = src1_spad->data + (ith * src1_row_size);
uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_row_size); uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_row_size);
const int32_t swapped = op_params[1]; const bool opt_path = ((1 == is_aligned) && !(nb01 & (VLEN - 1)));
const int nc = (src1_valid) ? ne0 : ne0 / 2;
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) { for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size)); const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size));
const float * restrict src1 = (float *) (data_src1 + (ir * src1_row_size)); const float * restrict src1 = (float *) (data_src1 + (ir * src1_row_size));
@ -142,12 +141,7 @@ static void glu_swiglu_fp32_per_thread(const struct htp_tensor * src0,
htp_l2fetch(src0 + src0_row_size, 1, src0_row_size, src0_row_size); htp_l2fetch(src0 + src0_row_size, 1, src0_row_size, src0_row_size);
} }
if (!src1_valid) { if (opt_path) {
src0 += swapped ? nc : 0;
src1 += swapped ? 0 : nc;
}
if (1 == opt_path) {
hvx_fast_sigmoid_f32((const uint8_t *) src0, (uint8_t *) src0_spad_data, nc); hvx_fast_sigmoid_f32((const uint8_t *) src0, (uint8_t *) src0_spad_data, nc);
hvx_mul_mul_f32_opt((const uint8_t *) src0, (const uint8_t *) src0_spad_data, (const uint8_t *) src1, hvx_mul_mul_f32_opt((const uint8_t *) src0, (const uint8_t *) src0_spad_data, (const uint8_t *) src1,
(uint8_t *) dst, nc); (uint8_t *) dst, nc);
@ -218,7 +212,7 @@ static void glu_swiglu_oai_fp32_per_thread(const struct htp_tensor * src0,
const float alpha = ((const float *) (op_params))[2]; const float alpha = ((const float *) (op_params))[2];
const float limit = ((const float *) (op_params))[3]; const float limit = ((const float *) (op_params))[3];
const int nc = (src1_valid) ? ne0 : ne0 / 2; const int nc = (src1_valid) ? ne00 : ne00 / 2;
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) { for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size)); const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size));

View File

@ -66,6 +66,13 @@ static inline bool dma_queue_push(dma_queue * q,
desc->desctype = HEXAGON_UDMA_DESC_DESCTYPE_TYPE1; desc->desctype = HEXAGON_UDMA_DESC_DESCTYPE_TYPE1;
desc->dstbypass = 1; desc->dstbypass = 1;
desc->srcbypass = 1; desc->srcbypass = 1;
#if __HVX_ARCH__ >= 73
desc->dstbypass = 1;
desc->srcbypass = 1;
#else
desc->dstbypass = 0;
desc->srcbypass = 1;
#endif
desc->order = 0; desc->order = 0;
desc->dstate = HEXAGON_UDMA_DESC_DSTATE_INCOMPLETE; desc->dstate = HEXAGON_UDMA_DESC_DSTATE_INCOMPLETE;
desc->src = (void *) src; desc->src = (void *) src;

View File

@ -16,6 +16,14 @@
#include "hvx-utils.h" #include "hvx-utils.h"
#include "ops-utils.h" #include "ops-utils.h"
static inline HVX_Vector hvx_vec_exp_fp32_guard(HVX_Vector in_vec, HVX_Vector max_exp, HVX_Vector inf) {
const HVX_VectorPred pred0 = Q6_Q_vcmp_gt_VsfVsf(in_vec, max_exp);
HVX_Vector out = hvx_vec_exp_fp32(in_vec);
return Q6_V_vmux_QVV(pred0, inf, out);
}
void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems, bool negate) { void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems, bool negate) {
int left_over = num_elems & (VLEN_FP32 - 1); int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over; int num_elems_whole = num_elems - left_over;
@ -34,6 +42,12 @@ void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int
HVX_Vector vec_out = Q6_V_vzero(); HVX_Vector vec_out = Q6_V_vzero();
static const float kInf = INFINITY;
static const float kMaxExp = 88.02f; // log(INF)
const HVX_Vector max_exp = hvx_vec_splat_fp32(kMaxExp);
const HVX_Vector inf = hvx_vec_splat_fp32(kInf);
if (0 == unaligned_loop) { if (0 == unaligned_loop) {
HVX_Vector * p_vec_in1 = (HVX_Vector *) src; HVX_Vector * p_vec_in1 = (HVX_Vector *) src;
HVX_Vector * p_vec_out = (HVX_Vector *) dst; HVX_Vector * p_vec_out = (HVX_Vector *) dst;
@ -42,9 +56,9 @@ void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) { for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
if (true == negate) { if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(*p_vec_in1++); HVX_Vector neg_vec_in = hvx_vec_neg_fp32(*p_vec_in1++);
*p_vec_out++ = hvx_vec_exp_fp32(neg_vec_in); *p_vec_out++ = hvx_vec_exp_fp32_guard(neg_vec_in, max_exp, inf);
} else { } else {
*p_vec_out++ = hvx_vec_exp_fp32(*p_vec_in1++); *p_vec_out++ = hvx_vec_exp_fp32_guard(*p_vec_in1++, max_exp, inf);
} }
} }
} else { } else {
@ -54,9 +68,9 @@ void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int
if (true == negate) { if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(in); HVX_Vector neg_vec_in = hvx_vec_neg_fp32(in);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32(neg_vec_in); *(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32_guard(neg_vec_in, max_exp, inf);
} else { } else {
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32(in); *(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32_guard(in, max_exp, inf);
} }
} }
} }
@ -70,9 +84,9 @@ void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int
if (true == negate) { if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(in); HVX_Vector neg_vec_in = hvx_vec_neg_fp32(in);
vec_out = hvx_vec_exp_fp32(neg_vec_in); vec_out = hvx_vec_exp_fp32_guard(neg_vec_in, max_exp, inf);
} else { } else {
vec_out = hvx_vec_exp_fp32(in); vec_out = hvx_vec_exp_fp32_guard(in, max_exp, inf);
} }
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, vec_out); hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, vec_out);

View File

@ -16,6 +16,15 @@
#include "hvx-utils.h" #include "hvx-utils.h"
#include "ops-utils.h" #include "ops-utils.h"
static inline HVX_Vector hvx_vec_inverse_fp32_guard(HVX_Vector v_sf, HVX_Vector nan_inf_mask) {
HVX_Vector out = hvx_vec_inverse_fp32(v_sf);
HVX_Vector masked_out = Q6_V_vand_VV(out, nan_inf_mask);
const HVX_VectorPred pred = Q6_Q_vcmp_eq_VwVw(nan_inf_mask, masked_out);
return Q6_V_vmux_QVV(pred, Q6_V_vzero(), out);
}
void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems) { void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1); int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over; int num_elems_whole = num_elems - left_over;
@ -32,19 +41,22 @@ void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const
FARF(HIGH, "hvx_inverse_f32: unaligned loop in hvx op, possibly slower execution\n"); FARF(HIGH, "hvx_inverse_f32: unaligned loop in hvx op, possibly slower execution\n");
} }
static const uint32_t kNanInfMask = 0x7f800000;
const HVX_Vector nan_inf_mask = Q6_V_vsplat_R(kNanInfMask);
if (0 == unaligned_loop) { if (0 == unaligned_loop) {
HVX_Vector * p_vec_in = (HVX_Vector *) src; HVX_Vector * p_vec_in = (HVX_Vector *) src;
HVX_Vector * p_vec_out = (HVX_Vector *) dst; HVX_Vector * p_vec_out = (HVX_Vector *) dst;
#pragma unroll(4) #pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) { for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
*p_vec_out++ = hvx_vec_inverse_fp32(*p_vec_in++); *p_vec_out++ = hvx_vec_inverse_fp32_guard(*p_vec_in++, nan_inf_mask);
} }
} else { } else {
#pragma unroll(4) #pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) { for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32); HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_inverse_fp32(in); *(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_inverse_fp32_guard(in, nan_inf_mask);
} }
} }
@ -53,7 +65,7 @@ void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const
float * dstf = (float *) dst + num_elems_whole; float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf; HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = hvx_vec_inverse_fp32(in); HVX_Vector out = hvx_vec_inverse_fp32_guard(in, nan_inf_mask);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, out); hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, out);
} }

View File

@ -401,7 +401,9 @@ void hvx_add_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
FARF(HIGH, "hvx_add_scalar_f32: unaligned loop in hvx op, possibly slower execution\n"); FARF(HIGH, "hvx_add_scalar_f32: unaligned loop in hvx op, possibly slower execution\n");
} }
HVX_Vector val_vec = hvx_vec_splat_fp32(val); static const float kInf = INFINITY;
const HVX_Vector inf = hvx_vec_splat_fp32(kInf);
HVX_Vector val_vec = hvx_vec_splat_fp32(val);
if (0 == unaligned_loop) { if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src; HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
@ -409,17 +411,24 @@ void hvx_add_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
#pragma unroll(4) #pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) { for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(*vec_in1++, val_vec); HVX_Vector in = *vec_in1++;
*vec_out++ = Q6_Vsf_equals_Vqf32(v); const HVX_VectorPred pred_inf = Q6_Q_vcmp_eq_VwVw(inf, in);
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
v = Q6_Vsf_equals_Vqf32(v);
v = Q6_V_vmux_QVV(pred_inf, inf, v);
*vec_out++ = v;
} }
} else { } else {
#pragma unroll(4) #pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) { for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32); HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec); const HVX_VectorPred pred_inf = Q6_Q_vcmp_eq_VwVw(inf, in);
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
out = Q6_Vsf_equals_Vqf32(out);
out = Q6_V_vmux_QVV(pred_inf, inf, out);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out); *(HVX_UVector *) (dst + i * SIZEOF_FP32) = out;
} }
} }
@ -429,8 +438,12 @@ void hvx_add_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
HVX_Vector in = *(HVX_UVector *) srcf; HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec); const HVX_VectorPred pred_inf = Q6_Q_vcmp_eq_VwVw(inf, in);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out)); HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
out = Q6_Vsf_equals_Vqf32(out);
out = Q6_V_vmux_QVV(pred_inf, inf, out);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, out);
} }
} }

View File

@ -12,6 +12,35 @@
#define VLEN_FP32 (VLEN / SIZEOF_FP32) #define VLEN_FP32 (VLEN / SIZEOF_FP32)
#define VLEN_FP16 (VLEN / SIZEOF_FP16) #define VLEN_FP16 (VLEN / SIZEOF_FP16)
typedef union {
HVX_Vector v;
uint8_t b[VLEN];
uint16_t h[VLEN_FP16];
uint32_t w[VLEN_FP32];
__fp16 fp16[VLEN_FP16];
float fp32[VLEN_FP32];
} __attribute__((aligned(VLEN), packed)) HVX_VectorAlias;
/* Q6_Vsf_equals_Vw is only available on v73+.*/
#if __HVX_ARCH__ < 73
static inline HVX_Vector int32_to_qfloat(HVX_Vector const in)
{
HVX_Vector const vzero = Q6_V_vzero();
HVX_VectorPred is_zero = Q6_Q_vcmp_eq_VwVw(in, vzero);
HVX_Vector lshift = Q6_Vw_vnormamt_Vw(in);
HVX_Vector normalized = Q6_Vw_vasl_VwVw(in, lshift);
HVX_Vector vexp = Q6_Vw_vsub_VwVw(Q6_V_vsplat_R(0x7f + 30), lshift);
HVX_Vector mant = Q6_V_vand_VV(Q6_V_vsplat_R(0xFFFFFF00), normalized);
HVX_Vector ret = Q6_V_vmux_QVV(is_zero, vzero, Q6_Vw_vadd_VwVw(mant, vexp));
return ret;
}
static inline HVX_Vector Q6_Vsf_equals_Vw(HVX_Vector const in)
{
return Q6_Vsf_equals_Vqf32(int32_to_qfloat(in));
}
#endif
static inline HVX_Vector hvx_vec_splat_fp32(float i) { static inline HVX_Vector hvx_vec_splat_fp32(float i) {
union { union {
float f; float f;
@ -243,19 +272,16 @@ static __attribute__((always_inline)) int32_t is_in_one_chunk(void * addr, uint3
} }
static void hvx_vec_dump_fp16_n(char * pref, HVX_Vector v, uint32_t n) { static void hvx_vec_dump_fp16_n(char * pref, HVX_Vector v, uint32_t n) {
union { HVX_VectorAlias u = { .v = v };
HVX_Vector v;
__fp16 d[64];
} u = { .v = v };
const uint32_t n0 = n / 16; const uint32_t n0 = n / 16;
const uint32_t n1 = n % 16; const uint32_t n1 = n % 16;
int i = 0; int i = 0;
for (; i < n0; i++) { for (; i < n0; i++) {
htp_dump_fp16_line(pref, u.d + (16 * i), 16); htp_dump_fp16_line(pref, u.fp16 + (16 * i), 16);
} }
if (n1) { if (n1) {
htp_dump_fp16_line(pref, u.d + (16 * i), n1); htp_dump_fp16_line(pref, u.fp16 + (16 * i), n1);
} }
} }
@ -411,8 +437,8 @@ static inline HVX_Vector hvx_vec_fp32_reduce_sum_n(HVX_Vector in, unsigned int n
HVX_Vector sum = in, sum_t; HVX_Vector sum = in, sum_t;
while (width < total) { while (width < total) {
sum_t = Q6_V_vror_VR(sum, width); // rotate right sum_t = Q6_V_vror_VR(sum, width); // rotate right
sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_VsfVsf(sum, sum_t)); // elementwise sum sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_VsfVsf(sum, sum_t)); // elementwise sum
width = width << 1; width = width << 1;
} }
return sum; return sum;
@ -491,7 +517,7 @@ static inline HVX_Vector hvx_vec_abs_fp16(HVX_Vector v) {
static inline HVX_Vector hvx_vec_neg_fp16(HVX_Vector v) { static inline HVX_Vector hvx_vec_neg_fp16(HVX_Vector v) {
// neg by setting the fp16 sign bit // neg by setting the fp16 sign bit
HVX_Vector mask = Q6_Vh_vsplat_R(0x8000); HVX_Vector mask = Q6_Vh_vsplat_R(0x8000);
return Q6_V_vor_VV(v, mask); return Q6_V_vxor_VV(v, mask);
} }
static inline HVX_Vector hvx_vec_abs_fp32(HVX_Vector v) { static inline HVX_Vector hvx_vec_abs_fp32(HVX_Vector v) {
@ -506,7 +532,7 @@ static inline HVX_Vector hvx_vec_neg_fp32(HVX_Vector v) {
#else #else
// neg by setting the fp32 sign bit // neg by setting the fp32 sign bit
HVX_Vector mask = Q6_V_vsplat_R(0x80000000); HVX_Vector mask = Q6_V_vsplat_R(0x80000000);
return Q6_V_vor_VV(v, mask); return Q6_V_vxor_VV(v, mask);
#endif // __HTP_ARCH__ > 75 #endif // __HTP_ARCH__ > 75
} }
@ -934,6 +960,18 @@ static inline HVX_Vector hvx_vec_rsqrt_fp32(HVX_Vector in_vec) {
return Q6_Vsf_equals_Vqf32(temp); return Q6_Vsf_equals_Vqf32(temp);
} }
static inline HVX_Vector hvx_vec_fast_sigmoid_fp32_guard(HVX_Vector v,
HVX_Vector one,
HVX_Vector max_exp,
HVX_Vector min_exp) {
const HVX_VectorPred pred_max = Q6_Q_vcmp_gt_VsfVsf(max_exp, v);
const HVX_VectorPred pred_min = Q6_Q_vcmp_gt_VsfVsf(v, min_exp);
HVX_Vector out = hvx_vec_fast_sigmoid_fp32(v);
out = Q6_V_vmux_QVV(pred_max, out, one);
return Q6_V_vmux_QVV(pred_min, out, Q6_V_vzero());
}
static inline void hvx_fast_sigmoid_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems) { static inline void hvx_fast_sigmoid_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems) {
int step_of_1 = num_elems >> 5; int step_of_1 = num_elems >> 5;
int remaining = num_elems - step_of_1 * VLEN_FP32; int remaining = num_elems - step_of_1 * VLEN_FP32;
@ -943,9 +981,16 @@ static inline void hvx_fast_sigmoid_f32(const uint8_t * restrict src, uint8_t *
const HVX_Vector * restrict v_src = (HVX_Vector *) src; const HVX_Vector * restrict v_src = (HVX_Vector *) src;
HVX_Vector * restrict v_dst = (HVX_Vector *) dst; HVX_Vector * restrict v_dst = (HVX_Vector *) dst;
static const float kMinExp = -87.f; // 0
static const float kMaxExp = 87.f; // 1
const HVX_Vector one = hvx_vec_splat_fp32(1.f);
const HVX_Vector max_exp = hvx_vec_splat_fp32(kMaxExp);
const HVX_Vector min_exp = hvx_vec_splat_fp32(kMinExp);
#pragma unroll(4) #pragma unroll(4)
for (int i = 0; i < step_of_1; i++) { for (int i = 0; i < step_of_1; i++) {
v_dst[i] = hvx_vec_fast_sigmoid_fp32(v_src[i]); v_dst[i] = hvx_vec_fast_sigmoid_fp32_guard(v_src[i], one, max_exp, min_exp);
} }
} }

View File

@ -143,16 +143,25 @@ AEEResult htp_iface_disable_etm(remote_handle64 handle) {
} }
static int vtcm_acquire(struct htp_context * ctx) { static int vtcm_acquire(struct htp_context * ctx) {
int err;
if (!ctx->vtcm_valid) { if (!ctx->vtcm_valid) {
// Temporarily bump thread priority to make sure it's higher than other sessions. // Temporarily bump thread priority to make sure it's higher than other sessions.
// This way the resource manager will notify the other thread to release VTCM. // This way the resource manager will notify the other thread to release VTCM.
// Note that we need to reaquire VTCM at normal priority for this to work next time. // Note that we need to reaquire VTCM at normal priority for this to work next time.
qurt_thread_set_priority(qurt_thread_get_id(), ctx->thread_prio - 10); qurt_thread_set_priority(qurt_thread_get_id(), ctx->thread_prio - 10);
HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000); err = HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000);
if (err != 0) {
FARF(ERROR, "Failed to acquire VTCM: 0x%08x", (unsigned)err);
abort();
}
HAP_compute_res_release_cached(ctx->vtcm_rctx); HAP_compute_res_release_cached(ctx->vtcm_rctx);
qurt_thread_set_priority(qurt_thread_get_id(), ctx->thread_prio); qurt_thread_set_priority(qurt_thread_get_id(), ctx->thread_prio);
HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000); err = HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000);
if (err != 0) {
FARF(ERROR, "Failed to acquire VTCM: 0x%08x", (unsigned)err);
abort();
}
ctx->vtcm_valid = true; ctx->vtcm_valid = true;
} }
@ -201,7 +210,7 @@ static int vtcm_alloc(struct htp_context * ctx) {
HAP_compute_res_attr_init(&attr); HAP_compute_res_attr_init(&attr);
HAP_compute_res_attr_set_serialize(&attr, 0); HAP_compute_res_attr_set_serialize(&attr, 0);
HAP_compute_res_attr_set_cache_mode(&attr, 1); HAP_compute_res_attr_set_cache_mode(&attr, 1);
HAP_compute_res_attr_set_vtcm_param_v2(&attr, vtcm_size, vtcm_size, vtcm_size); HAP_compute_res_attr_set_vtcm_param_v2(&attr, vtcm_size, 0, vtcm_size);
HAP_compute_res_attr_set_release_callback(&attr, vtcm_release_callback, (void *) ctx); HAP_compute_res_attr_set_release_callback(&attr, vtcm_release_callback, (void *) ctx);
HAP_compute_res_attr_set_hmx_param(&attr, 1); HAP_compute_res_attr_set_hmx_param(&attr, 1);

View File

@ -24,6 +24,10 @@
#include "hvx-utils.h" #include "hvx-utils.h"
#include "ops-utils.h" #include "ops-utils.h"
// Redefined the types GGML_ROPE_TYPE_NORMAL & GGML_ROPE_TYPE_NEOX as we cant include ggml.h
#define HTP_ROPE_TYPE_NORMAL 0
#define HTP_ROPE_TYPE_NEOX 2
#define htp_rope_preamble \ #define htp_rope_preamble \
const uint32_t ne00 = src0->ne[0]; \ const uint32_t ne00 = src0->ne[0]; \
const uint32_t ne01 = src0->ne[1]; \ const uint32_t ne01 = src0->ne[1]; \
@ -146,6 +150,57 @@ static void init_rope_ctx(struct rope_th_ctx * rope_ctx, struct htp_ops_context
rope_ctx->ext_factor, rope_ctx->theta_scale, rope_ctx->attn_factor); rope_ctx->ext_factor, rope_ctx->theta_scale, rope_ctx->attn_factor);
} }
static void hvx_calc_rope_neox_f32(const float * restrict src0,
float * restrict dst,
const int num_elems,
const float * restrict theta_cache) {
// for (int i = 0; i < num_elems; i += 2) {
//const float cos_theta = theta_cache[i + 0];
//const float sin_theta = theta_cache[i + 1];
//const float x0 = src[0];
//const float x1 = src[num_elems/2];
//dst[0] = x0*cos_theta - x1*sin_theta;
//dst[num_elems/2] = x0*sin_theta + x1*cos_theta;
//src += 1;
//dst += 1;
// }
const uint8_t * restrict src0_curr = (const uint8_t *) src0;
const uint8_t * restrict theta_curr = (const uint8_t *) theta_cache;
uint8_t * restrict dst_curr = (uint8_t *) dst;
int step_of_1 = num_elems >> 6; // 6 because we process two vectors at once
int half_size = (sizeof(float) * (num_elems / 2));
for (int i = 0; i < step_of_1; i++) {
HVX_Vector v0 = *(HVX_Vector *) src0_curr;
HVX_Vector v1 = *(HVX_Vector *) (src0_curr + half_size);
HVX_Vector v2 = *(HVX_Vector *) theta_curr;
HVX_Vector v3 = *(HVX_Vector *) (theta_curr + VLEN);
HVX_VectorPair vcos_sin = Q6_W_vdeal_VVR(v3, v2, -4); // vcos_sin[0] = cos_theta, vcos_sin[1] = sin_theta
HVX_Vector vx0_c = Q6_Vqf32_vmpy_VsfVsf(v0, Q6_V_lo_W(vcos_sin));
HVX_Vector vx0_s = Q6_Vqf32_vmpy_VsfVsf(v0, Q6_V_hi_W(vcos_sin));
HVX_Vector vx1_c = Q6_Vqf32_vmpy_VsfVsf(v1, Q6_V_lo_W(vcos_sin));
HVX_Vector vx1_s = Q6_Vqf32_vmpy_VsfVsf(v1, Q6_V_hi_W(vcos_sin));
HVX_Vector v4 = Q6_Vqf32_vsub_Vqf32Vqf32(vx0_c, vx1_s);
HVX_Vector v5 = Q6_Vqf32_vadd_Vqf32Vqf32(vx0_s, vx1_c);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v4);
*(HVX_Vector *) (dst_curr + half_size) = Q6_Vsf_equals_Vqf32(v5);
src0_curr += VLEN;
theta_curr += 2 * VLEN;
dst_curr += VLEN;
}
}
static void hvx_calc_rope_f32(const float * restrict src0, static void hvx_calc_rope_f32(const float * restrict src0,
float * restrict dst, float * restrict dst,
const int num_elems, const int num_elems,
@ -212,6 +267,9 @@ static void rope_hex_f32(struct rope_th_ctx * rope_ctx,
const struct htp_tensor * src2 = &octx->src2; const struct htp_tensor * src2 = &octx->src2;
struct htp_tensor * dst = &octx->dst; struct htp_tensor * dst = &octx->dst;
const int32_t mode = rope_ctx->mode;
const bool is_neox = mode & HTP_ROPE_TYPE_NEOX;
htp_rope_preamble; htp_rope_preamble;
const int32_t * pos = (const int32_t *) src1->data; const int32_t * pos = (const int32_t *) src1->data;
@ -247,20 +305,35 @@ static void rope_hex_f32(struct rope_th_ctx * rope_ctx,
float * dst_data_loc = dst_data; float * dst_data_loc = dst_data;
if (1 == opt_path) { if (1 == opt_path) {
hvx_calc_rope_f32(src_loc, dst_data_loc, rope_ctx->n_dims, wp0); if (is_neox) {
hvx_calc_rope_neox_f32(src_loc, dst_data_loc, rope_ctx->n_dims, wp0);
} else {
hvx_calc_rope_f32(src_loc, dst_data_loc, rope_ctx->n_dims, wp0);
}
} else { } else {
for (uint32_t i0 = 0; i0 < rope_ctx->n_dims; i0 += 2) { for (uint32_t i0 = 0; i0 < rope_ctx->n_dims; i0 += 2) {
const float cos_theta = wp0[i0 + 0]; const float cos_theta = wp0[i0 + 0];
const float sin_theta = wp0[i0 + 1]; const float sin_theta = wp0[i0 + 1];
const float x0 = src_loc[0]; if (is_neox) {
const float x1 = src_loc[1]; const float x0 = src_loc[0];
const float x1 = src_loc[rope_ctx->n_dims/2];
dst_data_loc[0] = x0 * cos_theta - x1 * sin_theta; dst_data_loc[0] = x0 * cos_theta - x1 * sin_theta;
dst_data_loc[1] = x0 * sin_theta + x1 * cos_theta; dst_data_loc[rope_ctx->n_dims/2] = x0 * sin_theta + x1 * cos_theta;
src_loc += 2; src_loc += 1;
dst_data_loc += 2; dst_data_loc += 1;
} else {
const float x0 = src_loc[0];
const float x1 = src_loc[1];
dst_data_loc[0] = x0 * cos_theta - x1 * sin_theta;
dst_data_loc[1] = x0 * sin_theta + x1 * cos_theta;
src_loc += 2;
dst_data_loc += 2;
}
} }
} }

View File

@ -6895,9 +6895,23 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
cl_context context = backend_ctx->context; cl_context context = backend_ctx->context;
if(src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32){ if(src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32){
if (ne01 >= 64 && ne1 >= 32 && ne00 >= 16 && (ne12 % ne02) == 0){ if (ne01 >= 64 && ne1 >= 32 && ne00 >= 16 && (ne12 % ne02) == 0) {
ggml_cl_mul_mat_kq_kqv_adreno(backend, src0, src1, dst); // For KQ
return; if (ggml_is_permuted(src0) && ggml_is_permuted(src1) &&
nb00 <= nb02 &&
nb02 <= nb01 &&
nb01 <= nb03 &&
nb10 <= nb12 &&
nb12 <= nb11 &&
nb11 <= nb13) {
ggml_cl_mul_mat_kq_kqv_adreno(backend, src0, src1, dst);
return;
}
// For KQV
if (!ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
ggml_cl_mul_mat_kq_kqv_adreno(backend, src0, src1, dst);
return;
}
} }
} }

View File

@ -513,6 +513,7 @@ struct vk_device_struct {
vk_queue compute_queue; vk_queue compute_queue;
vk_queue transfer_queue; vk_queue transfer_queue;
bool single_queue; bool single_queue;
bool support_async;
uint32_t subgroup_size; uint32_t subgroup_size;
uint32_t shader_core_count; uint32_t shader_core_count;
bool uma; bool uma;
@ -1628,6 +1629,22 @@ class vk_perf_logger {
timings[name].push_back(time); timings[name].push_back(time);
return; return;
} }
if (node->op == GGML_OP_FLASH_ATTN_EXT) {
const ggml_tensor * dst = node;
const ggml_tensor * q = node->src[0];
const ggml_tensor * k = node->src[1];
const ggml_tensor * v = node->src[2];
const ggml_tensor * m = node->src[3];
std::stringstream name;
name << ggml_op_name(node->op) <<
" dst(" << dst->ne[0] << "," << dst->ne[1] << "," << dst->ne[2] << "," << dst->ne[3] << "), " <<
" q(" << q->ne[0] << "," << q->ne[1] << "," << q->ne[2] << "," << q->ne[3] << "), " <<
" k(" << k->ne[0] << "," << k->ne[1] << "," << k->ne[2] << "," << k->ne[3] << "), " <<
" v(" << v->ne[0] << "," << v->ne[1] << "," << v->ne[2] << "," << v->ne[3] << "), " <<
" m(" << (m?m->ne[0]:0) << "," << (m?m->ne[1]:0) << "," << (m?m->ne[2]:0) << "," << (m?m->ne[3]:0) << ")";
timings[name.str()].push_back(time);
return;
}
timings[ggml_op_name(node->op)].push_back(time); timings[ggml_op_name(node->op)].push_back(time);
} }
private: private:
@ -2484,9 +2501,11 @@ static void ggml_vk_wait_events(vk_context& ctx, std::vector<vk::Event>&& events
static constexpr uint32_t flash_attention_num_small_rows = 32; static constexpr uint32_t flash_attention_num_small_rows = 32;
static constexpr uint32_t scalar_flash_attention_num_small_rows = 1; static constexpr uint32_t scalar_flash_attention_num_small_rows = 1;
static uint32_t get_fa_scalar_num_large_rows(uint32_t hsv) { static uint32_t get_fa_scalar_num_large_rows(uint32_t hsk, uint32_t hsv) {
if (hsv >= 192) { if (hsv >= 192) {
return 2; return 2;
} else if ((hsv | hsk) & 8) {
return 4;
} else { } else {
return 8; return 8;
} }
@ -2518,9 +2537,9 @@ static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t hsk, uint3
if ((hsv | hsk) & 8) { if ((hsv | hsk) & 8) {
// HSV/HSK not being a multiple of 16 makes D_split smaller, which makes cols_per_iter // HSV/HSK not being a multiple of 16 makes D_split smaller, which makes cols_per_iter
// larger, and Bc needs to be >= cols_per_thread. 64 is large enough, 32 is not. // larger, and Bc needs to be >= cols_per_thread. 64 is large enough, 32 is not.
return {get_fa_scalar_num_large_rows(hsv), 64}; return {get_fa_scalar_num_large_rows(hsk, hsv), 64};
} else { } else {
return {get_fa_scalar_num_large_rows(hsv), 32}; return {get_fa_scalar_num_large_rows(hsk, hsv), 32};
} }
} }
} }
@ -4273,6 +4292,16 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->vendor_id = device->properties.vendorID; device->vendor_id = device->properties.vendorID;
device->driver_id = driver_props.driverID; device->driver_id = driver_props.driverID;
// Implementing the async backend interfaces seems broken on older Intel HW,
// see https://github.com/ggml-org/llama.cpp/issues/17302.
device->support_async = (device->vendor_id != VK_VENDOR_ID_INTEL ||
std::string(device->properties.deviceName.data()).find("(DG1)") == std::string::npos) &&
getenv("GGML_VK_DISABLE_ASYNC") == nullptr;
if (!device->support_async) {
GGML_LOG_DEBUG("ggml_vulkan: WARNING: Async execution disabled on certain Intel devices.\n");
}
const char* GGML_VK_FORCE_MAX_ALLOCATION_SIZE = getenv("GGML_VK_FORCE_MAX_ALLOCATION_SIZE"); const char* GGML_VK_FORCE_MAX_ALLOCATION_SIZE = getenv("GGML_VK_FORCE_MAX_ALLOCATION_SIZE");
if (GGML_VK_FORCE_MAX_ALLOCATION_SIZE != nullptr) { if (GGML_VK_FORCE_MAX_ALLOCATION_SIZE != nullptr) {
@ -7713,7 +7742,7 @@ static bool ggml_vk_flash_attn_scalar_shmem_support(const vk_device& device, con
// Needs to be kept up to date on shader changes // Needs to be kept up to date on shader changes
GGML_UNUSED(hsv); GGML_UNUSED(hsv);
const uint32_t wg_size = scalar_flash_attention_workgroup_size; const uint32_t wg_size = scalar_flash_attention_workgroup_size;
const uint32_t Br = get_fa_scalar_num_large_rows(hsv); const uint32_t Br = get_fa_scalar_num_large_rows(hsk, hsv);
const uint32_t Bc = scalar_flash_attention_Bc; const uint32_t Bc = scalar_flash_attention_Bc;
const uint32_t tmpsh = wg_size * sizeof(float); const uint32_t tmpsh = wg_size * sizeof(float);
@ -7844,7 +7873,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
case FA_SCALAR: case FA_SCALAR:
case FA_COOPMAT1: case FA_COOPMAT1:
// We may switch from coopmat1 to scalar, so use the scalar limit for both // We may switch from coopmat1 to scalar, so use the scalar limit for both
max_gqa = get_fa_scalar_num_large_rows(HSV); max_gqa = get_fa_scalar_num_large_rows(HSK, HSV);
break; break;
case FA_COOPMAT2: case FA_COOPMAT2:
max_gqa = get_fa_num_small_rows(FA_COOPMAT2); max_gqa = get_fa_num_small_rows(FA_COOPMAT2);
@ -11370,13 +11399,13 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx, vk_contex
} }
} }
static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_cgraph * cgraph, ggml_tensor* tensor, int tensor_idx, bool almost_ready); static void ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_cgraph * cgraph, ggml_tensor* tensor, int tensor_idx, bool almost_ready);
// Returns true if node has enqueued work into the queue, false otherwise // Returns true if node has enqueued work into the queue, false otherwise
// If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution. // If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution.
static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool last_node, bool almost_ready, bool submit){ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool last_node, bool almost_ready, bool submit){
ggml_tensor * node = cgraph->nodes[node_idx]; ggml_tensor * node = cgraph->nodes[node_idx];
if (ggml_is_empty(node) || !node->buffer) { if (ggml_is_empty(node) || ggml_op_is_empty(node->op) || !node->buffer) {
return false; return false;
} }
@ -11388,132 +11417,19 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
ggml_tensor * src2 = node->src[2]; ggml_tensor * src2 = node->src[2];
ggml_tensor * src3 = node->src[3]; ggml_tensor * src3 = node->src[3];
switch (node->op) { if (node->op == GGML_OP_ADD) {
// Return on empty ops to avoid generating a compute_ctx and setting exit_tensor int next_node_idx = node_idx + 1 + ctx->num_additional_fused_ops;
case GGML_OP_RESHAPE: if (next_node_idx < cgraph->n_nodes &&
case GGML_OP_VIEW: cgraph->nodes[next_node_idx]->op == GGML_OP_RMS_NORM &&
case GGML_OP_PERMUTE: cgraph->nodes[next_node_idx]->src[0] == cgraph->nodes[next_node_idx - 1] &&
case GGML_OP_TRANSPOSE: ggml_nrows(cgraph->nodes[next_node_idx]) == 1 &&
case GGML_OP_NONE: ctx->device->add_rms_fusion) {
return false; uint32_t size = ggml_vk_rms_partials_size(ctx, cgraph->nodes[node_idx]);
case GGML_OP_UNARY: ctx->do_add_rms_partials_offset_calculation = true;
switch (ggml_get_unary_op(node)) { if (ctx->prealloc_size_add_rms_partials_offset + size <= ctx->prealloc_size_add_rms_partials) {
case GGML_UNARY_OP_EXP: ctx->do_add_rms_partials = true;
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_SOFTPLUS:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_ROUND:
case GGML_UNARY_OP_CEIL:
case GGML_UNARY_OP_FLOOR:
case GGML_UNARY_OP_TRUNC:
break;
default:
return false;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(node)) {
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
break;
default:
return false;
}
break;
case GGML_OP_ADD:
{
int next_node_idx = node_idx + 1 + ctx->num_additional_fused_ops;
if (next_node_idx < cgraph->n_nodes &&
cgraph->nodes[next_node_idx]->op == GGML_OP_RMS_NORM &&
cgraph->nodes[next_node_idx]->src[0] == cgraph->nodes[next_node_idx - 1] &&
ggml_nrows(cgraph->nodes[next_node_idx]) == 1 &&
ctx->device->add_rms_fusion) {
uint32_t size = ggml_vk_rms_partials_size(ctx, cgraph->nodes[node_idx]);
ctx->do_add_rms_partials_offset_calculation = true;
if (ctx->prealloc_size_add_rms_partials_offset + size <= ctx->prealloc_size_add_rms_partials) {
ctx->do_add_rms_partials = true;
}
} }
} break; }
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_GET_ROWS:
case GGML_OP_ADD_ID:
case GGML_OP_ACC:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_ADD1:
case GGML_OP_ARANGE:
case GGML_OP_FILL:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_LOG:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_ROLL:
case GGML_OP_CPY:
case GGML_OP_SET_ROWS:
case GGML_OP_CONT:
case GGML_OP_DUP:
case GGML_OP_SILU_BACK:
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_ARGSORT:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_IM2COL_3D:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D:
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_SSM_SCAN:
case GGML_OP_SSM_CONV:
case GGML_OP_LEAKY_RELU:
case GGML_OP_FLASH_ATTN_EXT:
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
break;
default:
std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl;
GGML_ABORT("fatal error");
} }
vk_context compute_ctx; vk_context compute_ctx;
@ -11950,145 +11866,14 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
ctx->compute_ctx.reset(); ctx->compute_ctx.reset();
bool ok = ggml_vk_compute_forward(ctx, cgraph, node_begin, node_idx_begin, almost_ready); ggml_vk_compute_forward(ctx, cgraph, node_begin, node_idx_begin, almost_ready);
if (!ok) {
if (node->op == GGML_OP_UNARY) {
std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast<ggml_unary_op>(node->op_params[0])) << ")" << std::endl;
} else if (node->op == GGML_OP_GLU) {
std::cerr << __func__ << ": error: op not supported GLU " << node->name << " (" << ggml_glu_op_name(static_cast<ggml_glu_op>(node->op_params[0])) << ")" << std::endl;
} else {
std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl;
}
}
} }
return true; return true;
} }
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, ggml_tensor * tensor, int tensor_idx, bool almost_ready = false) { static void ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, ggml_tensor * tensor, int tensor_idx, bool almost_ready = false) {
GGML_UNUSED(cgraph); GGML_UNUSED(cgraph);
ggml_backend_buffer * buf = nullptr; GGML_UNUSED(tensor);
switch (tensor->op) {
case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_GET_ROWS:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_ADD1:
case GGML_OP_ARANGE:
case GGML_OP_FILL:
case GGML_OP_ADD_ID:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_LOG:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_ROLL:
case GGML_OP_CPY:
case GGML_OP_SET_ROWS:
case GGML_OP_CONT:
case GGML_OP_DUP:
case GGML_OP_SILU_BACK:
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_NONE:
case GGML_OP_ARGSORT:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_IM2COL_3D:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D:
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_SSM_SCAN:
case GGML_OP_SSM_CONV:
case GGML_OP_LEAKY_RELU:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
buf = tensor->buffer;
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_SOFTPLUS:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_ROUND:
case GGML_UNARY_OP_CEIL:
case GGML_UNARY_OP_FLOOR:
case GGML_UNARY_OP_TRUNC:
buf = tensor->buffer;
break;
default:
return false;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(tensor)) {
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
buf = tensor->buffer;
break;
default:
return false;
}
break;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_FLASH_ATTN_EXT:
buf = tensor->buffer;
break;
default:
return false;
}
if (buf == nullptr) {
return false;
}
VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")"); VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")");
@ -12132,8 +11917,6 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
subctx->out_memcpys.clear(); subctx->out_memcpys.clear();
subctx->memsets.clear(); subctx->memsets.clear();
} }
return true;
} }
// Clean up after graph processing is done // Clean up after graph processing is done
@ -13187,6 +12970,10 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
ctx->device->perf_logger->print_timings(); ctx->device->perf_logger->print_timings();
} }
if (!ctx->device->support_async) {
ggml_vk_synchronize(ctx);
}
return GGML_STATUS_SUCCESS; return GGML_STATUS_SUCCESS;
UNUSED(backend); UNUSED(backend);
@ -13480,6 +13267,10 @@ ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
/* .context = */ ctx, /* .context = */ ctx,
}; };
if (!ctx->device->support_async) {
vk_backend->iface.get_tensor_async = nullptr;
}
return vk_backend; return vk_backend;
} }

View File

@ -25,6 +25,20 @@ class Keys:
ALIGNMENT = "general.alignment" ALIGNMENT = "general.alignment"
FILE_TYPE = "general.file_type" FILE_TYPE = "general.file_type"
# Recommended Sampler Parameters
SAMPLING_SEQUENCE = "general.sampling.sequence"
SAMPLING_TOP_K = "general.sampling.top_k"
SAMPLING_TOP_P = "general.sampling.top_p"
SAMPLING_MIN_P = "general.sampling.min_p"
SAMPLING_XTC_PROBABILITY = "general.sampling.xtc_probability"
SAMPLING_XTC_THRESHOLD = "general.sampling.xtc_threshold"
SAMPLING_TEMP = "general.sampling.temp"
SAMPLING_PENALTY_LAST_N = "general.sampling.penalty_last_n"
SAMPLING_PENALTY_REPEAT = "general.sampling.penalty_repeat"
SAMPLING_MIROSTAT = "general.sampling.mirostat"
SAMPLING_MIROSTAT_TAU = "general.sampling.mirostat_tau"
SAMPLING_MIROSTAT_ETA = "general.sampling.mirostat_eta"
# Authorship Metadata # Authorship Metadata
NAME = "general.name" NAME = "general.name"
AUTHOR = "general.author" AUTHOR = "general.author"
@ -427,6 +441,7 @@ class MODEL_ARCH(IntEnum):
APERTUS = auto() APERTUS = auto()
COGVLM = auto() COGVLM = auto()
MINIMAXM2 = auto() MINIMAXM2 = auto()
RND1 = auto()
PANGU_EMBED = auto() PANGU_EMBED = auto()
@ -797,6 +812,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.APERTUS: "apertus", MODEL_ARCH.APERTUS: "apertus",
MODEL_ARCH.MINIMAXM2: "minimax-m2", MODEL_ARCH.MINIMAXM2: "minimax-m2",
MODEL_ARCH.COGVLM: "cogvlm", MODEL_ARCH.COGVLM: "cogvlm",
MODEL_ARCH.RND1: "rnd1",
MODEL_ARCH.PANGU_EMBED: "pangu-embedded", MODEL_ARCH.PANGU_EMBED: "pangu-embedded",
} }
@ -2991,6 +3007,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.VISEXP_UP, MODEL_TENSOR.VISEXP_UP,
MODEL_TENSOR.VISEXP_DOWN, MODEL_TENSOR.VISEXP_DOWN,
], ],
MODEL_ARCH.RND1: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.PANGU_EMBED: [ MODEL_ARCH.PANGU_EMBED: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.OUTPUT_NORM,

View File

@ -496,6 +496,42 @@ class GGUFWriter:
def add_file_type(self, ftype: int) -> None: def add_file_type(self, ftype: int) -> None:
self.add_uint32(Keys.General.FILE_TYPE, ftype) self.add_uint32(Keys.General.FILE_TYPE, ftype)
def add_sampling_sequence(self, sequence: str) -> None:
self.add_string(Keys.General.SAMPLING_SEQUENCE, sequence)
def add_sampling_top_k(self, top_k: int) -> None:
self.add_int32(Keys.General.SAMPLING_TOP_K, top_k)
def add_sampling_top_p(self, top_p: float) -> None:
self.add_float32(Keys.General.SAMPLING_TOP_P, top_p)
def add_sampling_min_p(self, min_p: float) -> None:
self.add_float32(Keys.General.SAMPLING_MIN_P, min_p)
def add_sampling_xtc_probability(self, xtc_probability: float) -> None:
self.add_float32(Keys.General.SAMPLING_XTC_PROBABILITY, xtc_probability)
def add_sampling_xtc_threshold(self, xtc_threshold: float) -> None:
self.add_float32(Keys.General.SAMPLING_XTC_THRESHOLD, xtc_threshold)
def add_sampling_temp(self, temp: float) -> None:
self.add_float32(Keys.General.SAMPLING_TEMP, temp)
def add_sampling_penalty_last_n(self, penalty_last_n: int) -> None:
self.add_int32(Keys.General.SAMPLING_PENALTY_LAST_N, penalty_last_n)
def add_sampling_penalty_repeat(self, penalty_repeat: float) -> None:
self.add_float32(Keys.General.SAMPLING_PENALTY_REPEAT, penalty_repeat)
def add_sampling_mirostat(self, mirostat: int) -> None:
self.add_int32(Keys.General.SAMPLING_MIROSTAT, mirostat)
def add_sampling_mirostat_tau(self, mirostat_tau: float) -> None:
self.add_float32(Keys.General.SAMPLING_MIROSTAT_TAU, mirostat_tau)
def add_sampling_mirostat_eta(self, mirostat_eta: float) -> None:
self.add_float32(Keys.General.SAMPLING_MIROSTAT_ETA, mirostat_eta)
def add_name(self, name: str) -> None: def add_name(self, name: str) -> None:
self.add_string(Keys.General.NAME, name) self.add_string(Keys.General.NAME, name)

View File

@ -17,6 +17,20 @@ logger = logging.getLogger("metadata")
@dataclass @dataclass
class Metadata: class Metadata:
# Recommended Sampler Parameters to be written to GGUF KV Store
sampling_sequence: Optional[str] = None
sampling_top_k: Optional[int] = None
sampling_top_p: Optional[float] = None
sampling_min_p: Optional[float] = None
sampling_xtc_probability: Optional[float] = None
sampling_xtc_threshold: Optional[float] = None
sampling_temp: Optional[float] = None
sampling_penalty_last_n: Optional[int] = None
sampling_penalty_repeat: Optional[float] = None
sampling_mirostat: Optional[int] = None
sampling_mirostat_tau: Optional[float] = None
sampling_mirostat_eta: Optional[float] = None
# Authorship Metadata to be written to GGUF KV Store # Authorship Metadata to be written to GGUF KV Store
name: Optional[str] = None name: Optional[str] = None
author: Optional[str] = None author: Optional[str] = None
@ -54,15 +68,43 @@ class Metadata:
model_card = Metadata.load_model_card(model_path) model_card = Metadata.load_model_card(model_path)
hf_params = Metadata.load_hf_parameters(model_path) hf_params = Metadata.load_hf_parameters(model_path)
gen_config = Metadata.load_generation_config(model_path)
# TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter # TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter
# heuristics # heuristics
metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params) metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params)
if gen_config:
metadata.sampling_sequence = gen_config.get("sequence", metadata.sampling_sequence)
metadata.sampling_top_k = gen_config.get("top_k", metadata.sampling_top_k)
metadata.sampling_top_p = gen_config.get("top_p", metadata.sampling_top_p)
metadata.sampling_min_p = gen_config.get("min_p", metadata.sampling_min_p)
metadata.sampling_xtc_probability = gen_config.get("xtc_probability", metadata.sampling_xtc_probability)
metadata.sampling_xtc_threshold = gen_config.get("xtc_threshold", metadata.sampling_xtc_threshold)
metadata.sampling_temp = gen_config.get("temperature", metadata.sampling_temp)
metadata.sampling_penalty_last_n = gen_config.get("penalty_last_n", metadata.sampling_penalty_last_n)
metadata.sampling_penalty_repeat = gen_config.get("penalty_repeat", metadata.sampling_penalty_repeat)
metadata.sampling_mirostat = gen_config.get("mirostat", metadata.sampling_mirostat)
metadata.sampling_mirostat_tau = gen_config.get("mirostat_tau", metadata.sampling_mirostat_tau)
metadata.sampling_mirostat_eta = gen_config.get("mirostat_eta", metadata.sampling_mirostat_eta)
# Metadata Override File Provided # Metadata Override File Provided
# This is based on LLM_KV_NAMES mapping in llama.cpp # This is based on LLM_KV_NAMES mapping in llama.cpp
metadata_override = Metadata.load_metadata_override(metadata_override_path) metadata_override = Metadata.load_metadata_override(metadata_override_path)
metadata.sampling_sequence = metadata_override.get(Keys.General.SAMPLING_SEQUENCE, metadata.sampling_sequence)
metadata.sampling_top_k = metadata_override.get(Keys.General.SAMPLING_TOP_K, metadata.sampling_top_k)
metadata.sampling_top_p = metadata_override.get(Keys.General.SAMPLING_TOP_P, metadata.sampling_top_p)
metadata.sampling_min_p = metadata_override.get(Keys.General.SAMPLING_MIN_P, metadata.sampling_min_p)
metadata.sampling_xtc_probability = metadata_override.get(Keys.General.SAMPLING_XTC_PROBABILITY, metadata.sampling_xtc_probability)
metadata.sampling_xtc_threshold = metadata_override.get(Keys.General.SAMPLING_XTC_THRESHOLD, metadata.sampling_xtc_threshold)
metadata.sampling_temp = metadata_override.get(Keys.General.SAMPLING_TEMP, metadata.sampling_temp)
metadata.sampling_penalty_last_n = metadata_override.get(Keys.General.SAMPLING_PENALTY_LAST_N, metadata.sampling_penalty_last_n)
metadata.sampling_penalty_repeat = metadata_override.get(Keys.General.SAMPLING_PENALTY_REPEAT, metadata.sampling_penalty_repeat)
metadata.sampling_mirostat = metadata_override.get(Keys.General.SAMPLING_MIROSTAT, metadata.sampling_mirostat)
metadata.sampling_mirostat_tau = metadata_override.get(Keys.General.SAMPLING_MIROSTAT_TAU, metadata.sampling_mirostat_tau)
metadata.sampling_mirostat_eta = metadata_override.get(Keys.General.SAMPLING_MIROSTAT_ETA, metadata.sampling_mirostat_eta)
metadata.name = metadata_override.get(Keys.General.NAME, metadata.name) metadata.name = metadata_override.get(Keys.General.NAME, metadata.name)
metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author) metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author)
metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version) metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version)
@ -172,6 +214,23 @@ class Metadata:
with open(config_path, "r", encoding="utf-8") as f: with open(config_path, "r", encoding="utf-8") as f:
return json.load(f) return json.load(f)
@staticmethod
def load_generation_config(model_path: Optional[Path] = None) -> dict[str, Any]:
if model_path is None or not model_path.is_dir():
return {}
generation_config_path = model_path / "generation_config.json"
if not generation_config_path.is_file():
return {}
try:
with open(generation_config_path, "r", encoding="utf-8") as f:
return json.load(f)
except (json.JSONDecodeError, IOError):
# not all models have valid generation_config.json
return {}
@staticmethod @staticmethod
def id_to_title(string): def id_to_title(string):
# Convert capitalization into title form unless acronym or version number # Convert capitalization into title form unless acronym or version number
@ -546,6 +605,32 @@ class Metadata:
def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter): def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter):
assert self.name is not None assert self.name is not None
if self.sampling_sequence is not None:
gguf_writer.add_sampling_sequence(self.sampling_sequence)
if self.sampling_top_k is not None:
gguf_writer.add_sampling_top_k(self.sampling_top_k)
if self.sampling_top_p is not None:
gguf_writer.add_sampling_top_p(self.sampling_top_p)
if self.sampling_min_p is not None:
gguf_writer.add_sampling_min_p(self.sampling_min_p)
if self.sampling_xtc_probability is not None:
gguf_writer.add_sampling_xtc_probability(self.sampling_xtc_probability)
if self.sampling_xtc_threshold is not None:
gguf_writer.add_sampling_xtc_threshold(self.sampling_xtc_threshold)
if self.sampling_temp is not None:
gguf_writer.add_sampling_temp(self.sampling_temp)
if self.sampling_penalty_last_n is not None:
gguf_writer.add_sampling_penalty_last_n(self.sampling_penalty_last_n)
if self.sampling_penalty_repeat is not None:
gguf_writer.add_sampling_penalty_repeat(self.sampling_penalty_repeat)
if self.sampling_mirostat is not None:
gguf_writer.add_sampling_mirostat(self.sampling_mirostat)
if self.sampling_mirostat_tau is not None:
gguf_writer.add_sampling_mirostat_tau(self.sampling_mirostat_tau)
if self.sampling_mirostat_eta is not None:
gguf_writer.add_sampling_mirostat_eta(self.sampling_mirostat_eta)
gguf_writer.add_name(self.name) gguf_writer.add_name(self.name)
if self.author is not None: if self.author is not None:

View File

@ -246,6 +246,21 @@ extern "C" {
LLAMA_KV_OVERRIDE_TYPE_STR, LLAMA_KV_OVERRIDE_TYPE_STR,
}; };
enum llama_model_meta_key {
LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE,
LLAMA_MODEL_META_KEY_SAMPLING_TOP_K,
LLAMA_MODEL_META_KEY_SAMPLING_TOP_P,
LLAMA_MODEL_META_KEY_SAMPLING_MIN_P,
LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY,
LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD,
LLAMA_MODEL_META_KEY_SAMPLING_TEMP,
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N,
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA,
};
struct llama_model_kv_override { struct llama_model_kv_override {
enum llama_model_kv_override_type tag; enum llama_model_kv_override_type tag;
@ -518,6 +533,9 @@ extern "C" {
// Get the number of metadata key/value pairs // Get the number of metadata key/value pairs
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model); LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
// Get sampling metadata key name. Returns nullptr if the key is invalid
LLAMA_API const char * llama_model_meta_key_str(enum llama_model_meta_key key);
// Get metadata key name by index // Get metadata key name by index
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size); LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);

View File

@ -1 +1 @@
781baf2a14d9e0aaee542b2e1bb918bfc4132199 55bc9320a4aae82af18e23eefd5de319a755d7b9

View File

@ -115,6 +115,7 @@ add_library(llama
models/qwen3vl-moe.cpp models/qwen3vl-moe.cpp
models/qwen3moe.cpp models/qwen3moe.cpp
models/refact.cpp models/refact.cpp
models/rnd1.cpp
models/rwkv6-base.cpp models/rwkv6-base.cpp
models/rwkv6.cpp models/rwkv6.cpp
models/rwkv6qwen2.cpp models/rwkv6qwen2.cpp

View File

@ -108,24 +108,37 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_APERTUS, "apertus" }, { LLM_ARCH_APERTUS, "apertus" },
{ LLM_ARCH_MINIMAX_M2, "minimax-m2" }, { LLM_ARCH_MINIMAX_M2, "minimax-m2" },
{ LLM_ARCH_COGVLM, "cogvlm" }, { LLM_ARCH_COGVLM, "cogvlm" },
{ LLM_ARCH_RND1, "rnd1" },
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" }, { LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
{ LLM_ARCH_UNKNOWN, "(unknown)" }, { LLM_ARCH_UNKNOWN, "(unknown)" },
}; };
static const std::map<llm_kv, const char *> LLM_KV_NAMES = { static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_GENERAL_TYPE, "general.type" }, { LLM_KV_GENERAL_TYPE, "general.type" },
{ LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
{ LLM_KV_GENERAL_FILE_TYPE, "general.file_type" }, { LLM_KV_GENERAL_FILE_TYPE, "general.file_type" },
{ LLM_KV_GENERAL_NAME, "general.name" }, { LLM_KV_GENERAL_SAMPLING_SEQUENCE, "general.sampling.sequence" },
{ LLM_KV_GENERAL_AUTHOR, "general.author" }, { LLM_KV_GENERAL_SAMPLING_TOP_K, "general.sampling.top_k" },
{ LLM_KV_GENERAL_VERSION, "general.version" }, { LLM_KV_GENERAL_SAMPLING_TOP_P, "general.sampling.top_p" },
{ LLM_KV_GENERAL_URL, "general.url" }, { LLM_KV_GENERAL_SAMPLING_MIN_P, "general.sampling.min_p" },
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" }, { LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY, "general.sampling.xtc_probability" },
{ LLM_KV_GENERAL_LICENSE, "general.license" }, { LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD, "general.sampling.xtc_threshold" },
{ LLM_KV_GENERAL_SOURCE_URL, "general.source.url" }, { LLM_KV_GENERAL_SAMPLING_TEMP, "general.sampling.temp" },
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" }, { LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N, "general.sampling.penalty_last_n" },
{ LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT, "general.sampling.penalty_repeat" },
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT, "general.sampling.mirostat" },
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU, "general.sampling.mirostat_tau" },
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA, "general.sampling.mirostat_eta" },
{ LLM_KV_GENERAL_NAME, "general.name" },
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
{ LLM_KV_GENERAL_VERSION, "general.version" },
{ LLM_KV_GENERAL_URL, "general.url" },
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" },
{ LLM_KV_GENERAL_LICENSE, "general.license" },
{ LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
{ LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
@ -2446,6 +2459,26 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" }, { LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" },
}, },
}, },
{
LLM_ARCH_RND1,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{ {
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
{ {
@ -2722,6 +2755,7 @@ bool llm_arch_is_diffusion(const llm_arch & arch) {
case LLM_ARCH_DREAM: case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA: case LLM_ARCH_LLADA:
case LLM_ARCH_LLADA_MOE: case LLM_ARCH_LLADA_MOE:
case LLM_ARCH_RND1:
return true; return true;
default: default:
return false; return false;

View File

@ -112,6 +112,7 @@ enum llm_arch {
LLM_ARCH_APERTUS, LLM_ARCH_APERTUS,
LLM_ARCH_MINIMAX_M2, LLM_ARCH_MINIMAX_M2,
LLM_ARCH_COGVLM, LLM_ARCH_COGVLM,
LLM_ARCH_RND1,
LLM_ARCH_PANGU_EMBED, LLM_ARCH_PANGU_EMBED,
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
}; };
@ -122,6 +123,18 @@ enum llm_kv {
LLM_KV_GENERAL_QUANTIZATION_VERSION, LLM_KV_GENERAL_QUANTIZATION_VERSION,
LLM_KV_GENERAL_ALIGNMENT, LLM_KV_GENERAL_ALIGNMENT,
LLM_KV_GENERAL_FILE_TYPE, LLM_KV_GENERAL_FILE_TYPE,
LLM_KV_GENERAL_SAMPLING_SEQUENCE,
LLM_KV_GENERAL_SAMPLING_TOP_K,
LLM_KV_GENERAL_SAMPLING_TOP_P,
LLM_KV_GENERAL_SAMPLING_MIN_P,
LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY,
LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD,
LLM_KV_GENERAL_SAMPLING_TEMP,
LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N,
LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT,
LLM_KV_GENERAL_SAMPLING_MIROSTAT,
LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU,
LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA,
LLM_KV_GENERAL_NAME, LLM_KV_GENERAL_NAME,
LLM_KV_GENERAL_AUTHOR, LLM_KV_GENERAL_AUTHOR,
LLM_KV_GENERAL_VERSION, LLM_KV_GENERAL_VERSION,

View File

@ -1248,7 +1248,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
// make the outputs have the same order they had in the user-provided batch // make the outputs have the same order they had in the user-provided batch
// note: this is mostly relevant for recurrent models atm // note: this is mostly relevant for recurrent models atm
if (!sorted_output) { if (!sorted_output && n_outputs > 1) {
GGML_ASSERT((size_t) n_outputs == out_ids.size()); GGML_ASSERT((size_t) n_outputs == out_ids.size());
// TODO: is there something more efficient which also minimizes swaps? // TODO: is there something more efficient which also minimizes swaps?

View File

@ -347,10 +347,10 @@ const char * llama_grammar_parser::parse_sequence(
size_t last_sym_start = rule.size(); size_t last_sym_start = rule.size();
const char * pos = src; const char * pos = src;
// use UINT64_MAX as the empty value because we aligned to the proper unsigned long type so -1 can't be used // use UINT64_MAX as the empty value because we aligned to the proper uint64_t type so -1 can't be used
// (though it's technically the same as -1 now) // (though it's technically the same as -1 now)
auto handle_repetitions = [&](unsigned long min_times, unsigned long max_times) { auto handle_repetitions = [&](uint64_t min_times, uint64_t max_times) {
bool no_max = max_times == UINT64_MAX;
if (last_sym_start == rule.size()) { if (last_sym_start == rule.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos); throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
} }
@ -377,20 +377,20 @@ const char * llama_grammar_parser::parse_sequence(
rule.resize(last_sym_start); rule.resize(last_sym_start);
} else { } else {
// Repeat the previous elements (min_times - 1) times // Repeat the previous elements (min_times - 1) times
for (unsigned long i = 1; i < min_times; i++) { for (uint64_t i = 1; i < min_times; i++) {
rule.insert(rule.end(), prev_rule.begin(), prev_rule.end()); rule.insert(rule.end(), prev_rule.begin(), prev_rule.end());
} }
} }
uint32_t last_rec_rule_id = 0; uint32_t last_rec_rule_id = 0;
auto n_opt = max_times == UINT64_MAX ? 1 : max_times - min_times; auto n_opt = no_max ? 1 : max_times - min_times;
llama_grammar_rule rec_rule(prev_rule); llama_grammar_rule rec_rule(prev_rule);
for (unsigned long i = 0; i < n_opt; i++) { for (uint64_t i = 0; i < n_opt; i++) {
rec_rule.resize(prev_rule.size()); rec_rule.resize(prev_rule.size());
uint32_t rec_rule_id = generate_symbol_id( rule_name); uint32_t rec_rule_id = generate_symbol_id( rule_name);
if (i > 0 || max_times == UINT64_MAX) { if (i > 0 || no_max) {
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times == UINT64_MAX ? rec_rule_id : last_rec_rule_id}); rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, no_max ? rec_rule_id : last_rec_rule_id});
} }
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0}); rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
rec_rule.push_back({LLAMA_GRETYPE_END, 0}); rec_rule.push_back({LLAMA_GRETYPE_END, 0});
@ -482,10 +482,10 @@ const char * llama_grammar_parser::parse_sequence(
throw std::runtime_error(std::string("expecting an int at ") + pos); throw std::runtime_error(std::string("expecting an int at ") + pos);
} }
const char * int_end = parse_int(pos); const char * int_end = parse_int(pos);
unsigned long min_times = std::stoul(std::string(pos, int_end - pos)); uint64_t min_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested); pos = parse_space(int_end, is_nested);
unsigned long max_times = UINT64_MAX; uint64_t max_times = UINT64_MAX; // default: no max limit
if (*pos == '}') { if (*pos == '}') {
max_times = min_times; max_times = min_times;
@ -506,7 +506,8 @@ const char * llama_grammar_parser::parse_sequence(
} else { } else {
throw std::runtime_error(std::string("expecting ',' at ") + pos); throw std::runtime_error(std::string("expecting ',' at ") + pos);
} }
if (min_times > MAX_REPETITION_THRESHOLD || (max_times != UINT64_MAX && max_times > MAX_REPETITION_THRESHOLD)) { bool has_max = max_times != UINT64_MAX;
if (min_times > MAX_REPETITION_THRESHOLD || (has_max && max_times > MAX_REPETITION_THRESHOLD)) {
throw std::runtime_error(std::string("number of repetitions exceeds sane defaults, please reduce the number of repetitions")); throw std::runtime_error(std::string("number of repetitions exceeds sane defaults, please reduce the number of repetitions"));
} }
handle_repetitions(min_times, max_times); handle_repetitions(min_times, max_times);

View File

@ -1036,6 +1036,18 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN; default: type = LLM_TYPE_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_RND1:
{
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 48: type = LLM_TYPE_30B_A3B; break;
default: type = LLM_TYPE_UNKNOWN;
}
// Set non-causal attention for diffusion models
hparams.causal_attn = false;
} break;
case LLM_ARCH_QWEN2MOE: case LLM_ARCH_QWEN2MOE:
{ {
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
@ -1593,7 +1605,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
} break; } break;
case LLM_ARCH_DEEPSEEK2: case LLM_ARCH_DEEPSEEK2:
{ {
bool is_lite = (hparams.n_layer == 27); // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
if (!is_lite) { if (!is_lite) {
@ -3401,6 +3414,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
} break; } break;
case LLM_ARCH_QWEN3MOE: case LLM_ARCH_QWEN3MOE:
case LLM_ARCH_QWEN3VLMOE: case LLM_ARCH_QWEN3VLMOE:
case LLM_ARCH_RND1:
{ {
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -4581,7 +4595,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
} break; } break;
case LLM_ARCH_DEEPSEEK2: case LLM_ARCH_DEEPSEEK2:
{ {
const bool is_lite = (hparams.n_layer == 27); // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
const bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0); const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
@ -6718,7 +6733,7 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
} }
if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE) { if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE || arch == LLM_ARCH_RND1) {
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
} }
@ -6880,6 +6895,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
case LLM_ARCH_DREAM: case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA: case LLM_ARCH_LLADA:
case LLM_ARCH_LLADA_MOE: case LLM_ARCH_LLADA_MOE:
case LLM_ARCH_RND1:
{ {
res = nullptr; res = nullptr;
} break; } break;
@ -7073,6 +7089,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
llm = std::make_unique<llm_build_llada_moe>(*this, params); llm = std::make_unique<llm_build_llada_moe>(*this, params);
} }
break; break;
case LLM_ARCH_RND1:
{
llm = std::make_unique<llm_build_rnd1>(*this, params);
}
break;
case LLM_ARCH_QWEN2VL: case LLM_ARCH_QWEN2VL:
{ {
llm = std::make_unique<llm_build_qwen2vl>(*this, params); llm = std::make_unique<llm_build_qwen2vl>(*this, params);
@ -7593,6 +7614,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_QWEN3: case LLM_ARCH_QWEN3:
case LLM_ARCH_QWEN3MOE: case LLM_ARCH_QWEN3MOE:
case LLM_ARCH_LLADA_MOE: case LLM_ARCH_LLADA_MOE:
case LLM_ARCH_RND1:
case LLM_ARCH_OLMO2: case LLM_ARCH_OLMO2:
case LLM_ARCH_OLMOE: case LLM_ARCH_OLMOE:
case LLM_ARCH_PHI2: case LLM_ARCH_PHI2:
@ -7665,6 +7687,24 @@ int32_t llama_model_meta_count(const llama_model * model) {
return (int)model->gguf_kv.size(); return (int)model->gguf_kv.size();
} }
const char * llama_model_meta_key_str(llama_model_meta_key key) {
switch (key) {
case LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE: return "general.sampling.sequence";
case LLAMA_MODEL_META_KEY_SAMPLING_TOP_K: return "general.sampling.top_k";
case LLAMA_MODEL_META_KEY_SAMPLING_TOP_P: return "general.sampling.top_p";
case LLAMA_MODEL_META_KEY_SAMPLING_MIN_P: return "general.sampling.min_p";
case LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY: return "general.sampling.xtc_probability";
case LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD: return "general.sampling.xtc_threshold";
case LLAMA_MODEL_META_KEY_SAMPLING_TEMP: return "general.sampling.temp";
case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N: return "general.sampling.penalty_last_n";
case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT: return "general.sampling.penalty_repeat";
case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT: return "general.sampling.mirostat";
case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU: return "general.sampling.mirostat_tau";
case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA: return "general.sampling.mirostat_eta";
default: return nullptr;
}
}
int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) { int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
if (i < 0 || i >= (int)model->gguf_kv.size()) { if (i < 0 || i >= (int)model->gguf_kv.size()) {
if (buf_size > 0) { if (buf_size > 0) {

View File

@ -4,7 +4,8 @@
llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_graph_params & params) : llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) { llm_graph_context(params) {
bool is_lite = (hparams.n_layer == 27); // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0); const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);

View File

@ -431,6 +431,10 @@ struct llm_build_refact : public llm_graph_context {
llm_build_refact(const llama_model & model, const llm_graph_params & params); llm_build_refact(const llama_model & model, const llm_graph_params & params);
}; };
struct llm_build_rnd1 : public llm_graph_context {
llm_build_rnd1(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_rwkv6 : public llm_build_rwkv6_base { struct llm_build_rwkv6 : public llm_build_rwkv6_base {
llm_build_rwkv6(const llama_model & model, const llm_graph_params & params); llm_build_rwkv6(const llama_model & model, const llm_graph_params & params);
}; };

126
src/models/rnd1.cpp Normal file
View File

@ -0,0 +1,126 @@
#include "models.h"
// RND1 is a Qwen3Moe AR model converted to diffusion model.
llm_build_rnd1::llm_build_rnd1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// Non-causal attention for diffusion
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
cur = moe_out;
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -6953,9 +6953,11 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0})); test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
for (ggml_type type_dst : { GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16 }) { for (ggml_type type_dst : { GGML_TYPE_F32, GGML_TYPE_I32, GGML_TYPE_F16, GGML_TYPE_BF16 }) {
for (bool use_view_slice : { true, false }) { for (bool use_view_slice : { true, false }) {
for (std::array<int64_t, 4> ne : std::initializer_list<std::array<int64_t, 4>>{ {2, 1, 1, 1}, {2, 1, 3, 5}, for (std::array<int64_t, 4> ne : std::initializer_list<std::array<int64_t, 4>>{ {2, 1, 1, 1}, {2, 1, 3, 5},
{2, 3, 5, 7}, {1, 4, 4, 1}, {1, 8, 17, 1}, {10, 10, 10, 1} }) { {2, 3, 5, 7}, {1, 4, 4, 1}, {1, 8, 17, 1}, {10, 10, 10, 1} }) {
@ -7819,6 +7821,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) { for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) { for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
for (ggml_type type_b : {GGML_TYPE_F32}) { for (ggml_type type_b : {GGML_TYPE_F32}) {
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048));
test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1)); test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
} }
} }
@ -7827,6 +7830,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) { for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) { for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
for (ggml_type type_b : {GGML_TYPE_F32}) { for (ggml_type type_b : {GGML_TYPE_F32}) {
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048));
test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1)); test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
} }
} }
@ -7837,6 +7841,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
for (int bs : {1, 4, 8, 512}) { for (int bs : {1, 4, 8, 512}) {
for (ggml_type type_a : {GGML_TYPE_MXFP4}) { for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
for (ggml_type type_b : {GGML_TYPE_F32}) { for (ggml_type type_b : {GGML_TYPE_F32}) {
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880));
test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1)); test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
} }
} }
@ -7854,6 +7859,9 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
} }
} }
// Qwen3-VL-8B https://github.com/ggml-org/llama.cpp/issues/17012
test_cases.emplace_back(new test_flash_attn_ext(72, 72, 16, {1, 1}, 5776, 5776, false, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
for (int kv : { 4096, 8192, 16384, }) { for (int kv : { 4096, 8192, 16384, }) {
for (int hs : { 64, 128, }) { for (int hs : { 64, 128, }) {
for (int nr : { 1, 4, }) { for (int nr : { 1, 4, }) {

View File

@ -13,9 +13,14 @@ endif()
set(TARGET_SRCS set(TARGET_SRCS
server.cpp server.cpp
utils.hpp
server-http.cpp server-http.cpp
server-http.h server-http.h
server-task.cpp
server-task.h
server-queue.cpp
server-queue.h
server-common.cpp
server-common.h
) )
set(PUBLIC_ASSETS set(PUBLIC_ASSETS
index.html.gz index.html.gz

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,349 @@
#pragma once
#include "common.h"
#include "log.h"
#include "llama.h"
#include "chat.h"
#include "mtmd.h"
#define JSON_ASSERT GGML_ASSERT
#include <nlohmann/json.hpp>
#include <string>
#include <vector>
#include <cinttypes>
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
using json = nlohmann::ordered_json;
#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
using raw_buffer = std::vector<uint8_t>;
template <typename T>
static T json_value(const json & body, const std::string & key, const T & default_value) {
// Fallback null to default value
if (body.contains(key) && !body.at(key).is_null()) {
try {
return body.at(key);
} catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const & err) {
LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value: %s\n", key.c_str(), json(default_value).type_name(), err.what());
return default_value;
}
} else {
return default_value;
}
}
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
enum error_type {
ERROR_TYPE_INVALID_REQUEST,
ERROR_TYPE_AUTHENTICATION,
ERROR_TYPE_SERVER,
ERROR_TYPE_NOT_FOUND,
ERROR_TYPE_PERMISSION,
ERROR_TYPE_UNAVAILABLE, // custom error
ERROR_TYPE_NOT_SUPPORTED, // custom error
ERROR_TYPE_EXCEED_CONTEXT_SIZE, // custom error
};
// thin wrapper around common_grammar_trigger with (de)serialization functions
struct server_grammar_trigger {
common_grammar_trigger value;
server_grammar_trigger() = default;
server_grammar_trigger(const common_grammar_trigger & value) : value(value) {}
server_grammar_trigger(const json & in) {
value.type = (common_grammar_trigger_type) in.at("type").get<int>();
value.value = in.at("value").get<std::string>();
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
value.token = (llama_token) in.at("token").get<int>();
}
}
json to_json() const {
json out {
{"type", (int) value.type},
{"value", value.value},
};
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out["token"] = (int) value.token;
}
return out;
}
};
json format_error_response(const std::string & message, const enum error_type type);
//
// random string / id
//
std::string random_string();
std::string gen_chatcmplid();
std::string gen_tool_call_id();
//
// lora utils
//
// check whether the given lora set has only aloras activated (empty => false)
bool lora_all_alora(const std::vector<common_adapter_lora_info> & loras);
// if the two sets of loras are different, they require a cache clear unless the
// change is only from aloras to aloras.
bool lora_should_clear_cache(
const std::vector<common_adapter_lora_info> & current,
const std::vector<common_adapter_lora_info> & next);
std::vector<common_adapter_lora_info> parse_lora_request(
const std::vector<common_adapter_lora_info> & lora_base,
const json & data);
bool are_lora_equal(
const std::vector<common_adapter_lora_info> & l1,
const std::vector<common_adapter_lora_info> & l2);
// get the ids of all enabled loras
std::vector<size_t> lora_get_enabled_ids(const std::vector<common_adapter_lora_info> & loras);
//
// server_tokens
//
/**
* server_tokens is a helper to manage the input tokens and image for the server.
* it is made this way to simplify the logic of KV cache management.
*/
struct server_tokens {
bool has_mtmd = false;
private: // disallow accessing these members directly, risking out-of-sync
// map a **start** index in tokens to the image chunk
// note: the order need to be in-sync with tokens
std::map<size_t, mtmd::input_chunk_ptr> map_idx_to_media;
// list of tokens
// if the token is LLAMA_TOKEN_NULL, it indicates that this position is occupied by media chunk
// otherwise, it is a normal text token
// note: a non-text chunk can occupy multiple tokens (aka memory cells) in the token list
// note(2): for M-RoPE, an image can occupy different number of pos; do not assume 1-to-1 mapping tokens <-> pos
llama_tokens tokens;
// for ex. with input of 5 text tokens and 2 images (each image occupies 3 tokens and 2 pos):
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1] [img1]
// idx 0 1 2 3 4 5 6 7 8 9 10
// pos 0 1 2 3 4 5 5 5 7 7 7
// map_idx_to_media will contain: {5, img0}, {8, img1}
public:
server_tokens() = default;
~server_tokens() = default;
// Prevent copying
// TODO: server_tokens should be copyable - remove this:
server_tokens(const server_tokens&) = delete;
server_tokens& operator=(const server_tokens&) = delete;
// Allow moving (usually implicitly generated if members are movable)
server_tokens(server_tokens&&) = default;
server_tokens& operator=(server_tokens&&) = default;
// Allow accessing elements using [] operator
llama_token operator[](size_t index) { return tokens[index]; }
const llama_token& operator[](size_t index) const { return tokens[index]; }
server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd);
server_tokens(const llama_tokens & tokens, bool has_mtmd);
// for debugging
std::string str() const;
llama_pos pos_next() const;
const mtmd::input_chunk_ptr & find_chunk(size_t idx) const;
void push_back(llama_token tok);
// will create a copy of the chunk if it contains non-text data
void push_back(const mtmd_input_chunk * chunk);
// appends server tokens, updates the media map. copies media chunks.
void push_back(server_tokens & tokens);
// for compatibility with context shift and prompt truncation
void insert(const llama_tokens & inp_tokens);
// for compatibility with speculative decoding, ctx shift, slot save/load
const llama_tokens & get_text_tokens() const;
// for compatibility with speculative decoding
void set_token(llama_pos pos, llama_token id);
size_t size() const { return tokens.size(); }
bool empty() const { return tokens.empty(); }
void clear() {
map_idx_to_media.clear();
tokens.clear();
}
void keep_first(size_t n);
std::string detokenize(const llama_context * ctx, bool special) const;
size_t get_common_prefix(const server_tokens & b) const;
// make sure all text tokens are within the vocab range
bool validate(const struct llama_context * ctx) const;
// encode and decode the image chunk
int32_t process_chunk(
llama_context * ctx,
mtmd_context * mctx,
size_t idx,
llama_pos pos,
int32_t seq_id,
size_t & n_tokens_out) const;
};
//
// tokenizer and input processing utils
//
bool json_is_array_of_numbers(const json & data);
// is array having BOTH numbers & strings?
bool json_is_array_of_mixed_numbers_strings(const json & data);
// does array have any individual integers/tokens?
bool json_is_array_and_contains_numbers(const json & data);
// get value by path(key1 / key2)
json json_get_nested_values(const std::vector<std::string> & paths, const json & js);
/**
* this handles 2 cases:
* - only string, example: "string"
* - mixed string and tokens, example: [12, 34, "string", 56, 78]
*/
llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special);
// return the last index of character that can form a valid string
// if the last character is potentially cut in half, return the index before the cut
// if validate_utf8(text) == text.size(), then the whole text is valid utf8
size_t validate_utf8(const std::string& text);
// process mtmd prompt, return the server_tokens containing both text tokens and media chunks
server_tokens process_mtmd_prompt(mtmd_context * mctx, std::string prompt, std::vector<raw_buffer> files);
/**
* break the input "prompt" object into multiple prompt if needed, then tokenize them
* this supports these cases:
* - "prompt": "string"
* - "prompt": [12, 34, 56]
* - "prompt": [12, 34, "string", 56, 78]
* - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] }
* and multiple prompts (multi-tasks):
* - "prompt": ["string1", "string2"]
* - "prompt": ["string1", [12, 34, 56]]
* - "prompt": [[12, 34, 56], [78, 90, 12]]
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56], { "prompt_string": "string", "multimodal_data": [ "base64" ]}]
*/
std::vector<server_tokens> tokenize_input_prompts(
const llama_vocab * vocab,
mtmd_context * mctx,
const json & json_prompt,
bool add_special,
bool parse_special);
//
// OAI utils
//
// used by /completions endpoint
json oaicompat_completion_params_parse(const json & body);
struct oaicompat_parser_options {
bool use_jinja;
bool prefill_assistant;
common_reasoning_format reasoning_format;
std::map<std::string,std::string> chat_template_kwargs;
common_chat_templates * tmpls;
bool allow_image;
bool allow_audio;
bool enable_thinking = true;
};
// used by /chat/completions endpoint
json oaicompat_chat_params_parse(
json & body, /* openai api json semantics */
const oaicompat_parser_options & opt,
std::vector<raw_buffer> & out_files);
// TODO: move it to server-task.cpp
json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false);
// TODO: move it to server-task.cpp
json format_response_rerank(
const json & request,
const json & ranks,
bool is_tei_format,
std::vector<std::string> & texts,
int top_n);
//
// other utils
//
std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx);
std::string safe_json_to_str(const json & data);
std::string tokens_to_str(llama_context * ctx, const llama_tokens & tokens);
// format incomplete utf-8 multibyte character for output
std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token);
// format server-sent event (SSE), return the formatted string to send
// note: if data is a json array, it will be sent as multiple events, one per item
std::string format_sse(const json & data);
bool is_valid_utf8(const std::string & str);
//
// formatting output responses
// TODO: move these to server-task.cpp
//
llama_tokens format_prompt_infill(
const llama_vocab * vocab,
const json & input_prefix,
const json & input_suffix,
const json & input_extra,
const int n_batch,
const int n_predict,
const int n_ctx,
const bool spm_infill,
const llama_tokens & tokens_prompt);
// format rerank task: [BOS]query[EOS][SEP]doc[EOS].
server_tokens format_prompt_rerank(
const struct llama_model * model,
const struct llama_vocab * vocab,
mtmd_context * mctx,
const std::string & query,
const std::string & doc);

View File

@ -1,6 +1,6 @@
#include "utils.hpp"
#include "common.h" #include "common.h"
#include "server-http.h" #include "server-http.h"
#include "server-common.h"
#include <cpp-httplib/httplib.h> #include <cpp-httplib/httplib.h>

View File

@ -0,0 +1,268 @@
#include "server-task.h"
#include "server-queue.h"
#include "log.h"
#include <chrono>
#define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define RES_INF(fmt, ...) LOG_INF("res %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define RES_WRN(fmt, ...) LOG_WRN("res %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define RES_ERR(fmt, ...) LOG_ERR("res %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define RES_DBG(fmt, ...) LOG_DBG("res %12.*s: " fmt, 12, __func__, __VA_ARGS__)
//
// server_queue
//
int server_queue::post(server_task && task, bool front) {
std::unique_lock<std::mutex> lock(mutex_tasks);
GGML_ASSERT(task.id != -1);
// if this is cancel task make sure to clean up pending tasks
if (task.type == SERVER_TASK_TYPE_CANCEL) {
cleanup_pending_task(task.id_target);
}
const int task_id = task.id;
QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
if (front) {
queue_tasks.push_front(std::move(task));
} else {
queue_tasks.push_back(std::move(task));
}
condition_tasks.notify_one();
return task_id;
}
int server_queue::post(std::vector<server_task> && tasks, bool front) {
std::unique_lock<std::mutex> lock(mutex_tasks);
for (auto & task : tasks) {
if (task.id == -1) {
task.id = id++;
}
// if this is cancel task make sure to clean up pending tasks
if (task.type == SERVER_TASK_TYPE_CANCEL) {
cleanup_pending_task(task.id_target);
}
QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
if (front) {
queue_tasks.push_front(std::move(task));
} else {
queue_tasks.push_back(std::move(task));
}
}
condition_tasks.notify_one();
return 0;
}
void server_queue::defer(server_task && task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
QUE_DBG("defer task, id = %d\n", task.id);
queue_tasks_deferred.push_back(std::move(task));
condition_tasks.notify_one();
}
int server_queue::get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
int new_id = id++;
return new_id;
}
void server_queue::on_new_task(std::function<void(server_task &&)> callback) {
callback_new_task = std::move(callback);
}
void server_queue::on_update_slots(std::function<void(void)> callback) {
callback_update_slots = std::move(callback);
}
void server_queue::pop_deferred_task() {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (!queue_tasks_deferred.empty()) {
queue_tasks.emplace_front(std::move(queue_tasks_deferred.front()));
queue_tasks_deferred.pop_front();
}
condition_tasks.notify_one();
}
void server_queue::terminate() {
std::unique_lock<std::mutex> lock(mutex_tasks);
running = false;
condition_tasks.notify_all();
}
void server_queue::start_loop() {
running = true;
while (true) {
QUE_DBG("%s", "processing new tasks\n");
while (true) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (!running) {
QUE_DBG("%s", "terminate\n");
return;
}
if (queue_tasks.empty()) {
lock.unlock();
break;
}
server_task task = std::move(queue_tasks.front());
queue_tasks.pop_front();
lock.unlock();
QUE_DBG("processing task, id = %d\n", task.id);
callback_new_task(std::move(task));
}
// all tasks in the current loop is processed, slots data is now ready
QUE_DBG("%s", "update slots\n");
callback_update_slots();
QUE_DBG("%s", "waiting for new tasks\n");
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (!running) {
QUE_DBG("%s", "terminate\n");
return;
}
if (queue_tasks.empty()) {
condition_tasks.wait(lock, [&]{
return (!queue_tasks.empty() || !running);
});
}
}
}
}
void server_queue::cleanup_pending_task(int id_target) {
// no need lock because this is called exclusively by post()
auto rm_func = [id_target](const server_task & task) {
return task.id == id_target;
};
queue_tasks.erase(
std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
queue_tasks.end());
queue_tasks_deferred.erase(
std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
queue_tasks_deferred.end());
}
//
// server_response
//
void server_response::add_waiting_task_id(int id_task) {
RES_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(id_task);
}
void server_response::add_waiting_tasks(const std::vector<server_task> & tasks) {
std::unique_lock<std::mutex> lock(mutex_results);
for (const auto & task : tasks) {
RES_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
waiting_task_ids.insert(task.id);
}
}
void server_response::remove_waiting_task_id(int id_task) {
RES_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(id_task);
// make sure to clean up all pending results
queue_results.erase(
std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
return res->id == id_task;
}),
queue_results.end());
}
void server_response::remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
std::unique_lock<std::mutex> lock(mutex_results);
for (const auto & id_task : id_tasks) {
RES_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
waiting_task_ids.erase(id_task);
}
}
server_task_result_ptr server_response::recv(const std::unordered_set<int> & id_tasks) {
while (true) {
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
if (!running) {
RES_DBG("%s : queue result stop\n", __func__);
std::terminate(); // we cannot return here since the caller is HTTP code
}
return !queue_results.empty();
});
for (size_t i = 0; i < queue_results.size(); i++) {
if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
server_task_result_ptr res = std::move(queue_results[i]);
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
server_task_result_ptr server_response::recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
while (true) {
std::unique_lock<std::mutex> lock(mutex_results);
for (int i = 0; i < (int) queue_results.size(); i++) {
if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
server_task_result_ptr res = std::move(queue_results[i]);
queue_results.erase(queue_results.begin() + i);
return res;
}
}
std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
if (!running) {
RES_DBG("%s : queue result stop\n", __func__);
std::terminate(); // we cannot return here since the caller is HTTP code
}
if (cr_res == std::cv_status::timeout) {
return nullptr;
}
}
// should never reach here
}
server_task_result_ptr server_response::recv(int id_task) {
std::unordered_set<int> id_tasks = {id_task};
return recv(id_tasks);
}
void server_response::send(server_task_result_ptr && result) {
RES_DBG("sending result for task id = %d\n", result->id);
std::unique_lock<std::mutex> lock(mutex_results);
for (const auto & id_task : waiting_task_ids) {
if (result->id == id_task) {
RES_DBG("task id = %d pushed to result queue\n", result->id);
queue_results.emplace_back(std::move(result));
condition_results.notify_all();
return;
}
}
}
void server_response::terminate() {
running = false;
condition_results.notify_all();
}

110
tools/server/server-queue.h Normal file
View File

@ -0,0 +1,110 @@
#pragma once
#include "server-task.h"
#include <condition_variable>
#include <deque>
#include <mutex>
#include <unordered_set>
struct server_queue {
private:
int id = 0;
bool running;
// queues
std::deque<server_task> queue_tasks;
std::deque<server_task> queue_tasks_deferred;
std::mutex mutex_tasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(server_task &&)> callback_new_task;
std::function<void(void)> callback_update_slots;
public:
// Add a new task to the end of the queue
int post(server_task && task, bool front = false);
// multi-task version of post()
int post(std::vector<server_task> && tasks, bool front = false);
// Add a new task, but defer until one slot is available
void defer(server_task && task);
// Get the next id for creating a new task
int get_new_id();
// Register function to process a new task
void on_new_task(std::function<void(server_task &&)> callback);
// Register the function to be called when all slots data is ready to be processed
void on_update_slots(std::function<void(void)> callback);
// Call when the state of one slot is changed, it will move one task from deferred to main queue
void pop_deferred_task();
// end the start_loop routine
void terminate();
/**
* Main loop consists of these steps:
* - Wait until a new task arrives
* - Process the task (i.e. maybe copy data into slot)
* - Check if multitask is finished
* - Update all slots
*/
void start_loop();
// for metrics
size_t queue_tasks_deferred_size() {
std::unique_lock<std::mutex> lock(mutex_tasks);
return queue_tasks_deferred.size();
}
private:
void cleanup_pending_task(int id_target);
};
struct server_response {
private:
bool running = true;
// for keeping track of all tasks waiting for the result
std::unordered_set<int> waiting_task_ids;
// the main result queue (using ptr for polymorphism)
std::vector<server_task_result_ptr> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
public:
// add the id_task to the list of tasks waiting for response
void add_waiting_task_id(int id_task);
void add_waiting_tasks(const std::vector<server_task> & tasks);
// when the request is finished, we can remove task associated with it
void remove_waiting_task_id(int id_task);
// remove multiple tasks from waiting list
void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks);
// This function blocks the thread until there is a response for one of the id_tasks
server_task_result_ptr recv(const std::unordered_set<int> & id_tasks);
// same as recv(), but have timeout in seconds
// if timeout is reached, nullptr is returned
server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout);
// single-task version of recv()
server_task_result_ptr recv(int id_task);
// Send a new result to a waiting id_task
void send(server_task_result_ptr && result);
// terminate the waiting loop
void terminate();
};

1192
tools/server/server-task.cpp Normal file

File diff suppressed because it is too large Load Diff

453
tools/server/server-task.h Normal file
View File

@ -0,0 +1,453 @@
#pragma once
#include "common.h"
#include "llama.h"
#include <string>
#include <unordered_set>
#include <list>
// TODO: prevent including the whole server-common.h as we only use server_tokens
#include "server-common.h"
using json = nlohmann::ordered_json;
enum server_task_type {
SERVER_TASK_TYPE_COMPLETION,
SERVER_TASK_TYPE_EMBEDDING,
SERVER_TASK_TYPE_RERANK,
SERVER_TASK_TYPE_INFILL,
SERVER_TASK_TYPE_CANCEL,
SERVER_TASK_TYPE_NEXT_RESPONSE,
SERVER_TASK_TYPE_METRICS,
SERVER_TASK_TYPE_SLOT_SAVE,
SERVER_TASK_TYPE_SLOT_RESTORE,
SERVER_TASK_TYPE_SLOT_ERASE,
SERVER_TASK_TYPE_SET_LORA,
};
// TODO: change this to more generic "response_format" to replace the "format_response_*" in server-common
enum oaicompat_type {
OAICOMPAT_TYPE_NONE,
OAICOMPAT_TYPE_CHAT,
OAICOMPAT_TYPE_COMPLETION,
OAICOMPAT_TYPE_EMBEDDING,
};
enum stop_type {
STOP_TYPE_NONE,
STOP_TYPE_EOS,
STOP_TYPE_WORD,
STOP_TYPE_LIMIT,
};
struct task_params {
bool stream = true;
bool include_usage = false;
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
bool return_tokens = false;
bool return_progress = false;
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
int32_t n_predict = -1; // new tokens to predict
int32_t n_indent = 0; // minimum line indentation for the generated text in number of whitespace characters
int64_t t_max_prompt_ms = -1; // TODO: implement
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
std::vector<common_adapter_lora_info> lora;
std::vector<std::string> antiprompt;
std::vector<std::string> response_fields;
bool timings_per_token = false;
bool post_sampling_probs = false;
struct common_params_sampling sampling;
struct common_params_speculative speculative;
// OAI-compat fields
bool verbose = false;
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
common_chat_syntax oaicompat_chat_syntax;
// Embeddings
int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) const;
json to_json(bool only_metrics = false) const;
};
struct server_task {
int id = -1; // to be filled by server_queue
int index = -1; // used when there are multiple prompts (batch request)
// used by SERVER_TASK_TYPE_CANCEL
int id_target = -1;
int id_slot = -1;
// used by SERVER_TASK_TYPE_INFERENCE
task_params params;
server_tokens tokens;
server_task_type type;
// used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
struct slot_action {
int slot_id;
std::string filename;
std::string filepath;
};
slot_action slot_action;
// used by SERVER_TASK_TYPE_METRICS
bool metrics_reset_bucket = false;
// used by SERVER_TASK_TYPE_SET_LORA
std::vector<common_adapter_lora_info> set_lora;
server_task() = default;
server_task(server_task_type type) : type(type) {}
int32_t n_tokens() const {
return tokens.size();
}
static task_params params_from_json_cmpl(
const llama_context * ctx,
const common_params & params_base,
const json & data);
// utility function
static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
std::unordered_set<int> ids(tasks.size());
for (size_t i = 0; i < tasks.size(); i++) {
ids.insert(tasks[i].id);
}
return ids;
}
};
struct result_timings {
int32_t cache_n = -1;
int32_t prompt_n = -1;
double prompt_ms;
double prompt_per_token_ms;
double prompt_per_second;
int32_t predicted_n = -1;
double predicted_ms;
double predicted_per_token_ms;
double predicted_per_second;
// Optional speculative metrics - only included when > 0
int32_t draft_n = 0;
int32_t draft_n_accepted = 0;
json to_json() const;
};
struct result_prompt_progress {
int32_t total = 0;
int32_t cache = 0;
int32_t processed = 0;
int64_t time_ms = 0;
json to_json() const;
};
struct server_task_result {
int id = -1;
int id_slot = -1;
virtual bool is_error() {
// only used by server_task_result_error
return false;
}
virtual bool is_stop() {
// only used by server_task_result_cmpl_*
return true;
}
virtual int get_index() {
return -1;
}
virtual json to_json() = 0;
virtual ~server_task_result() = default;
};
// using shared_ptr for polymorphism of server_task_result
using server_task_result_ptr = std::unique_ptr<server_task_result>;
struct completion_token_output {
llama_token tok;
float prob;
std::string text_to_send;
struct prob_info {
llama_token tok;
std::string txt;
float prob;
};
std::vector<prob_info> probs;
json to_json(bool post_sampling_probs) const;
static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs);
static float logarithm(float x);
static std::vector<unsigned char> str_to_bytes(const std::string & str);
};
struct server_task_result_cmpl_final : server_task_result {
int index = 0;
std::string content;
llama_tokens tokens;
bool stream;
bool include_usage;
result_timings timings;
std::string prompt;
bool truncated;
int32_t n_decoded;
int32_t n_prompt_tokens;
int32_t n_tokens_cached;
bool has_new_line;
std::string stopping_word;
stop_type stop = STOP_TYPE_NONE;
bool post_sampling_probs;
std::vector<completion_token_output> probs_output;
std::vector<std::string> response_fields;
task_params generation_params;
// OAI-compat fields
bool verbose = false;
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
common_chat_msg oaicompat_msg;
std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
virtual int get_index() override {
return index;
}
virtual bool is_stop() override {
return true; // in stream mode, final responses are considered stop
}
virtual json to_json() override;
json to_json_non_oaicompat();
json to_json_oaicompat();
json to_json_oaicompat_chat();
json to_json_oaicompat_chat_stream();
};
struct server_task_result_cmpl_partial : server_task_result {
int index = 0;
std::string content;
llama_tokens tokens;
int32_t n_decoded;
int32_t n_prompt_tokens;
bool post_sampling_probs;
bool is_progress = false;
completion_token_output prob_output;
result_timings timings;
result_prompt_progress progress;
// OAI-compat fields
bool verbose = false;
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
virtual int get_index() override {
return index;
}
virtual bool is_stop() override {
return false; // in stream mode, partial responses are not considered stop
}
virtual json to_json() override;
json to_json_non_oaicompat();
json to_json_oaicompat();
json to_json_oaicompat_chat();
};
struct server_task_result_embd : server_task_result {
int index = 0;
std::vector<std::vector<float>> embedding;
int32_t n_tokens;
// OAI-compat fields
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
virtual int get_index() override {
return index;
}
virtual json to_json() override;
json to_json_non_oaicompat();
json to_json_oaicompat();
};
struct server_task_result_rerank : server_task_result {
int index = 0;
float score = -1e6;
int32_t n_tokens;
virtual int get_index() override {
return index;
}
virtual json to_json() override;
};
struct server_task_result_error : server_task_result {
int index = 0;
error_type err_type = ERROR_TYPE_SERVER;
std::string err_msg;
// for ERROR_TYPE_EXCEED_CONTEXT_SIZE
int32_t n_prompt_tokens = 0;
int32_t n_ctx = 0;
virtual bool is_error() override {
return true;
}
virtual json to_json() override;
};
struct server_task_result_metrics : server_task_result {
int n_idle_slots;
int n_processing_slots;
int n_tasks_deferred;
int64_t t_start;
// TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
uint64_t n_prompt_tokens_processed_total = 0;
uint64_t t_prompt_processing_total = 0;
uint64_t n_tokens_predicted_total = 0;
uint64_t t_tokens_generation_total = 0;
uint64_t n_tokens_max = 0;
uint64_t n_prompt_tokens_processed = 0;
uint64_t t_prompt_processing = 0;
uint64_t n_tokens_predicted = 0;
uint64_t t_tokens_generation = 0;
uint64_t n_decode_total = 0;
uint64_t n_busy_slots_total = 0;
// while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
// therefore, we use json to temporarily store the slot.to_json() result
json slots_data = json::array();
virtual json to_json() override;
};
struct server_task_result_slot_save_load : server_task_result {
std::string filename;
bool is_save; // true = save, false = load
size_t n_tokens;
size_t n_bytes;
double t_ms;
virtual json to_json() override;
};
struct server_task_result_slot_erase : server_task_result {
size_t n_erased;
virtual json to_json() override;
};
struct server_task_result_apply_lora : server_task_result {
virtual json to_json() override;
};
struct server_prompt_checkpoint {
llama_pos pos_min;
llama_pos pos_max;
std::vector<uint8_t> data;
size_t size() const {
return data.size();
}
};
struct server_prompt {
server_tokens tokens;
std::vector<uint8_t> data;
std::list<server_prompt_checkpoint> checkpoints;
size_t size() const {
size_t res = data.size();
for (const auto & checkpoint : checkpoints) {
res += checkpoint.size();
}
return res;
}
int n_tokens() const {
return tokens.size();
}
};
struct server_prompt_cache {
server_prompt_cache(int32_t limit_size_mib, size_t limit_tokens) {
this->limit_size = 1024ull*1024ull*(limit_size_mib < 0 ? 0 : limit_size_mib);
this->limit_tokens = limit_tokens;
}
std::list<server_prompt> states;
// in bytes, 0 = no limit
size_t limit_size = 0;
// in tokens, 0 = no limit
size_t limit_tokens = 0;
size_t size() const;
size_t n_tokens() const;
server_prompt * alloc(const server_prompt & prompt, size_t state_size);
bool load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot);
void update();
};

File diff suppressed because it is too large Load Diff

View File

@ -29,6 +29,7 @@
sendMessage, sendMessage,
stopGeneration stopGeneration
} from '$lib/stores/chat.svelte'; } from '$lib/stores/chat.svelte';
import { config } from '$lib/stores/settings.svelte';
import { import {
supportsVision, supportsVision,
supportsAudio, supportsAudio,
@ -47,6 +48,7 @@
let { showCenteredEmpty = false } = $props(); let { showCenteredEmpty = false } = $props();
let disableAutoScroll = $derived(Boolean(config().disableAutoScroll));
let autoScrollEnabled = $state(true); let autoScrollEnabled = $state(true);
let chatScrollContainer: HTMLDivElement | undefined = $state(); let chatScrollContainer: HTMLDivElement | undefined = $state();
let dragCounter = $state(0); let dragCounter = $state(0);
@ -149,7 +151,7 @@
} }
function handleScroll() { function handleScroll() {
if (!chatScrollContainer) return; if (disableAutoScroll || !chatScrollContainer) return;
const { scrollTop, scrollHeight, clientHeight } = chatScrollContainer; const { scrollTop, scrollHeight, clientHeight } = chatScrollContainer;
const distanceFromBottom = scrollHeight - scrollTop - clientHeight; const distanceFromBottom = scrollHeight - scrollTop - clientHeight;
@ -194,8 +196,10 @@
const extras = result?.extras; const extras = result?.extras;
// Enable autoscroll for user-initiated message sending // Enable autoscroll for user-initiated message sending
userScrolledUp = false; if (!disableAutoScroll) {
autoScrollEnabled = true; userScrolledUp = false;
autoScrollEnabled = true;
}
await sendMessage(message, extras); await sendMessage(message, extras);
scrollChatToBottom(); scrollChatToBottom();
@ -241,6 +245,8 @@
} }
function scrollChatToBottom(behavior: ScrollBehavior = 'smooth') { function scrollChatToBottom(behavior: ScrollBehavior = 'smooth') {
if (disableAutoScroll) return;
chatScrollContainer?.scrollTo({ chatScrollContainer?.scrollTo({
top: chatScrollContainer?.scrollHeight, top: chatScrollContainer?.scrollHeight,
behavior behavior
@ -248,14 +254,27 @@
} }
afterNavigate(() => { afterNavigate(() => {
setTimeout(() => scrollChatToBottom('instant'), INITIAL_SCROLL_DELAY); if (!disableAutoScroll) {
setTimeout(() => scrollChatToBottom('instant'), INITIAL_SCROLL_DELAY);
}
}); });
onMount(() => { onMount(() => {
setTimeout(() => scrollChatToBottom('instant'), INITIAL_SCROLL_DELAY); if (!disableAutoScroll) {
setTimeout(() => scrollChatToBottom('instant'), INITIAL_SCROLL_DELAY);
}
}); });
$effect(() => { $effect(() => {
if (disableAutoScroll) {
autoScrollEnabled = false;
if (scrollInterval) {
clearInterval(scrollInterval);
scrollInterval = undefined;
}
return;
}
if (isCurrentConversationLoading && autoScrollEnabled) { if (isCurrentConversationLoading && autoScrollEnabled) {
scrollInterval = setInterval(scrollChatToBottom, AUTO_SCROLL_INTERVAL); scrollInterval = setInterval(scrollChatToBottom, AUTO_SCROLL_INTERVAL);
} else if (scrollInterval) { } else if (scrollInterval) {
@ -289,9 +308,11 @@
class="mb-16 md:mb-24" class="mb-16 md:mb-24"
messages={activeMessages()} messages={activeMessages()}
onUserAction={() => { onUserAction={() => {
userScrolledUp = false; if (!disableAutoScroll) {
autoScrollEnabled = true; userScrolledUp = false;
scrollChatToBottom(); autoScrollEnabled = true;
scrollChatToBottom();
}
}} }}
/> />

View File

@ -3,7 +3,6 @@
Settings, Settings,
Funnel, Funnel,
AlertTriangle, AlertTriangle,
Brain,
Code, Code,
Monitor, Monitor,
Sun, Sun,
@ -58,6 +57,33 @@
label: 'Paste long text to file length', label: 'Paste long text to file length',
type: 'input' type: 'input'
}, },
{
key: 'enableContinueGeneration',
label: 'Enable "Continue" button',
type: 'checkbox',
isExperimental: true
},
{
key: 'pdfAsImage',
label: 'Parse PDF as image',
type: 'checkbox'
},
{
key: 'askForTitleConfirmation',
label: 'Ask for confirmation before changing conversation title',
type: 'checkbox'
}
]
},
{
title: 'Display',
icon: Monitor,
fields: [
{
key: 'showThoughtInProgress',
label: 'Show thought in progress',
type: 'checkbox'
},
{ {
key: 'showMessageStats', key: 'showMessageStats',
label: 'Show message generation statistics', label: 'Show message generation statistics',
@ -79,25 +105,14 @@
type: 'checkbox' type: 'checkbox'
}, },
{ {
key: 'enableContinueGeneration', key: 'disableAutoScroll',
label: 'Enable "Continue" button', label: 'Disable automatic scroll',
type: 'checkbox',
isExperimental: true
},
{
key: 'pdfAsImage',
label: 'Parse PDF as image',
type: 'checkbox' type: 'checkbox'
}, },
{ {
key: 'renderUserContentAsMarkdown', key: 'renderUserContentAsMarkdown',
label: 'Render user content as Markdown', label: 'Render user content as Markdown',
type: 'checkbox' type: 'checkbox'
},
{
key: 'askForTitleConfirmation',
label: 'Ask for confirmation before changing conversation title',
type: 'checkbox'
} }
] ]
}, },
@ -208,17 +223,6 @@
} }
] ]
}, },
{
title: 'Reasoning',
icon: Brain,
fields: [
{
key: 'showThoughtInProgress',
label: 'Show thought in progress',
type: 'checkbox'
}
]
},
{ {
title: 'Import/Export', title: 'Import/Export',
icon: Database, icon: Database,

View File

@ -8,6 +8,7 @@
import rehypeKatex from 'rehype-katex'; import rehypeKatex from 'rehype-katex';
import rehypeStringify from 'rehype-stringify'; import rehypeStringify from 'rehype-stringify';
import { copyCodeToClipboard } from '$lib/utils/copy'; import { copyCodeToClipboard } from '$lib/utils/copy';
import { rehypeRestoreTableHtml } from '$lib/markdown/table-html-restorer';
import { preprocessLaTeX } from '$lib/utils/latex-protection'; import { preprocessLaTeX } from '$lib/utils/latex-protection';
import { browser } from '$app/environment'; import { browser } from '$app/environment';
import '$styles/katex-custom.scss'; import '$styles/katex-custom.scss';
@ -60,6 +61,7 @@
.use(remarkRehype) // Convert Markdown AST to rehype .use(remarkRehype) // Convert Markdown AST to rehype
.use(rehypeKatex) // Render math using KaTeX .use(rehypeKatex) // Render math using KaTeX
.use(rehypeHighlight) // Add syntax highlighting .use(rehypeHighlight) // Add syntax highlighting
.use(rehypeRestoreTableHtml) // Restore limited HTML (e.g., <br>, <ul>) inside Markdown tables
.use(rehypeStringify); // Convert to HTML string .use(rehypeStringify); // Convert to HTML string
}); });

View File

@ -14,6 +14,7 @@ export const SETTING_CONFIG_DEFAULT: Record<string, string | number | boolean> =
pasteLongTextToFileLen: 2500, pasteLongTextToFileLen: 2500,
pdfAsImage: false, pdfAsImage: false,
showModelInfo: false, showModelInfo: false,
disableAutoScroll: false,
renderUserContentAsMarkdown: false, renderUserContentAsMarkdown: false,
modelSelectorEnabled: false, modelSelectorEnabled: false,
// make sure these default values are in sync with `common.h` // make sure these default values are in sync with `common.h`
@ -93,6 +94,8 @@ export const SETTING_CONFIG_INFO: Record<string, string> = {
'Ask for confirmation before automatically changing conversation title when editing the first message.', 'Ask for confirmation before automatically changing conversation title when editing the first message.',
pdfAsImage: 'Parse PDF as image instead of text (requires vision-capable model).', pdfAsImage: 'Parse PDF as image instead of text (requires vision-capable model).',
showModelInfo: 'Display the model name used to generate each message below the message content.', showModelInfo: 'Display the model name used to generate each message below the message content.',
disableAutoScroll:
'Disable automatic scrolling while messages stream so you can control the viewport position manually.',
renderUserContentAsMarkdown: 'Render user messages using markdown formatting in the chat.', renderUserContentAsMarkdown: 'Render user messages using markdown formatting in the chat.',
modelSelectorEnabled: modelSelectorEnabled:
'Enable the model selector in the chat input to choose the inference model. Sends the associated model field in API requests.', 'Enable the model selector in the chat input to choose the inference model. Sends the associated model field in API requests.',

View File

@ -0,0 +1,20 @@
/**
* Matches <br>, <br/>, <br /> tags (case-insensitive).
* Used to detect line breaks in table cell text content.
*/
export const BR_PATTERN = /<br\s*\/?\s*>/gi;
/**
* Matches a complete <ul>...</ul> block.
* Captures the inner content (group 1) for further <li> extraction.
* Case-insensitive, allows multiline content.
*/
export const LIST_PATTERN = /^<ul>([\s\S]*)<\/ul>$/i;
/**
* Matches individual <li>...</li> elements within a list.
* Captures the inner content (group 1) of each list item.
* Non-greedy to handle multiple consecutive items.
* Case-insensitive, allows multiline content.
*/
export const LI_PATTERN = /<li>([\s\S]*?)<\/li>/gi;

View File

@ -0,0 +1,181 @@
/**
* Rehype plugin to restore limited HTML elements inside Markdown table cells.
*
* ## Problem
* The remark/rehype pipeline neutralizes inline HTML as literal text
* (remarkLiteralHtml) so that XML/HTML snippets in LLM responses display
* as-is instead of being rendered. This causes <br> and <ul> markup in
* table cells to show as plain text.
*
* ## Solution
* This plugin traverses the HAST post-conversion, parses whitelisted HTML
* patterns from text nodes, and replaces them with actual HAST element nodes
* that will be rendered as real HTML.
*
* ## Supported HTML
* - `<br>` / `<br/>` / `<br />` - Line breaks (inline)
* - `<ul><li>...</li></ul>` - Unordered lists (block)
*
* ## Key Implementation Details
*
* ### 1. Sibling Combination (Critical)
* The Markdown pipeline may fragment content across multiple text nodes and `<br>`
* elements. For example, `<ul><li>a</li></ul>` might arrive as:
* - Text: `"<ul>"`
* - Element: `<br>`
* - Text: `"<li>a</li></ul>"`
*
* We must combine consecutive text nodes and `<br>` elements into a single string
* before attempting to parse list markup. Without this, list detection fails.
*
* ### 2. visitParents for Deep Traversal
* Table cell content may be wrapped in intermediate elements (e.g., `<p>` tags).
* Using `visitParents` instead of direct child iteration ensures we find text
* nodes at any depth within the cell.
*
* ### 3. Reference Comparison for No-Op Detection
* When checking if `<br>` expansion changed anything, we compare:
* `expanded.length !== 1 || expanded[0] !== textNode`
*
* This catches both cases:
* - Multiple nodes created (text was split)
* - Single NEW node created (original had only `<br>`, now it's an element)
*
* A simple `length > 1` check would miss the single `<br>` case.
*
* ### 4. Strict List Validation
* `parseList()` rejects malformed markup by checking for garbage text between
* `<li>` elements. This prevents creating broken DOM from partial matches like
* `<ul>garbage<li>a</li></ul>`.
*
* ### 5. Newline Substitution for `<br>` in Combined String
* When combining siblings, existing `<br>` elements become `\n` in the combined
* string. This allows list content to span visual lines while still being parsed
* as a single unit.
*
* @example
* // Input Markdown:
* // | Feature | Notes |
* // |---------|-------|
* // | Multi-line | First<br>Second |
* // | List | <ul><li>A</li><li>B</li></ul> |
* //
* // Without this plugin: <br> and <ul> render as literal text
* // With this plugin: <br> becomes line break, <ul> becomes actual list
*/
import type { Plugin } from 'unified';
import type { Element, ElementContent, Root, Text } from 'hast';
import { visit } from 'unist-util-visit';
import { visitParents } from 'unist-util-visit-parents';
import { BR_PATTERN, LIST_PATTERN, LI_PATTERN } from '$lib/constants/table-html-restorer';
/**
* Expands text containing `<br>` tags into an array of text nodes and br elements.
*/
function expandBrTags(value: string): ElementContent[] {
const matches = [...value.matchAll(BR_PATTERN)];
if (!matches.length) return [{ type: 'text', value } as Text];
const result: ElementContent[] = [];
let cursor = 0;
for (const m of matches) {
if (m.index! > cursor) {
result.push({ type: 'text', value: value.slice(cursor, m.index) } as Text);
}
result.push({ type: 'element', tagName: 'br', properties: {}, children: [] } as Element);
cursor = m.index! + m[0].length;
}
if (cursor < value.length) {
result.push({ type: 'text', value: value.slice(cursor) } as Text);
}
return result;
}
/**
* Parses a `<ul><li>...</li></ul>` string into a HAST element.
* Returns null if the markup is malformed or contains unexpected content.
*/
function parseList(value: string): Element | null {
const match = value.trim().match(LIST_PATTERN);
if (!match) return null;
const body = match[1];
const items: ElementContent[] = [];
let cursor = 0;
for (const liMatch of body.matchAll(LI_PATTERN)) {
// Reject if there's non-whitespace between list items
if (body.slice(cursor, liMatch.index!).trim()) return null;
items.push({
type: 'element',
tagName: 'li',
properties: {},
children: expandBrTags(liMatch[1] ?? '')
} as Element);
cursor = liMatch.index! + liMatch[0].length;
}
// Reject if no items found or trailing garbage exists
if (!items.length || body.slice(cursor).trim()) return null;
return { type: 'element', tagName: 'ul', properties: {}, children: items } as Element;
}
/**
* Processes a single table cell, restoring HTML elements from text content.
*/
function processCell(cell: Element) {
visitParents(cell, 'text', (textNode: Text, ancestors) => {
const parent = ancestors[ancestors.length - 1];
if (!parent || parent.type !== 'element') return;
const parentEl = parent as Element;
const siblings = parentEl.children as ElementContent[];
const startIndex = siblings.indexOf(textNode as ElementContent);
if (startIndex === -1) return;
// Combine consecutive text nodes and <br> elements into one string
let combined = '';
let endIndex = startIndex;
for (let i = startIndex; i < siblings.length; i++) {
const sib = siblings[i];
if (sib.type === 'text') {
combined += (sib as Text).value;
endIndex = i;
} else if (sib.type === 'element' && (sib as Element).tagName === 'br') {
combined += '\n';
endIndex = i;
} else {
break;
}
}
// Try parsing as list first (replaces entire combined range)
const list = parseList(combined);
if (list) {
siblings.splice(startIndex, endIndex - startIndex + 1, list);
return;
}
// Otherwise, just expand <br> tags in this text node
const expanded = expandBrTags(textNode.value);
if (expanded.length !== 1 || expanded[0] !== textNode) {
siblings.splice(startIndex, 1, ...expanded);
}
});
}
export const rehypeRestoreTableHtml: Plugin<[], Root> = () => (tree) => {
visit(tree, 'element', (node: Element) => {
if (node.tagName === 'td' || node.tagName === 'th') {
processCell(node);
}
});
};

View File

@ -22,7 +22,38 @@ target_compile_definitions(${TARGET} PRIVATE
CPPHTTPLIB_TCP_NODELAY=1 CPPHTTPLIB_TCP_NODELAY=1
) )
if (LLAMA_OPENSSL) if (LLAMA_BUILD_BORINGSSL)
set(OPENSSL_NO_ASM ON CACHE BOOL "Disable OpenSSL ASM code (BoringSSL)")
set(FIPS OFF CACHE BOOL "Enable FIPS (BoringSSL)")
set(BORINGSSL_GIT "https://boringssl.googlesource.com/boringssl" CACHE STRING "BoringSSL git repository")
set(BORINGSSL_VERSION "0.20251002.0" CACHE STRING "BoringSSL version")
message(STATUS "Fetching BoringSSL version ${BORINGSSL_VERSION}")
include(FetchContent)
FetchContent_Declare(
boringssl
GIT_REPOSITORY ${BORINGSSL_GIT}
GIT_TAG ${BORINGSSL_VERSION}
PATCH_COMMAND ${CMAKE_COMMAND} -P "${CMAKE_CURRENT_SOURCE_DIR}/patch-boringssl.cmake"
)
set(SAVED_BUILD_SHARED_LIBS ${BUILD_SHARED_LIBS})
set(SAVED_BUILD_TESTING ${BUILD_TESTING})
set(BUILD_SHARED_LIBS OFF)
set(BUILD_TESTING OFF)
FetchContent_MakeAvailable(boringssl)
set(BUILD_SHARED_LIBS ${SAVED_BUILD_SHARED_LIBS})
set(BUILD_TESTING ${SAVED_BUILD_TESTING})
set(CPPHTTPLIB_OPENSSL_SUPPORT TRUE)
target_link_libraries(${TARGET} PUBLIC ssl crypto)
elseif (LLAMA_OPENSSL)
find_package(OpenSSL) find_package(OpenSSL)
if (OpenSSL_FOUND) if (OpenSSL_FOUND)
include(CheckCSourceCompiles) include(CheckCSourceCompiles)
@ -44,17 +75,20 @@ if (LLAMA_OPENSSL)
set(CMAKE_REQUIRED_INCLUDES ${SAVED_CMAKE_REQUIRED_INCLUDES}) set(CMAKE_REQUIRED_INCLUDES ${SAVED_CMAKE_REQUIRED_INCLUDES})
if (OPENSSL_VERSION_SUPPORTED) if (OPENSSL_VERSION_SUPPORTED)
message(STATUS "OpenSSL found: ${OPENSSL_VERSION}") message(STATUS "OpenSSL found: ${OPENSSL_VERSION}")
target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_OPENSSL_SUPPORT) set(CPPHTTPLIB_OPENSSL_SUPPORT TRUE)
target_link_libraries(${TARGET} PUBLIC OpenSSL::SSL OpenSSL::Crypto) target_link_libraries(${TARGET} PUBLIC OpenSSL::SSL OpenSSL::Crypto)
if (APPLE AND CMAKE_SYSTEM_NAME STREQUAL "Darwin")
target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_USE_CERTS_FROM_MACOSX_KEYCHAIN)
find_library(CORE_FOUNDATION_FRAMEWORK CoreFoundation REQUIRED)
find_library(SECURITY_FRAMEWORK Security REQUIRED)
target_link_libraries(${TARGET} PUBLIC ${CORE_FOUNDATION_FRAMEWORK} ${SECURITY_FRAMEWORK})
endif()
endif() endif()
else() else()
message(STATUS "OpenSSL not found, SSL support disabled") message(STATUS "OpenSSL not found, SSL support disabled")
endif() endif()
endif() endif()
if (CPPHTTPLIB_OPENSSL_SUPPORT)
target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_OPENSSL_SUPPORT) # used in server.cpp
if (APPLE AND CMAKE_SYSTEM_NAME STREQUAL "Darwin")
target_compile_definitions(${TARGET} PRIVATE CPPHTTPLIB_USE_CERTS_FROM_MACOSX_KEYCHAIN)
find_library(CORE_FOUNDATION_FRAMEWORK CoreFoundation REQUIRED)
find_library(SECURITY_FRAMEWORK Security REQUIRED)
target_link_libraries(${TARGET} PUBLIC ${CORE_FOUNDATION_FRAMEWORK} ${SECURITY_FRAMEWORK})
endif()
endif()

View File

@ -0,0 +1,6 @@
# Remove bssl
file(READ "CMakeLists.txt" content)
string(REPLACE "add_executable(bssl" "#add_executable(bssl" content "${content}")
string(REPLACE "target_link_libraries(bssl" "#target_link_libraries(bssl" content "${content}")
string(REPLACE "install(TARGETS bssl" "#install(TARGETS bssl" content "${content}")
file(WRITE "CMakeLists.txt" "${content}")