Merge branch 'master' into dev-refactoring
This commit is contained in:
commit
aca70692d3
|
|
@ -14,9 +14,9 @@ WORKDIR /app
|
|||
COPY . .
|
||||
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
elif [ "$TARGETARCH" = "arm64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_TESTS=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
else \
|
||||
echo "Unsupported architecture"; \
|
||||
exit 1; \
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ COPY . .
|
|||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_BUILD_TESTS=OFF ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
|||
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
echo "Building with dynamic libs" && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${OPT_SYCL_F16} && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_BUILD_TESTS=OFF ${OPT_SYCL_F16} && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
|
|||
|
||||
RUN echo "Building with static libs" && \
|
||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF -DLLAMA_BUILD_TESTS=OFF && \
|
||||
cmake --build build --config Release --target llama-cli
|
||||
|
||||
# TODO: use image with NNRT
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ COPY . .
|
|||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
|
|
|||
|
|
@ -40,7 +40,7 @@ WORKDIR /app
|
|||
COPY . .
|
||||
|
||||
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_BUILD_TESTS=OFF \
|
||||
&& cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib \
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@ WORKDIR /app
|
|||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
|
|
|||
|
|
@ -21,15 +21,15 @@ indent_style = tab
|
|||
[prompts/*.txt]
|
||||
insert_final_newline = unset
|
||||
|
||||
[examples/server/public/*]
|
||||
[tools/server/public/*]
|
||||
indent_size = 2
|
||||
|
||||
[examples/server/public/deps_*]
|
||||
[tools/server/public/deps_*]
|
||||
trim_trailing_whitespace = unset
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
|
||||
[examples/server/deps_*]
|
||||
[tools/server/deps_*]
|
||||
trim_trailing_whitespace = unset
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
|
|
@ -37,7 +37,7 @@ indent_size = unset
|
|||
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
|
||||
indent_style = tab
|
||||
|
||||
[examples/cvector-generator/*.txt]
|
||||
[tools/cvector-generator/*.txt]
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
|
|
|
|||
3
.flake8
3
.flake8
|
|
@ -2,8 +2,9 @@
|
|||
max-line-length = 125
|
||||
ignore = E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503
|
||||
exclude =
|
||||
# Do not traverse examples
|
||||
# Do not traverse examples and tools
|
||||
examples,
|
||||
tools,
|
||||
# Do not include package initializers
|
||||
__init__.py,
|
||||
# No need to traverse our git directory
|
||||
|
|
|
|||
|
|
@ -45,7 +45,9 @@ build:
|
|||
- CMakePresets.json
|
||||
examples:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: examples/**
|
||||
- any-glob-to-any-file:
|
||||
- examples/**
|
||||
- tools/**
|
||||
devops:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
|
@ -70,7 +72,7 @@ android:
|
|||
server:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- examples/server/**
|
||||
- tools/server/**
|
||||
ggml:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
|
|
|||
|
|
@ -27,10 +27,10 @@ on:
|
|||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'tools/server/*.h*', 'tools/server/*.cpp']
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'tools/server/*.h*', 'tools/server/*.cpp']
|
||||
schedule:
|
||||
- cron: '04 2 * * *'
|
||||
|
||||
|
|
@ -69,7 +69,7 @@ jobs:
|
|||
- name: Install python env
|
||||
id: pipenv
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
python3 -m venv venv
|
||||
source venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
|
|
@ -79,7 +79,7 @@ jobs:
|
|||
run: |
|
||||
wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
|
||||
tar xzf prometheus*.tar.gz --strip-components=1
|
||||
./prometheus --config.file=examples/server/bench/prometheus.yml &
|
||||
./prometheus --config.file=tools/server/bench/prometheus.yml &
|
||||
while ! nc -z localhost 9090; do
|
||||
sleep 0.1
|
||||
done
|
||||
|
|
@ -92,7 +92,7 @@ jobs:
|
|||
- name: Install k6 and xk6-sse
|
||||
id: k6_installation
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
go install go.k6.io/xk6/cmd/xk6@latest
|
||||
xk6 build master \
|
||||
--with github.com/phymbert/xk6-sse
|
||||
|
|
@ -116,7 +116,7 @@ jobs:
|
|||
- name: Download the dataset
|
||||
id: download_dataset
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
- name: Server bench
|
||||
|
|
@ -126,7 +126,7 @@ jobs:
|
|||
run: |
|
||||
set -eux
|
||||
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
source venv/bin/activate
|
||||
python bench.py \
|
||||
--runner-label ${{ env.RUNNER_LABEL }} \
|
||||
|
|
@ -157,9 +157,9 @@ jobs:
|
|||
name: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
|
||||
compression-level: 9
|
||||
path: |
|
||||
examples/server/bench/*.jpg
|
||||
examples/server/bench/*.json
|
||||
examples/server/bench/*.log
|
||||
tools/server/bench/*.jpg
|
||||
tools/server/bench/*.json
|
||||
tools/server/bench/*.log
|
||||
|
||||
- name: Commit status
|
||||
uses: Sibz/github-status-action@v1
|
||||
|
|
@ -178,17 +178,17 @@ jobs:
|
|||
with:
|
||||
client_id: ${{secrets.IMGUR_CLIENT_ID}}
|
||||
path: |
|
||||
examples/server/bench/prompt_tokens_seconds.jpg
|
||||
examples/server/bench/predicted_tokens_seconds.jpg
|
||||
examples/server/bench/kv_cache_usage_ratio.jpg
|
||||
examples/server/bench/requests_processing.jpg
|
||||
tools/server/bench/prompt_tokens_seconds.jpg
|
||||
tools/server/bench/predicted_tokens_seconds.jpg
|
||||
tools/server/bench/kv_cache_usage_ratio.jpg
|
||||
tools/server/bench/requests_processing.jpg
|
||||
|
||||
- name: Extract mermaid
|
||||
id: set_mermaid
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
|
||||
echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
|
||||
echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV
|
||||
|
|
|
|||
|
|
@ -4,18 +4,25 @@ on:
|
|||
workflow_call:
|
||||
|
||||
jobs:
|
||||
ubuntu-latest-riscv64-cpu-cross:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-24-riscv64-cpu-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
|
|
@ -27,6 +34,7 @@ jobs:
|
|||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
|
|
@ -40,21 +48,25 @@ jobs:
|
|||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-riscv64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-24-riscv64-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
|
|
@ -69,6 +81,7 @@ jobs:
|
|||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
|
|
@ -82,21 +95,25 @@ jobs:
|
|||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-arm64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-24-arm64-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Arm64
|
||||
run: |
|
||||
sudo dpkg --add-architecture arm64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
|
|
@ -110,6 +127,7 @@ jobs:
|
|||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
|
||||
|
|
|
|||
|
|
@ -601,9 +601,8 @@ jobs:
|
|||
-DGGML_SYCL_F16=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
# Disabled for now due to sporadic issue syncing.
|
||||
# build-linux-cross:
|
||||
# uses: ./.github/workflows/build-linux-cross.yml
|
||||
build-linux-cross:
|
||||
uses: ./.github/workflows/build-linux-cross.yml
|
||||
|
||||
macOS-latest-cmake-ios:
|
||||
runs-on: macos-latest
|
||||
|
|
@ -634,6 +633,7 @@ jobs:
|
|||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
|
|
@ -670,6 +670,7 @@ jobs:
|
|||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||
|
|
@ -700,6 +701,7 @@ jobs:
|
|||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=visionOS \
|
||||
|
|
@ -740,6 +742,7 @@ jobs:
|
|||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64"
|
||||
|
|
@ -768,7 +771,7 @@ jobs:
|
|||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-msys2
|
||||
variant: sccache
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Setup ${{ matrix.sys }}
|
||||
|
|
@ -811,26 +814,18 @@ jobs:
|
|||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'noavx-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF'
|
||||
- build: 'avx2-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON'
|
||||
- build: 'avx-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX2=OFF'
|
||||
- build: 'avx512-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX512=ON'
|
||||
- build: 'cpu-x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
|
||||
- build: 'openblas-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'kompute-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'vulkan-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_VULKAN=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
|
||||
- build: 'llvm-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
|
||||
- build: 'msvc-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
|
||||
- build: 'llvm-arm64-opencl-adreno'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
|
||||
# - build: 'kompute-x64'
|
||||
# defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
|
@ -843,7 +838,7 @@ jobs:
|
|||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-${{ matrix.build }}
|
||||
variant: sccache
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Clone Kompute submodule
|
||||
|
|
@ -919,39 +914,26 @@ jobs:
|
|||
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
|
||||
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
|
||||
|
||||
- name: Check AVX512F support
|
||||
id: check_avx512f
|
||||
if: ${{ matrix.build == 'avx512-x64' }}
|
||||
continue-on-error: true
|
||||
run: |
|
||||
cd build
|
||||
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
|
||||
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
|
||||
$cl = $(join-path $msvc 'bin\Hostx64\x64\cl.exe')
|
||||
echo 'int main(void){unsigned int a[4];__cpuid(a,7);return !(a[1]&65536);}' >> avx512f.c
|
||||
& $cl /O2 /GS- /kernel avx512f.c /link /nodefaultlib /entry:main
|
||||
.\avx512f.exe && echo "AVX512F: YES" && ( echo HAS_AVX512F=1 >> $env:GITHUB_ENV ) || echo "AVX512F: NO"
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
# not all machines have native AVX-512
|
||||
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
|
||||
if: ${{ matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' }}
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main -C Release --verbose --timeout 900
|
||||
|
||||
- name: Test (Intel SDE)
|
||||
id: cmake_test_sde
|
||||
if: ${{ matrix.build == 'avx512-x64' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz"
|
||||
# for some weird reason windows tar doesn't like sde tar.xz
|
||||
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz
|
||||
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar
|
||||
$sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe)
|
||||
cd build
|
||||
$env:LLAMA_SKIP_TESTS_SLOW_ON_EMULATOR = 1
|
||||
& $sde -future -- ctest -L main -C Release --verbose --timeout 900
|
||||
# TODO: disabled for now, consider adding tests for all CPU variants instead
|
||||
# - name: Test (Intel SDE)
|
||||
# id: cmake_test_sde
|
||||
# if: ${{ matrix.build == 'avx512-x64' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
|
||||
# run: |
|
||||
# curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz"
|
||||
# # for some weird reason windows tar doesn't like sde tar.xz
|
||||
# 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz
|
||||
# 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar
|
||||
# $sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe)
|
||||
# cd build
|
||||
# $env:LLAMA_SKIP_TESTS_SLOW_ON_EMULATOR = 1
|
||||
# & $sde -future -- ctest -L main -C Release --verbose --timeout 900
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
|
|
@ -1036,7 +1018,7 @@ jobs:
|
|||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ${{ github.job }}-${{ matrix.cuda }}-${{ matrix.build }}
|
||||
variant: sccache
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Install Cuda Toolkit 11.7
|
||||
|
|
@ -1114,6 +1096,8 @@ jobs:
|
|||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DLLAMA_BUILD_SERVER=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_BACKEND_DL=ON ^
|
||||
-DGGML_CPU_ALL_VARIANTS=ON ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DGGML_RPC=ON ^
|
||||
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
|
||||
|
|
@ -1188,7 +1172,7 @@ jobs:
|
|||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-sycl
|
||||
variant: sccache
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Install
|
||||
|
|
@ -1418,6 +1402,7 @@ jobs:
|
|||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
|
|
|
|||
|
|
@ -15,10 +15,10 @@ on:
|
|||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
|
||||
|
||||
env:
|
||||
LLAMA_LOG_COLORS: 1
|
||||
|
|
@ -74,7 +74,7 @@ jobs:
|
|||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
pip install -r tools/server/tests/requirements.txt
|
||||
|
||||
# Setup nodejs (to be used for verifying bundled index.html)
|
||||
- uses: actions/setup-node@v4
|
||||
|
|
@ -84,14 +84,14 @@ jobs:
|
|||
- name: WebUI - Install dependencies
|
||||
id: webui_lint
|
||||
run: |
|
||||
cd examples/server/webui
|
||||
cd tools/server/webui
|
||||
npm ci
|
||||
|
||||
- name: WebUI - Check code format
|
||||
id: webui_format
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server/webui
|
||||
cd tools/server/webui
|
||||
git status
|
||||
|
||||
npm run format
|
||||
|
|
@ -108,7 +108,7 @@ jobs:
|
|||
id: verify_server_index_html
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server/webui
|
||||
cd tools/server/webui
|
||||
git status
|
||||
|
||||
npm run build
|
||||
|
|
@ -161,21 +161,21 @@ jobs:
|
|||
env:
|
||||
GITHUB_ACTIONS: "true"
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
./tests.sh
|
||||
|
||||
- name: Tests (sanitizers)
|
||||
id: server_integration_tests_sanitizers
|
||||
if: ${{ matrix.sanitizer != '' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
LLAMA_SANITIZE=1 ./tests.sh
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
SLOW_TESTS=1 ./tests.sh
|
||||
|
||||
|
||||
|
|
@ -211,7 +211,7 @@ jobs:
|
|||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
pip install -r tools/server/tests/requirements.txt
|
||||
|
||||
- name: Copy Libcurl
|
||||
id: prepare_libcurl
|
||||
|
|
@ -224,7 +224,7 @@ jobs:
|
|||
id: server_integration_tests
|
||||
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
$env:PYTHONIOENCODING = ":replace"
|
||||
pytest -v -x -m "not slow"
|
||||
|
||||
|
|
@ -232,6 +232,6 @@ jobs:
|
|||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
$env:SLOW_TESTS = "1"
|
||||
pytest -v -x
|
||||
|
|
|
|||
|
|
@ -96,11 +96,11 @@ perf-*.txt
|
|||
# Examples
|
||||
|
||||
examples/jeopardy/results.txt
|
||||
examples/server/*.css.hpp
|
||||
examples/server/*.html.hpp
|
||||
examples/server/*.js.hpp
|
||||
examples/server/*.mjs.hpp
|
||||
examples/server/*.gz.hpp
|
||||
tools/server/*.css.hpp
|
||||
tools/server/*.html.hpp
|
||||
tools/server/*.js.hpp
|
||||
tools/server/*.mjs.hpp
|
||||
tools/server/*.gz.hpp
|
||||
!build_64.sh
|
||||
!examples/*.bat
|
||||
!examples/*/*.kts
|
||||
|
|
@ -110,7 +110,7 @@ examples/server/*.gz.hpp
|
|||
|
||||
# Server Web UI temporary files
|
||||
node_modules
|
||||
examples/server/webui/dist
|
||||
tools/server/webui/dist
|
||||
|
||||
# Python
|
||||
|
||||
|
|
|
|||
|
|
@ -77,6 +77,7 @@ option(LLAMA_BUILD_COMMON "llama: build common utils library" ${LLAMA_STANDALONE
|
|||
|
||||
# extra artifacts
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_TOOLS "llama: build tools" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
|
||||
|
||||
|
|
@ -188,6 +189,10 @@ if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
|
|||
add_subdirectory(pocs)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TOOLS)
|
||||
add_subdirectory(tools)
|
||||
endif()
|
||||
|
||||
#
|
||||
# install
|
||||
#
|
||||
|
|
|
|||
|
|
@ -38,15 +38,6 @@
|
|||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "arm64-windows-msvc", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "arm64-windows-llvm", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
|
|
@ -73,10 +64,6 @@
|
|||
{ "name": "arm64-apple-clang-release", "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
|
||||
{ "name": "arm64-apple-clang+static-release", "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "arm64-windows-msvc-debug", "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-llvm-debug", "inherits": [ "base", "x64-windows-llvm", "debug" ] },
|
||||
{ "name": "x64-windows-llvm-release", "inherits": [ "base", "x64-windows-llvm", "release" ] },
|
||||
{ "name": "x64-windows-llvm-reldbg", "inherits": [ "base", "x64-windows-llvm", "reldbg" ] },
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
/ci/ @ggerganov
|
||||
/.devops/*.Dockerfile @ngxson
|
||||
/examples/server/ @ngxson
|
||||
/tools/server/ @ngxson
|
||||
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler
|
||||
|
|
|
|||
97
Makefile
97
Makefile
|
|
@ -1156,10 +1156,10 @@ $(LIB_COMMON_S): $(OBJ_COMMON)
|
|||
|
||||
# Clean generated server assets
|
||||
clean-server-assets:
|
||||
find examples/server -type f -name "*.js.hpp" -delete
|
||||
find examples/server -type f -name "*.mjs.hpp" -delete
|
||||
find examples/server -type f -name "*.css.hpp" -delete
|
||||
find examples/server -type f -name "*.html.hpp" -delete
|
||||
find tools/server -type f -name "*.js.hpp" -delete
|
||||
find tools/server -type f -name "*.mjs.hpp" -delete
|
||||
find tools/server -type f -name "*.css.hpp" -delete
|
||||
find tools/server -type f -name "*.html.hpp" -delete
|
||||
|
||||
# Clean rule
|
||||
clean: clean-server-assets
|
||||
|
|
@ -1179,7 +1179,7 @@ clean: clean-server-assets
|
|||
# Helper function that replaces .c, .cpp, and .cu file endings with .o:
|
||||
GET_OBJ_FILE = $(patsubst %.c,%.o,$(patsubst %.cpp,%.o,$(patsubst %.cu,%.o,$(1))))
|
||||
|
||||
llama-cli: examples/main/main.cpp \
|
||||
llama-cli: tools/main/main.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
|
@ -1187,12 +1187,7 @@ llama-cli: examples/main/main.cpp \
|
|||
@echo '==== Run ./llama-cli -h for help. ===='
|
||||
@echo
|
||||
|
||||
llama-infill: examples/infill/infill.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-run: examples/run/run.cpp \
|
||||
llama-run: tools/run/run.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
|
@ -1207,7 +1202,7 @@ llama-simple-chat: examples/simple-chat/simple-chat.cpp \
|
|||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-tokenize: examples/tokenize/tokenize.cpp \
|
||||
llama-tokenize: tools/tokenize/tokenize.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
|
@ -1217,27 +1212,27 @@ llama-batched: examples/batched/batched.cpp \
|
|||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-batched-bench: examples/batched-bench/batched-bench.cpp \
|
||||
llama-batched-bench: tools/batched-bench/batched-bench.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-quantize: examples/quantize/quantize.cpp \
|
||||
llama-quantize: tools/quantize/quantize.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-quantize-stats: examples/quantize-stats/quantize-stats.cpp \
|
||||
llama-quantize-stats: tools/quantize-stats/quantize-stats.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-perplexity: examples/perplexity/perplexity.cpp \
|
||||
llama-perplexity: tools/perplexity/perplexity.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-imatrix: examples/imatrix/imatrix.cpp \
|
||||
llama-imatrix: tools/imatrix/imatrix.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
|
@ -1279,7 +1274,7 @@ llama-gguf-hash: examples/gguf-hash/gguf-hash.cpp examples/gguf-hash/deps/sha1/s
|
|||
$(CXX) $(CXXFLAGS) -Iexamples/gguf-hash/deps -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-gguf-split: examples/gguf-split/gguf-split.cpp \
|
||||
llama-gguf-split: tools/gguf-split/gguf-split.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
|
@ -1289,7 +1284,7 @@ llama-eval-callback: examples/eval-callback/eval-callback.cpp \
|
|||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp \
|
||||
llama-cvector-generator: tools/cvector-generator/cvector-generator.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
|
@ -1299,12 +1294,12 @@ llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-
|
|||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-bench: examples/llama-bench/llama-bench.cpp \
|
||||
llama-bench: tools/llama-bench/llama-bench.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-export-lora: examples/export-lora/export-lora.cpp \
|
||||
llama-export-lora: tools/export-lora/export-lora.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
|
@ -1360,17 +1355,17 @@ llama-gbnf-validator: examples/gbnf-validator/gbnf-validator.cpp \
|
|||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
ifdef GGML_RPC
|
||||
rpc-server: examples/rpc/rpc-server.cpp \
|
||||
rpc-server: tools/rpc/rpc-server.cpp \
|
||||
$(OBJ_GGML)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
endif # GGML_RPC
|
||||
|
||||
llama-server: \
|
||||
examples/server/server.cpp \
|
||||
examples/server/utils.hpp \
|
||||
examples/server/httplib.h \
|
||||
examples/server/index.html.hpp \
|
||||
examples/server/loading.html.hpp \
|
||||
tools/server/server.cpp \
|
||||
tools/server/utils.hpp \
|
||||
tools/server/httplib.h \
|
||||
tools/server/index.html.hpp \
|
||||
tools/server/loading.html.hpp \
|
||||
common/chat.cpp \
|
||||
common/chat.h \
|
||||
common/chat-template.hpp \
|
||||
|
|
@ -1378,10 +1373,10 @@ llama-server: \
|
|||
common/minja.hpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Itools/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
# Portable equivalent of `cd examples/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
|
||||
examples/server/%.hpp: examples/server/public/% FORCE Makefile
|
||||
# Portable equivalent of `cd tools/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
|
||||
tools/server/%.hpp: tools/server/public/% FORCE Makefile
|
||||
@( export NAME=$(subst .,_,$(subst -,_,$(notdir $<))) && \
|
||||
echo "unsigned char $${NAME}[] = {" && \
|
||||
cat $< | od -v -t x1 -An | sed -E 's/([0-9a-fA-F]+)/0x\1, /g' && \
|
||||
|
|
@ -1394,36 +1389,36 @@ llama-gen-docs: examples/gen-docs/gen-docs.cpp \
|
|||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
libllava.a: examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
libllava.a: tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
common/stb_image.h \
|
||||
common/base64.hpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -static -fPIC -c $< -o $@ -Wno-cast-qual
|
||||
|
||||
llama-llava-cli: examples/llava/llava-cli.cpp \
|
||||
examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
llama-llava-cli: tools/mtmd/llava-cli.cpp \
|
||||
tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
|
||||
llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp \
|
||||
examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
llama-minicpmv-cli: tools/mtmd/minicpmv-cli.cpp \
|
||||
tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
|
||||
llama-qwen2vl-cli: examples/llava/qwen2vl-cli.cpp \
|
||||
examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
llama-qwen2vl-cli: tools/mtmd/qwen2vl-cli.cpp \
|
||||
tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
|
||||
|
|
@ -1480,12 +1475,12 @@ tests/test-double-float: tests/test-double-float.cpp
|
|||
|
||||
tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) -Itools/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-chat: tests/test-chat.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) -Itools/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-opt: tests/test-opt.cpp \
|
||||
|
|
|
|||
26
README.md
26
README.md
|
|
@ -16,9 +16,9 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
|||
|
||||
## Hot topics
|
||||
|
||||
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli` and `gemma3-cli` https://github.com/ggml-org/llama.cpp/pull/13012, `libllava` will be deprecated
|
||||
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggml-org/llama.cpp/pull/11427
|
||||
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
|
||||
- **GGML developer experience survey (organized and reviewed by NVIDIA):** [link](https://forms.gle/Gasw3cRgyhNEnrwK9)
|
||||
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141]((https://github.com/ggml-org/llama.cpp/pull/13141))), `libllava` will be deprecated
|
||||
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
|
||||
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
|
||||
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
|
||||
|
|
@ -242,7 +242,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
|||
| [Vulkan](docs/build.md#vulkan) | GPU |
|
||||
| [CANN](docs/build.md#cann) | Ascend NPU |
|
||||
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
|
||||
|
||||
## Building the project
|
||||
|
||||
|
|
@ -276,9 +276,9 @@ The Hugging Face platform provides a variety of online tools for converting, qua
|
|||
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggml-org/llama.cpp/discussions/9268)
|
||||
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggml-org/llama.cpp/discussions/9669)
|
||||
|
||||
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
|
||||
To learn more about model quantization, [read this documentation](tools/quantize/README.md)
|
||||
|
||||
## [`llama-cli`](examples/main)
|
||||
## [`llama-cli`](tools/main)
|
||||
|
||||
#### A CLI tool for accessing and experimenting with most of `llama.cpp`'s functionality.
|
||||
|
||||
|
|
@ -341,7 +341,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
|||
</details>
|
||||
|
||||
|
||||
## [`llama-server`](examples/server)
|
||||
## [`llama-server`](tools/server)
|
||||
|
||||
#### A lightweight, [OpenAI API](https://github.com/openai/openai-openapi) compatible, HTTP server for serving LLMs.
|
||||
|
||||
|
|
@ -411,7 +411,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
|||
</details>
|
||||
|
||||
|
||||
## [`llama-perplexity`](examples/perplexity)
|
||||
## [`llama-perplexity`](tools/perplexity)
|
||||
|
||||
#### A tool for measuring the perplexity [^1][^2] (and other quality metrics) of a model over a given text.
|
||||
|
||||
|
|
@ -436,10 +436,10 @@ To learn more about model quantization, [read this documentation](examples/quant
|
|||
|
||||
</details>
|
||||
|
||||
[^1]: [examples/perplexity/README.md](./examples/perplexity/README.md)
|
||||
[^1]: [tools/perplexity/README.md](./tools/perplexity/README.md)
|
||||
[^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
|
||||
|
||||
## [`llama-bench`](examples/llama-bench)
|
||||
## [`llama-bench`](tools/llama-bench)
|
||||
|
||||
#### Benchmark the performance of the inference for various parameters.
|
||||
|
||||
|
|
@ -460,7 +460,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
|||
|
||||
</details>
|
||||
|
||||
## [`llama-run`](examples/run)
|
||||
## [`llama-run`](tools/run)
|
||||
|
||||
#### A comprehensive example for running `llama.cpp` models. Useful for inferencing. Used with RamaLama [^3].
|
||||
|
||||
|
|
@ -504,8 +504,8 @@ To learn more about model quantization, [read this documentation](examples/quant
|
|||
|
||||
## Other documentation
|
||||
|
||||
- [main (cli)](examples/main/README.md)
|
||||
- [server](examples/server/README.md)
|
||||
- [main (cli)](tools/main/README.md)
|
||||
- [server](tools/server/README.md)
|
||||
- [GBNF grammars](grammars/README.md)
|
||||
|
||||
#### Development documentation
|
||||
|
|
|
|||
|
|
@ -40,7 +40,7 @@ To protect sensitive data from potential leaks or unauthorized access, it is cru
|
|||
### Untrusted environments or networks
|
||||
|
||||
If you can't run your models in a secure and isolated environment or if it must be exposed to an untrusted network, make sure to take the following security precautions:
|
||||
* Do not use the RPC backend, [rpc-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) and [llama-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/server) functionality (see https://github.com/ggml-org/llama.cpp/pull/13061).
|
||||
* Do not use the RPC backend, [rpc-server](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) and [llama-server](https://github.com/ggml-org/llama.cpp/tree/master/tools/server) functionality (see https://github.com/ggml-org/llama.cpp/pull/13061).
|
||||
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value.
|
||||
* Encrypt your data if sending it over the network.
|
||||
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ TVOS_MIN_OS_VERSION=16.4
|
|||
|
||||
BUILD_SHARED_LIBS=OFF
|
||||
LLAMA_BUILD_EXAMPLES=OFF
|
||||
LLAMA_BUILD_TOOLS=OFF
|
||||
LLAMA_BUILD_TESTS=OFF
|
||||
LLAMA_BUILD_SERVER=OFF
|
||||
GGML_METAL=ON
|
||||
|
|
@ -31,6 +32,7 @@ COMMON_CMAKE_ARGS=(
|
|||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
|
||||
-DLLAMA_BUILD_EXAMPLES=${LLAMA_BUILD_EXAMPLES}
|
||||
-DLLAMA_BUILD_TOOLS=${LLAMA_BUILD_TOOLS}
|
||||
-DLLAMA_BUILD_TESTS=${LLAMA_BUILD_TESTS}
|
||||
-DLLAMA_BUILD_SERVER=${LLAMA_BUILD_SERVER}
|
||||
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}
|
||||
|
|
|
|||
|
|
@ -187,8 +187,8 @@ function gg_run_test_scripts_debug {
|
|||
|
||||
set -e
|
||||
|
||||
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
|
@ -211,8 +211,8 @@ function gg_run_test_scripts_release {
|
|||
|
||||
set -e
|
||||
|
||||
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +0,0 @@
|
|||
set( CMAKE_SYSTEM_NAME Windows )
|
||||
set( CMAKE_SYSTEM_PROCESSOR arm64 )
|
||||
|
||||
set( target arm64-pc-windows-msvc )
|
||||
set( CMAKE_C_COMPILER_TARGET ${target} )
|
||||
set( CMAKE_CXX_COMPILER_TARGET ${target} )
|
||||
|
|
@ -41,14 +41,20 @@ endif()
|
|||
|
||||
if(MSVC)
|
||||
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
|
||||
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
|
||||
if (CMAKE_VS_PLATFORM_NAME)
|
||||
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
|
||||
else()
|
||||
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
endif()
|
||||
else()
|
||||
execute_process(
|
||||
COMMAND sh -c "\"$@\" --version | head -1" _ ${CMAKE_C_COMPILER}
|
||||
COMMAND ${CMAKE_C_COMPILER} --version
|
||||
OUTPUT_VARIABLE OUT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
string(REGEX REPLACE " *\n.*" "" OUT "${OUT}")
|
||||
set(BUILD_COMPILER ${OUT})
|
||||
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
|
||||
OUTPUT_VARIABLE OUT
|
||||
|
|
|
|||
|
|
@ -3,9 +3,3 @@ set( CMAKE_SYSTEM_PROCESSOR x86_64 )
|
|||
|
||||
set( CMAKE_C_COMPILER clang )
|
||||
set( CMAKE_CXX_COMPILER clang++ )
|
||||
|
||||
set( arch_c_flags "-march=native" )
|
||||
|
||||
set( CMAKE_C_FLAGS_INIT "${arch_c_flags}" )
|
||||
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags}" )
|
||||
|
||||
|
|
|
|||
|
|
@ -39,7 +39,9 @@ add_custom_command(
|
|||
COMMENT "Generating build details from Git"
|
||||
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
|
||||
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
|
||||
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
|
||||
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
|
||||
-DCMAKE_SYSTEM_NAME=${CMAKE_SYSTEM_NAME} -DCMAKE_SYSTEM_PROCESSOR=${CMAKE_SYSTEM_PROCESSOR}
|
||||
-P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
|
||||
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
|
||||
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
|
||||
VERBATIM
|
||||
|
|
|
|||
278
common/arg.cpp
278
common/arg.cpp
|
|
@ -43,6 +43,25 @@ std::initializer_list<enum llama_example> mmproj_examples = {
|
|||
// TODO: add LLAMA_EXAMPLE_SERVER when it's ready
|
||||
};
|
||||
|
||||
static std::string read_file(const std::string & fname) {
|
||||
std::ifstream file(fname);
|
||||
if (!file) {
|
||||
throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
|
||||
}
|
||||
std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
|
||||
file.close();
|
||||
return content;
|
||||
}
|
||||
|
||||
static void write_file(const std::string & fname, const std::string & content) {
|
||||
std::ofstream file(fname);
|
||||
if (!file) {
|
||||
throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
|
||||
}
|
||||
file << content;
|
||||
file.close();
|
||||
}
|
||||
|
||||
common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
|
||||
this->examples = std::move(examples);
|
||||
return *this;
|
||||
|
|
@ -162,6 +181,10 @@ struct common_hf_file_res {
|
|||
|
||||
#ifdef LLAMA_USE_CURL
|
||||
|
||||
bool common_has_curl() {
|
||||
return true;
|
||||
}
|
||||
|
||||
#ifdef __linux__
|
||||
#include <linux/limits.h>
|
||||
#elif defined(_WIN32)
|
||||
|
|
@ -194,11 +217,11 @@ struct curl_slist_ptr {
|
|||
#define CURL_MAX_RETRY 3
|
||||
#define CURL_RETRY_DELAY_SECONDS 2
|
||||
|
||||
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
|
||||
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds, const char * method_name) {
|
||||
int remaining_attempts = max_attempts;
|
||||
|
||||
while (remaining_attempts > 0) {
|
||||
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
LOG_INF("%s: %s %s (attempt %d of %d)...\n", __func__ , method_name, url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl);
|
||||
if (res == CURLE_OK) {
|
||||
|
|
@ -209,6 +232,7 @@ static bool curl_perform_with_retry(const std::string & url, CURL * curl, int ma
|
|||
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
|
||||
|
||||
remaining_attempts--;
|
||||
if (remaining_attempts == 0) break;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
|
||||
}
|
||||
|
||||
|
|
@ -227,8 +251,6 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
|||
return false;
|
||||
}
|
||||
|
||||
bool force_download = false;
|
||||
|
||||
// Set the URL, allow to follow http redirection
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
|
||||
|
|
@ -252,7 +274,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
|||
|
||||
// If the file exists, check its JSON metadata companion file.
|
||||
std::string metadata_path = path + ".json";
|
||||
nlohmann::json metadata;
|
||||
nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
|
||||
|
|
@ -262,14 +284,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
|||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("url") && metadata.at("url").is_string()) {
|
||||
auto previous_url = metadata.at("url").get<std::string>();
|
||||
if (previous_url != url) {
|
||||
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
|
|
@ -277,10 +292,10 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
|||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
return false;
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
}
|
||||
}
|
||||
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
|
||||
} else {
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
|
@ -292,7 +307,10 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
|||
};
|
||||
|
||||
common_load_model_from_url_headers headers;
|
||||
bool head_request_ok = false;
|
||||
bool should_download = !file_exists; // by default, we should download if the file does not exist
|
||||
|
||||
// get ETag to see if the remote file has changed
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
|
|
@ -321,23 +339,28 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
|||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
// we only allow retrying once for HEAD requests
|
||||
// this is for the use case of using running offline (no internet), retrying can be annoying
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
head_request_ok = false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code != 200) {
|
||||
// HEAD not supported, we don't know if the file has changed
|
||||
// force trigger downloading
|
||||
force_download = true;
|
||||
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
if (http_code == 200) {
|
||||
head_request_ok = true;
|
||||
} else {
|
||||
LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
head_request_ok = false;
|
||||
}
|
||||
}
|
||||
|
||||
bool should_download = !file_exists || force_download;
|
||||
if (!should_download) {
|
||||
// if head_request_ok is false, we don't have the etag or last-modified headers
|
||||
// we leave should_download as-is, which is true if the file does not exist
|
||||
if (head_request_ok) {
|
||||
// check if ETag or Last-Modified headers are different
|
||||
// if it is, we need to download the file again
|
||||
if (!etag.empty() && etag != headers.etag) {
|
||||
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
|
||||
should_download = true;
|
||||
|
|
@ -346,6 +369,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
|||
should_download = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (should_download) {
|
||||
std::string path_temporary = path + ".downloadInProgress";
|
||||
if (file_exists) {
|
||||
|
|
@ -399,7 +423,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
|||
// start the download
|
||||
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS, "GET");
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
|
@ -420,13 +444,15 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
|||
{"etag", headers.etag},
|
||||
{"lastModified", headers.last_modified}
|
||||
});
|
||||
std::ofstream(metadata_path) << metadata.dump(4);
|
||||
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
|
||||
write_file(metadata_path, metadata.dump(4));
|
||||
LOG_DBG("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
|
||||
|
||||
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
return true;
|
||||
|
|
@ -527,6 +553,50 @@ static bool common_download_model(
|
|||
return true;
|
||||
}
|
||||
|
||||
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) {
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
std::vector<char> res_buffer;
|
||||
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
|
||||
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
|
||||
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
|
||||
auto data_vec = static_cast<std::vector<char> *>(data);
|
||||
data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb);
|
||||
return size * nmemb;
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer);
|
||||
#if defined(_WIN32)
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
if (params.timeout > 0) {
|
||||
curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout);
|
||||
}
|
||||
if (params.max_size > 0) {
|
||||
curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size);
|
||||
}
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
|
||||
for (const auto & header : params.headers) {
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str());
|
||||
}
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl.get());
|
||||
|
||||
if (res != CURLE_OK) {
|
||||
std::string error_msg = curl_easy_strerror(res);
|
||||
throw std::runtime_error("error: cannot make GET request: " + error_msg);
|
||||
}
|
||||
|
||||
long res_code;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
|
||||
|
||||
return { res_code, std::move(res_buffer) };
|
||||
}
|
||||
|
||||
/**
|
||||
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
|
||||
|
|
@ -546,46 +616,48 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
|
|||
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
|
||||
}
|
||||
|
||||
// fetch model info from Hugging Face Hub API
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
std::string res_str;
|
||||
std::string url = get_model_endpoint() + "v2/" + hf_repo + "/manifests/" + tag;
|
||||
|
||||
std::string model_endpoint = get_model_endpoint();
|
||||
|
||||
std::string url = model_endpoint + "v2/" + hf_repo + "/manifests/" + tag;
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
|
||||
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
|
||||
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
|
||||
return size * nmemb;
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
|
||||
#if defined(_WIN32)
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
// headers
|
||||
std::vector<std::string> headers;
|
||||
headers.push_back("Accept: application/json");
|
||||
if (!bearer_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + bearer_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
headers.push_back("Authorization: Bearer " + bearer_token);
|
||||
}
|
||||
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
// User-Agent header is already set in common_remote_get_content, no need to set it here
|
||||
|
||||
CURLcode res = curl_easy_perform(curl.get());
|
||||
// we use "=" to avoid clashing with other component, while still being allowed on windows
|
||||
std::string cached_response_fname = "manifest=" + hf_repo + "=" + tag + ".json";
|
||||
string_replace_all(cached_response_fname, "/", "_");
|
||||
std::string cached_response_path = fs_get_cache_file(cached_response_fname);
|
||||
|
||||
if (res != CURLE_OK) {
|
||||
throw std::runtime_error("error: cannot make GET request to HF API");
|
||||
// make the request
|
||||
common_remote_params params;
|
||||
params.headers = headers;
|
||||
long res_code = 0;
|
||||
std::string res_str;
|
||||
bool use_cache = false;
|
||||
try {
|
||||
auto res = common_remote_get_content(url, params);
|
||||
res_code = res.first;
|
||||
res_str = std::string(res.second.data(), res.second.size());
|
||||
} catch (const std::exception & e) {
|
||||
LOG_WRN("error: failed to get manifest: %s\n", e.what());
|
||||
LOG_WRN("try reading from cache\n");
|
||||
// try to read from cache
|
||||
try {
|
||||
res_str = read_file(cached_response_path);
|
||||
res_code = 200;
|
||||
use_cache = true;
|
||||
} catch (const std::exception & e) {
|
||||
throw std::runtime_error("error: failed to get manifest (check your internet connection)");
|
||||
}
|
||||
}
|
||||
std::string ggufFile;
|
||||
std::string mmprojFile;
|
||||
|
||||
long res_code;
|
||||
std::string ggufFile = "";
|
||||
std::string mmprojFile = "";
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
|
||||
if (res_code == 200) {
|
||||
if (res_code == 200 || res_code == 304) {
|
||||
// extract ggufFile.rfilename in json, using regex
|
||||
{
|
||||
std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
|
||||
|
|
@ -602,6 +674,10 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
|
|||
mmprojFile = match[1].str();
|
||||
}
|
||||
}
|
||||
if (!use_cache) {
|
||||
// if not using cached response, update the cache file
|
||||
write_file(cached_response_path, res_str);
|
||||
}
|
||||
} else if (res_code == 401) {
|
||||
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
|
||||
} else {
|
||||
|
|
@ -618,6 +694,10 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
|
|||
|
||||
#else
|
||||
|
||||
bool common_has_curl() {
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from internet\n");
|
||||
return false;
|
||||
|
|
@ -640,6 +720,14 @@ static struct common_hf_file_res common_get_hf_file(const std::string &, const s
|
|||
return {};
|
||||
}
|
||||
|
||||
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params &) {
|
||||
if (!url.empty()) {
|
||||
throw std::runtime_error("error: built without CURL, cannot download model from the internet");
|
||||
}
|
||||
|
||||
return {};
|
||||
}
|
||||
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
//
|
||||
|
|
@ -1101,6 +1189,9 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
|
|||
fprintf(stderr, "%s\n", ex.what());
|
||||
ctx_arg.params = params_org;
|
||||
return false;
|
||||
} catch (std::exception & ex) {
|
||||
fprintf(stderr, "%s\n", ex.what());
|
||||
exit(1); // for other exceptions, we exit with status code 1
|
||||
}
|
||||
|
||||
return true;
|
||||
|
|
@ -1192,7 +1283,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
[](common_params & params) {
|
||||
params.use_color = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
|
||||
add_opt(common_arg(
|
||||
{"-t", "--threads"}, "N",
|
||||
string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
|
||||
|
|
@ -1325,7 +1416,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
add_opt(common_arg(
|
||||
{"-n", "--predict", "--n-predict"}, "N",
|
||||
string_format(
|
||||
ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
|
||||
ex == LLAMA_EXAMPLE_MAIN
|
||||
? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
|
||||
: "number of tokens to predict (default: %d, -1 = infinity)",
|
||||
params.n_predict),
|
||||
|
|
@ -1401,13 +1492,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
{"-f", "--file"}, "FNAME",
|
||||
"a file containing the prompt (default: none)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
std::ifstream file(value);
|
||||
if (!file) {
|
||||
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
|
||||
}
|
||||
params.prompt = read_file(value);
|
||||
// store the external file name in params
|
||||
params.prompt_file = value;
|
||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
|
||||
if (!params.prompt.empty() && params.prompt.back() == '\n') {
|
||||
params.prompt.pop_back();
|
||||
}
|
||||
|
|
@ -1417,11 +1504,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
{"-sysf", "--system-prompt-file"}, "FNAME",
|
||||
"a file containing the system prompt (default: none)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
std::ifstream file(value);
|
||||
if (!file) {
|
||||
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
|
||||
}
|
||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.system_prompt));
|
||||
params.system_prompt = read_file(value);
|
||||
if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
|
||||
params.system_prompt.pop_back();
|
||||
}
|
||||
|
|
@ -1572,7 +1655,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
params.input_prefix = value;
|
||||
params.enable_chat_template = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"--in-suffix"}, "STRING",
|
||||
"string to suffix after user inputs with (default: empty)",
|
||||
|
|
@ -1580,7 +1663,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
params.input_suffix = value;
|
||||
params.enable_chat_template = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"--no-warmup"},
|
||||
"skip warming up the model with an empty run",
|
||||
|
|
@ -1597,7 +1680,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
[](common_params & params) {
|
||||
params.spm_infill = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--samplers"}, "SAMPLERS",
|
||||
string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
|
||||
|
|
@ -1846,15 +1929,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
{"--grammar-file"}, "FNAME",
|
||||
"file to read grammar from",
|
||||
[](common_params & params, const std::string & value) {
|
||||
std::ifstream file(value);
|
||||
if (!file) {
|
||||
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
|
||||
}
|
||||
std::copy(
|
||||
std::istreambuf_iterator<char>(file),
|
||||
std::istreambuf_iterator<char>(),
|
||||
std::back_inserter(params.sampling.grammar)
|
||||
);
|
||||
params.sampling.grammar = read_file(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1864,6 +1939,23 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
params.sampling.grammar = json_schema_to_grammar(json::parse(value));
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"-jf", "--json-schema-file"}, "FILE",
|
||||
"File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
|
||||
[](common_params & params, const std::string & value) {
|
||||
std::ifstream file(value);
|
||||
if (!file) {
|
||||
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
|
||||
}
|
||||
std::string schema;
|
||||
std::copy(
|
||||
std::istreambuf_iterator<char>(file),
|
||||
std::istreambuf_iterator<char>(),
|
||||
std::back_inserter(schema)
|
||||
);
|
||||
params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--pooling"}, "{none,mean,cls,last,rank}",
|
||||
"pooling type for embeddings, use model default if unspecified",
|
||||
|
|
@ -2119,14 +2211,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
|
||||
add_opt(common_arg(
|
||||
{"--mmproj"}, "FILE",
|
||||
"path to a multimodal projector file. see examples/llava/README.md",
|
||||
"path to a multimodal projector file. see tools/mtmd/README.md",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.mmproj.path = value;
|
||||
}
|
||||
).set_examples(mmproj_examples));
|
||||
add_opt(common_arg(
|
||||
{"--mmproj-url"}, "URL",
|
||||
"URL to a multimodal projector file. see examples/llava/README.md",
|
||||
"URL to a multimodal projector file. see tools/mtmd/README.md",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.mmproj.url = value;
|
||||
}
|
||||
|
|
@ -2691,7 +2783,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
|
||||
add_opt(common_arg(
|
||||
{"--cache-reuse"}, "N",
|
||||
string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse),
|
||||
string_format(
|
||||
"min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
|
||||
"[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
|
||||
),
|
||||
[](common_params & params, int value) {
|
||||
params.n_cache_reuse = value;
|
||||
}
|
||||
|
|
@ -2774,14 +2869,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
|
||||
),
|
||||
[](common_params & params, const std::string & value) {
|
||||
std::ifstream file(value);
|
||||
if (!file) {
|
||||
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
|
||||
}
|
||||
std::copy(
|
||||
std::istreambuf_iterator<char>(file),
|
||||
std::istreambuf_iterator<char>(),
|
||||
std::back_inserter(params.chat_template));
|
||||
params.chat_template = read_file(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
|
||||
add_opt(common_arg(
|
||||
|
|
@ -2804,7 +2892,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
[](common_params & params) {
|
||||
params.simple_io = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"--positive-file"}, "FNAME",
|
||||
string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
|
||||
|
|
|
|||
|
|
@ -78,3 +78,12 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
|
|||
|
||||
// function to be used by test-arg-parser
|
||||
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
bool common_has_curl();
|
||||
|
||||
struct common_remote_params {
|
||||
std::vector<std::string> headers;
|
||||
long timeout = 0; // CURLOPT_TIMEOUT, in seconds ; 0 means no timeout
|
||||
long max_size = 0; // max size of the response ; unlimited if 0 ; max is 2GB
|
||||
};
|
||||
// get remote file content, returns <http_code, raw_response_body>
|
||||
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params);
|
||||
|
|
|
|||
|
|
@ -66,7 +66,6 @@ enum llama_example {
|
|||
LLAMA_EXAMPLE_COMMON,
|
||||
LLAMA_EXAMPLE_SPECULATIVE,
|
||||
LLAMA_EXAMPLE_MAIN,
|
||||
LLAMA_EXAMPLE_INFILL,
|
||||
LLAMA_EXAMPLE_EMBEDDING,
|
||||
LLAMA_EXAMPLE_PERPLEXITY,
|
||||
LLAMA_EXAMPLE_RETRIEVAL,
|
||||
|
|
@ -96,6 +95,7 @@ enum common_sampler_type {
|
|||
COMMON_SAMPLER_TYPE_XTC = 8,
|
||||
COMMON_SAMPLER_TYPE_INFILL = 9,
|
||||
COMMON_SAMPLER_TYPE_PENALTIES = 10,
|
||||
COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
|
||||
};
|
||||
|
||||
// dimensionality reduction methods, used by cvector-generator
|
||||
|
|
@ -161,6 +161,7 @@ struct common_params_sampling {
|
|||
std::vector<enum common_sampler_type> samplers = {
|
||||
COMMON_SAMPLER_TYPE_PENALTIES,
|
||||
COMMON_SAMPLER_TYPE_DRY,
|
||||
COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
|
|
@ -340,7 +341,7 @@ struct common_params {
|
|||
|
||||
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
// multimodal models (see tools/mtmd)
|
||||
struct common_params_model mmproj;
|
||||
bool mmproj_use_gpu = true; // use GPU for multimodal model
|
||||
bool no_mmproj = false; // explicitly disable multimodal model
|
||||
|
|
@ -414,8 +415,8 @@ struct common_params {
|
|||
int n_pca_batch = 100;
|
||||
int n_pca_iterations = 1000;
|
||||
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
||||
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
|
||||
|
||||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||||
|
||||
|
|
|
|||
|
|
@ -16,6 +16,9 @@ using json = nlohmann::ordered_json;
|
|||
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
|
||||
auto has_max = max_items != std::numeric_limits<int>::max();
|
||||
|
||||
if (max_items == 0) {
|
||||
return "";
|
||||
}
|
||||
if (min_items == 0 && max_items == 1) {
|
||||
return item_rule + "?";
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include "sampling.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <unordered_map>
|
||||
|
|
@ -229,51 +230,48 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
|||
params.logit_bias.data()));
|
||||
|
||||
if (params.mirostat == 0) {
|
||||
if (params.top_n_sigma >= 0) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
} else {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
|
|
@ -475,6 +473,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
|
|||
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
case COMMON_SAMPLER_TYPE_XTC: return 'x';
|
||||
|
|
@ -490,6 +489,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
|
|||
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
|
||||
|
|
@ -504,6 +504,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
|||
{ "dry", COMMON_SAMPLER_TYPE_DRY },
|
||||
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
|
|
@ -517,6 +518,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
|||
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
|
|
@ -533,14 +535,16 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
|||
auto sampler = sampler_canonical_name_map.find(name);
|
||||
if (sampler != sampler_canonical_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
} else {
|
||||
if (allow_alt_names) {
|
||||
sampler = sampler_alt_name_map.find(name);
|
||||
if (sampler != sampler_alt_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
if (allow_alt_names) {
|
||||
sampler = sampler_alt_name_map.find(name);
|
||||
if (sampler != sampler_alt_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
|
||||
}
|
||||
|
||||
return samplers;
|
||||
|
|
@ -552,6 +556,7 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
|
|||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
|
||||
|
|
@ -566,6 +571,8 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
|
|||
const auto sampler = sampler_name_map.find(c);
|
||||
if (sampler != sampler_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
} else {
|
||||
LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -16,6 +16,7 @@ from pathlib import Path
|
|||
from hashlib import sha256
|
||||
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
|
||||
from itertools import chain
|
||||
from transformers import AutoConfig
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
|
|
@ -66,8 +67,6 @@ class ModelBase:
|
|||
part_names: list[str]
|
||||
is_safetensors: bool
|
||||
hparams: dict[str, Any]
|
||||
block_count: int
|
||||
tensor_map: gguf.TensorNameMap
|
||||
tensor_names: set[str] | None
|
||||
gguf_writer: gguf.GGUFWriter
|
||||
model_name: str | None
|
||||
|
|
@ -78,7 +77,11 @@ class ModelBase:
|
|||
# subclasses should define this!
|
||||
model_arch: gguf.MODEL_ARCH
|
||||
|
||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
|
||||
# subclasses should initialize this!
|
||||
block_count: int
|
||||
tensor_map: gguf.TensorNameMap
|
||||
|
||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
|
||||
use_temp_file: bool = False, eager: bool = False,
|
||||
metadata_override: Path | None = None, model_name: str | None = None,
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
|
||||
|
|
@ -113,8 +116,6 @@ class ModelBase:
|
|||
if not self.is_safetensors:
|
||||
self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
|
||||
self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
|
||||
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||||
self.tensor_names = None
|
||||
self.metadata_override = metadata_override
|
||||
self.model_name = model_name
|
||||
|
|
@ -417,15 +418,15 @@ class ModelBase:
|
|||
|
||||
@staticmethod
|
||||
def load_hparams(dir_model: Path):
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
architectures = hparams.get("architectures")
|
||||
if "text_config" in hparams:
|
||||
hparams = {**hparams, **hparams["text_config"]}
|
||||
if architectures is not None:
|
||||
# preserve "architectures" from root level config
|
||||
hparams["architectures"] = architectures
|
||||
return hparams
|
||||
try:
|
||||
# for security reason, we don't allow loading remote code by default
|
||||
# if a model need remote code, we will fallback to config.json
|
||||
return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load model config from {dir_model}: {e}")
|
||||
logger.warning("Trying to load config.json instead")
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
|
||||
@classmethod
|
||||
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
|
||||
|
|
@ -454,6 +455,20 @@ class ModelBase:
|
|||
|
||||
|
||||
class TextModel(ModelBase):
|
||||
model_type = ModelType.TEXT
|
||||
hf_arch: str
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hf_arch = get_model_architecture(self.hparams, self.model_type)
|
||||
|
||||
if "text_config" in self.hparams:
|
||||
# move the text_config to the root level
|
||||
self.hparams = {**self.hparams, **self.hparams["text_config"]}
|
||||
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
|
||||
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||||
|
||||
@classmethod
|
||||
def __init_subclass__(cls):
|
||||
# can't use an abstract property, because overriding it without type errors
|
||||
|
|
@ -495,7 +510,7 @@ class TextModel(ModelBase):
|
|||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
logger.info(f"gguf: context length = {n_ctx}")
|
||||
|
||||
|
|
@ -1064,10 +1079,36 @@ class TextModel(ModelBase):
|
|||
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
|
||||
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
|
||||
|
||||
def _try_set_pooling_type(self) -> None:
|
||||
# get pooling path
|
||||
pooling_path = None
|
||||
module_path = self.dir_model / "modules.json"
|
||||
if module_path.is_file():
|
||||
with open(module_path, encoding="utf-8") as f:
|
||||
modules = json.load(f)
|
||||
for mod in modules:
|
||||
if mod["type"] == "sentence_transformers.models.Pooling":
|
||||
pooling_path = mod["path"]
|
||||
break
|
||||
|
||||
# get pooling type
|
||||
if pooling_path is not None:
|
||||
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
||||
pooling = json.load(f)
|
||||
if pooling["pooling_mode_mean_tokens"]:
|
||||
pooling_type = gguf.PoolingType.MEAN
|
||||
elif pooling["pooling_mode_cls_token"]:
|
||||
pooling_type = gguf.PoolingType.CLS
|
||||
elif pooling["pooling_mode_lasttoken"]:
|
||||
pooling_type = gguf.PoolingType.LAST
|
||||
else:
|
||||
raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
|
||||
|
||||
class VisionModel(ModelBase):
|
||||
model_type = ModelType.VISION
|
||||
model_arch = gguf.MODEL_ARCH.CLIP_VISION
|
||||
n_text_embd = 0
|
||||
preprocessor_config: dict[str, Any]
|
||||
global_config: dict[str, Any]
|
||||
|
||||
|
|
@ -1077,9 +1118,11 @@ class VisionModel(ModelBase):
|
|||
if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
|
||||
raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
|
||||
|
||||
# small hack to correct the number of layers
|
||||
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, 128)
|
||||
self.n_embd_text = self.find_hparam(["hidden_size", "n_embd"])
|
||||
# get n_embd of the text model
|
||||
if "text_config" not in self.hparams:
|
||||
self.hparams["text_config"] = {}
|
||||
text_config = {**self.hparams, **self.hparams["text_config"]}
|
||||
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
|
||||
assert self.n_embd_text > 0, "n_embd not found in hparams"
|
||||
|
||||
if "vision_config" not in self.hparams:
|
||||
|
|
@ -1088,6 +1131,9 @@ class VisionModel(ModelBase):
|
|||
self.global_config = self.hparams
|
||||
self.hparams = self.hparams["vision_config"]
|
||||
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
|
||||
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, self.block_count)
|
||||
|
||||
# load preprocessor config
|
||||
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
|
||||
self.preprocessor_config = json.load(f)
|
||||
|
|
@ -1105,12 +1151,12 @@ class VisionModel(ModelBase):
|
|||
self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
|
||||
self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
|
||||
self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_vision_block_count(self.find_hparam(["num_hidden_layers"]))
|
||||
self.gguf_writer.add_vision_block_count(self.block_count)
|
||||
self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
|
||||
|
||||
# preprocessor config
|
||||
self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
|
||||
self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_mean"])
|
||||
self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
|
||||
|
||||
def write_vocab(self):
|
||||
raise ValueError("VisionModel does not support vocab writing")
|
||||
|
|
@ -1726,8 +1772,7 @@ class StableLMModel(TextModel):
|
|||
"LlamaForCausalLM",
|
||||
"MistralForCausalLM",
|
||||
"MixtralForCausalLM",
|
||||
"Idefics3ForConditionalGeneration",
|
||||
"SmolVLMForConditionalGeneration",
|
||||
"VLlama3ForCausalLM",
|
||||
"LlavaForConditionalGeneration")
|
||||
class LlamaModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
|
@ -1736,11 +1781,7 @@ class LlamaModel(TextModel):
|
|||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
# fix for SmolVLM2, missing `num_attention_heads` in config.json
|
||||
if self.hparams["architectures"][0] == "SmolVLMForConditionalGeneration":
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
|
||||
# fix for Pixtral, missing `num_attention_heads` in config.json
|
||||
if self.hparams["architectures"][0] == "LlavaForConditionalGeneration" \
|
||||
and self.hparams.get("model_type") == "mistral":
|
||||
if self.hf_arch == "VLlama3ForCausalLM":
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
|
||||
|
||||
def set_vocab(self):
|
||||
|
|
@ -1898,31 +1939,50 @@ class LlamaModel(TextModel):
|
|||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("LlavaForConditionalGeneration")
|
||||
@ModelBase.register(
|
||||
"LlavaForConditionalGeneration", # pixtral
|
||||
"Mistral3ForConditionalGeneration", # mistral small 3.1
|
||||
)
|
||||
class LlavaVisionModel(VisionModel):
|
||||
img_break_tok_id = -1
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
if self.hparams["model_type"] == "pixtral":
|
||||
# fix missing config.json values
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
|
||||
self.hparams["num_hidden_layers"] = self.hparams.get("num_hidden_layers", 24)
|
||||
self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 4096)
|
||||
self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1024)
|
||||
# layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
|
||||
self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
|
||||
self.img_break_tok_id = 12 # see tokenizer_config.json
|
||||
self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
|
||||
logger.info(f"Image break token id: {self.img_break_tok_id}")
|
||||
else:
|
||||
raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
|
||||
|
||||
def get_token_id(self, token: str) -> int:
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||
added_tokens_decoder = json.load(f)['added_tokens_decoder']
|
||||
for id_, token_data in added_tokens_decoder.items():
|
||||
if token_data["content"] == token:
|
||||
return int(id_)
|
||||
raise ValueError(f"Token '{token}' not found in tokenizer config.")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if hparams["model_type"] == "pixtral":
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
|
||||
# default values below are taken from HF tranformers code
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
|
||||
# hidden_act
|
||||
if hparams["hidden_act"] == "silu":
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
elif hparams["hidden_act"] == "gelu":
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
else:
|
||||
raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
|
||||
|
||||
# spatial_merge_size
|
||||
if "spatial_merge_size" in self.global_config:
|
||||
self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
|
@ -1951,13 +2011,12 @@ class LlavaVisionModel(VisionModel):
|
|||
class SmolVLMModel(VisionModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
# fix for SmolVLM2, missing some keys in config.json
|
||||
# default values are taken from transformers code
|
||||
if self.hparams["model_type"] == "smolvlm_vision":
|
||||
# fix for SmolVLM2, missing some keys in config.json
|
||||
# default values are taken from transformers code
|
||||
self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
|
||||
self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
|
||||
self.hparams["num_hidden_layers"] = self.hparams.get("num_hidden_layers", 12)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
|
@ -2070,6 +2129,9 @@ class DeciModel(TextModel):
|
|||
# if n_heads_in_group is not None, then
|
||||
# _num_kv_heads[il] is num_attention_head // n_heads_in_group and
|
||||
# _num_heads[il] is num_attention_head
|
||||
# ***dummy layer*** for nemotron 253B
|
||||
# if n_heads_in_group is None and ffn_mult is None
|
||||
# then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
|
||||
for il in range(len(_block_configs)):
|
||||
if _block_configs[il]["attention"]["n_heads_in_group"] is None:
|
||||
if _block_configs[il]["attention"]["replace_with_linear"] is True:
|
||||
|
|
@ -2081,7 +2143,10 @@ class DeciModel(TextModel):
|
|||
else:
|
||||
self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
|
||||
self._num_heads.append(self.hparams["num_attention_heads"])
|
||||
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
|
||||
if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
|
||||
_ffn_multipliers.append(0.0)
|
||||
else:
|
||||
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
|
||||
assert self.block_count == len(self._num_kv_heads)
|
||||
assert self.block_count == len(self._num_heads)
|
||||
assert self.block_count == len(_ffn_multipliers)
|
||||
|
|
@ -2519,7 +2584,7 @@ class QwenModel(TextModel):
|
|||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2ForCausalLM")
|
||||
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
|
||||
class Qwen2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
|
||||
|
|
@ -2531,12 +2596,18 @@ class Qwen2Model(TextModel):
|
|||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self._try_set_pooling_type()
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if self.hf_arch == "Qwen2Model":
|
||||
name = f"model.{name}" # map to Qwen2ForCausalLM tensors
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||
class Qwen2VLModel(TextModel):
|
||||
|
|
@ -2554,11 +2625,88 @@ class Qwen2VLModel(TextModel):
|
|||
except FileNotFoundError:
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||||
for name, data in super().get_tensors():
|
||||
if name.startswith("visual."):
|
||||
continue
|
||||
yield name, data
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
if name.startswith("visual."):
|
||||
# skip visual tensors
|
||||
return []
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||
class Qwen2VLVisionModel(VisionModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hparams["image_size"] = self.hparams.get("image_size", 560)
|
||||
# rename config.json values
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
|
||||
self.hparams["num_hidden_layers"] = self.hparams.get("depth")
|
||||
if "embed_dim" in self.hparams: # qwen2vl
|
||||
self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
|
||||
self.hparams["hidden_size"] = self.hparams.get("embed_dim")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if self.global_config['model_type'] == 'qwen2_vl':
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN2VL)
|
||||
elif self.global_config['model_type'] == 'qwen2_5_vl':
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN25VL)
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
# find n_wa_pattern (window attention pattern)
|
||||
fullatt_block_indexes = hparams.get("fullatt_block_indexes")
|
||||
assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
|
||||
n_wa_pattern = fullatt_block_indexes[0] + 1
|
||||
# validate n_wa_pattern
|
||||
for i in range(1, len(fullatt_block_indexes)):
|
||||
if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
|
||||
raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
|
||||
self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
|
||||
else:
|
||||
raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
|
||||
# default values below are taken from HF tranformers code
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, name, n_dims # unused
|
||||
if ".patch_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
if ".position_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return False
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
if name.startswith("visual."):
|
||||
# process visual tensors
|
||||
# split QKV tensors if needed
|
||||
if ".qkv." in name:
|
||||
if data_torch.ndim == 2: # weight
|
||||
c3, _ = data_torch.shape
|
||||
else: # bias
|
||||
c3 = data_torch.shape[0]
|
||||
assert c3 % 3 == 0
|
||||
c = c3 // 3
|
||||
wq = data_torch[:c]
|
||||
wk = data_torch[c: c * 2]
|
||||
wv = data_torch[c * 2:]
|
||||
return [
|
||||
(self.map_tensor_name(name.replace("qkv", "q")), wq),
|
||||
(self.map_tensor_name(name.replace("qkv", "k")), wk),
|
||||
(self.map_tensor_name(name.replace("qkv", "v")), wv),
|
||||
]
|
||||
elif 'patch_embed.proj.weight' in name:
|
||||
# split Conv3D into Conv2Ds
|
||||
c1, c2, kt, kh, kw = data_torch.shape
|
||||
del c1, c2, kh, kw # unused
|
||||
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
|
||||
return [
|
||||
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
|
||||
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
|
||||
]
|
||||
else:
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return [] # skip other tensors
|
||||
|
||||
|
||||
@ModelBase.register("WavTokenizerDec")
|
||||
|
|
@ -2613,6 +2761,13 @@ class Qwen2MoeModel(TextModel):
|
|||
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
|
||||
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
|
||||
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
|
||||
# YaRN is not enabled by default
|
||||
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
|
|
@ -3296,29 +3451,7 @@ class BertModel(TextModel):
|
|||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_causal_attention(False)
|
||||
|
||||
# get pooling path
|
||||
pooling_path = None
|
||||
module_path = self.dir_model / "modules.json"
|
||||
if module_path.is_file():
|
||||
with open(module_path, encoding="utf-8") as f:
|
||||
modules = json.load(f)
|
||||
for mod in modules:
|
||||
if mod["type"] == "sentence_transformers.models.Pooling":
|
||||
pooling_path = mod["path"]
|
||||
break
|
||||
|
||||
# get pooling type
|
||||
if pooling_path is not None:
|
||||
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
||||
pooling = json.load(f)
|
||||
if pooling["pooling_mode_mean_tokens"]:
|
||||
pooling_type = gguf.PoolingType.MEAN
|
||||
elif pooling["pooling_mode_cls_token"]:
|
||||
pooling_type = gguf.PoolingType.CLS
|
||||
else:
|
||||
raise NotImplementedError("Only MEAN and CLS pooling types supported")
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
self._try_set_pooling_type()
|
||||
|
||||
def set_vocab(self):
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
|
|
@ -3372,14 +3505,7 @@ class BertModel(TextModel):
|
|||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("RobertaModel")
|
||||
class RobertaModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def _xlmroberta_tokenizer_init(self) -> None:
|
||||
# we need the pad_token_id to know how to chop down position_embd matrix
|
||||
if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
|
||||
self._position_offset = 1 + pad_token_id
|
||||
|
|
@ -3388,82 +3514,7 @@ class RobertaModel(BertModel):
|
|||
else:
|
||||
self._position_offset = None
|
||||
|
||||
def set_vocab(self):
|
||||
"""Support BPE tokenizers for roberta models"""
|
||||
bpe_tok_path = self.dir_model / "tokenizer.json"
|
||||
if bpe_tok_path.exists():
|
||||
self._set_vocab_gpt2()
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
# we need this to validate the size of the token_type embeddings
|
||||
# though currently we are passing all zeros to the token_type embeddings
|
||||
# "Sequence A" or "Sequence B"
|
||||
self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
|
||||
|
||||
else:
|
||||
return super().set_vocab()
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# if name starts with "roberta.", remove the prefix
|
||||
# e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
|
||||
if name.startswith("roberta."):
|
||||
name = name[8:]
|
||||
|
||||
# position embeddings start at pad_token_id + 1, so just chop down the weight tensor
|
||||
if name == "embeddings.position_embeddings.weight":
|
||||
if self._position_offset is not None:
|
||||
data_torch = data_torch[self._position_offset:,:]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("NomicBertModel")
|
||||
class NomicBertModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.NOMIC_BERT
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# the HF config claims n_ctx=8192, but it uses RoPE scaling
|
||||
self.hparams["n_ctx"] = 2048
|
||||
|
||||
# SwigLU activation
|
||||
assert self.hparams["activation_function"] == "swiglu"
|
||||
# this doesn't do anything in the HF version
|
||||
assert self.hparams["causal"] is False
|
||||
# no bias tensors
|
||||
assert self.hparams["qkv_proj_bias"] is False
|
||||
assert self.hparams["mlp_fc1_bias"] is False
|
||||
assert self.hparams["mlp_fc2_bias"] is False
|
||||
# norm at end of layer
|
||||
assert self.hparams["prenorm"] is False
|
||||
# standard RoPE
|
||||
assert self.hparams["rotary_emb_fraction"] == 1.0
|
||||
assert self.hparams["rotary_emb_interleaved"] is False
|
||||
assert self.hparams["rotary_emb_scale_base"] is None
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
||||
|
||||
|
||||
@ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
|
||||
class XLMRobertaModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# we need the pad_token_id to know how to chop down position_embd matrix
|
||||
if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
|
||||
self._position_offset = 1 + pad_token_id
|
||||
if "max_position_embeddings" in self.hparams:
|
||||
self.hparams["max_position_embeddings"] -= self._position_offset
|
||||
else:
|
||||
self._position_offset = None
|
||||
|
||||
def set_vocab(self):
|
||||
def _xlmroberta_set_vocab(self) -> None:
|
||||
# to avoid TypeError: Descriptors cannot be created directly
|
||||
# exception when importing sentencepiece_model_pb2
|
||||
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
||||
|
|
@ -3545,6 +3596,145 @@ class XLMRobertaModel(BertModel):
|
|||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
|
||||
@ModelBase.register("RobertaModel")
|
||||
class RobertaModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# we need the pad_token_id to know how to chop down position_embd matrix
|
||||
if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
|
||||
self._position_offset = 1 + pad_token_id
|
||||
if "max_position_embeddings" in self.hparams:
|
||||
self.hparams["max_position_embeddings"] -= self._position_offset
|
||||
else:
|
||||
self._position_offset = None
|
||||
|
||||
def set_vocab(self):
|
||||
"""Support BPE tokenizers for roberta models"""
|
||||
bpe_tok_path = self.dir_model / "tokenizer.json"
|
||||
if bpe_tok_path.exists():
|
||||
self._set_vocab_gpt2()
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
# we need this to validate the size of the token_type embeddings
|
||||
# though currently we are passing all zeros to the token_type embeddings
|
||||
# "Sequence A" or "Sequence B"
|
||||
self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
|
||||
|
||||
else:
|
||||
return super().set_vocab()
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# if name starts with "roberta.", remove the prefix
|
||||
# e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
|
||||
if name.startswith("roberta."):
|
||||
name = name[8:]
|
||||
|
||||
# position embeddings start at pad_token_id + 1, so just chop down the weight tensor
|
||||
if name == "embeddings.position_embeddings.weight":
|
||||
if self._position_offset is not None:
|
||||
data_torch = data_torch[self._position_offset:,:]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("NomicBertModel")
|
||||
class NomicBertModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
|
||||
hparams = kwargs.pop("hparams", None)
|
||||
if hparams is None:
|
||||
hparams = ModelBase.load_hparams(dir_model)
|
||||
|
||||
self.is_moe = bool(hparams.get("moe_every_n_layers"))
|
||||
self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
|
||||
|
||||
super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
|
||||
|
||||
self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
|
||||
if self._tokenizer_is_xlmroberta:
|
||||
self._xlmroberta_tokenizer_init()
|
||||
|
||||
npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
|
||||
if npos == 8192 and mtp == 2048:
|
||||
self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
|
||||
elif npos == 2048 and mtp == 2048:
|
||||
self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
|
||||
else:
|
||||
raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
|
||||
|
||||
assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
|
||||
|
||||
# this doesn't do anything in the HF version
|
||||
assert self.hparams["causal"] is False
|
||||
# no bias tensors unless MoE
|
||||
assert self.hparams["qkv_proj_bias"] == self.is_moe
|
||||
assert self.hparams["mlp_fc1_bias"] == self.is_moe
|
||||
assert self.hparams["mlp_fc2_bias"] == self.is_moe
|
||||
|
||||
# norm at end of layer
|
||||
assert self.hparams["prenorm"] is False
|
||||
# standard RoPE
|
||||
assert self.hparams["rotary_emb_fraction"] == 1.0
|
||||
assert self.hparams["rotary_emb_interleaved"] is False
|
||||
assert self.hparams["rotary_emb_scale_base"] is None
|
||||
|
||||
def set_vocab(self) -> None:
|
||||
if self._tokenizer_is_xlmroberta:
|
||||
return self._xlmroberta_set_vocab()
|
||||
return super().set_vocab()
|
||||
|
||||
def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
|
||||
# If the tensor is an experts bias tensor, skip it by returning an empty list.
|
||||
if "mlp.experts.bias" in name:
|
||||
return [] # Explicitly return an empty list.
|
||||
|
||||
if "mlp.experts.mlp.w1" in name:
|
||||
data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
|
||||
name += ".weight"
|
||||
|
||||
if "mlp.experts.mlp.w2" in name:
|
||||
data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
|
||||
data_torch = data_torch.transpose(1, 2)
|
||||
name += ".weight"
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
||||
if self.is_moe:
|
||||
self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
|
||||
self.gguf_writer.add_expert_count(self.hparams["num_experts"])
|
||||
self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
|
||||
|
||||
def _is_tokenizer_xlmroberta(self) -> bool:
|
||||
with open(self.dir_model / "tokenizer.json") as f:
|
||||
tokenizer_json = json.load(f)
|
||||
toktyp = tokenizer_json["model"]["type"]
|
||||
if toktyp == "Unigram":
|
||||
return True
|
||||
if toktyp == "WordPiece":
|
||||
return False
|
||||
raise ValueError(f"unknown tokenizer: {toktyp}")
|
||||
|
||||
|
||||
@ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
|
||||
class XLMRobertaModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self._xlmroberta_tokenizer_init()
|
||||
|
||||
def set_vocab(self):
|
||||
self._xlmroberta_set_vocab()
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# if name starts with "roberta.", remove the prefix
|
||||
# e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
|
||||
|
|
@ -3725,6 +3915,16 @@ class Gemma3VisionModel(VisionModel):
|
|||
# default values below are taken from HF tranformers code
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
# calculate proj_scale_factor (used by tinygemma3 test model)
|
||||
image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
|
||||
n_per_side = int(image_seq_length ** 0.5)
|
||||
image_size = self.hparams["image_size"]
|
||||
patch_size = self.hparams["patch_size"]
|
||||
proj_scale_factor = (image_size // patch_size) // n_per_side
|
||||
if proj_scale_factor > 0 and proj_scale_factor != 4:
|
||||
# we only need to write this if it's not the default value
|
||||
# in this case, we are converting a test model
|
||||
self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, new_name, n_dims # unused
|
||||
|
|
@ -3738,6 +3938,9 @@ class Gemma3VisionModel(VisionModel):
|
|||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
if "vision_model.head." in name:
|
||||
return [] # skip redundant tensors for tinygemma3
|
||||
|
||||
if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
|
||||
or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
|
||||
# process vision tensors
|
||||
|
|
@ -5153,7 +5356,7 @@ class Glm4Model(TextModel):
|
|||
special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
|
||||
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
|
||||
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
|
||||
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"])
|
||||
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
|
|
@ -5503,7 +5706,12 @@ class BailingMoeModel(TextModel):
|
|||
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
if (self.hparams.get("rope_scaling") or {}).get("type") == "yarn" and "factor" in self.hparams["rope_scaling"]:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
else:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
|
||||
|
|
@ -5805,6 +6013,18 @@ def split_str_to_n_bytes(split_str: str) -> int:
|
|||
return n
|
||||
|
||||
|
||||
def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
|
||||
text_config = hparams.get("text_config", {})
|
||||
vision_config = hparams.get("vision_config", {})
|
||||
arch = hparams["architectures"][0]
|
||||
# if "architectures" is found in the sub-config, use that instead
|
||||
if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
|
||||
arch = text_config["architectures"][0]
|
||||
elif model_type == ModelType.VISION and vision_config.get("architectures") is not None:
|
||||
arch = vision_config["architectures"][0]
|
||||
return arch
|
||||
|
||||
|
||||
def main() -> None:
|
||||
args = parse_args()
|
||||
|
||||
|
|
@ -5857,16 +6077,16 @@ def main() -> None:
|
|||
|
||||
logger.info(f"Loading model: {dir_model.name}")
|
||||
|
||||
hparams = ModelBase.load_hparams(dir_model)
|
||||
|
||||
if args.mmproj:
|
||||
if "mmproj" not in fname_out.name:
|
||||
fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
|
||||
|
||||
with torch.inference_mode():
|
||||
output_type = ftype_map[args.outtype]
|
||||
model_architecture = hparams["architectures"][0]
|
||||
model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
|
||||
hparams = ModelBase.load_hparams(dir_model)
|
||||
model_architecture = get_model_architecture(hparams, model_type)
|
||||
logger.info(f"Model architecture: {model_architecture}")
|
||||
try:
|
||||
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
|
||||
except NotImplementedError:
|
||||
|
|
|
|||
|
|
@ -9,10 +9,10 @@ Adding a model requires few steps:
|
|||
After following these steps, you can open PR.
|
||||
|
||||
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
|
||||
- [main](/examples/main/)
|
||||
- [imatrix](/examples/imatrix/)
|
||||
- [quantize](/examples/quantize/)
|
||||
- [server](/examples/server/)
|
||||
- [main](/tools/main/)
|
||||
- [imatrix](/tools/imatrix/)
|
||||
- [quantize](/tools/quantize/)
|
||||
- [server](/tools/server/)
|
||||
|
||||
### 1. Convert the model to GGUF
|
||||
|
||||
|
|
|
|||
|
|
@ -33,13 +33,13 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
|||
2. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/llava_surgery.py -m path/to/MobileVLM-1.7B
|
||||
python ./tools/mtmd/llava_surgery.py -m path/to/MobileVLM-1.7B
|
||||
```
|
||||
|
||||
3. Use `convert_image_encoder_to_gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py \
|
||||
-m path/to/clip-vit-large-patch14-336 \
|
||||
--llava-projector path/to/MobileVLM-1.7B/llava.projector \
|
||||
--output-dir path/to/MobileVLM-1.7B \
|
||||
|
|
@ -47,7 +47,7 @@ python ./examples/llava/convert_image_encoder_to_gguf.py \
|
|||
```
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py \
|
||||
-m path/to/clip-vit-large-patch14-336 \
|
||||
--llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \
|
||||
--output-dir path/to/MobileVLM-1.7B_V2 \
|
||||
|
|
@ -69,10 +69,10 @@ Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directo
|
|||
|
||||
## Android compile and run
|
||||
### compile
|
||||
refer to `examples/llava/android/build_64.sh`
|
||||
refer to `tools/mtmd/android/build_64.sh`
|
||||
```sh
|
||||
mkdir examples/llava/android/build_64
|
||||
cd examples/llava/android/build_64
|
||||
mkdir tools/mtmd/android/build_64
|
||||
cd tools/mtmd/android/build_64
|
||||
../build_64.sh
|
||||
```
|
||||
### run on Android
|
||||
|
|
|
|||
|
|
@ -25,13 +25,13 @@ git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/T
|
|||
2. Use `glmedge-surgery.py` to split the GLMV-EDGE model to LLM and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/glmedge-surgery.py -m ../model_path
|
||||
python ./tools/mtmd/glmedge-surgery.py -m ../model_path
|
||||
```
|
||||
|
||||
4. Use `glmedge-convert-image-encoder-to-gguf.py` to convert the GLMV-EDGE image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
|
||||
python ./tools/mtmd/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
|
||||
```
|
||||
|
||||
5. Use `examples/convert_hf_to_gguf.py` to convert the LLM part of GLMV-EDGE to GGUF:
|
||||
|
|
|
|||
|
|
@ -37,19 +37,19 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
|||
2. Install the required Python packages:
|
||||
|
||||
```sh
|
||||
pip install -r examples/llava/requirements.txt
|
||||
pip install -r tools/mtmd/requirements.txt
|
||||
```
|
||||
|
||||
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
|
||||
python ./tools/mtmd/llava_surgery.py -m ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
|
|
@ -69,12 +69,12 @@ git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
|
|||
2) Install the required Python packages:
|
||||
|
||||
```sh
|
||||
pip install -r examples/llava/requirements.txt
|
||||
pip install -r tools/mtmd/requirements.txt
|
||||
```
|
||||
|
||||
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||
```console
|
||||
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||
python tools/mtmd/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||
```
|
||||
- you will find a llava.projector and a llava.clip file in your model directory
|
||||
|
||||
|
|
@ -88,7 +88,7 @@ curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.jso
|
|||
|
||||
5) Create the visual gguf model:
|
||||
```console
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||
```
|
||||
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
||||
|
||||
|
|
|
|||
|
|
@ -29,8 +29,8 @@ cmake --build build --config Release
|
|||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-o-2_6
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-o-2_6
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
|
|
|
|||
|
|
@ -28,8 +28,8 @@ cmake --build build --config Release
|
|||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
|
||||
|
||||
# quantize int4 version
|
||||
|
|
|
|||
|
|
@ -28,8 +28,8 @@ cmake --build build --config Release
|
|||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-V-2_6
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-V-2_6
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
|
|
|
|||
|
|
@ -12,51 +12,29 @@ llama_add_compile_flags()
|
|||
|
||||
# examples
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
else()
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(embedding)
|
||||
add_subdirectory(eval-callback)
|
||||
|
||||
add_subdirectory(gguf-hash)
|
||||
add_subdirectory(gguf-split)
|
||||
add_subdirectory(gguf)
|
||||
add_subdirectory(gritlm)
|
||||
add_subdirectory(imatrix)
|
||||
add_subdirectory(infill)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(lookahead)
|
||||
add_subdirectory(lookup)
|
||||
add_subdirectory(main)
|
||||
add_subdirectory(parallel)
|
||||
add_subdirectory(passkey)
|
||||
add_subdirectory(perplexity)
|
||||
add_subdirectory(quantize)
|
||||
add_subdirectory(retrieval)
|
||||
if (LLAMA_BUILD_SERVER)
|
||||
add_subdirectory(server)
|
||||
endif()
|
||||
add_subdirectory(save-load-state)
|
||||
add_subdirectory(run)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(simple-chat)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(speculative-simple)
|
||||
add_subdirectory(tokenize)
|
||||
add_subdirectory(tts)
|
||||
add_subdirectory(gen-docs)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
# these examples use the backends directly and cannot be built with dynamic loading
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(cvector-generator)
|
||||
add_subdirectory(export-lora)
|
||||
add_subdirectory(llava)
|
||||
if (GGML_RPC)
|
||||
add_subdirectory(rpc)
|
||||
endif()
|
||||
# these examples use the backends directly and cannot be built with dynamic loading
|
||||
if (GGML_SYCL)
|
||||
add_subdirectory(sycl)
|
||||
endif()
|
||||
|
|
|
|||
|
|
@ -89,6 +89,13 @@ int main(int argc, char ** argv) {
|
|||
common_init();
|
||||
|
||||
params.embedding = true;
|
||||
|
||||
// utilize the full context
|
||||
if (params.n_batch < params.n_ctx) {
|
||||
LOG_WRN("%s: setting batch size to %d\n", __func__, params.n_ctx);
|
||||
params.n_batch = params.n_ctx;
|
||||
}
|
||||
|
||||
// For non-causal models, batch size must be equal to ubatch size
|
||||
params.n_ubatch = params.n_batch;
|
||||
|
||||
|
|
@ -134,7 +141,6 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// max batch size
|
||||
const uint64_t n_batch = params.n_batch;
|
||||
GGML_ASSERT(params.n_batch >= params.n_ctx);
|
||||
|
||||
// tokenize the prompts and trim
|
||||
std::vector<std::vector<int32_t>> inputs;
|
||||
|
|
|
|||
|
|
@ -1,5 +0,0 @@
|
|||
set(TARGET llama-infill)
|
||||
add_executable(${TARGET} infill.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
|
@ -1,47 +0,0 @@
|
|||
# llama.cpp/example/infill
|
||||
|
||||
This example shows how to use the infill mode with Code Llama models supporting infill mode.
|
||||
Currently the 7B and 13B models support infill mode.
|
||||
|
||||
Infill supports most of the options available in the main example.
|
||||
|
||||
For further information have a look at the main README.md in llama.cpp/example/main/README.md
|
||||
|
||||
## Common Options
|
||||
|
||||
In this section, we cover the most commonly used options for running the `infill` program with the LLaMA models:
|
||||
|
||||
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
|
||||
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
|
||||
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
|
||||
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 4096, but if a LLaMA model was built with a longer context, increasing this value will provide better results for longer input/inference.
|
||||
- `--spm-infill`: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.
|
||||
|
||||
## Input Prompts
|
||||
|
||||
The `infill` program provides several ways to interact with the LLaMA models using input prompts:
|
||||
|
||||
- `--in-prefix PROMPT_BEFORE_CURSOR`: Provide the prefix directly as a command-line option.
|
||||
- `--in-suffix PROMPT_AFTER_CURSOR`: Provide the suffix directly as a command-line option.
|
||||
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
|
||||
|
||||
## Interaction
|
||||
|
||||
The `infill` program offers a seamless way to interact with LLaMA models, allowing users to receive real-time infill suggestions. The interactive mode can be triggered using `--interactive`, and `--interactive-first`
|
||||
|
||||
### Interaction Options
|
||||
|
||||
- `-i, --interactive`: Run the program in interactive mode, allowing users to get real time code suggestions from model.
|
||||
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
|
||||
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
|
||||
|
||||
### Example
|
||||
|
||||
Download a model that supports infill, for example CodeLlama:
|
||||
```console
|
||||
scripts/hf.sh --repo TheBloke/CodeLlama-13B-GGUF --file codellama-13b.Q5_K_S.gguf --outdir models
|
||||
```
|
||||
|
||||
```bash
|
||||
./llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n "
|
||||
```
|
||||
|
|
@ -1,590 +0,0 @@
|
|||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "console.h"
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
#include <signal.h>
|
||||
#include <unistd.h>
|
||||
#elif defined (_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <signal.h>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static common_sampler ** g_smpl;
|
||||
static common_params * g_params;
|
||||
static std::vector<llama_token> * g_input_tokens;
|
||||
static std::ostringstream * g_output_ss;
|
||||
static std::vector<llama_token> * g_output_tokens;
|
||||
|
||||
static bool is_interacting = false;
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
static void sigint_handler(int signo) {
|
||||
if (signo == SIGINT) {
|
||||
if (!is_interacting) {
|
||||
is_interacting = true;
|
||||
} else {
|
||||
console::cleanup();
|
||||
LOG("\n");
|
||||
common_perf_print(*g_ctx, *g_smpl);
|
||||
|
||||
// make sure all logs are flushed
|
||||
LOG("Interrupted by user\n");
|
||||
common_log_pause(common_log_main());
|
||||
|
||||
_exit(130);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
g_params = ¶ms;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
auto & sparams = params.sampling;
|
||||
|
||||
console::init(params.simple_io, params.use_color);
|
||||
atexit([]() { console::cleanup(); });
|
||||
|
||||
if (params.logits_all) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.embedding) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
||||
LOG_WRN("%s: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
}
|
||||
|
||||
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.rope_freq_base != 0.0) {
|
||||
LOG_WRN("%s: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||
}
|
||||
|
||||
if (params.rope_freq_scale != 0.0) {
|
||||
LOG_WRN("%s: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
LOG_INF("%s: llama backend init\n", __func__);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
common_sampler * smpl = nullptr;
|
||||
|
||||
g_model = &model;
|
||||
g_ctx = &ctx;
|
||||
g_smpl = &smpl;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
model = llama_init.model.get();
|
||||
ctx = llama_init.context.get();
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_ctx_train = llama_model_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
LOG_DBG("n_ctx: %d\n", n_ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
std::vector<llama_token> embd_end;
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0);
|
||||
GGML_ASSERT(llama_vocab_fim_suf(vocab) >= 0);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
if (add_bos) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
|
||||
}
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
|
||||
const llama_token middle_token = llama_vocab_fim_mid(vocab);
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
LOG_DBG("add_bos: %d\n", add_bos);
|
||||
LOG_DBG("prefix: \"%s\"\n", params.input_prefix.c_str());
|
||||
LOG_DBG("suffix: \"%s\"\n", params.input_suffix.c_str());
|
||||
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_vocab_bos(vocab));
|
||||
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
}
|
||||
|
||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// number of tokens to keep when resetting context
|
||||
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
|
||||
params.n_keep = (int)embd_inp.size();
|
||||
}
|
||||
|
||||
LOG_INF("inp_pfx: %s\n", string_from(ctx, inp_pfx).c_str());
|
||||
LOG_INF("inp_sfx: %s\n", string_from(ctx, inp_sfx).c_str());
|
||||
|
||||
// enable interactive mode if interactive start is specified
|
||||
if (params.interactive_first) {
|
||||
params.interactive = true;
|
||||
}
|
||||
|
||||
if (params.verbose_prompt) {
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
|
||||
if (params.n_keep > 0) {
|
||||
LOG_INF("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
LOG_CNT("'\n");
|
||||
}
|
||||
LOG_INF("\n");
|
||||
}
|
||||
|
||||
if (params.interactive) {
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
struct sigaction sigint_action;
|
||||
sigint_action.sa_handler = sigint_handler;
|
||||
sigemptyset (&sigint_action.sa_mask);
|
||||
sigint_action.sa_flags = 0;
|
||||
sigaction(SIGINT, &sigint_action, NULL);
|
||||
#elif defined (_WIN32)
|
||||
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
||||
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
||||
};
|
||||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
#endif
|
||||
|
||||
LOG_INF("%s: interactive mode on.\n", __func__);
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_INF("Input prefix with BOS\n");
|
||||
}
|
||||
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
}
|
||||
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
}
|
||||
}
|
||||
smpl = common_sampler_init(model, sparams);
|
||||
|
||||
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
|
||||
|
||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("\n##### Infill mode #####\n\n");
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
if (params.multiline_input) {
|
||||
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n";
|
||||
} else {
|
||||
control_message = " - Press Return to return control to LLaMA.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n"
|
||||
" - If you want to submit another line, end your input with '\\'.\n";
|
||||
}
|
||||
LOG_INF("== Running in interactive mode. ==\n");
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
|
||||
#endif
|
||||
LOG_INF( "%s\n", control_message);
|
||||
|
||||
is_interacting = params.interactive_first;
|
||||
}
|
||||
|
||||
bool input_echo = true;
|
||||
|
||||
int n_past = 0;
|
||||
int n_remain = params.n_predict;
|
||||
int n_consumed = 0;
|
||||
|
||||
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
||||
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
||||
std::ostringstream output_ss; g_output_ss = &output_ss;
|
||||
|
||||
// the first thing we will do is to output the prompt, so set color accordingly
|
||||
console::set_display(console::prompt);
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
|
||||
while (n_remain != 0 || params.interactive) {
|
||||
// predict
|
||||
if (!embd.empty()) {
|
||||
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
||||
// --prompt or --file which uses the same value.
|
||||
int max_embd_size = n_ctx - 4;
|
||||
|
||||
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
|
||||
if ((int) embd.size() > max_embd_size) {
|
||||
const int skipped_tokens = (int) embd.size() - max_embd_size;
|
||||
embd.resize(max_embd_size);
|
||||
|
||||
console::set_display(console::error);
|
||||
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
console::set_display(console::reset);
|
||||
}
|
||||
|
||||
// infinite text generation via context swapping
|
||||
// if we run out of context:
|
||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||
if (n_past + (int) embd.size() > n_ctx) {
|
||||
if (params.n_predict == -2) {
|
||||
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep - 1;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG_DBG("after swap: n_past = %d\n", n_past);
|
||||
|
||||
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
}
|
||||
|
||||
// evaluate tokens in batches
|
||||
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
||||
int n_eval = (int) embd.size() - i;
|
||||
if (n_eval > params.n_batch) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
n_past += n_eval;
|
||||
|
||||
LOG_DBG("n_past = %d\n", n_past);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
embd.clear();
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
const llama_token id = common_sampler_sample(smpl, ctx, -1);
|
||||
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
// echo this to console
|
||||
input_echo = true;
|
||||
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
// some user input remains from prompt or interaction, forward it to processing
|
||||
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
while ((int) embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
common_sampler_accept(smpl, embd_inp[n_consumed], false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// display text
|
||||
if (input_echo) {
|
||||
for (auto id : embd) {
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
LOG("%s", token_str.c_str());
|
||||
|
||||
if (embd.size() > 1) {
|
||||
input_tokens.push_back(id);
|
||||
} else {
|
||||
output_tokens.push_back(id);
|
||||
output_ss << token_str;
|
||||
}
|
||||
}
|
||||
}
|
||||
// reset color to default if we there is no pending user input
|
||||
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
||||
console::set_display(console::reset);
|
||||
}
|
||||
|
||||
// if not currently processing queued inputs;
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
// deal with eot token in infill mode
|
||||
if ((common_sampler_last(smpl) == llama_vocab_eot(vocab) || is_interacting) && params.interactive){
|
||||
if (is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
|
||||
}
|
||||
LOG("\n");
|
||||
console::set_display(console::user_input);
|
||||
std::string buffer;
|
||||
std::string line;
|
||||
bool another_line=true;
|
||||
// set a new prefix via stdin
|
||||
do {
|
||||
another_line = console::readline(line, params.multiline_input);
|
||||
buffer += line;
|
||||
} while (another_line);
|
||||
// check if we got an empty line, if so we use the old input
|
||||
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||
params.input_prefix = buffer;
|
||||
}
|
||||
buffer.clear();
|
||||
// set a new suffix via stdin
|
||||
do {
|
||||
another_line = console::readline(line, params.multiline_input);
|
||||
buffer += line;
|
||||
} while (another_line);
|
||||
// check if we got an empty line
|
||||
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||
params.input_suffix = buffer;
|
||||
}
|
||||
buffer.clear();
|
||||
// done taking input, reset color
|
||||
console::set_display(console::reset);
|
||||
|
||||
if (params.escape) {
|
||||
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
|
||||
string_process_escapes(params.input_prefix);
|
||||
string_process_escapes(params.input_suffix);
|
||||
}
|
||||
|
||||
// tokenize new prefix and suffix
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
if (add_bos) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
|
||||
}
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
embd.clear();
|
||||
n_remain = params.n_predict;
|
||||
n_past = 0;
|
||||
n_consumed = 0;
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of generation tokens in interactive mode
|
||||
else if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
|
||||
LOG_DBG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
|
||||
is_interacting = true;
|
||||
LOG("\n");
|
||||
console::set_display(console::user_input);
|
||||
}
|
||||
}
|
||||
|
||||
if (n_past > 0 && is_interacting && !params.interactive) {
|
||||
LOG_DBG("waiting for user input\n");
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_DBG("adding input prefix BOS token\n");
|
||||
embd_inp.push_back(llama_vocab_bos(vocab));
|
||||
}
|
||||
|
||||
std::string buffer;
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
buffer += params.input_prefix;
|
||||
LOG("%s", buffer.c_str());
|
||||
}
|
||||
|
||||
std::string line;
|
||||
bool another_line = true;
|
||||
do {
|
||||
another_line = console::readline(line, params.multiline_input);
|
||||
buffer += line;
|
||||
} while (another_line);
|
||||
|
||||
// done taking input, reset color
|
||||
console::set_display(console::reset);
|
||||
|
||||
// Add tokens to embd only if the input buffer is non-empty
|
||||
// Entering a empty line lets the user pass control back
|
||||
if (buffer.length() > 1) {
|
||||
// append input suffix if any
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
buffer += params.input_suffix;
|
||||
LOG("%s", params.input_suffix.c_str());
|
||||
}
|
||||
|
||||
LOG_DBG("buffer: '%s'\n", buffer.c_str());
|
||||
|
||||
const size_t original_size = embd_inp.size();
|
||||
|
||||
const auto line_inp = common_tokenize(ctx, buffer, false);
|
||||
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
|
||||
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||
const llama_token token = embd_inp[i];
|
||||
output_tokens.push_back(token);
|
||||
output_ss << common_token_to_piece(ctx, token);
|
||||
}
|
||||
|
||||
n_remain -= line_inp.size();
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
LOG_DBG("empty line, passing control back\n");
|
||||
}
|
||||
|
||||
input_echo = false; // do not echo this again
|
||||
}
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
common_sampler_reset(smpl);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
}
|
||||
|
||||
// end of generation
|
||||
if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !params.interactive) {
|
||||
break;
|
||||
}
|
||||
|
||||
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
||||
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
|
||||
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
|
||||
n_remain = params.n_predict;
|
||||
is_interacting = true;
|
||||
}
|
||||
}
|
||||
if (!params.interactive && n_remain <= 0) {
|
||||
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
common_perf_print(ctx, smpl);
|
||||
|
||||
common_sampler_free(smpl);
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -10,6 +10,9 @@ from typing import Any, List, Optional, Set, Tuple, Union
|
|||
|
||||
def _build_repetition(item_rule, min_items, max_items, separator_rule=None):
|
||||
|
||||
if max_items == 0:
|
||||
return ""
|
||||
|
||||
if min_items == 0 and max_items == 1:
|
||||
return f'{item_rule}?'
|
||||
|
||||
|
|
|
|||
|
|
@ -1,161 +0,0 @@
|
|||
#ifndef MTMD_H
|
||||
#define MTMD_H
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "clip.h"
|
||||
|
||||
#include <vector>
|
||||
#include <cinttypes>
|
||||
#include <memory>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define MTMD_API __declspec(dllexport)
|
||||
# else
|
||||
# define MTMD_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define MTMD_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define MTMD_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
enum mtmd_input_chunk_type {
|
||||
MTMD_INPUT_CHUNK_TYPE_TEXT,
|
||||
MTMD_INPUT_CHUNK_TYPE_IMAGE,
|
||||
};
|
||||
|
||||
struct mtmd_context;
|
||||
struct mtmd_image_tokens;
|
||||
|
||||
// represents raw image data, layout is RGBRGBRGB...
|
||||
// length of data must be nx * ny * 3
|
||||
struct mtmd_bitmap {
|
||||
uint32_t nx;
|
||||
uint32_t ny;
|
||||
std::vector<unsigned char> data;
|
||||
std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
|
||||
};
|
||||
|
||||
struct mtmd_image_tokens_deleter {
|
||||
void operator()(mtmd_image_tokens * val); // forward declaration
|
||||
};
|
||||
using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens, mtmd_image_tokens_deleter>;
|
||||
|
||||
struct mtmd_input_chunk {
|
||||
mtmd_input_chunk_type type;
|
||||
std::vector<llama_token> tokens_text;
|
||||
mtmd_image_tokens_ptr tokens_image;
|
||||
};
|
||||
|
||||
using mtmd_input_chunks = std::vector<mtmd_input_chunk>;
|
||||
|
||||
struct mtmd_context_params {
|
||||
bool use_gpu = true;
|
||||
bool print_timings = true;
|
||||
int n_threads = 4;
|
||||
enum ggml_log_level verbosity = GGML_LOG_LEVEL_INFO;
|
||||
const char * image_marker = "<__image__>";
|
||||
};
|
||||
|
||||
struct mtmd_input_text {
|
||||
std::string text;
|
||||
bool add_special;
|
||||
bool parse_special;
|
||||
};
|
||||
|
||||
// initialize the mtmd context
|
||||
// return nullptr on failure
|
||||
MTMD_API mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
|
||||
const llama_model * text_model,
|
||||
const mtmd_context_params ctx_params);
|
||||
|
||||
MTMD_API void mtmd_free(mtmd_context * ctx);
|
||||
|
||||
// tokenize an input text prompt and an image
|
||||
// the prompt must have the input image marker (default: "<__image__>") in it
|
||||
// the marker will be replaced with the image tokens
|
||||
// for example:
|
||||
// "here is an image: <__image__>\ndescribe it in detail."
|
||||
// this will gives 3 chunks:
|
||||
// 1. "here is an image: <start_of_image>"
|
||||
// 2. (image tokens)
|
||||
// 3. "<end_of_image>\ndescribe it in detail."
|
||||
// number of bitmaps must be equal to the number of image markers in the prompt
|
||||
// this function is thread-safe (shared ctx)
|
||||
// return values:
|
||||
// 0 on success
|
||||
// 1 on number of images not matching the number of markers
|
||||
// 2 on image preprocessing error
|
||||
MTMD_API int32_t mtmd_tokenize(mtmd_context * ctx,
|
||||
std::vector<mtmd_input_chunk> & output,
|
||||
const mtmd_input_text & text,
|
||||
const std::vector<mtmd_bitmap> & bitmaps);
|
||||
|
||||
// access mtmd_image_tokens
|
||||
MTMD_API size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API std::string mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens);
|
||||
|
||||
// returns 0 on success
|
||||
MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
|
||||
const mtmd_image_tokens * image_tokens);
|
||||
|
||||
// get output embeddings from the last encode pass
|
||||
MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
|
||||
|
||||
// whether we need to set non-causal mask before llama_decode
|
||||
MTMD_API bool mtmd_decode_use_non_causal(mtmd_context * ctx);
|
||||
|
||||
|
||||
|
||||
//
|
||||
// helper functions (can be implemented based on other functions)
|
||||
//
|
||||
|
||||
// helper to count the total number of tokens from a list of chunks, useful to keep track of n_past
|
||||
MTMD_API size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks);
|
||||
|
||||
// helper function that automatically:
|
||||
// 1. run llama_decode() on text chunks
|
||||
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()
|
||||
// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error
|
||||
// otherwise, returns 0 on success
|
||||
MTMD_API int32_t mtmd_helper_eval(mtmd_context * ctx,
|
||||
llama_context * lctx,
|
||||
mtmd_input_chunks & chunks,
|
||||
llama_pos pos0,
|
||||
llama_seq_id seq_id,
|
||||
int32_t n_batch);
|
||||
|
||||
// helper function to construct a mtmd_bitmap from a file
|
||||
// returns 0 on success
|
||||
// this function is thread-safe
|
||||
MTMD_API int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output);
|
||||
|
||||
// helper function to construct a mtmd_bitmap from a buffer
|
||||
// the buffer must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
|
||||
// returns 0 on success
|
||||
// this function is thread-safe
|
||||
MTMD_API int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output);
|
||||
|
||||
// convenient unique_ptr wrappers
|
||||
struct mtmd_context_deleter {
|
||||
void operator()(mtmd_context * val) { mtmd_free(val); }
|
||||
};
|
||||
using mtmd_context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
|
||||
|
||||
#else
|
||||
|
||||
static_assert(false && "C header is not yet supported by this library");
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
@ -1,165 +0,0 @@
|
|||
import argparse
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from gguf import *
|
||||
from transformers import (
|
||||
Qwen2VLForConditionalGeneration,
|
||||
Qwen2VLProcessor,
|
||||
AutoProcessor,
|
||||
Qwen2VLConfig
|
||||
)
|
||||
|
||||
|
||||
VISION = "clip.vision"
|
||||
|
||||
|
||||
def k(raw_key: str, arch: str) -> str:
|
||||
return raw_key.format(arch=arch)
|
||||
|
||||
|
||||
def to_gguf_name(name: str) -> str:
|
||||
og = name
|
||||
name = name.replace("text_model", "t").replace("vision_model", "v")
|
||||
name = name.replace("blocks", "blk").replace("embeddings.", "")
|
||||
name = name.replace("attn.", "attn_")
|
||||
name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
|
||||
# name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
|
||||
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
|
||||
name = name.replace("merger.mlp", 'mm')
|
||||
print(f"[to_gguf_name] {og} --> {name}")
|
||||
return name
|
||||
|
||||
|
||||
def find_vision_tensors(qwen2vl, dtype) -> Dict[str, np.ndarray]:
|
||||
vision_model = qwen2vl.visual
|
||||
tensor_map = {}
|
||||
for name, ten in vision_model.state_dict().items():
|
||||
ten = ten.numpy()
|
||||
if 'qkv' in name:
|
||||
if ten.ndim == 2: # weight
|
||||
c3, _ = ten.shape
|
||||
else: # bias
|
||||
c3 = ten.shape[0]
|
||||
assert c3 % 3 == 0
|
||||
c = c3 // 3
|
||||
wq = ten[:c]
|
||||
wk = ten[c: c * 2]
|
||||
wv = ten[c * 2:]
|
||||
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
|
||||
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
|
||||
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
|
||||
elif 'merger' in name:
|
||||
if name.endswith("ln_q.weight"):
|
||||
tensor_map['v.post_ln.weight'] = ten
|
||||
elif name.endswith("ln_q.bias"):
|
||||
tensor_map['v.post_ln.bias'] = ten
|
||||
else:
|
||||
# "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
|
||||
tensor_map[to_gguf_name(name)] = ten
|
||||
elif 'patch_embed.proj.weight' in name:
|
||||
# NOTE: split Conv3D into Conv2Ds
|
||||
c1, c2, kt, kh, kw = ten.shape
|
||||
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
|
||||
tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
|
||||
tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
|
||||
else:
|
||||
tensor_map[to_gguf_name(f"vision_model.{name}")] = ten
|
||||
|
||||
for new_name, ten in tensor_map.items():
|
||||
if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
|
||||
tensor_map[new_name] = ten.astype(np.float32)
|
||||
else:
|
||||
tensor_map[new_name] = ten.astype(dtype)
|
||||
tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder
|
||||
return tensor_map
|
||||
|
||||
|
||||
def main(args):
|
||||
if args.data_type == 'fp32':
|
||||
dtype = torch.float32
|
||||
np_dtype = np.float32
|
||||
ftype = 0
|
||||
elif args.data_type == 'fp16':
|
||||
dtype = torch.float32
|
||||
np_dtype = np.float16
|
||||
ftype = 1
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
local_model = False
|
||||
model_path = ""
|
||||
model_name = args.model_name
|
||||
print("model_name: ", model_name)
|
||||
qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map="cpu"
|
||||
)
|
||||
cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
|
||||
vcfg = cfg.vision_config
|
||||
|
||||
if os.path.isdir(model_name):
|
||||
local_model = True
|
||||
if model_name.endswith(os.sep):
|
||||
model_name = model_name[:-1]
|
||||
model_path = model_name
|
||||
model_name = os.path.basename(model_name)
|
||||
fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf"
|
||||
|
||||
fout = GGUFWriter(path=fname_out, arch="clip")
|
||||
fout.add_description("image encoder for Qwen2VL")
|
||||
|
||||
fout.add_file_type(ftype)
|
||||
fout.add_bool("clip.has_text_encoder", False)
|
||||
fout.add_bool("clip.has_vision_encoder", True)
|
||||
fout.add_bool("clip.has_qwen2vl_merger", True)
|
||||
fout.add_string("clip.projector_type", "qwen2vl_merger")
|
||||
|
||||
print(cfg.vision_config)
|
||||
if 'silu' in cfg.vision_config.hidden_act.lower():
|
||||
fout.add_bool("clip.use_silu", True)
|
||||
fout.add_bool("clip.use_gelu", False)
|
||||
elif 'gelu' in cfg.vision_config.hidden_act.lower():
|
||||
fout.add_bool("clip.use_silu", False)
|
||||
fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
tensor_map = find_vision_tensors(qwen2vl, np_dtype)
|
||||
for name, data in tensor_map.items():
|
||||
fout.add_tensor(name, data)
|
||||
|
||||
fout.add_uint32("clip.vision.patch_size", vcfg.patch_size)
|
||||
fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2)
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
|
||||
fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads)
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth)
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0) # not sure what this does, put 0 here as a placeholder
|
||||
fout.add_name(model_name)
|
||||
"""
|
||||
HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig,
|
||||
it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`.
|
||||
"""
|
||||
|
||||
if local_model:
|
||||
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path)
|
||||
else:
|
||||
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name)
|
||||
fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue]
|
||||
fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue]
|
||||
|
||||
fout.write_header_to_file()
|
||||
fout.write_kv_data_to_file()
|
||||
fout.write_tensors_to_file()
|
||||
fout.close()
|
||||
print("save model as: ", fname_out)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct")
|
||||
parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32")
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
|
@ -23,7 +23,7 @@ def create_completion(host, prompt, gbnf_grammar):
|
|||
"""Calls the /completion API on llama-server.
|
||||
|
||||
See
|
||||
https://github.com/ggml-org/llama.cpp/tree/HEAD/examples/server#api-endpoints
|
||||
https://github.com/ggml-org/llama.cpp/tree/HEAD/tools/server#api-endpoints
|
||||
"""
|
||||
print(f" Request:\n Grammar:\n{textwrap.indent(gbnf_grammar, ' ')}\n Prompt:\n{textwrap.indent(prompt.rstrip(), ' ')}")
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
|
|
|||
Binary file not shown.
|
|
@ -362,3 +362,29 @@ write_basic_package_version_file(
|
|||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml)
|
||||
|
||||
if (MSVC)
|
||||
set(MSVC_WARNING_FLAGS
|
||||
/wd4005 # Macro redefinition
|
||||
/wd4244 # Conversion from one type to another type, possible loss of data
|
||||
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
|
||||
/wd4996 # Disable POSIX deprecation warnings
|
||||
/wd4702 # Unreachable code warnings
|
||||
)
|
||||
function(disable_msvc_warnings target_name)
|
||||
if(TARGET ${target_name})
|
||||
target_compile_options(${target_name} PRIVATE ${MSVC_WARNING_FLAGS})
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
disable_msvc_warnings(ggml-base)
|
||||
disable_msvc_warnings(ggml)
|
||||
disable_msvc_warnings(ggml-cpu)
|
||||
disable_msvc_warnings(ggml-cpu-x64)
|
||||
disable_msvc_warnings(ggml-cpu-sse42)
|
||||
disable_msvc_warnings(ggml-cpu-sandybridge)
|
||||
disable_msvc_warnings(ggml-cpu-haswell)
|
||||
disable_msvc_warnings(ggml-cpu-skylakex)
|
||||
disable_msvc_warnings(ggml-cpu-icelake)
|
||||
disable_msvc_warnings(ggml-cpu-alderlake)
|
||||
endif()
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ extern "C" {
|
|||
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft);
|
||||
|
||||
|
|
@ -59,7 +59,7 @@ extern "C" {
|
|||
GGML_API enum ggml_status ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@ typedef std::unique_ptr<gguf_context, gguf_context_deleter> gguf_context_ptr;
|
|||
|
||||
struct ggml_gallocr_deleter { void operator()(ggml_gallocr_t galloc) { ggml_gallocr_free(galloc); } };
|
||||
|
||||
typedef std::unique_ptr<ggml_gallocr_t, ggml_gallocr_deleter> ggml_gallocr_ptr;
|
||||
typedef std::unique_ptr<ggml_gallocr, ggml_gallocr_deleter> ggml_gallocr_ptr;
|
||||
|
||||
// ggml-backend
|
||||
|
||||
|
|
|
|||
|
|
@ -133,6 +133,11 @@ extern "C" {
|
|||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp16(const float *, ggml_fp16_t *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp16_to_fp32(const ggml_fp16_t *, float *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_bf16(const float *, ggml_bf16_t *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_bf16_to_fp32(const ggml_bf16_t *, float *, int64_t);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define RPC_PROTO_MAJOR_VERSION 1
|
||||
#define RPC_PROTO_MAJOR_VERSION 2
|
||||
#define RPC_PROTO_MINOR_VERSION 0
|
||||
#define RPC_PROTO_PATCH_VERSION 0
|
||||
#define GGML_RPC_MAX_SERVERS 16
|
||||
|
|
|
|||
|
|
@ -393,8 +393,8 @@ extern "C" {
|
|||
|
||||
// precision
|
||||
enum ggml_prec {
|
||||
GGML_PREC_DEFAULT,
|
||||
GGML_PREC_F32,
|
||||
GGML_PREC_DEFAULT = 0, // stored as ggml_tensor.op_params, 0 by default
|
||||
GGML_PREC_F32 = 10,
|
||||
};
|
||||
|
||||
// model file types
|
||||
|
|
@ -481,6 +481,7 @@ extern "C" {
|
|||
GGML_OP_CONV_TRANSPOSE_1D,
|
||||
GGML_OP_IM2COL,
|
||||
GGML_OP_IM2COL_BACK,
|
||||
GGML_OP_CONV_2D_DW,
|
||||
GGML_OP_CONV_TRANSPOSE_2D,
|
||||
GGML_OP_POOL_1D,
|
||||
GGML_OP_POOL_2D,
|
||||
|
|
@ -672,11 +673,18 @@ extern "C" {
|
|||
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
||||
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
||||
|
||||
// returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
|
||||
GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
|
||||
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
|
||||
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
|
||||
|
||||
// returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
|
||||
GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
|
||||
|
||||
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
|
||||
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
|
|
@ -1660,7 +1668,7 @@ extern "C" {
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// depthwise
|
||||
// depthwise (via im2col and mul_mat)
|
||||
GGML_API struct ggml_tensor * ggml_conv_2d_dw(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // convolution kernel
|
||||
|
|
@ -1672,6 +1680,22 @@ extern "C" {
|
|||
int d0, // dilation dimension 0
|
||||
int d1); // dilation dimension 1
|
||||
|
||||
// Depthwise 2D convolution
|
||||
// may be faster than ggml_conv_2d_dw, but not available in all backends
|
||||
// a: KW KH 1 C convolution kernel
|
||||
// b: W H C N input data
|
||||
// res: W_out H_out C N
|
||||
GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int stride0,
|
||||
int stride1,
|
||||
int pad0,
|
||||
int pad1,
|
||||
int dilation0,
|
||||
int dilation1);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
|
|
|
|||
|
|
@ -214,7 +214,7 @@ add_library(ggml
|
|||
target_link_libraries(ggml PUBLIC ggml-base)
|
||||
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
target_link_libraries(ggml PRIVATE dl stdc++fs)
|
||||
target_link_libraries(ggml PRIVATE dl)
|
||||
endif()
|
||||
|
||||
function(ggml_add_backend_library backend)
|
||||
|
|
|
|||
|
|
@ -816,7 +816,10 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
|
|||
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
|
||||
size_t node_size = 0;
|
||||
if (!node->data && !node->view_src) {
|
||||
GGML_ASSERT(talloc->buffer_id >= 0); // prevent segfault when misusing the API
|
||||
// If we previously had data but don't now then reallocate
|
||||
if (talloc->buffer_id < 0) {
|
||||
return false;
|
||||
}
|
||||
node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
|
||||
}
|
||||
return talloc->size_max >= node_size;
|
||||
|
|
|
|||
|
|
@ -56,7 +56,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
|
|||
return SIZE_MAX;
|
||||
}
|
||||
|
||||
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
|
||||
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
|
||||
// get_alloc_size is optional, defaults to ggml_nbytes
|
||||
if (buft->iface.get_alloc_size) {
|
||||
size_t size = buft->iface.get_alloc_size(buft, tensor);
|
||||
|
|
@ -152,7 +152,7 @@ size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
|
|||
return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor) {
|
||||
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -352,10 +352,14 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
|||
# TODO: Separation to determine activation of VX/VXE/VXE2
|
||||
if (${S390X_M} MATCHES "8561|8562")
|
||||
message(STATUS "z15 target")
|
||||
list(APPEND ARCH_FLAGS -march=z15 -mtune=z15)
|
||||
list(APPEND ARCH_FLAGS -march=z15)
|
||||
elseif (${S390X_M} MATCHES "3931")
|
||||
message(STATUS "z16 target")
|
||||
list(APPEND ARCH_FLAGS -march=z16 -mtune=z16)
|
||||
list(APPEND ARCH_FLAGS -march=z16)
|
||||
elseif (${S390X_M} MATCHES "9175|9176")
|
||||
# NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version.
|
||||
message(STATUS "z17 target")
|
||||
list(APPEND ARCH_FLAGS -march=z17)
|
||||
else()
|
||||
message(STATUS "Unknown target")
|
||||
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")
|
||||
|
|
|
|||
|
|
@ -72,8 +72,6 @@ static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wro
|
|||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Woverlength-strings"
|
||||
#elif defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
|
|
|||
|
|
@ -20,12 +20,6 @@
|
|||
#define GROUP_MAX_EPS_IQ1_M 1e-7f
|
||||
#define GROUP_MAX_EPS_IQ1_S 1e-12f
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// disable "possible loss of data" to avoid warnings for hundreds of casts
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
#endif
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
// some compilers don't provide _mm256_set_m128i, e.g. gcc 7
|
||||
|
|
@ -6596,7 +6590,118 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
|||
}
|
||||
|
||||
*s = hsum_float_8(acc);
|
||||
#elif defined(__VXE__) || defined(__VXE2__)
|
||||
uint32_t aux[3];
|
||||
uint32_t utmp[4];
|
||||
|
||||
const int32x4_t v_z = vec_splat_s32(0);
|
||||
const uint8x16_t v_3m = vec_splat_u8(0x03);
|
||||
|
||||
const uint8x16_t v_0c = vec_splat_u8(1);
|
||||
const uint8x16_t v_1c = vec_sl(v_0c, 1);
|
||||
const uint8x16_t v_2c = vec_sl(v_0c, 2);
|
||||
const uint8x16_t v_3c = vec_sl(v_0c, 3);
|
||||
|
||||
uint8x16_t q3h[4];
|
||||
uint8x16_t q3b[2];
|
||||
int8x16_t q3bytes[4];
|
||||
int8x16_t q8bytes[4];
|
||||
uint8x16_t qhbits[2];
|
||||
|
||||
float sum = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
|
||||
const uint8_t * restrict x0l = x[i].qs;
|
||||
const uint8_t * restrict x0h = x[i].hmask;
|
||||
const int8_t * restrict y0 = y[i].qs;
|
||||
|
||||
qhbits[0] = vec_xl(0 , x0h);
|
||||
qhbits[1] = vec_xl(16, x0h);
|
||||
|
||||
int32_t isum = 0;
|
||||
|
||||
memcpy(aux, x[i].scales, 12);
|
||||
utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
|
||||
utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
|
||||
utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
|
||||
utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
|
||||
|
||||
int8_t * scale = (int8_t *)utmp;
|
||||
for (int j = 0; j < 16; ++j) scale[j] -= 32;
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
int32x4_t isum0, isum1, isum2, isum3;
|
||||
|
||||
q3b[0] = vec_xl(0 , x0l);
|
||||
q3b[1] = vec_xl(16, x0l);
|
||||
x0l += 32;
|
||||
|
||||
q8bytes[0] = vec_xl(0 , y0);
|
||||
q8bytes[1] = vec_xl(16 , y0);
|
||||
q8bytes[2] = vec_xl(32 , y0);
|
||||
q8bytes[3] = vec_xl(48 , y0);
|
||||
q8bytes[4] = vec_xl(64 , y0);
|
||||
q8bytes[5] = vec_xl(80 , y0);
|
||||
q8bytes[6] = vec_xl(96 , y0);
|
||||
q8bytes[7] = vec_xl(112, y0);
|
||||
y0 += 128;
|
||||
|
||||
q3h[0] = vec_sl(vec_andc(v_0c, qhbits[0]), 2);
|
||||
q3h[1] = vec_sl(vec_andc(v_0c, qhbits[1]), 2);
|
||||
q3h[2] = vec_sl(vec_andc(v_1c, qhbits[0]), 1);
|
||||
q3h[3] = vec_sl(vec_andc(v_1c, qhbits[1]), 1);
|
||||
|
||||
q3bytes[0] = vec_sub((int8x16_t)vec_and(q3b[0], v_3m), (int8x16_t)q3h[0]);
|
||||
q3bytes[1] = vec_sub((int8x16_t)vec_and(q3b[1], v_3m), (int8x16_t)q3h[1]);
|
||||
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 2), v_3m), (int8x16_t)q3h[2]);
|
||||
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 2), v_3m), (int8x16_t)q3h[3]);
|
||||
|
||||
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[0]);
|
||||
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[1]);
|
||||
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[2]);
|
||||
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[3]);
|
||||
|
||||
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
|
||||
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
|
||||
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
|
||||
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
|
||||
|
||||
scale += 4;
|
||||
|
||||
q3h[0] = vec_andc(v_2c, qhbits[0]);
|
||||
q3h[1] = vec_andc(v_2c, qhbits[1]);
|
||||
q3h[2] = vec_sr(vec_andc(v_3c, qhbits[0]), 1);
|
||||
q3h[3] = vec_sr(vec_andc(v_3c, qhbits[1]), 1);
|
||||
|
||||
q3bytes[0] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 4), v_3m), (int8x16_t)q3h[0]);
|
||||
q3bytes[1] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 4), v_3m), (int8x16_t)q3h[1]);
|
||||
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 6), v_3m), (int8x16_t)q3h[2]);
|
||||
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 6), v_3m), (int8x16_t)q3h[3]);
|
||||
|
||||
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[4]);
|
||||
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[5]);
|
||||
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[6]);
|
||||
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[7]);
|
||||
|
||||
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
|
||||
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
|
||||
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
|
||||
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
|
||||
|
||||
scale += 4;
|
||||
|
||||
if (j == 0) {
|
||||
qhbits[0] = vec_sr(qhbits[0], 4);
|
||||
qhbits[1] = vec_sr(qhbits[1], 4);
|
||||
}
|
||||
}
|
||||
|
||||
sum += d * isum;
|
||||
}
|
||||
|
||||
*s = sum;
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
|
|
|
|||
|
|
@ -50,19 +50,6 @@
|
|||
#include "llamafile/sgemm.h"
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// disable "possible loss of data" to avoid hundreds of casts
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
|
||||
// disable POSIX deprecation warnings
|
||||
// these functions are never going away, anyway
|
||||
#pragma warning(disable: 4996)
|
||||
|
||||
// unreachable code because of multiple instances of code after GGML_ABORT
|
||||
#pragma warning(disable: 4702)
|
||||
#endif
|
||||
|
||||
// Note: once we move threading into a separate C++ file
|
||||
// will use std::hardware_destructive_interference_size instead of hardcoding it here
|
||||
// and we'll use C++ attribute syntax.
|
||||
|
|
@ -215,7 +202,7 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
|||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_F16] = {
|
||||
.from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
|
||||
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_fp16,
|
||||
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
|
||||
.vec_dot_type = GGML_TYPE_F16,
|
||||
.nrows = 1,
|
||||
|
|
@ -356,7 +343,7 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
|||
.from_float = quantize_row_q8_K,
|
||||
},
|
||||
[GGML_TYPE_BF16] = {
|
||||
.from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
|
||||
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_bf16,
|
||||
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
|
||||
.vec_dot_type = GGML_TYPE_BF16,
|
||||
.nrows = 1,
|
||||
|
|
@ -1932,6 +1919,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||
{
|
||||
ggml_compute_forward_im2col_back_f32(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
{
|
||||
ggml_compute_forward_conv_2d_dw(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
{
|
||||
ggml_compute_forward_conv_transpose_2d(params, tensor);
|
||||
|
|
@ -2268,6 +2259,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||
} break;
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
{
|
||||
|
|
@ -3161,6 +3153,93 @@ enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct g
|
|||
return ggml_graph_compute(cgraph, &cplan);
|
||||
}
|
||||
|
||||
void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
|
||||
int64_t i = 0;
|
||||
#if defined(__F16C__)
|
||||
#if defined(__AVX512F__)
|
||||
for (; i + 15 < n; i += 16) {
|
||||
__m512 x_vec = _mm512_loadu_ps(x + i);
|
||||
__m256i y_vec = _mm512_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||||
_mm256_storeu_si256((__m256i *)(y + i), y_vec);
|
||||
}
|
||||
#endif
|
||||
for (; i + 7 < n; i += 8) {
|
||||
__m256 x_vec = _mm256_loadu_ps(x + i);
|
||||
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||||
_mm_storeu_si128((__m128i *)(y + i), y_vec);
|
||||
}
|
||||
for (; i + 3 < n; i += 4) {
|
||||
__m128 x_vec = _mm_loadu_ps(x + i);
|
||||
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||||
_mm_storel_epi64((__m128i *)(y + i), y_vec);
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
|
||||
int64_t i = 0;
|
||||
#if defined(__F16C__)
|
||||
#if defined(__AVX512F__)
|
||||
for (; i + 15 < n; i += 16) {
|
||||
__m256i x_vec = _mm256_loadu_si256((const __m256i *)(x + i));
|
||||
__m512 y_vec = _mm512_cvtph_ps(x_vec);
|
||||
_mm512_storeu_ps(y + i, y_vec);
|
||||
}
|
||||
#endif
|
||||
for (; i + 7 < n; i += 8) {
|
||||
__m128i x_vec = _mm_loadu_si128((const __m128i *)(x + i));
|
||||
__m256 y_vec = _mm256_cvtph_ps(x_vec);
|
||||
_mm256_storeu_ps(y + i, y_vec);
|
||||
}
|
||||
for (; i + 3 < n; i += 4) {
|
||||
__m128i x_vec = _mm_loadl_epi64((const __m128i *)(x + i));
|
||||
__m128 y_vec = _mm_cvtph_ps(x_vec);
|
||||
_mm_storeu_ps(y + i, y_vec);
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
y[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cpu_fp32_to_bf16(const float * x, ggml_bf16_t * y, int64_t n) {
|
||||
int64_t i = 0;
|
||||
for (; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_BF16(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cpu_bf16_to_fp32(const ggml_bf16_t * x, float * y, int64_t n) {
|
||||
int64_t i = 0;
|
||||
#if defined(__AVX2__)
|
||||
#if defined(__AVX512F__)
|
||||
for (; i + 15 < n; i += 16) {
|
||||
_mm512_storeu_ps(y + i,
|
||||
_mm512_castsi512_ps(
|
||||
_mm512_slli_epi32(
|
||||
_mm512_cvtepu16_epi32(
|
||||
_mm256_loadu_si256(
|
||||
(const __m256i *)(x + i))),
|
||||
16)));
|
||||
}
|
||||
#endif
|
||||
for (; i + 7 < n; i += 8) {
|
||||
_mm256_storeu_ps(y + i,
|
||||
_mm256_castsi256_ps(
|
||||
_mm256_slli_epi32(
|
||||
_mm256_cvtepu16_epi32(
|
||||
_mm_loadu_si128(
|
||||
(const __m128i *)(x + i))),
|
||||
16)));
|
||||
}
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
y[i] = GGML_BF16_TO_FP32(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
int ggml_cpu_has_avx(void) {
|
||||
#if defined(__AVX__)
|
||||
|
|
|
|||
|
|
@ -11,24 +11,26 @@
|
|||
#include <vector>
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
#include "ggml-cpu-hbm.h"
|
||||
# include "ggml-cpu-hbm.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
#include "kleidiai/kleidiai.h"
|
||||
#endif
|
||||
|
||||
#if defined(__APPLE__)
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
# include "kleidiai/kleidiai.h"
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
# ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
# endif
|
||||
# include <windows.h>
|
||||
#else
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
#include <windows.h>
|
||||
|
||||
#if defined(__APPLE__)
|
||||
# include <sys/sysctl.h>
|
||||
# include <sys/types.h>
|
||||
#endif
|
||||
|
||||
// ggml-backend interface
|
||||
|
|
@ -70,8 +72,10 @@ static ggml_backend_buffer_type_t * ggml_backend_cpu_device_get_extra_buffers_ty
|
|||
}
|
||||
|
||||
static bool ggml_backend_cpu_is_extra_buffer_type(ggml_backend_buffer_type_t buft) {
|
||||
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
|
||||
if (extra && extra == buft) return true;
|
||||
for (auto * extra : ggml_backend_cpu_get_extra_buffers_type()) {
|
||||
if (extra && extra == buft) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
|
@ -330,9 +334,18 @@ static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t d
|
|||
}
|
||||
|
||||
static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
#ifdef _WIN32
|
||||
MEMORYSTATUSEX status;
|
||||
status.dwLength = sizeof(status);
|
||||
GlobalMemoryStatusEx(&status);
|
||||
*total = status.ullTotalPhys;
|
||||
*free = status.ullAvailPhys;
|
||||
#else
|
||||
long pages = sysconf(_SC_PHYS_PAGES);
|
||||
long page_size = sysconf(_SC_PAGE_SIZE);
|
||||
*total = pages * page_size;
|
||||
*free = *total;
|
||||
#endif
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1054,6 +1054,493 @@ class tinyBLAS_Q0_AVX {
|
|||
} \
|
||||
} \
|
||||
|
||||
template <typename TA, typename TB, typename TC>
|
||||
class tinyBLAS_BF16_PPC {
|
||||
public:
|
||||
tinyBLAS_BF16_PPC(int64_t k,
|
||||
const TA *A, int64_t lda,
|
||||
const TB *B, int64_t ldb,
|
||||
TC *C, int64_t ldc,
|
||||
int ith, int nth)
|
||||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||||
}
|
||||
|
||||
void matmul(int64_t m, int64_t n) {
|
||||
mnpack(0, m, 0, n);
|
||||
}
|
||||
|
||||
private:
|
||||
void vector_permute_store(vec_t *c, int numVec, unsigned char *vecOffset) {
|
||||
vec_t t[8], s[8];
|
||||
vec_t swiz1 = {0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23};
|
||||
vec_t swiz2 = {8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31};
|
||||
vec_t swiz3 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
|
||||
vec_t swiz4 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
|
||||
|
||||
if (numVec == 2) {
|
||||
t[0] = vec_perm(c[0], c[1], swiz1);
|
||||
t[1] = vec_perm(c[2], c[3], swiz1);
|
||||
s[0] = vec_perm(t[0], t[1], swiz3);
|
||||
s[1] = vec_perm(t[0], t[1], swiz4);
|
||||
vec_xst(s[0], 0, (vec_t*)vecOffset);
|
||||
vec_xst(s[1], 0, (vec_t*)(vecOffset + 16));
|
||||
} else if (numVec == 4) {
|
||||
t[0] = vec_perm(c[0], c[1], swiz1);
|
||||
t[1] = vec_perm(c[0], c[1], swiz2);
|
||||
t[2] = vec_perm(c[2], c[3], swiz1);
|
||||
t[3] = vec_perm(c[2], c[3], swiz2);
|
||||
s[0] = vec_perm(t[0], t[2], swiz3);
|
||||
s[1] = vec_perm(t[0], t[2], swiz4);
|
||||
s[2] = vec_perm(t[1], t[3], swiz3);
|
||||
s[3] = vec_perm(t[1], t[3], swiz4);
|
||||
for (int i = 0; i < 4; ++i)
|
||||
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
|
||||
} else if (numVec == 8) {
|
||||
for (int i = 0; i < 4; i += 2) {
|
||||
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
|
||||
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
|
||||
}
|
||||
for (int i = 4; i < 8; i += 2) {
|
||||
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
|
||||
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
|
||||
}
|
||||
s[0] = vec_perm(t[0], t[2], swiz3);
|
||||
s[1] = vec_perm(t[0], t[2], swiz4);
|
||||
s[2] = vec_perm(t[1], t[3], swiz3);
|
||||
s[3] = vec_perm(t[1], t[3], swiz4);
|
||||
s[4] = vec_perm(t[4], t[6], swiz3);
|
||||
s[5] = vec_perm(t[4], t[6], swiz4);
|
||||
s[6] = vec_perm(t[5], t[7], swiz3);
|
||||
s[7] = vec_perm(t[5], t[7], swiz4);
|
||||
for (int i = 0; i < 8; ++i)
|
||||
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
|
||||
}
|
||||
}
|
||||
|
||||
void packNormal(const TA* a, int64_t lda, int rows, int cols, unsigned char* vec) {
|
||||
int64_t i, j;
|
||||
TA *aoffset = NULL;
|
||||
unsigned char *vecOffset = NULL;
|
||||
TA * aoffsets[8];
|
||||
vector unsigned char c_arr[8];
|
||||
aoffset = const_cast<TA*>(a);
|
||||
vecOffset = vec;
|
||||
j = (rows >> 3);
|
||||
if (j > 0) {
|
||||
do {
|
||||
if (cols == 4) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 4; ++it)
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
aoffset += 4 * lda;
|
||||
for (int i = 0; i < 4; ++i)
|
||||
c_arr[i] = vec_xl(0, (vector unsigned char*)aoffsets[i]);
|
||||
vector_permute_store(c_arr, 4, vecOffset);
|
||||
for (int i = 0; i<4; i++)
|
||||
aoffsets[i] = aoffsets[i]+lda;
|
||||
vecOffset +=64;
|
||||
}
|
||||
i = (cols >> 3);
|
||||
if (i > 0) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 8; ++it) {
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
}
|
||||
aoffset += 8 * lda;
|
||||
do {
|
||||
for (int it = 0; it < 8; ++it)
|
||||
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||
vector_permute_store(c_arr, 8, vecOffset);
|
||||
for (int it = 0; it < 8; ++it)
|
||||
aoffsets[it] = aoffsets[it] + 8*lda;
|
||||
vecOffset += 128;
|
||||
i--;
|
||||
} while(i > 0);
|
||||
}
|
||||
j--;
|
||||
} while(j > 0);
|
||||
}
|
||||
if (rows & 4) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 4; ++it)
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
aoffset += 4 * lda;
|
||||
if (cols == 4) {
|
||||
for (int it = 0; it < 4; ++it)
|
||||
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||
vector_permute_store(c_arr, 2, vecOffset);
|
||||
for (int it = 0; it< 4; it++)
|
||||
aoffsets[it] = aoffsets[it] + lda;
|
||||
vecOffset += 32;
|
||||
}
|
||||
i = (cols >> 3);
|
||||
if (i > 0) {
|
||||
do {
|
||||
for (int it = 0; it < 4; ++it)
|
||||
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||
vector_permute_store(c_arr, 4, vecOffset);
|
||||
for (int it = 0; it< 4; it++)
|
||||
aoffsets[it] = aoffsets[it] + 8*lda;
|
||||
vecOffset += 64;
|
||||
i--;
|
||||
} while(i > 0);
|
||||
}
|
||||
}
|
||||
if (rows & 3) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 4; ++it)
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
if (cols == 4) {
|
||||
switch(rows) {
|
||||
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
|
||||
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
|
||||
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
|
||||
break;
|
||||
}
|
||||
vector_permute_store(c_arr, 2, vecOffset);
|
||||
for (int it = 0; it< 4; it++)
|
||||
aoffsets[it] = aoffsets[it] + lda;
|
||||
vecOffset += 32;
|
||||
}
|
||||
i = (cols >> 3);
|
||||
if (i > 0) {
|
||||
do {
|
||||
switch(rows) {
|
||||
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
|
||||
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
|
||||
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
|
||||
break;
|
||||
}
|
||||
vector_permute_store(c_arr, 4, vecOffset);
|
||||
for (int it = 0; it <4; it++)
|
||||
aoffsets[it] = aoffsets[it] + 8* lda;
|
||||
vecOffset += 64;
|
||||
i--;
|
||||
} while(i > 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int64_t mc, nc, mp, np;
|
||||
int m_rem = MIN(m - m0, 8);
|
||||
int n_rem = MIN(n - n0, 8);
|
||||
|
||||
if (m_rem >= 8 && n_rem >= 8) {
|
||||
mc = 8;
|
||||
nc = 8;
|
||||
gemm<8,8>(m0, m, n0, n);
|
||||
} else if (m_rem >= 4 && n_rem >= 8) {
|
||||
mc = 4;
|
||||
nc = 8;
|
||||
gemm<4,8>(m0, m, n0, n);
|
||||
} else if (m_rem >=8 && n_rem >=4){
|
||||
mc = 8;
|
||||
nc = 4;
|
||||
gemm<8,4>(m0, m, n0, n);
|
||||
} else if ((m_rem < 4) && (n_rem >= 8)) {
|
||||
nc = 8;
|
||||
switch(m_rem) {
|
||||
case 1:
|
||||
mc = 1;
|
||||
gemm_Mx8<1>(m0, m, n0, n);
|
||||
break;
|
||||
case 2:
|
||||
mc = 2;
|
||||
gemm_Mx8<2>(m0, m, n0, n);
|
||||
break;
|
||||
case 3:
|
||||
mc = 3;
|
||||
gemm_Mx8<3>(m0, m, n0, n);
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
} else if (m_rem >= 4 && n_rem >= 4) {
|
||||
mc = 4;
|
||||
nc = 4;
|
||||
gemm_small<4, 4>(m0, m, n0, n);
|
||||
} else if ((m_rem > 4) && (n_rem < 4)) {
|
||||
mc = 4;
|
||||
switch(n_rem) {
|
||||
case 1:
|
||||
nc = 1;
|
||||
gemm_small<4, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 2:
|
||||
nc = 2;
|
||||
gemm_small<4, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 3:
|
||||
nc = 3;
|
||||
gemm_small<4, 3>(m0, m, n0, n);
|
||||
break;
|
||||
|
||||
default:
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
switch((m_rem << 4) | n_rem) {
|
||||
case 0x43:
|
||||
mc = 4;
|
||||
nc = 3;
|
||||
gemm_small<4, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x42:
|
||||
mc = 4;
|
||||
nc = 2;
|
||||
gemm_small<4, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x41:
|
||||
mc = 4;
|
||||
nc = 1;
|
||||
gemm_small<4, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x34:
|
||||
mc = 3;
|
||||
nc = 4;
|
||||
gemm_small<3, 4>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x33:
|
||||
mc = 3;
|
||||
nc = 3;
|
||||
gemm_small<3, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x32:
|
||||
mc = 3;
|
||||
nc = 2;
|
||||
gemm_small<3, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x31:
|
||||
mc = 3;
|
||||
nc = 1;
|
||||
gemm_small<3, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x24:
|
||||
mc = 2;
|
||||
nc = 4;
|
||||
gemm_small<2,4>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x23:
|
||||
mc = 2;
|
||||
nc = 3;
|
||||
gemm_small<2, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x22:
|
||||
mc = 2;
|
||||
nc = 2;
|
||||
gemm_small<2, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x21:
|
||||
mc = 2;
|
||||
nc = 1;
|
||||
gemm_small<2, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x14:
|
||||
mc = 1;
|
||||
nc = 4;
|
||||
gemm_small<1, 4>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x13:
|
||||
mc = 1;
|
||||
nc = 3;
|
||||
gemm_small<1, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x12:
|
||||
mc = 1;
|
||||
nc = 2;
|
||||
gemm_small<1, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x11:
|
||||
mc = 1;
|
||||
nc = 1;
|
||||
gemm_small<1, 1>(m0, m, n0, n);
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
}
|
||||
mp = m0 + (m - m0) / mc * mc;
|
||||
np = n0 + (n - n0) / nc * nc;
|
||||
mnpack(mp, m, n0, np);
|
||||
mnpack(m0, m, np, n);
|
||||
}
|
||||
|
||||
void KERNEL_4x8(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[4], vec_B[8] , vec_C[4];
|
||||
acc_t acc_0, acc_1;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
for (int l = 0; l < k; l+=8) {
|
||||
packNormal((A+(ii*lda)+l), lda, 4, 8, (uint8_t*)vec_A);
|
||||
packNormal((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B);
|
||||
for (int x = 0; x < 4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
|
||||
}
|
||||
}
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii, jj+4);
|
||||
}
|
||||
|
||||
void KERNEL_8x4(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[8], vec_B[4] , vec_C[4];
|
||||
acc_t acc_0, acc_1;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
for (int l = 0; l < k; l+=8) {
|
||||
packNormal((A+(ii*lda)+l), lda, 8, 8, (uint8_t*)vec_A);
|
||||
packNormal((B+(jj*ldb)+l), ldb, 8, 4, (uint8_t*)vec_B);
|
||||
for (int x = 0; x < 4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x+4], vec_B[x]);
|
||||
}
|
||||
}
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii+4, jj);
|
||||
}
|
||||
|
||||
|
||||
void KERNEL_8x8(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[8], vec_B[8], vec_C[4];
|
||||
acc_t acc_0, acc_1, acc_2, acc_3;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
__builtin_mma_xxsetaccz(&acc_2);
|
||||
__builtin_mma_xxsetaccz(&acc_3);
|
||||
for (int l = 0; l < k; l+=8) {
|
||||
packNormal(A+(ii*lda)+l, lda, 8, 8, (uint8_t*)vec_A);
|
||||
packNormal(B+(jj*ldb)+l, ldb, 8, 8, (uint8_t*)vec_B);
|
||||
for (int x = 0; x < 4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, (vec_t)vec_A[x], (vec_t)vec_B[x+4]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_2, (vec_t)vec_A[x+4], (vec_t)vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_3, (vec_t)vec_A[x+4], (vec_t)vec_B[x+4]);
|
||||
}
|
||||
}
|
||||
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii, jj+4);
|
||||
SAVE_ACC(&acc_2, ii+4, jj);
|
||||
SAVE_ACC(&acc_3, ii+4, jj+4);
|
||||
}
|
||||
|
||||
template<int RM, int RN>
|
||||
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (end > tiles)
|
||||
end = tiles;
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = m0 + job / xtiles * RM;
|
||||
int64_t jj = n0 + job % xtiles * RN;
|
||||
vec_t vec_C[4];
|
||||
acc_t acc_0;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
vec_t vec_A[2], vec_B[2];
|
||||
for (int l=0; l<k; l+=4) {
|
||||
packNormal(A+(ii*lda)+l, lda, RM, 4, (uint8_t*)vec_A);
|
||||
packNormal(B+(jj*ldb)+l, ldb, RN, 4, (uint8_t*)vec_B);
|
||||
for (int x = 0; x<2; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
}
|
||||
}
|
||||
__builtin_mma_disassemble_acc(vec_C, &acc_0);
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < RN; J++) {
|
||||
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int RM>
|
||||
void gemm_Mx8(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int RN = 8;
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (end > tiles)
|
||||
end = tiles;
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = m0 + job / xtiles * RM;
|
||||
int64_t jj = n0 + job % xtiles * RN;
|
||||
vec_t vec_C[4];
|
||||
acc_t acc_0, acc_1;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
vec_t vec_A[4], vec_B[8];
|
||||
for (int l=0; l<k; l+=8) {
|
||||
packNormal(A+(ii*lda)+l, lda, RM, 8, (uint8_t*)vec_A);
|
||||
packNormal(B+(jj*ldb)+l, ldb, RN, 8, (uint8_t*)vec_B);
|
||||
for (int x = 0; x<4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
|
||||
}
|
||||
}
|
||||
__builtin_mma_disassemble_acc(vec_C, &acc_0);
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < 4; J++) {
|
||||
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
__builtin_mma_disassemble_acc(vec_C, &acc_1);
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < 4; J++) {
|
||||
*((TC*)(C+ii+((jj+4+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int RM, int RN>
|
||||
inline void kernel(int64_t ii, int64_t jj) {
|
||||
if constexpr(RM == 4 && RN == 8) {
|
||||
KERNEL_4x8(ii,jj);
|
||||
} else if constexpr(RM == 8 && RN == 8) {
|
||||
KERNEL_8x8(ii,jj);
|
||||
} else if constexpr(RM == 8 && RN == 4) {
|
||||
KERNEL_8x4(ii,jj);
|
||||
} else {
|
||||
static_assert(false, "RN/RM values not supported");
|
||||
}
|
||||
}
|
||||
|
||||
template <int RM, int RN>
|
||||
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (end > tiles)
|
||||
end = tiles;
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = m0 + job / xtiles * RM;
|
||||
int64_t jj = n0 + job % xtiles * RN;
|
||||
kernel<RM, RN>(ii, jj);
|
||||
}
|
||||
}
|
||||
|
||||
const TA *const A;
|
||||
const TB *const B;
|
||||
TC *C;
|
||||
const int64_t k;
|
||||
const int64_t lda;
|
||||
const int64_t ldb;
|
||||
const int64_t ldc;
|
||||
const int ith;
|
||||
const int nth;
|
||||
};
|
||||
|
||||
template <typename TA, typename TB, typename TC>
|
||||
class tinyBLAS_Q0_PPC {
|
||||
public:
|
||||
|
|
@ -2202,6 +2689,7 @@ class tinyBLAS_PPC {
|
|||
boffset = vec;
|
||||
j = (rows >> 3);
|
||||
if (j > 0) {
|
||||
|
||||
do {
|
||||
aoffset1 = aoffset;
|
||||
aoffset2 = aoffset1 + lda;
|
||||
|
|
@ -2875,9 +3363,22 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
|
|||
(float *)C, ldc};
|
||||
return tb.matmul(m, n);
|
||||
}
|
||||
#elif defined(__MMA__)
|
||||
if ((k % 8))
|
||||
return false;
|
||||
if(Btype == GGML_TYPE_BF16) {
|
||||
tinyBLAS_BF16_PPC<ggml_bf16_t, ggml_bf16_t, float> tb{ k,
|
||||
(const ggml_bf16_t *)A, lda,
|
||||
(const ggml_bf16_t *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
params->ith, params->nth};
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
case GGML_TYPE_F16: {
|
||||
#if defined(__AVX512F__)
|
||||
if (Btype == GGML_TYPE_F16) {
|
||||
|
|
|
|||
|
|
@ -8,19 +8,6 @@
|
|||
|
||||
#include <float.h>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// disable "possible loss of data" to avoid hundreds of casts
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
|
||||
// disable POSIX deprecation warnings
|
||||
// these functions are never going away, anyway
|
||||
#pragma warning(disable: 4996)
|
||||
|
||||
// unreachable code because of multiple instances of code after GGML_ABORT
|
||||
#pragma warning(disable: 4702)
|
||||
#endif
|
||||
|
||||
// ggml_compute_forward_dup
|
||||
|
||||
static void ggml_compute_forward_dup_same_cont(
|
||||
|
|
@ -4222,7 +4209,7 @@ static void ggml_compute_forward_get_rows_f16(
|
|||
|
||||
GGML_ASSERT(i01 >= 0 && i01 < ne01);
|
||||
|
||||
ggml_fp16_to_fp32_row(
|
||||
ggml_cpu_fp16_to_fp32(
|
||||
(const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
}
|
||||
|
|
@ -4263,7 +4250,7 @@ static void ggml_compute_forward_get_rows_bf16(
|
|||
|
||||
GGML_ASSERT(i01 >= 0 && i01 < ne01);
|
||||
|
||||
ggml_bf16_to_fp32_row(
|
||||
ggml_cpu_bf16_to_fp32(
|
||||
(const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
}
|
||||
|
|
@ -6064,6 +6051,178 @@ void ggml_compute_forward_conv_transpose_2d(
|
|||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_conv_2d_dw
|
||||
|
||||
struct ggml_conv_2d_dw_params {
|
||||
int64_t channels;
|
||||
int64_t batch;
|
||||
int64_t src_w;
|
||||
int64_t src_h;
|
||||
int64_t dst_w;
|
||||
int64_t dst_h;
|
||||
int64_t knl_w;
|
||||
int64_t knl_h;
|
||||
int stride_x;
|
||||
int stride_y;
|
||||
int pad_x;
|
||||
int pad_y;
|
||||
int dilation_x;
|
||||
int dilation_y;
|
||||
};
|
||||
|
||||
static void ggml_compute_forward_conv_2d_dw_cwhn(
|
||||
const ggml_compute_params * params,
|
||||
const ggml_tensor * src,
|
||||
const ggml_tensor * kernel,
|
||||
ggml_tensor * dst,
|
||||
const ggml_conv_2d_dw_params & p) {
|
||||
|
||||
const int64_t c = p.channels;
|
||||
const float * knl_data = (const float *)kernel->data;
|
||||
|
||||
const int64_t rows_total = p.dst_h * p.batch;
|
||||
const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth;
|
||||
const int64_t row_start = params->ith * rows_per_thread;
|
||||
const int64_t row_end = MIN(row_start + rows_per_thread, rows_total);
|
||||
|
||||
#ifdef GGML_SIMD
|
||||
const int64_t pkg_size = GGML_F32_EPR;
|
||||
const int64_t pkg_count = c / pkg_size;
|
||||
const int64_t c_pkg_end = pkg_count * pkg_size;
|
||||
#else
|
||||
const int64_t c_pkg_end = 0;
|
||||
#endif
|
||||
|
||||
for (int64_t row = row_start; row < row_end; ++row) {
|
||||
const int64_t dst_y = row % p.dst_h;
|
||||
const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c;
|
||||
for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
|
||||
float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c;
|
||||
const int64_t src_y_base = dst_y * p.stride_y - p.pad_y;
|
||||
const int64_t src_x_base = dst_x * p.stride_x - p.pad_x;
|
||||
|
||||
#ifdef GGML_SIMD
|
||||
// Vectorized loop
|
||||
for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) {
|
||||
GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
|
||||
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||
const int64_t src_y = src_y_base + knl_y * p.dilation_y;
|
||||
if (src_y < 0 || src_y >= p.src_h) {
|
||||
continue;
|
||||
}
|
||||
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||
const int64_t src_x = src_x_base + knl_x * p.dilation_x;
|
||||
if (src_x < 0 || src_x >= p.src_w) {
|
||||
continue;
|
||||
}
|
||||
GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i);
|
||||
GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i);
|
||||
sum = GGML_F32_VEC_FMA(sum, k, s);
|
||||
}
|
||||
}
|
||||
GGML_F32_VEC_STORE(dst_data + c_i, sum);
|
||||
}
|
||||
#endif
|
||||
// Scalar loop
|
||||
for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) {
|
||||
float sum = 0.0f;
|
||||
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||
const int64_t src_y = src_y_base + knl_y * p.dilation_y;
|
||||
if (src_y < 0 || src_y >= p.src_h) {
|
||||
continue;
|
||||
}
|
||||
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||
const int64_t src_x = src_x_base + knl_x * p.dilation_x;
|
||||
if (src_x < 0 || src_x >= p.src_w) {
|
||||
continue;
|
||||
}
|
||||
sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i]
|
||||
* src_data[(src_y * p.src_w + src_x) * c + c_i];
|
||||
}
|
||||
}
|
||||
dst_data[c_i] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_conv_2d_dw_whcn(
|
||||
const ggml_compute_params * params,
|
||||
const ggml_tensor * src,
|
||||
const ggml_tensor * kernel,
|
||||
ggml_tensor * dst,
|
||||
const ggml_conv_2d_dw_params & p) {
|
||||
|
||||
const int64_t n = p.channels * p.batch;
|
||||
const int64_t per_thread = (n + params->nth - 1) / params->nth;
|
||||
const int64_t start = params->ith * per_thread;
|
||||
const int64_t end = MIN(start + per_thread, n);
|
||||
|
||||
for (int64_t i = start; i < end; ++i) {
|
||||
const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h;
|
||||
const float * src_data = (const float *)src->data + i * p.src_w * p.src_h;
|
||||
float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h;
|
||||
|
||||
for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) {
|
||||
for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||
const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
|
||||
if (src_y < 0 || src_y >= p.src_h) {
|
||||
continue;
|
||||
}
|
||||
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||
const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
|
||||
if (src_x < 0 || src_x >= p.src_w) {
|
||||
continue;
|
||||
}
|
||||
sum += knl_data[knl_y * p.knl_w + knl_x]
|
||||
* src_data[src_y * p.src_w + src_x];
|
||||
}
|
||||
}
|
||||
dst_data[dst_y * p.dst_w + dst_x] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_conv_2d_dw(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * kernel = dst->src[0];
|
||||
const ggml_tensor * src = dst->src[1];
|
||||
ggml_conv_2d_dw_params p;
|
||||
p.channels = src->ne[2];
|
||||
p.batch = src->ne[3];
|
||||
p.src_w = src->ne[0];
|
||||
p.src_h = src->ne[1];
|
||||
p.dst_w = dst->ne[0];
|
||||
p.dst_h = dst->ne[1];
|
||||
p.knl_w = kernel->ne[0];
|
||||
p.knl_h = kernel->ne[1];
|
||||
p.stride_x = dst->op_params[0];
|
||||
p.stride_y = dst->op_params[1];
|
||||
p.pad_x = dst->op_params[2];
|
||||
p.pad_y = dst->op_params[3];
|
||||
p.dilation_x = dst->op_params[4];
|
||||
p.dilation_y = dst->op_params[5];
|
||||
|
||||
GGML_ASSERT(kernel->ne[3] == p.channels);
|
||||
GGML_ASSERT(dst->ne[3] == p.batch);
|
||||
|
||||
if (ggml_is_contiguous(src)) {
|
||||
ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p);
|
||||
} else if (ggml_is_contiguous_channels(src)) {
|
||||
// kernel should also have channels most contiguous in memory
|
||||
GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]);
|
||||
ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p);
|
||||
} else {
|
||||
GGML_ABORT("non-contiguous memory layout not supported");
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_pool_1d_sk_p0
|
||||
|
||||
static void ggml_compute_forward_pool_1d_sk_p0(
|
||||
|
|
|
|||
|
|
@ -65,6 +65,7 @@ void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * p
|
|||
void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_2d_dw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pool_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pool_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
|
|
|||
|
|
@ -341,7 +341,7 @@ static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
|
|||
#define GGML_F32_EPR 4
|
||||
|
||||
#define GGML_F32x4 vector float
|
||||
#define GGML_F32x4_ZERO 0.0f
|
||||
#define GGML_F32x4_ZERO {0.0f}
|
||||
#define GGML_F32x4_SET1 vec_splats
|
||||
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
|
||||
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
|
||||
|
|
|
|||
|
|
@ -2,12 +2,6 @@
|
|||
|
||||
#include <cassert>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// disable "possible loss of data" to avoid hundreds of casts
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
#endif
|
||||
|
||||
// precomputed gelu table for f16 (128 KB)
|
||||
ggml_fp16_t ggml_table_gelu_f16[1 << 16];
|
||||
|
||||
|
|
|
|||
|
|
@ -12,12 +12,30 @@ if (CUDAToolkit_FOUND)
|
|||
# 61 == Pascal, __dp4a instruction (per-byte integer dot product)
|
||||
# 70 == V100, FP16 tensor cores
|
||||
# 75 == Turing, int8 tensor cores
|
||||
# 80 == Ampere, asynchronous data loading, faster tensor core instructions
|
||||
# 86 == RTX 3000, needs CUDA v11.1
|
||||
# 89 == RTX 4000, needs CUDA v11.8
|
||||
#
|
||||
# XX-virtual == compile CUDA code as PTX, do JIT compilation to binary code on first run
|
||||
# XX-real == compile CUDA code as device code for this specific architecture
|
||||
# no suffix == compile as both PTX and device code
|
||||
#
|
||||
# The default behavior for a non-native is to build virtual architectures as needed to cover all features needed
|
||||
# for best performance and to also build real architectures for the most commonly used GPUs.
|
||||
if (GGML_NATIVE AND CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.6" AND CMAKE_VERSION VERSION_GREATER_EQUAL "3.24")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "native")
|
||||
elseif(GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75;80")
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
|
||||
endif()
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50;61;70;75;80")
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
|
|
@ -133,6 +151,7 @@ if (CUDAToolkit_FOUND)
|
|||
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
|
||||
OUTPUT_VARIABLE CUDA_CCVER
|
||||
ERROR_QUIET
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
else()
|
||||
if (CUDA_CCFULLVER MATCHES Apple)
|
||||
|
|
@ -143,7 +162,7 @@ if (CUDAToolkit_FOUND)
|
|||
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
|
||||
endif()
|
||||
|
||||
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
|
||||
message(STATUS "CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
|
||||
|
||||
ggml_get_flags(${CUDA_CCID} ${CUDA_CCVER})
|
||||
list(APPEND CUDA_CXX_FLAGS ${CXX_FLAGS} ${GF_CXX_FLAGS}) # This is passed to -Xcompiler later
|
||||
|
|
|
|||
|
|
@ -78,13 +78,13 @@
|
|||
// Moore Threads
|
||||
#define GGML_CUDA_MUSA_ARCH_IS_QY1 (__MUSA_ARCH__ <= 210)
|
||||
|
||||
#define GGML_CUDA_CC_QY1 (GGML_MUSA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
|
||||
#define GGML_CUDA_CC_QY2 (GGML_MUSA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
|
||||
#define GGML_CUDA_CC_NG (GGML_MUSA_CC_OFFSET_MTHREADS + 0x310) // TBD
|
||||
#define GGML_CUDA_CC_QY1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
|
||||
#define GGML_CUDA_CC_QY2 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
|
||||
#define GGML_CUDA_CC_NG (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // TBD
|
||||
|
||||
#define GGML_CUDA_CC_IS_MTHREADS(cc) (cc >= GGML_CUDA_CC_OFFSET_MTHREADS && cc < GGML_CUDA_CC_OFFSET_AMD)
|
||||
#define GGML_CUDA_CC_IS_QY1(cc) (cc >= GGML_CUDA_CC_QY1 && cc < GGML_CUDA_CC_QY2)
|
||||
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NEXT)
|
||||
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NG)
|
||||
#define GGML_CUDA_CC_IS_NG(cc) (cc >= GGML_CUDA_CC_NG)
|
||||
|
||||
#ifdef __CUDA_ARCH_LIST__
|
||||
|
|
@ -130,10 +130,6 @@ static int ggml_cuda_highest_compiled_arch(const int arch) {
|
|||
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#define GGML_CUDA_MAX_STREAMS 8
|
||||
|
||||
[[noreturn]]
|
||||
|
|
|
|||
|
|
@ -1,6 +1,8 @@
|
|||
#include "convert.cuh"
|
||||
#include "dequantize.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#define CUDA_Q8_0_NE_ALIGN 2048
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
|
|
@ -570,30 +572,46 @@ static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t
|
|||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) {
|
||||
const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
static __global__ void convert_unary(
|
||||
const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03) {
|
||||
const int64_t i00 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i01 = blockIdx.y;
|
||||
const int64_t i02 = blockIdx.z % ne02;
|
||||
const int64_t i03 = blockIdx.z / ne02;
|
||||
|
||||
const src_t * x = (const src_t *) vx;
|
||||
|
||||
y[i] = float(x[i]);
|
||||
const int64_t ix = i03*s03 + i02*s02 + i01*s01 + i00;
|
||||
const int64_t iy = ((i03*ne02 + i02)*ne01 + i01)*ne00 + i00;
|
||||
y[iy] = float(x[ix]);
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||
static void convert_unary_cuda(const void * vx, dst_t * y,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03, cudaStream_t stream) {
|
||||
const dim3 num_blocks((ne00 + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE, ne01, ne02*ne03);
|
||||
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>
|
||||
(vx, y, ne00, ne01, ne02, s01, s02, s03);
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary_cont_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
convert_unary_cuda<src_t>(vx, y, k, 1, 1, 1, k, k, k, stream);
|
||||
}
|
||||
|
||||
to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
return convert_unary_cuda<float>;
|
||||
return convert_unary_cont_cuda<float>;
|
||||
case GGML_TYPE_F16:
|
||||
return convert_unary_cuda<half>;
|
||||
return convert_unary_cont_cuda<half>;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
|
|
@ -643,9 +661,9 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
|||
case GGML_TYPE_IQ3_S:
|
||||
return dequantize_row_iq3_s_cuda;
|
||||
case GGML_TYPE_F32:
|
||||
return convert_unary_cuda<float>;
|
||||
return convert_unary_cont_cuda<float>;
|
||||
case GGML_TYPE_BF16:
|
||||
return convert_unary_cuda<nv_bfloat16>;
|
||||
return convert_unary_cont_cuda<nv_bfloat16>;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
|
|
@ -692,7 +710,18 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
|||
case GGML_TYPE_IQ3_S:
|
||||
return dequantize_row_iq3_s_cuda;
|
||||
case GGML_TYPE_F16:
|
||||
return convert_unary_cuda<half>;
|
||||
return convert_unary_cont_cuda<half>;
|
||||
case GGML_TYPE_BF16:
|
||||
return convert_unary_cont_cuda<nv_bfloat16>;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
to_fp16_nc_cuda_t ggml_get_to_fp16_nc_cuda(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
return convert_unary_cuda<float>;
|
||||
case GGML_TYPE_BF16:
|
||||
return convert_unary_cuda<nv_bfloat16>;
|
||||
default:
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
|
||||
|
||||
template<typename T>
|
||||
using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int64_t k, cudaStream_t stream);
|
||||
using to_t_cuda_t = void (*)(const void * x, T * y, int64_t k, cudaStream_t stream);
|
||||
|
||||
typedef to_t_cuda_t<float> to_fp32_cuda_t;
|
||||
typedef to_t_cuda_t<half> to_fp16_cuda_t;
|
||||
|
|
@ -14,3 +14,13 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type);
|
|||
to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type);
|
||||
|
||||
to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type);
|
||||
|
||||
// TODO more general support for non-contiguous inputs
|
||||
|
||||
template<typename T>
|
||||
using to_t_nc_cuda_t = void (*)(const void * x, T * y,
|
||||
int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne03,
|
||||
int64_t s01, int64_t s02, int64_t s03, cudaStream_t stream);
|
||||
|
||||
typedef to_t_nc_cuda_t<half> to_fp16_nc_cuda_t;
|
||||
to_fp16_nc_cuda_t ggml_get_to_fp16_nc_cuda(ggml_type type);
|
||||
|
|
|
|||
|
|
@ -592,6 +592,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
|||
dest_ptrs_d = ctx.cuda_graph->dest_ptrs_d;
|
||||
graph_cpynode_index = ctx.cuda_graph->graph_cpynode_index;
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(disable_indirection_for_this_node);
|
||||
#endif
|
||||
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
|
||||
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
|
||||
|
|
@ -639,6 +641,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
|||
if(ctx.cuda_graph->use_cpy_indirection && !disable_indirection_for_this_node) {
|
||||
ctx.cuda_graph->graph_cpynode_index = graph_cpynode_index;
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(disable_indirection_for_this_node);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -719,6 +719,7 @@ void launch_fattn(
|
|||
size_t nb23 = V->nb[3];
|
||||
|
||||
if (need_f16_K && K->type != GGML_TYPE_F16) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(K));
|
||||
K_f16.alloc(ggml_nelements(K));
|
||||
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
|
||||
to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);
|
||||
|
|
@ -733,6 +734,7 @@ void launch_fattn(
|
|||
}
|
||||
|
||||
if (need_f16_V && V->type != GGML_TYPE_F16) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(V));
|
||||
V_f16.alloc(ggml_nelements(V));
|
||||
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
|
||||
to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);
|
||||
|
|
|
|||
|
|
@ -33,8 +33,8 @@ static __global__ void k_get_rows(
|
|||
dfloat2 v;
|
||||
dequantize_kernel(src0_row, ib, iqs, v);
|
||||
|
||||
dst_row[iybs + iqs + 0] = v.x;
|
||||
dst_row[iybs + iqs + y_offset] = v.y;
|
||||
dst_row[iybs + iqs + 0] = float(v.x);
|
||||
dst_row[iybs + iqs + y_offset] = float(v.y);
|
||||
}
|
||||
|
||||
template<typename src0_t, typename dst_t>
|
||||
|
|
@ -60,7 +60,7 @@ static __global__ void k_get_rows_float(
|
|||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
|
||||
dst_row[i00] = src0_row[i00];
|
||||
dst_row[i00] = float(src0_row[i00]);
|
||||
}
|
||||
|
||||
template<typename grad_t, typename dst_t>
|
||||
|
|
@ -86,120 +86,159 @@ static __global__ void k_get_rows_back_float(
|
|||
dst[dst_row*ncols + col] = sum;
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dq>
|
||||
static void get_rows_cuda(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dq, typename dst_t>
|
||||
static void get_rows_cuda_q(
|
||||
const void * src0_d, const int32_t * src1_d, dst_t * dst_d,
|
||||
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
|
||||
const size_t nb1, const size_t nb2, const size_t nb3,
|
||||
cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
|
||||
// strides in elements
|
||||
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||
// const size_t s0 = nb0 / sizeof(dst_t);
|
||||
const size_t s1 = nb1 / sizeof(dst_t);
|
||||
const size_t s2 = nb2 / sizeof(dst_t);
|
||||
const size_t s3 = nb3 / sizeof(dst_t);
|
||||
|
||||
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||
const size_t s10 = nb10 / sizeof(int32_t);
|
||||
const size_t s11 = nb11 / sizeof(int32_t);
|
||||
const size_t s12 = nb12 / sizeof(int32_t);
|
||||
// const size_t s13 = nb13 / sizeof(int32_t);
|
||||
|
||||
GGML_ASSERT(ne00 % 2 == 0);
|
||||
|
||||
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
src0_d, src1_d, dst_d,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
GGML_UNUSED(dst);
|
||||
}
|
||||
|
||||
template<typename src0_t>
|
||||
template<typename src0_t, typename dst_t>
|
||||
static void get_rows_cuda_float(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(ne13 == 1);
|
||||
|
||||
const src0_t * src0_d, const int32_t * src1_d, dst_t * dst_d,
|
||||
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
|
||||
const size_t nb1, const size_t nb2, const size_t nb3,
|
||||
cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
|
||||
// strides in elements
|
||||
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||
// const size_t s0 = nb0 / sizeof(dst_t);
|
||||
const size_t s1 = nb1 / sizeof(dst_t);
|
||||
const size_t s2 = nb2 / sizeof(dst_t);
|
||||
const size_t s3 = nb3 / sizeof(dst_t);
|
||||
|
||||
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||
const size_t s10 = nb10 / sizeof(int32_t);
|
||||
const size_t s11 = nb11 / sizeof(int32_t);
|
||||
const size_t s12 = nb12 / sizeof(int32_t);
|
||||
// const size_t s13 = nb13 / sizeof(int32_t);
|
||||
|
||||
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
src0_d, src1_d, dst_d,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
}
|
||||
|
||||
GGML_UNUSED(dst);
|
||||
template <typename dst_t>
|
||||
static void ggml_cuda_get_rows_switch_src0_type(
|
||||
const void * src0_d, const ggml_type src0_type, const int32_t * src1_d, dst_t * dst_d,
|
||||
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
|
||||
const size_t nb1, const size_t nb2, const size_t nb3,
|
||||
cudaStream_t stream) {
|
||||
switch (src0_type) {
|
||||
case GGML_TYPE_F16:
|
||||
get_rows_cuda_float((const half *) src0_d, src1_d, dst_d,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_F32:
|
||||
get_rows_cuda_float((const float *) src0_d, src1_d, dst_d,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_BF16:
|
||||
get_rows_cuda_float((const nv_bfloat16 *) src0_d, src1_d, dst_d,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
get_rows_cuda_q<QK4_0, QR4_0, dequantize_q4_0>(src0_d, src1_d, dst_d,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
get_rows_cuda_q<QK4_1, QR4_1, dequantize_q4_1>(src0_d, src1_d, dst_d,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
get_rows_cuda_q<QK5_0, QR5_0, dequantize_q5_0>(src0_d, src1_d, dst_d,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
get_rows_cuda_q<QK5_1, QR5_1, dequantize_q5_1>(src0_d, src1_d, dst_d,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
get_rows_cuda_q<QK8_0, QR8_0, dequantize_q8_0>(src0_d, src1_d, dst_d,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
default:
|
||||
// TODO: k-quants
|
||||
GGML_ABORT("%s: unsupported src0 type: %s\n", __func__, ggml_type_name(src0_type));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void get_rows_cuda(
|
||||
const void * src0_d, ggml_type src0_type, const int32_t * src1_d, void * dst_d, ggml_type dst_type,
|
||||
int64_t ne00, size_t nb01, size_t nb02, size_t nb03,
|
||||
int64_t ne10, int64_t ne11, int64_t ne12, size_t nb10, size_t nb11, size_t nb12,
|
||||
size_t nb1, size_t nb2, size_t nb3,
|
||||
cudaStream_t stream) {
|
||||
switch (dst_type) {
|
||||
case GGML_TYPE_F32:
|
||||
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (float *) dst_d,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (half *) dst_d,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_BF16:
|
||||
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (nv_bfloat16 *) dst_d,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("%s: unsupported dst type: %s\n", __func__, ggml_type_name(dst_type));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
const void * src0_d = (const void *) src0->data;
|
||||
const int32_t * src1_d = (const int32_t *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ne13 == 1);
|
||||
|
||||
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
||||
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16:
|
||||
get_rows_cuda_float(src0, src1, dst, (const half *) src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_F32:
|
||||
get_rows_cuda_float(src0, src1, dst, (const float *) src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
default:
|
||||
// TODO: k-quants
|
||||
GGML_ABORT("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
|
||||
break;
|
||||
}
|
||||
get_rows_cuda(src0->data, src0->type, (const int32_t *) src1->data, dst->data, dst->type,
|
||||
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
|
|
|||
|
|
@ -3,6 +3,13 @@
|
|||
#define CUDA_GET_ROWS_BLOCK_SIZE 256
|
||||
#define CUDA_GET_ROWS_BACK_BLOCK_SIZE 256
|
||||
|
||||
void get_rows_cuda(
|
||||
const void * src0_d, ggml_type src0_type, const int32_t * src1_d, void * dst_d, ggml_type dst_type,
|
||||
int64_t ne00, size_t nb01, size_t nb02, size_t nb03,
|
||||
int64_t ne10, int64_t ne11, int64_t ne12, size_t nb10, size_t nb11, size_t nb12,
|
||||
size_t nb1, size_t nb2, size_t nb3,
|
||||
cudaStream_t stream);
|
||||
|
||||
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
|
|||
|
|
@ -555,8 +555,8 @@ static enum ggml_status ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer
|
|||
|
||||
if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
// initialize padding to 0 to avoid possible NaN values
|
||||
size_t original_size = ggml_nbytes(tensor);
|
||||
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
|
||||
const size_t original_size = ggml_nbytes(tensor);
|
||||
const size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
|
||||
|
||||
if (padded_size > original_size) {
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
|
|
@ -679,6 +679,7 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t
|
|||
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||||
GGML_ASSERT(tensor->nb[0] == ggml_element_size(tensor));
|
||||
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||||
}
|
||||
}
|
||||
|
|
@ -800,6 +801,7 @@ static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buff
|
|||
|
||||
static enum ggml_status ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
||||
|
|
@ -851,6 +853,7 @@ static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buff
|
|||
// split tensors must always be set in their entirety at once
|
||||
GGML_ASSERT(offset == 0);
|
||||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
||||
|
||||
|
|
@ -889,6 +892,7 @@ static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buff
|
|||
// split tensors must always be set in their entirety at once
|
||||
GGML_ASSERT(offset == 0);
|
||||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
||||
|
||||
|
|
@ -970,6 +974,7 @@ static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buf
|
|||
|
||||
static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
size_t total_size = 0;
|
||||
|
||||
|
|
@ -1531,6 +1536,8 @@ static void ggml_cuda_op_mul_mat(
|
|||
|
||||
// If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
|
||||
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
|
||||
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
|
||||
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
|
||||
|
|
@ -1551,7 +1558,7 @@ static void ggml_cuda_op_mul_mat(
|
|||
|
||||
if (src1_on_device && src1_is_contiguous) {
|
||||
quantize_src1(
|
||||
dev[id].src1_ddf, dev[id].src1_ddq, src0->type, ne10,
|
||||
dev[id].src1_ddf, nullptr, dev[id].src1_ddq, src0->type, ne10,
|
||||
nb11/sizeof(float), nb12/sizeof(float), nb13/sizeof(float),
|
||||
src1_padded_col_size, ne11, ne12, ne13, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
|
@ -1649,7 +1656,7 @@ static void ggml_cuda_op_mul_mat(
|
|||
|
||||
if (quantize_src1 && !src1_is_contiguous) {
|
||||
quantize_src1(
|
||||
src1_ddf_i, src1_ddq_i, src0->type, ne10, ne10, ne11*ne10, ne12*ne11*ne10,
|
||||
src1_ddf_i, nullptr, src1_ddq_i, src0->type, ne10, ne10, ne11*ne10, ne12*ne11*ne10,
|
||||
src1_padded_col_size, src1_ncols, 1, 1, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
|
@ -1720,15 +1727,15 @@ static __global__ void k_compute_batched_ptrs(
|
|||
size_t nb12, size_t nb13,
|
||||
size_t nbd2, size_t nbd3,
|
||||
int64_t r2, int64_t r3) {
|
||||
int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i13 >= ne13 || i12 >= ne12) {
|
||||
return;
|
||||
}
|
||||
|
||||
int64_t i03 = i13 / r3;
|
||||
int64_t i02 = i12 / r2;
|
||||
const int64_t i03 = i13 / r3;
|
||||
const int64_t i02 = i12 / r2;
|
||||
|
||||
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
|
||||
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
|
||||
|
|
@ -1742,6 +1749,10 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
|||
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
|
||||
// Byte offsets and tensor dimensions are currently used in an inconsistent way for dst.
|
||||
// As long as dst is contiguous this does not matter though.
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const int64_t ne_dst = ggml_nelements(dst);
|
||||
|
|
@ -1750,21 +1761,31 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
|||
|
||||
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
|
||||
|
||||
void * src0_ddq = src0->data;
|
||||
half * src0_f16 = (half *) src0_ddq;
|
||||
float * src1_ddf = (float *) src1->data;
|
||||
float * dst_ddf = (float *) dst->data;
|
||||
const half * src0_f16 = (const half *) src0->data;
|
||||
float * dst_ddf = (float *) dst->data;
|
||||
|
||||
const half * src1_f16 = (const half *) src1->data;
|
||||
const size_t ts_src1 = ggml_type_size(src1->type);
|
||||
GGML_ASSERT(nb10 == ts_src1);
|
||||
int64_t s11 = nb11 / ts_src1;
|
||||
int64_t s12 = nb12 / ts_src1;
|
||||
int64_t s13 = nb13 / ts_src1;
|
||||
ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
|
||||
|
||||
// convert src1 to fp16
|
||||
ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
|
||||
if (src1->type != GGML_TYPE_F16) {
|
||||
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
||||
const to_fp16_nc_cuda_t to_fp16_cuda = ggml_get_to_fp16_nc_cuda(src1->type);
|
||||
const int64_t ne_src1 = ggml_nelements(src1);
|
||||
src1_f16_alloc.alloc(ne_src1);
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
|
||||
|
||||
to_fp16_cuda(src1_f16, src1_f16_alloc.get(), ne10, ne11, ne12, ne13, s11, s12, s13, main_stream);
|
||||
|
||||
src1_f16 = src1_f16_alloc.get();
|
||||
s11 = ne10;
|
||||
s12 = ne11*s11;
|
||||
s13 = ne12*s12;
|
||||
}
|
||||
half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
|
||||
|
||||
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
|
||||
char * dst_t;
|
||||
|
|
@ -1824,13 +1845,13 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
|||
int i02 = i12 / r2;
|
||||
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
|
||||
(const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
|
||||
beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
|
||||
cu_compute_type,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
cublasGemmEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
alpha, (const char *) src0_f16 + i03*nb03 + i02*nb02, CUDA_R_16F, nb01/sizeof(half),
|
||||
src1_f16 + i13*s13 + i12*s12, CUDA_R_16F, s11,
|
||||
beta, ( char *) dst_t + i13*nbd3 + i12*nbd2, cu_data_type, ne0,
|
||||
cu_compute_type,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -1841,15 +1862,15 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
|||
CUBLAS_CHECK(
|
||||
cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
|
||||
(const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
|
||||
beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
|
||||
alpha, src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
|
||||
src1_f16, CUDA_R_16F, s11, s12, // strideB
|
||||
beta, dst_t, cu_data_type, ne0, ne1*ne0, // strideC
|
||||
ne12*ne13,
|
||||
cu_compute_type,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
} else {
|
||||
// use cublasGemmBatchedEx
|
||||
const int ne23 = ne12*ne13;
|
||||
const int64_t ne23 = ne12*ne13;
|
||||
|
||||
ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
|
||||
ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
|
||||
|
|
@ -1861,8 +1882,8 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
|||
ne12, ne13,
|
||||
ne23,
|
||||
nb02, nb03,
|
||||
src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
|
||||
src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
|
||||
src1->type == GGML_TYPE_F16 ? nb12 : s12*sizeof(half),
|
||||
src1->type == GGML_TYPE_F16 ? nb13 : s13*sizeof(half),
|
||||
nbd2, nbd3,
|
||||
r2, r3);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
|
@ -1871,8 +1892,8 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
|||
cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
|
||||
(const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
|
||||
beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
|
||||
(const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, s11,
|
||||
beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne0,
|
||||
ne23,
|
||||
cu_compute_type,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
|
|
@ -1935,8 +1956,10 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|||
ggml_cuda_mul_mat_vec(ctx, src0, src1, nullptr, dst);
|
||||
} else if (!split && use_mul_mat_vec_q) {
|
||||
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, nullptr, dst);
|
||||
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16)
|
||||
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
|
||||
} else if (!split && use_mul_mat_q) {
|
||||
ggml_cuda_mul_mat_q(ctx, src0, src1, nullptr, dst);
|
||||
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16) &&
|
||||
!ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
|
||||
// general KQ + KQV multi-batch without FlashAttention
|
||||
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
|
||||
} else if (use_mul_mat_vec) {
|
||||
|
|
@ -1950,183 +1973,147 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|||
}
|
||||
}
|
||||
|
||||
struct mmid_row_mapping {
|
||||
int32_t i1;
|
||||
int32_t i2;
|
||||
};
|
||||
|
||||
static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
|
||||
int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
|
||||
const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
|
||||
int64_t ne11, int64_t ne10,
|
||||
size_t nb11, size_t nb12) {
|
||||
int32_t iid1 = blockIdx.x;
|
||||
int32_t id = blockIdx.y;
|
||||
|
||||
const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
|
||||
|
||||
if (row_id_i != i02) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i11 = id % ne11;
|
||||
const int64_t i12 = iid1;
|
||||
|
||||
__shared__ int src1_row;
|
||||
if (threadIdx.x == 0) {
|
||||
src1_row = atomicAdd(cur_src1_row, 1);
|
||||
row_mapping[src1_row] = {id, iid1};
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
|
||||
float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
|
||||
|
||||
for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
|
||||
src1_row_contiguous[i] = src1_row_original[i];
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
|
||||
const mmid_row_mapping * __restrict__ row_mapping,
|
||||
int64_t ne0,
|
||||
size_t nb1, size_t nb2) {
|
||||
int32_t i = blockIdx.x;
|
||||
|
||||
const int32_t i1 = row_mapping[i].i1;
|
||||
const int32_t i2 = row_mapping[i].i2;
|
||||
|
||||
const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
|
||||
float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
|
||||
|
||||
for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
|
||||
dst_row_original[j] = dst_row_contiguous[j];
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const ggml_tensor * ids = dst->src[2];
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft) && "mul_mat_id does not support split buffers");
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && ne2 == 1) {
|
||||
if (ggml_is_quantized(src0->type)) {
|
||||
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
|
||||
} else {
|
||||
ggml_cuda_mul_mat_vec(ctx, src0, src1, ids, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft) && "mul_mat_id does not support split buffers");
|
||||
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
if (ne2 == 1) {
|
||||
if (ggml_is_quantized(src0->type)) {
|
||||
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
|
||||
} else {
|
||||
ggml_cuda_mul_mat_vec(ctx, src0, src1, ids, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_use_mmq(src0->type, cc, ne12)) {
|
||||
ggml_cuda_mul_mat_q(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int64_t n_as = ne02;
|
||||
const int64_t n_ids = ids->ne[0];
|
||||
GGML_ASSERT(nb12 % nb11 == 0);
|
||||
GGML_ASSERT(nb2 % nb1 == 0);
|
||||
|
||||
const ggml_type type_src1_sorted = (src0->type == GGML_TYPE_F16 && !fast_fp16_hardware_available(cc))
|
||||
|| ggml_is_quantized(src0->type) ? GGML_TYPE_F32 : src0->type;
|
||||
const ggml_type type_dst_sorted = GGML_TYPE_F32;
|
||||
const size_t ts_src1_sorted = ggml_type_size(type_src1_sorted);
|
||||
const size_t ts_dst_sorted = ggml_type_size(type_dst_sorted);
|
||||
|
||||
const int64_t n_expert_used = ids->ne[0];
|
||||
const int64_t ne_get_rows = ne12 * n_expert_used;
|
||||
|
||||
std::vector<int32_t> ids_to_sorted_host;
|
||||
ids_to_sorted_host.reserve(2*ne_get_rows);
|
||||
std::vector<int32_t> ids_from_sorted_host(ne_get_rows);
|
||||
|
||||
ggml_cuda_pool_alloc<int32_t> ids_buf_dev(ctx.pool(), 2*ne_get_rows);
|
||||
|
||||
std::vector<int32_t> tokens_per_expert(ne02);
|
||||
|
||||
ggml_cuda_pool_alloc<char> src1_sorted(ctx.pool(), ne12*n_expert_used*ne10*ts_src1_sorted);
|
||||
ggml_cuda_pool_alloc<char> dst_sorted(ctx.pool(), ne2 *n_expert_used* ne0*ts_dst_sorted);
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
const char * ids_dev = (const char *) ids->data;
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids->data, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
ggml_tensor src0_row = *src0;
|
||||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
|
||||
char * src0_original = (char *) src0->data;
|
||||
char * src1_original = (char *) src1->data;
|
||||
char * dst_original = (char *) dst->data;
|
||||
|
||||
src0_row.ne[2] = 1;
|
||||
src0_row.ne[3] = 1;
|
||||
src0_row.nb[3] = nb02;
|
||||
|
||||
src1_row.ne[1] = 1;
|
||||
src1_row.ne[2] = 1;
|
||||
src1_row.ne[3] = 1;
|
||||
src1_row.nb[2] = nb11;
|
||||
src1_row.nb[3] = nb11;
|
||||
|
||||
dst_row.ne[1] = 1;
|
||||
dst_row.ne[2] = 1;
|
||||
dst_row.ne[3] = 1;
|
||||
dst_row.nb[2] = nb1;
|
||||
dst_row.nb[3] = nb1;
|
||||
|
||||
ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
|
||||
ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
|
||||
|
||||
src1_row.data = src1_contiguous.get();
|
||||
dst_row.data = dst_contiguous.get();
|
||||
|
||||
for (int64_t i02 = 0; i02 < n_as; i02++) {
|
||||
int64_t num_src1_rows = 0;
|
||||
|
||||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
||||
for (int64_t id = 0; id < n_ids; id++) {
|
||||
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
|
||||
|
||||
if (row_id_i != i02) {
|
||||
continue;
|
||||
for (int64_t i02 = 0; i02 < ne02; ++i02) { // expert matrices
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) { // tokens
|
||||
for (int64_t iex = 0; iex < n_expert_used; ++iex) {
|
||||
const int32_t expert_to_use = *(const int32_t *)(ids_host.data() + i12*ids->nb[1] + iex*ids->nb[0]);
|
||||
assert(expert_to_use >= 0 && expert_to_use < ne02);
|
||||
if (expert_to_use == i02) {
|
||||
ids_from_sorted_host[i12*n_expert_used + iex] = ids_to_sorted_host.size();
|
||||
ids_to_sorted_host.push_back(i12*ne11 + iex % ne11);
|
||||
tokens_per_expert[i02]++;
|
||||
break;
|
||||
}
|
||||
|
||||
num_src1_rows++;
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(ids_to_sorted_host.size() == size_t(ne_get_rows));
|
||||
|
||||
if (num_src1_rows == 0) {
|
||||
ids_to_sorted_host.insert(ids_to_sorted_host.end(), ids_from_sorted_host.begin(), ids_from_sorted_host.end());
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_buf_dev.ptr, ids_to_sorted_host.data(), 2*ne_get_rows*sizeof(int32_t), cudaMemcpyHostToDevice, stream));
|
||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
const int32_t * ids_to_sorted = ids_buf_dev.ptr + 0*ne_get_rows;
|
||||
const int32_t * ids_from_sorted = ids_buf_dev.ptr + 1*ne_get_rows;
|
||||
|
||||
get_rows_cuda(src1->data, src1->type, ids_to_sorted, src1_sorted.ptr, type_src1_sorted,
|
||||
ne10, nb11, nb12, nb13,
|
||||
ne_get_rows, 1, 1, sizeof(int32_t), ne_get_rows*sizeof(int32_t), ne_get_rows*sizeof(int32_t),
|
||||
ne10*ts_src1_sorted, ne_get_rows*ne10*ts_src1_sorted, ne_get_rows*ne10*ts_src1_sorted, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
char * src1_data_cur = (char *) src1_sorted.ptr;
|
||||
char * dst_data_cur = (char *) dst_sorted.ptr;
|
||||
for (int64_t i02 = 0; i02 < ne02; ++i02) {
|
||||
if (tokens_per_expert[i02] == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
|
||||
ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
|
||||
CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
|
||||
ggml_tensor src0_slice = *src0;
|
||||
src0_slice.ne[2] = 1;
|
||||
src0_slice.nb[3] = src0_slice.nb[2];
|
||||
src0_slice.op = GGML_OP_VIEW;
|
||||
src0_slice.view_src = dst->src[0]; // non-const pointer to src0
|
||||
src0_slice.data = (char *) src0->data + i02*nb02;
|
||||
|
||||
{
|
||||
dim3 block_dims(std::min((unsigned int)ne10, 768u));
|
||||
dim3 grid_dims(ids->ne[1], n_ids);
|
||||
k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
|
||||
src1_original, src1_contiguous.get(),
|
||||
dev_cur_src1_row.get(), dev_row_mapping.get(),
|
||||
ids_dev, i02, ids->nb[1], ids->nb[0],
|
||||
ne11, ne10,
|
||||
nb11, nb12);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
ggml_tensor src1_slice;
|
||||
memset(&src1_slice, 0, sizeof(src1_slice));
|
||||
src1_slice.buffer = src1->buffer;
|
||||
src1_slice.type = type_src1_sorted;
|
||||
src1_slice.ne[0] = ne10;
|
||||
src1_slice.ne[1] = tokens_per_expert[i02];
|
||||
src1_slice.ne[2] = 1;
|
||||
src1_slice.ne[3] = 1;
|
||||
src1_slice.nb[0] = ts_src1_sorted;
|
||||
src1_slice.nb[1] = src1_slice.ne[0] * src1_slice.nb[0];
|
||||
src1_slice.nb[2] = src1_slice.ne[1] * src1_slice.nb[1];
|
||||
src1_slice.nb[3] = src1_slice.ne[2] * src1_slice.nb[2];
|
||||
src1_slice.data = src1_data_cur;
|
||||
|
||||
src0_row.data = src0_original + i02*nb02;
|
||||
ggml_tensor dst_slice;
|
||||
memset(&dst_slice, 0, sizeof(dst_slice));
|
||||
dst_slice.buffer = dst->buffer;
|
||||
dst_slice.type = type_dst_sorted;
|
||||
dst_slice.ne[0] = ne0;
|
||||
dst_slice.ne[1] = tokens_per_expert[i02];
|
||||
dst_slice.ne[2] = 1;
|
||||
dst_slice.ne[3] = 1;
|
||||
dst_slice.nb[0] = ts_dst_sorted;
|
||||
dst_slice.nb[1] = dst_slice.ne[0] * dst_slice.nb[0];
|
||||
dst_slice.nb[2] = dst_slice.ne[1] * dst_slice.nb[1];
|
||||
dst_slice.nb[3] = dst_slice.ne[2] * dst_slice.nb[2];
|
||||
dst_slice.data = dst_data_cur;
|
||||
|
||||
GGML_ASSERT(nb11 == sizeof(float)*ne10);
|
||||
GGML_ASSERT(nb1 == sizeof(float)*ne0);
|
||||
ggml_cuda_mul_mat(ctx, &src0_slice, &src1_slice, &dst_slice);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
src1_row.ne[1] = num_src1_rows;
|
||||
src1_row.nb[1] = nb11;
|
||||
src1_row.nb[2] = num_src1_rows*nb11;
|
||||
src1_row.nb[3] = num_src1_rows*nb11;
|
||||
|
||||
dst_row.ne[1] = num_src1_rows;
|
||||
dst_row.nb[1] = nb1;
|
||||
dst_row.nb[2] = num_src1_rows*nb1;
|
||||
dst_row.nb[3] = num_src1_rows*nb1;
|
||||
|
||||
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
||||
|
||||
{
|
||||
dim3 block_dims(std::min((unsigned int)ne0, 768u));
|
||||
dim3 grid_dims(num_src1_rows);
|
||||
k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
|
||||
dst_original, dst_contiguous.get(),
|
||||
dev_row_mapping.get(),
|
||||
ne0,
|
||||
nb1, nb2);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
src1_data_cur += src1_slice.nb[2];
|
||||
dst_data_cur += dst_slice.nb[2];
|
||||
}
|
||||
|
||||
get_rows_cuda(dst_sorted.ptr, type_dst_sorted, ids_from_sorted, dst->data, dst->type,
|
||||
ne0, ne0*ts_dst_sorted, ne_get_rows*ne0*ts_dst_sorted, ne_get_rows*ne0*ts_dst_sorted,
|
||||
ne_get_rows, 1, 1, sizeof(int32_t), ne_get_rows*sizeof(int32_t), ne_get_rows*sizeof(int32_t),
|
||||
nb1, nb2, nb3, stream);
|
||||
}
|
||||
|
||||
static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
|
||||
|
|
|
|||
|
|
@ -1,37 +1,10 @@
|
|||
#include "mmq.cuh"
|
||||
#include "quantize.cuh"
|
||||
|
||||
void ggml_cuda_op_mul_mat_q(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
||||
#include <vector>
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
GGML_ASSERT(ne10 % QK8_1 == 0);
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
|
||||
const int64_t row_diff = row_high - row_low;
|
||||
const int64_t stride00 = ne00 / ggml_blck_size(src0->type);
|
||||
|
||||
int id = ggml_cuda_get_device();
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
||||
|
||||
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
|
||||
// Also its fixup needs to allocate a temporary buffer in the memory pool.
|
||||
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
|
||||
const bool use_stream_k = GGML_CUDA_CC_IS_NVIDIA(cc) &&
|
||||
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && src1_ncols == ne11;
|
||||
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};
|
||||
|
||||
switch (src0->type) {
|
||||
static void ggml_cuda_mul_mat_q_switch_type(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
|
||||
switch (args.type_x) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
mul_mat_q_case<GGML_TYPE_Q4_0>(ctx, args, stream);
|
||||
break;
|
||||
|
|
@ -90,10 +63,206 @@ void ggml_cuda_op_mul_mat_q(
|
|||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat_q(
|
||||
ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
|
||||
GGML_ASSERT( src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32); // Optional, used for batched GGML_MUL_MAT_ID.
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
const size_t ts_src0 = ggml_type_size(src0->type);
|
||||
const size_t ts_src1 = ggml_type_size(src1->type);
|
||||
const size_t ts_dst = ggml_type_size(dst->type);
|
||||
|
||||
GGML_ASSERT( nb00 == ts_src0);
|
||||
GGML_ASSERT( nb10 == ts_src1);
|
||||
GGML_ASSERT( nb0 == ts_dst);
|
||||
GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
|
||||
|
||||
const char * src0_d = (const char *) src0->data;
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
// If src0 is a temporary compute buffer, clear any potential padding.
|
||||
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
const size_t size_data = ggml_nbytes(src0);
|
||||
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
|
||||
if (size_alloc > size_data) {
|
||||
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||||
|
||||
const int64_t s01 = src0->nb[1] / ts_src0;
|
||||
const int64_t s1 = dst->nb[1] / ts_dst;
|
||||
const int64_t s02 = src0->nb[2] / ts_src0;
|
||||
const int64_t s2 = dst->nb[2] / ts_dst;
|
||||
const int64_t s03 = src0->nb[3] / ts_src0;
|
||||
const int64_t s3 = dst->nb[3] / ts_dst;
|
||||
|
||||
const bool use_stream_k = GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA;
|
||||
|
||||
if (!ids) {
|
||||
const size_t nbytes_src1_q8_1 = ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1 +
|
||||
get_mmq_x_max_host(cc)*sizeof(block_q8_1_mmq);
|
||||
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), nbytes_src1_q8_1);
|
||||
|
||||
{
|
||||
const int64_t s11 = src1->nb[1] / ts_src1;
|
||||
const int64_t s12 = src1->nb[2] / ts_src1;
|
||||
const int64_t s13 = src1->nb[3] / ts_src1;
|
||||
quantize_mmq_q8_1_cuda(src1_d, nullptr, src1_q8_1.get(), src0->type,
|
||||
ne10, s11, s12, s13, ne10_padded, ne11, ne12, ne13, stream);
|
||||
}
|
||||
|
||||
const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int));
|
||||
const int64_t s13 = ne12*s12;
|
||||
|
||||
const mmq_args args = {
|
||||
src0_d, src0->type, (const int *) src1_q8_1.ptr, nullptr, nullptr, dst_d,
|
||||
ne00, ne01, ne1, s01, ne11, s1,
|
||||
ne02, ne12, s02, s12, s2,
|
||||
ne03, ne13, s03, s13, s3,
|
||||
use_stream_k};
|
||||
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(ne13 == 1);
|
||||
GGML_ASSERT(nb12 % nb11 == 0);
|
||||
GGML_ASSERT(nb2 % nb1 == 0);
|
||||
|
||||
const int64_t n_expert_used = ids->ne[0];
|
||||
const int64_t ne_get_rows = ne12 * n_expert_used;
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
std::vector<int32_t> ids_src1_host;
|
||||
ids_src1_host.reserve(ne_get_rows);
|
||||
std::vector<int32_t> ids_dst_host;
|
||||
ids_dst_host.reserve(ne_get_rows);
|
||||
std::vector<int32_t> tokens_per_expert_host(ne02);
|
||||
std::vector<int32_t> expert_bounds_host(ne02 + 1);
|
||||
ggml_cuda_pool_alloc<int32_t> ids_buf_dev(ctx.pool());
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids->data, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
for (int64_t i02 = 0; i02 < ne02; ++i02) { // expert matrices
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) { // tokens
|
||||
for (int64_t iex = 0; iex < n_expert_used; ++iex) {
|
||||
const int32_t expert_to_use = *(const int32_t *)(ids_host.data() + i12*ids->nb[1] + iex*ids->nb[0]);
|
||||
assert(expert_to_use >= 0 && expert_to_use < ne02);
|
||||
if (expert_to_use == i02) {
|
||||
ids_src1_host.push_back(i12*(nb12/nb11) + iex % ne11);
|
||||
ids_dst_host.push_back(i12*ne1 + iex);
|
||||
tokens_per_expert_host[i02]++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int32_t cumsum = 0;
|
||||
for (int64_t i = 0; i < ne02; ++i) {
|
||||
expert_bounds_host[i] = cumsum;
|
||||
cumsum += tokens_per_expert_host[i];
|
||||
}
|
||||
expert_bounds_host[ne02] = cumsum;
|
||||
|
||||
std::vector<int32_t> ids_buf_host;
|
||||
ids_buf_host.reserve(ids_src1_host.size() + ids_dst_host.size() + expert_bounds_host.size());
|
||||
ids_buf_host.insert(ids_buf_host.end(), ids_src1_host.begin(), ids_src1_host.end());
|
||||
ids_buf_host.insert(ids_buf_host.end(), ids_dst_host.begin(), ids_dst_host.end());
|
||||
ids_buf_host.insert(ids_buf_host.end(), expert_bounds_host.begin(), expert_bounds_host.end());
|
||||
ids_buf_dev.alloc(ids_buf_host.size() + get_mmq_x_max_host(cc)); // Expert bounds are padded on device.
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_buf_dev.ptr, ids_buf_host.data(), ids_buf_host.size()*sizeof(int32_t), cudaMemcpyHostToDevice, stream));
|
||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
const int32_t * ids_src1_dev = ids_buf_dev.ptr;
|
||||
const int32_t * ids_dst_dev = ids_src1_dev + ids_src1_host.size();
|
||||
const int32_t * expert_bounds_dev = ids_dst_dev + ids_dst_host.size();
|
||||
|
||||
const size_t nbytes_src1_q8_1 = ne12*n_expert_used*ne10_padded * sizeof(block_q8_1)/QK8_1 +
|
||||
get_mmq_x_max_host(cc)*sizeof(block_q8_1_mmq);
|
||||
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), nbytes_src1_q8_1);
|
||||
|
||||
const int64_t ne11_flat = ne12*n_expert_used;
|
||||
const int64_t ne12_flat = 1;
|
||||
const int64_t ne13_flat = 1;
|
||||
|
||||
{
|
||||
const int64_t s11 = src1->nb[1] / ts_src1;
|
||||
const int64_t s12 = src1->nb[2] / ts_src1;
|
||||
const int64_t s13 = src1->nb[2] / ts_src1;
|
||||
quantize_mmq_q8_1_cuda(src1_d, ids_src1_dev, src1_q8_1.get(), src0->type,
|
||||
ne10, s11, s12, s13, ne10_padded, ne11_flat, ne12_flat, ne13_flat, stream);
|
||||
}
|
||||
|
||||
const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int));
|
||||
const int64_t s13 = ne12*s12;
|
||||
|
||||
// Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid.
|
||||
const mmq_args args = {
|
||||
src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d,
|
||||
ne00, ne01, ne_get_rows, s01, ne_get_rows, s1,
|
||||
ne02, ne02, s02, s12, s2,
|
||||
ne03, ne13, s03, s13, s3,
|
||||
use_stream_k};
|
||||
|
||||
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_mul_mat_q(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
GGML_ASSERT(ne10 % QK8_1 == 0);
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
|
||||
const int64_t row_diff = row_high - row_low;
|
||||
const int64_t stride01 = ne00 / ggml_blck_size(src0->type);
|
||||
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
||||
|
||||
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
|
||||
// Also its fixup needs to allocate a temporary buffer in the memory pool.
|
||||
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
|
||||
const bool use_stream_k = GGML_CUDA_CC_IS_NVIDIA(cc) &&
|
||||
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && src1_ncols == ne11;
|
||||
const mmq_args args = {
|
||||
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
|
||||
ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst,
|
||||
1, 1, 0, 0, 0,
|
||||
1, 1, 0, 0, 0,
|
||||
use_stream_k};
|
||||
|
||||
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
|
||||
|
||||
GGML_UNUSED(src1);
|
||||
GGML_UNUSED(dst);
|
||||
GGML_UNUSED(src1_ddf_i);
|
||||
GGML_UNUSED(src1_padded_row_size);
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -7,47 +7,51 @@
|
|||
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs);
|
||||
|
||||
static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type) {
|
||||
return type == GGML_TYPE_Q4_0 ? vec_dot_q4_0_q8_1 :
|
||||
type == GGML_TYPE_Q4_1 ? vec_dot_q4_1_q8_1 :
|
||||
type == GGML_TYPE_Q5_0 ? vec_dot_q5_0_q8_1 :
|
||||
type == GGML_TYPE_Q5_1 ? vec_dot_q5_1_q8_1 :
|
||||
type == GGML_TYPE_Q8_0 ? vec_dot_q8_0_q8_1 :
|
||||
type == GGML_TYPE_Q2_K ? vec_dot_q2_K_q8_1 :
|
||||
type == GGML_TYPE_Q3_K ? vec_dot_q3_K_q8_1 :
|
||||
type == GGML_TYPE_Q4_K ? vec_dot_q4_K_q8_1 :
|
||||
type == GGML_TYPE_Q5_K ? vec_dot_q5_K_q8_1 :
|
||||
type == GGML_TYPE_Q6_K ? vec_dot_q6_K_q8_1 :
|
||||
type == GGML_TYPE_IQ2_XXS ? vec_dot_iq2_xxs_q8_1 :
|
||||
type == GGML_TYPE_IQ2_XS ? vec_dot_iq2_xs_q8_1 :
|
||||
type == GGML_TYPE_IQ2_S ? vec_dot_iq2_s_q8_1 :
|
||||
type == GGML_TYPE_IQ3_XXS ? vec_dot_iq3_xxs_q8_1 :
|
||||
type == GGML_TYPE_IQ1_S ? vec_dot_iq1_s_q8_1 :
|
||||
type == GGML_TYPE_IQ1_M ? vec_dot_iq1_m_q8_1 :
|
||||
type == GGML_TYPE_IQ4_NL ? vec_dot_iq4_nl_q8_1 :
|
||||
type == GGML_TYPE_IQ4_XS ? vec_dot_iq4_xs_q8_1 :
|
||||
type == GGML_TYPE_IQ3_S ? vec_dot_iq3_s_q8_1 :
|
||||
nullptr;
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0: return vec_dot_q4_0_q8_1;
|
||||
case GGML_TYPE_Q4_1: return vec_dot_q4_1_q8_1;
|
||||
case GGML_TYPE_Q5_0: return vec_dot_q5_0_q8_1;
|
||||
case GGML_TYPE_Q5_1: return vec_dot_q5_1_q8_1;
|
||||
case GGML_TYPE_Q8_0: return vec_dot_q8_0_q8_1;
|
||||
case GGML_TYPE_Q2_K: return vec_dot_q2_K_q8_1;
|
||||
case GGML_TYPE_Q3_K: return vec_dot_q3_K_q8_1;
|
||||
case GGML_TYPE_Q4_K: return vec_dot_q4_K_q8_1;
|
||||
case GGML_TYPE_Q5_K: return vec_dot_q5_K_q8_1;
|
||||
case GGML_TYPE_Q6_K: return vec_dot_q6_K_q8_1;
|
||||
case GGML_TYPE_IQ2_XXS: return vec_dot_iq2_xxs_q8_1;
|
||||
case GGML_TYPE_IQ2_XS: return vec_dot_iq2_xs_q8_1;
|
||||
case GGML_TYPE_IQ2_S: return vec_dot_iq2_s_q8_1;
|
||||
case GGML_TYPE_IQ3_XXS: return vec_dot_iq3_xxs_q8_1;
|
||||
case GGML_TYPE_IQ1_S: return vec_dot_iq1_s_q8_1;
|
||||
case GGML_TYPE_IQ1_M: return vec_dot_iq1_m_q8_1;
|
||||
case GGML_TYPE_IQ4_NL: return vec_dot_iq4_nl_q8_1;
|
||||
case GGML_TYPE_IQ4_XS: return vec_dot_iq4_xs_q8_1;
|
||||
case GGML_TYPE_IQ3_S: return vec_dot_iq3_s_q8_1;
|
||||
default: return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
|
||||
return type == GGML_TYPE_Q4_0 ? VDR_Q4_0_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_Q4_1 ? VDR_Q4_1_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_Q5_0 ? VDR_Q5_0_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_Q5_1 ? VDR_Q5_1_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_Q8_0 ? VDR_Q8_0_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_Q2_K ? VDR_Q2_K_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_Q3_K ? VDR_Q3_K_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_Q4_K ? VDR_Q4_K_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_Q5_K ? VDR_Q5_K_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_Q6_K ? VDR_Q6_K_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_IQ2_XXS ? VDR_IQ2_XXS_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_IQ2_XS ? VDR_IQ2_XS_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_IQ2_S ? VDR_IQ2_S_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_IQ3_XXS ? VDR_IQ3_XXS_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_IQ3_S ? VDR_IQ3_S_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_IQ4_NL ? VDR_IQ4_NL_Q8_1_MMVQ :
|
||||
type == GGML_TYPE_IQ4_XS ? VDR_IQ4_XS_Q8_1_MMVQ :
|
||||
1;
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0: return VDR_Q4_0_Q8_1_MMVQ;
|
||||
case GGML_TYPE_Q4_1: return VDR_Q4_1_Q8_1_MMVQ;
|
||||
case GGML_TYPE_Q5_0: return VDR_Q5_0_Q8_1_MMVQ;
|
||||
case GGML_TYPE_Q5_1: return VDR_Q5_1_Q8_1_MMVQ;
|
||||
case GGML_TYPE_Q8_0: return VDR_Q8_0_Q8_1_MMVQ;
|
||||
case GGML_TYPE_Q2_K: return VDR_Q2_K_Q8_1_MMVQ;
|
||||
case GGML_TYPE_Q3_K: return VDR_Q3_K_Q8_1_MMVQ;
|
||||
case GGML_TYPE_Q4_K: return VDR_Q4_K_Q8_1_MMVQ;
|
||||
case GGML_TYPE_Q5_K: return VDR_Q5_K_Q8_1_MMVQ;
|
||||
case GGML_TYPE_Q6_K: return VDR_Q6_K_Q8_1_MMVQ;
|
||||
case GGML_TYPE_IQ2_XXS: return VDR_IQ2_XXS_Q8_1_MMVQ;
|
||||
case GGML_TYPE_IQ2_XS: return VDR_IQ2_XS_Q8_1_MMVQ;
|
||||
case GGML_TYPE_IQ2_S: return VDR_IQ2_S_Q8_1_MMVQ;
|
||||
case GGML_TYPE_IQ3_XXS: return VDR_IQ3_XXS_Q8_1_MMVQ;
|
||||
case GGML_TYPE_IQ3_S: return VDR_IQ3_S_Q8_1_MMVQ;
|
||||
case GGML_TYPE_IQ4_NL: return VDR_IQ4_NL_Q8_1_MMVQ;
|
||||
case GGML_TYPE_IQ4_XS: return VDR_IQ4_XS_Q8_1_MMVQ;
|
||||
default: return 1;
|
||||
}
|
||||
}
|
||||
|
||||
enum mmvq_parameter_table_id {
|
||||
|
|
@ -154,7 +158,7 @@ static __global__ void mul_mat_vec_q(
|
|||
const int blocks_per_row_x = ncols_x / qk;
|
||||
constexpr int blocks_per_iter = vdr * nwarps*warp_size / qi;
|
||||
|
||||
// The MUL_MAT_ID code path with ids != nullptr is only implemetned for ncols_dst == 1.
|
||||
// The MUL_MAT_ID code path with ids != nullptr is only implemented for ncols_dst == 1.
|
||||
const int channel_dst = blockIdx.y;
|
||||
const int channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : channel_dst / channel_ratio;
|
||||
const int channel_y = ncols_dst == 1 && ids ? channel_dst % nchannels_y : channel_dst;
|
||||
|
|
@ -503,19 +507,30 @@ void ggml_cuda_mul_mat_vec_q(
|
|||
GGML_ASSERT( nb0 == ts_dst);
|
||||
GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
|
||||
|
||||
GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1.
|
||||
GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1.
|
||||
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
// If src0 is a temporary compute buffer, clear any potential padding.
|
||||
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
const size_t size_data = ggml_nbytes(src0);
|
||||
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
|
||||
if (size_alloc > size_data) {
|
||||
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||||
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1);
|
||||
{
|
||||
const int64_t s11 = src1->nb[1] / ts_src1;
|
||||
const int64_t s12 = src1->nb[2] / ts_src1;
|
||||
const int64_t s13 = src1->nb[3] / ts_src1;
|
||||
quantize_row_q8_1_cuda(src1_d, src1_q8_1.get(), src0->type, ne10, s11, s12, s13, ne10_padded, ne11, ne12, ne13, stream);
|
||||
quantize_row_q8_1_cuda(src1_d, nullptr, src1_q8_1.get(), src0->type, ne10, s11, s12, s13, ne10_padded, ne11, ne12, ne13, stream);
|
||||
}
|
||||
|
||||
const int64_t s01 = src0->nb[1] / ts_src0;
|
||||
|
|
|
|||
|
|
@ -49,29 +49,38 @@ static __global__ void quantize_q8_1(
|
|||
|
||||
template <mmq_q8_1_ds_layout ds_layout>
|
||||
static __global__ void quantize_mmq_q8_1(
|
||||
const float * __restrict__ x, void * __restrict__ vy, const int64_t kx0, const int64_t kx1, const int64_t kx0_padded) {
|
||||
const float * __restrict__ x, const int32_t * __restrict__ ids, void * __restrict__ vy,
|
||||
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int ne1, const int ne2) {
|
||||
|
||||
constexpr int vals_per_scale = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 64 : 32;
|
||||
constexpr int vals_per_sum = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 16 : 32;
|
||||
|
||||
const int64_t ix0 = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*4;
|
||||
const int64_t i0 = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*4;
|
||||
|
||||
if (ix0 >= kx0_padded) {
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float4 * x4 = (const float4 *) x;
|
||||
const int64_t i1 = blockIdx.y;
|
||||
const int64_t i2 = blockIdx.z % ne2;
|
||||
const int64_t i3 = blockIdx.z / ne2;
|
||||
|
||||
const int64_t ix1 = kx1*blockIdx.z + blockIdx.y;
|
||||
const int64_t i00 = i0;
|
||||
const int64_t i01 = ids ? ids[i1] : i1;
|
||||
const int64_t i02 = i2;
|
||||
const int64_t i03 = i3;
|
||||
|
||||
const float4 * x4 = (const float4 *) x;
|
||||
|
||||
block_q8_1_mmq * y = (block_q8_1_mmq *) vy;
|
||||
|
||||
const int64_t ib0 = blockIdx.z*((int64_t)gridDim.y*gridDim.x*blockDim.x/QK8_1); // first block of channel
|
||||
const int64_t ib = ib0 + (ix0 / (4*QK8_1))*kx1 + blockIdx.y; // block index in channel
|
||||
const int64_t iqs = ix0 % (4*QK8_1); // quant index in block
|
||||
const int64_t ib = ib0 + (i0 / (4*QK8_1))*ne1 + blockIdx.y; // block index in channel
|
||||
const int64_t iqs = i0 % (4*QK8_1); // quant index in block
|
||||
|
||||
// Load 4 floats per thread and calculate max. abs. value between them:
|
||||
const float4 xi = ix0 < kx0 ? x4[(ix1*kx0 + ix0)/4] : make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
||||
const float4 xi = i0 < ne00 ? x4[(i03*s03 + i02*s02 + i01*s01 + i00)/4] : make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
||||
float amax = fabsf(xi.x);
|
||||
amax = fmaxf(amax, fabsf(xi.y));
|
||||
amax = fmaxf(amax, fabsf(xi.z));
|
||||
|
|
@ -87,7 +96,7 @@ static __global__ void quantize_mmq_q8_1(
|
|||
if (ds_layout != MMQ_Q8_1_DS_LAYOUT_D4) {
|
||||
sum = xi.x + xi.y + xi.z + xi.w;
|
||||
|
||||
// Exchange calculate sum across vals_per_sum/4 threads.
|
||||
// Calculate sums across vals_per_sum/4 threads.
|
||||
#pragma unroll
|
||||
for (int offset = vals_per_sum/8; offset > 0; offset >>= 1) {
|
||||
sum += __shfl_xor_sync(0xFFFFFFFF, sum, offset, WARP_SIZE);
|
||||
|
|
@ -137,9 +146,10 @@ static __global__ void quantize_mmq_q8_1(
|
|||
}
|
||||
|
||||
void quantize_row_q8_1_cuda(
|
||||
const float * x, void * vy, const ggml_type type_src0, const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
|
||||
|
||||
const float * x, const int32_t * ids, void * vy, const ggml_type type_src0,
|
||||
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
|
||||
GGML_ASSERT(!ids);
|
||||
GGML_ASSERT(ne0 % QK8_1 == 0);
|
||||
|
||||
const int64_t block_num_x = (ne0 + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
|
||||
|
|
@ -150,9 +160,10 @@ void quantize_row_q8_1_cuda(
|
|||
}
|
||||
|
||||
void quantize_mmq_q8_1_cuda(
|
||||
const float * x, void * vy, const ggml_type type_src0, const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
|
||||
|
||||
const float * x, const int32_t * ids, void * vy, const ggml_type type_src0,
|
||||
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
GGML_ASSERT(ne0 % (4*QK8_1) == 0);
|
||||
|
||||
const int64_t block_num_x = (ne0 + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);
|
||||
|
|
@ -161,21 +172,18 @@ void quantize_mmq_q8_1_cuda(
|
|||
switch (mmq_get_q8_1_ds_layout(type_src0)) {
|
||||
case MMQ_Q8_1_DS_LAYOUT_D4:
|
||||
quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_D4>
|
||||
<<<num_blocks, block_size, 0, stream>>>(x, vy, ne00, ne1, ne0);
|
||||
<<<num_blocks, block_size, 0, stream>>>(x, ids, vy, ne00, s01, s02, s03, ne0, ne1, ne2);
|
||||
break;
|
||||
case MMQ_Q8_1_DS_LAYOUT_DS4:
|
||||
quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_DS4>
|
||||
<<<num_blocks, block_size, 0, stream>>>(x, vy, ne00, ne1, ne0);
|
||||
<<<num_blocks, block_size, 0, stream>>>(x, ids, vy, ne00, s01, s02, s03, ne0, ne1, ne2);
|
||||
break;
|
||||
case MMQ_Q8_1_DS_LAYOUT_D2S6:
|
||||
quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_D2S6>
|
||||
<<<num_blocks, block_size, 0, stream>>>(x, vy, ne00, ne1, ne0);
|
||||
<<<num_blocks, block_size, 0, stream>>>(x, ids, vy, ne00, s01, s02, s03, ne0, ne1, ne2);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
GGML_UNUSED(s01);
|
||||
GGML_UNUSED(s02);
|
||||
GGML_UNUSED(s03);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -12,13 +12,16 @@ static_assert(MATRIX_ROW_PADDING % CUDA_QUANTIZE_BLOCK_SIZE == 0, "Risk
|
|||
static_assert(MATRIX_ROW_PADDING % (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ) == 0, "Risk of out-of-bounds access.");
|
||||
|
||||
typedef void (*quantize_cuda_t)(
|
||||
const float * x, void * vy, const ggml_type type_src0, const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream);
|
||||
const float * x, const int32_t * ids, void * vy,
|
||||
ggml_type type_src0, int64_t ne00, int64_t s01, int64_t s02, int64_t s03,
|
||||
int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, cudaStream_t stream);
|
||||
|
||||
void quantize_row_q8_1_cuda(
|
||||
const float * x, void * vy, const ggml_type type_src0, const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream);
|
||||
const float * x, const int32_t * ids, void * vy,
|
||||
ggml_type type_src0, int64_t ne00, int64_t s01, int64_t s02, int64_t s03,
|
||||
int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, cudaStream_t stream);
|
||||
|
||||
void quantize_mmq_q8_1_cuda(
|
||||
const float * x, void * vy, const ggml_type type_src0, const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream);
|
||||
const float * x, const int32_t * ids, void * vy,
|
||||
ggml_type type_src0, int64_t ne00, int64_t s01, int64_t s02, int64_t s03,
|
||||
int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, cudaStream_t stream);
|
||||
|
|
|
|||
|
|
@ -19,12 +19,6 @@
|
|||
#define GROUP_MAX_EPS_IQ1_M 1e-7f
|
||||
#define GROUP_MAX_EPS_IQ1_S 1e-12f
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// disable "possible loss of data" to avoid warnings for hundreds of casts
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
#endif
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
// reference implementation for deterministic creation of model files
|
||||
|
|
|
|||
|
|
@ -378,8 +378,8 @@ static bool parse_endpoint(const std::string & endpoint, std::string & host, int
|
|||
}
|
||||
|
||||
// RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
|
||||
// RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
|
||||
static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size, void * output, size_t output_size) {
|
||||
// No response
|
||||
static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size) {
|
||||
uint8_t cmd_byte = cmd;
|
||||
if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
|
||||
return false;
|
||||
|
|
@ -390,6 +390,15 @@ static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cm
|
|||
if (!send_data(sock->fd, input, input_size)) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
|
||||
// RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
|
||||
static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size, void * output, size_t output_size) {
|
||||
if (!send_rpc_cmd(sock, cmd, input, input_size)) {
|
||||
return false;
|
||||
}
|
||||
// TODO: currently the output_size is always known, do we need support for commands with variable output size?
|
||||
// even if we do, we can skip sending output_size from the server for commands with known output size
|
||||
uint64_t out_size;
|
||||
|
|
@ -509,6 +518,11 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
|
|||
result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
|
||||
result.view_offs = tensor->view_offs;
|
||||
result.data = reinterpret_cast<uint64_t>(tensor->data);
|
||||
|
||||
// Avoid sending uninitialized data over the wire
|
||||
memset(result.name, 0, sizeof(result.name));
|
||||
memset(result.padding, 0, sizeof(result.padding));
|
||||
|
||||
snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
|
||||
return result;
|
||||
}
|
||||
|
|
@ -555,7 +569,7 @@ static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggm
|
|||
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
|
||||
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
|
||||
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
|
||||
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size(), nullptr, 0);
|
||||
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size());
|
||||
GGML_ASSERT(status);
|
||||
}
|
||||
|
||||
|
|
@ -973,8 +987,21 @@ bool rpc_server::buffer_clear(const rpc_msg_buffer_clear_req & request) {
|
|||
}
|
||||
|
||||
ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
|
||||
// Validate tensor type before using it
|
||||
if (tensor->type >= GGML_TYPE_COUNT) {
|
||||
GGML_LOG_ERROR("[%s] invalid tensor type received: %u\n", __func__, tensor->type);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
||||
|
||||
// ggml_new_tensor_4d might fail if dimensions are invalid, although less likely to crash than invalid type
|
||||
if (result == nullptr) {
|
||||
GGML_LOG_ERROR("[%s] ggml_new_tensor_4d failed for type %u\\n", __func__, tensor->type);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
result->nb[i] = tensor->nb[i];
|
||||
}
|
||||
|
|
@ -1034,7 +1061,9 @@ bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
|
|||
const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
|
||||
|
||||
if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
|
||||
GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
|
||||
GGML_LOG_ERROR("[%s] tensor data region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%zu) out of buffer bounds [0x%zx, 0x%zx)\n",
|
||||
__func__, in_tensor->data, offset, size, p0, p1);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -1109,7 +1138,9 @@ bool rpc_server::set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set
|
|||
const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
|
||||
|
||||
if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
|
||||
GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
|
||||
GGML_LOG_ERROR("[%s] tensor data region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%zu, hash=0x%" PRIx64 ") out of buffer bounds [0x%zx, 0x%zx)\n",
|
||||
__func__, in_tensor->data, offset, size, *hash, p0, p1);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
ggml_backend_tensor_set(tensor, cached_file.data(), offset, size);
|
||||
|
|
@ -1174,7 +1205,9 @@ bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<
|
|||
if (request.tensor.data + request.offset < p0 ||
|
||||
request.tensor.data + request.offset >= p1 ||
|
||||
request.size > (p1 - request.tensor.data - request.offset)) {
|
||||
GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
|
||||
GGML_LOG_ERROR("[%s] requested tensor region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%" PRIu64 ") out of buffer bounds [0x%zx, 0x%zx)\n",
|
||||
__func__, request.tensor.data, request.offset, request.size, p0, p1);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -1228,22 +1261,50 @@ ggml_tensor * rpc_server::create_node(uint64_t id,
|
|||
struct ggml_context * ctx,
|
||||
const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
|
||||
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
|
||||
if (id == 0) {
|
||||
return nullptr;
|
||||
}
|
||||
if (tensor_map.find(id) != tensor_map.end()) {
|
||||
return tensor_map[id];
|
||||
}
|
||||
const rpc_tensor * tensor = tensor_ptrs.at(id);
|
||||
// Safely find the tensor pointer
|
||||
auto it_ptr = tensor_ptrs.find(id);
|
||||
if (it_ptr == tensor_ptrs.end()) {
|
||||
return nullptr;
|
||||
}
|
||||
const rpc_tensor * tensor = it_ptr->second;
|
||||
|
||||
struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
|
||||
if (result == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
tensor_map[id] = result;
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
|
||||
// Check if the source ID is 0 before calling create_node recursively
|
||||
if (tensor->src[i] == 0) {
|
||||
result->src[i] = nullptr;
|
||||
} else {
|
||||
result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
|
||||
// If the recursive call failed for a non-zero ID, propagate the error
|
||||
if (result->src[i] == nullptr) {
|
||||
GGML_LOG_ERROR("[%s] failed to create source node %d (src_id=%" PRIu64 ") for node id %" PRIu64 "\n",
|
||||
__func__, i, tensor->src[i], id);
|
||||
// Must return nullptr to signal failure up the call stack
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Handle view_src similarly
|
||||
if (tensor->view_src == 0) {
|
||||
result->view_src = nullptr;
|
||||
} else {
|
||||
result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
|
||||
// If the recursive call failed for a non-zero ID, propagate the error
|
||||
if (result->view_src == nullptr) {
|
||||
GGML_LOG_ERROR("[%s] failed to create view_src node (view_src_id=%" PRIu64 ") for node id %" PRIu64 "\n",
|
||||
__func__, tensor->view_src, id);
|
||||
// Must return nullptr to signal failure up the call stack
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
|
||||
result->view_offs = tensor->view_offs;
|
||||
return result;
|
||||
}
|
||||
|
|
@ -1269,6 +1330,7 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
|
|||
GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
|
||||
|
||||
size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
|
|
@ -1288,6 +1350,14 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
|
|||
int64_t id;
|
||||
memcpy(&id, &nodes[i], sizeof(id));
|
||||
graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
|
||||
|
||||
// Check if create_node failed for a *non-zero* ID.
|
||||
// If id was 0, create_node returning nullptr is expected.
|
||||
// If id was non-zero and create_node returned nullptr, it indicates a deserialization error.
|
||||
if (graph->nodes[i] == nullptr && id != 0) {
|
||||
GGML_LOG_ERROR("[%s] failed to create graph node %d (id=%" PRId64 ")\n", __func__, i, id);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
ggml_status status = ggml_backend_graph_compute(backend, graph);
|
||||
response.result = status;
|
||||
|
|
@ -1352,7 +1422,9 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
|
|||
return;
|
||||
}
|
||||
rpc_msg_get_alloc_size_rsp response;
|
||||
server.get_alloc_size(request, response);
|
||||
if (!server.get_alloc_size(request, response)) {
|
||||
return;
|
||||
}
|
||||
if (!send_msg(sockfd, &response, sizeof(response))) {
|
||||
return;
|
||||
}
|
||||
|
|
@ -1428,9 +1500,6 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
|
|||
if (!server.set_tensor(input)) {
|
||||
return;
|
||||
}
|
||||
if (!send_msg(sockfd, nullptr, 0)) {
|
||||
return;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case RPC_CMD_SET_TENSOR_HASH: {
|
||||
|
|
@ -1525,6 +1594,14 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
|
|||
void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
|
||||
const char * cache_dir,
|
||||
size_t free_mem, size_t total_mem) {
|
||||
printf("Starting RPC server v%d.%d.%d\n",
|
||||
RPC_PROTO_MAJOR_VERSION,
|
||||
RPC_PROTO_MINOR_VERSION,
|
||||
RPC_PROTO_PATCH_VERSION);
|
||||
printf(" endpoint : %s\n", endpoint);
|
||||
printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
|
||||
printf(" backend memory : %zu MB\n", free_mem / (1024 * 1024));
|
||||
|
||||
std::string host;
|
||||
int port;
|
||||
if (!parse_endpoint(endpoint, host, port)) {
|
||||
|
|
@ -1684,6 +1761,9 @@ static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const ch
|
|||
if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
|
||||
return (void *)ggml_backend_rpc_add_device;
|
||||
}
|
||||
if (std::strcmp(name, "ggml_backend_rpc_start_server") == 0) {
|
||||
return (void *)ggml_backend_rpc_start_server;
|
||||
}
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
|
|
|
|||
|
|
@ -80,10 +80,6 @@ extern int g_ggml_sycl_disable_optimize;
|
|||
// max batch size to use MMQ kernels when tensor cores are available
|
||||
#define MMQ_MAX_BATCH_SIZE 32
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable : 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
// dmmv = dequantize_mul_mat_vec
|
||||
#ifndef GGML_SYCL_DMMV_X
|
||||
#define GGML_SYCL_DMMV_X 32
|
||||
|
|
@ -313,7 +309,6 @@ struct ggml_backend_sycl_context {
|
|||
int device;
|
||||
std::string name;
|
||||
optimize_feature opt_feature;
|
||||
bool optimized_graph=false;
|
||||
|
||||
queue_ptr qptrs[GGML_SYCL_MAX_DEVICES][GGML_SYCL_MAX_STREAMS] = { { nullptr } };
|
||||
|
||||
|
|
@ -494,5 +489,9 @@ static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) {
|
|||
|
||||
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size);
|
||||
|
||||
constexpr size_t ceil_div(const size_t m, const size_t n) {
|
||||
return (m + n - 1) / n;
|
||||
}
|
||||
|
||||
bool gpu_has_xmx(sycl::device &dev);
|
||||
#endif // GGML_SYCL_COMMON_HPP
|
||||
|
|
|
|||
|
|
@ -21,6 +21,27 @@ static void acc_f32(const float * x, const float * y, float * dst, const int ne,
|
|||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void sgn(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) {
|
||||
for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) {
|
||||
dst[i] = x[i] > static_cast<T>(0.f) ? static_cast<T>(1.f) : ((x[i] < static_cast<T>(0.f) ? static_cast<T>(-1.f) : static_cast<T>(0.f)));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void abs_op(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) {
|
||||
for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) {
|
||||
dst[i] = sycl::fabs(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void elu_op(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) {
|
||||
for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) {
|
||||
dst[i] = (x[i] > static_cast<T>(0.f)) ? x[i] : sycl::expm1(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void gelu(const T * x, T * dst, const int k,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
|
@ -335,6 +356,37 @@ static void silu_sycl(const T *x, T *dst, const int k,
|
|||
});
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void sgn_sycl(const T * x, T * dst, const int k, queue_ptr stream) {
|
||||
// hard code for now
|
||||
const int num_blocks = ceil_div(k, 256);
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range(1, 1, 256)), sycl::range(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) {
|
||||
sgn(x, dst, k, item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void abs_sycl(const T * x, T * dst, const int k, queue_ptr stream) {
|
||||
// hard code for now
|
||||
const int num_blocks = ceil_div(k, 256);
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, 256)), sycl::range<3>(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) {
|
||||
abs_op(x, dst, k, item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
static void elu_sycl(const T * x, T * dst, const int k, queue_ptr stream) {
|
||||
// hard code for now
|
||||
const int num_blocks = ceil_div(k, 256);
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, 256)), sycl::range<3>(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) {
|
||||
elu_op(x, dst, k, item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void gelu_quick_sycl(const T *x, T *dst, const int k,
|
||||
queue_ptr stream) {
|
||||
|
|
@ -574,6 +626,106 @@ static void clamp_sycl(const T *x, T *dst, const float min,
|
|||
});
|
||||
}
|
||||
|
||||
inline void ggml_sycl_op_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
#if defined (GGML_SYCL_F16)
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
|
||||
#else
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
#endif
|
||||
GGML_ASSERT(dst->src[0]->type == dst->type);
|
||||
dpct::queue_ptr main_stream = ctx.stream();
|
||||
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
||||
switch (dst->type) {
|
||||
#if defined (GGML_SYCL_F16)
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
auto data_pts = cast_data<sycl::half>(dst);
|
||||
sgn_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
auto data_pts = cast_data<float>(dst);
|
||||
sgn_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
GGML_ABORT("GGML tensor type not supported!\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
inline void ggml_sycl_op_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
#if defined (GGML_SYCL_F16)
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
|
||||
#else
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
#endif
|
||||
GGML_ASSERT(dst->src[0]->type == dst->type);
|
||||
dpct::queue_ptr main_stream = ctx.stream();
|
||||
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
||||
switch (dst->type) {
|
||||
#if defined (GGML_SYCL_F16)
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
auto data_pts = cast_data<sycl::half>(dst);
|
||||
abs_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
auto data_pts = cast_data<float>(dst);
|
||||
abs_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
GGML_ABORT("GGML tensor type not supported!\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
inline void ggml_sycl_op_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
#if defined (GGML_SYCL_F16)
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
|
||||
#else
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
#endif
|
||||
GGML_ASSERT(dst->src[0]->type == dst->type);
|
||||
dpct::queue_ptr main_stream = ctx.stream();
|
||||
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
||||
switch (dst->type) {
|
||||
#if defined (GGML_SYCL_F16)
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
auto data_pts = cast_data<sycl::half>(dst);
|
||||
elu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
auto data_pts = cast_data<float>(dst);
|
||||
elu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
GGML_ABORT("GGML tensor type not supported!\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
#if defined (GGML_SYCL_F16)
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
|
||||
|
|
@ -1388,3 +1540,20 @@ void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||||
}
|
||||
|
||||
void ggml_sycl_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
|
||||
ggml_sycl_op_sgn(ctx, dst);
|
||||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||||
}
|
||||
|
||||
void ggml_sycl_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
|
||||
ggml_sycl_op_abs(ctx, dst);
|
||||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||||
}
|
||||
|
||||
void ggml_sycl_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
|
||||
ggml_sycl_op_elu(ctx, dst);
|
||||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -66,5 +66,10 @@ void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
|||
|
||||
void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_sycl_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_sycl_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_sycl_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
#endif // GGML_SYCL_ELEMENTWISE_HPP
|
||||
|
||||
|
|
|
|||
|
|
@ -38,6 +38,7 @@
|
|||
|
||||
#include "ggml-sycl/backend.hpp"
|
||||
#include "ggml-sycl/common.hpp"
|
||||
#include "ggml-sycl/element_wise.hpp"
|
||||
#include "ggml-sycl/presets.hpp"
|
||||
#include "ggml-sycl/gemm.hpp"
|
||||
#include "ggml-sycl/sycl_hw.hpp"
|
||||
|
|
@ -337,7 +338,7 @@ ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
|||
assert(tensor->view_src->buffer->buft == buffer->buft);
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
if (tensor->type == GGML_TYPE_Q4_0) {
|
||||
if (tensor->type == GGML_TYPE_Q4_0 && !g_ggml_sycl_disable_optimize) {
|
||||
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
|
||||
tensor->extra = extra;
|
||||
ctx->tensor_extras.push_back(extra); //used to release it when destroy ctx.
|
||||
|
|
@ -2852,6 +2853,64 @@ static bool ggml_sycl_supports_dmmv(enum ggml_type type) {
|
|||
}
|
||||
}
|
||||
|
||||
static void reorder_qw(char *data_device, const int ncols, const int nrows,
|
||||
size_t size, size_t offset, dpct::queue_ptr stream) {
|
||||
auto tmp_buf = sycl::malloc_shared<char>(size, *stream);
|
||||
SYCL_CHECK(
|
||||
CHECK_TRY_ERROR((*stream).memcpy(tmp_buf, data_device, size)
|
||||
.wait()));
|
||||
GGML_ASSERT((size % sizeof(block_q4_0) == 0));
|
||||
GGML_ASSERT((offset % sizeof(block_q4_0) == 0));
|
||||
int offset_blks = offset / sizeof(block_q4_0);
|
||||
auto qs_ptr = (uint8_t*)data_device + offset_blks * QK4_0 / 2;;
|
||||
auto d_ptr = (sycl::half*)(qs_ptr + ncols * nrows / 2) + offset_blks;
|
||||
|
||||
stream->parallel_for(
|
||||
size / sizeof(block_q4_0),
|
||||
[=](auto i) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
const block_q4_0* x = (const block_q4_0*)tmp_buf;
|
||||
const int ib = i;
|
||||
|
||||
for (int j = 0; j < QK4_0/2; j ++)
|
||||
{
|
||||
*(qs_ptr + ib * QK4_0 / 2 + j) = x[ib].qs[j];
|
||||
}
|
||||
*(d_ptr + ib) = x[ib].d;
|
||||
});
|
||||
|
||||
sycl::free(tmp_buf, *stream);
|
||||
}
|
||||
|
||||
static void reorder_qw(const ggml_tensor * src0, dpct::queue_ptr stream) {
|
||||
char*data_device = (char*)src0->data;
|
||||
size_t ncols = src0->ne[0];
|
||||
size_t nrows = src0->ne[1];
|
||||
size_t size = ggml_nbytes(src0);
|
||||
|
||||
reorder_qw(data_device, ncols, nrows, size, 0, stream);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function could be called when the OP (mul_mat) function support reorder optimizition.
|
||||
*/
|
||||
static void opt_for_reorder(ggml_backend_sycl_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
if (!g_ggml_sycl_disable_optimize && //allow optimize, controlled by $GGML_SYCL_DISABLE_OPT
|
||||
ctx->opt_feature.reorder && //allow this device due to good perf, skip the devices with bad perf.
|
||||
dst->op == GGML_OP_MUL_MAT && //limit to some supported cases of Q4_0, to do for more cases.
|
||||
src0->type == GGML_TYPE_Q4_0 &&
|
||||
src1->ne[2]==1 && src1->ne[3]==1) {
|
||||
|
||||
ggml_tensor_extra_gpu* extra = (ggml_tensor_extra_gpu*)src0->extra;
|
||||
if (!extra) return; //only happen in CI/UT permute case.
|
||||
|
||||
if (extra->optimized_feature.reorder) return; //skip the tensor which is handled for reorder.
|
||||
|
||||
reorder_qw(src0, ctx->stream());
|
||||
extra->optimized_feature.reorder = true; //used to decode/dequan in next steps.
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
|
||||
const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
|
||||
|
|
@ -2914,6 +2973,7 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
|
|||
// KQ + KQV multi-batch
|
||||
ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
|
||||
} else if (use_dequantize_mul_mat_vec) {
|
||||
opt_for_reorder(&ctx, src0, src1, dst); //the OP function in this branch support reorder.
|
||||
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
|
||||
// save_tensor_txt("1/dst_1.txt", (float*) dst->data, src0->ne[1], sizeof(float), ctx.stream());
|
||||
} else if (use_mul_mat_vec_q) {
|
||||
|
|
@ -2921,6 +2981,7 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
|
|||
} else if (use_mul_mat_q) {
|
||||
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
|
||||
} else {
|
||||
opt_for_reorder(&ctx, src0, src1, dst); //the OP function in this branch support reorder.
|
||||
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
|
||||
}
|
||||
}
|
||||
|
|
@ -3295,6 +3356,15 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
|
|||
case GGML_UNARY_OP_EXP:
|
||||
ggml_sycl_exp(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_SGN:
|
||||
ggml_sycl_sgn(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_ABS:
|
||||
ggml_sycl_abs(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_ELU:
|
||||
ggml_sycl_elu(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
|
@ -3545,71 +3615,8 @@ catch (sycl::exception const &exc) {
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
static void reorder_qw(char *data_device, const int ncols, const int nrows,
|
||||
size_t size, size_t offset, dpct::queue_ptr stream) {
|
||||
auto tmp_buf = sycl::malloc_shared<char>(size, *stream);
|
||||
SYCL_CHECK(
|
||||
CHECK_TRY_ERROR((*stream).memcpy(tmp_buf, data_device, size)
|
||||
.wait()));
|
||||
GGML_ASSERT((size % sizeof(block_q4_0) == 0));
|
||||
GGML_ASSERT((offset % sizeof(block_q4_0) == 0));
|
||||
int offset_blks = offset / sizeof(block_q4_0);
|
||||
auto qs_ptr = (uint8_t*)data_device + offset_blks * QK4_0 / 2;;
|
||||
auto d_ptr = (sycl::half*)(qs_ptr + ncols * nrows / 2) + offset_blks;
|
||||
|
||||
stream->parallel_for(
|
||||
size / sizeof(block_q4_0),
|
||||
[=](auto i) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
const block_q4_0* x = (const block_q4_0*)tmp_buf;
|
||||
const int ib = i;
|
||||
|
||||
for (int j = 0; j < QK4_0/2; j ++)
|
||||
{
|
||||
*(qs_ptr + ib * QK4_0 / 2 + j) = x[ib].qs[j];
|
||||
}
|
||||
*(d_ptr + ib) = x[ib].d;
|
||||
});
|
||||
|
||||
sycl::free(tmp_buf, *stream);
|
||||
}
|
||||
|
||||
static void reorder_qw(ggml_tensor * src0, dpct::queue_ptr stream) {
|
||||
char*data_device = (char*)src0->data;
|
||||
size_t ncols = src0->ne[0];
|
||||
size_t nrows = src0->ne[1];
|
||||
size_t size = ggml_nbytes(src0);
|
||||
|
||||
reorder_qw(data_device, ncols, nrows, size, 0, stream);
|
||||
}
|
||||
|
||||
static void opt_for_reorder(ggml_tensor * dst, dpct::queue_ptr stream) {
|
||||
ggml_tensor *src0 = dst->src[0];
|
||||
ggml_tensor *src1 = dst->src[1];
|
||||
|
||||
if (dst->op == GGML_OP_MUL_MAT && src0->type == GGML_TYPE_Q4_0 &&
|
||||
src1->ne[2]==1 && src1->ne[3]==1) {
|
||||
reorder_qw(src0, stream);
|
||||
ggml_tensor_extra_gpu* extra = (ggml_tensor_extra_gpu*)src0->extra;
|
||||
GGML_ASSERT(extra);
|
||||
extra->optimized_feature.reorder = true; //used to decode/dequan in next steps.
|
||||
}
|
||||
}
|
||||
|
||||
static void optimize_graph_once(ggml_cgraph * cgraph, ggml_backend_sycl_context * ctx) {
|
||||
dpct::queue_ptr stream = ctx->stream();
|
||||
if (ctx->optimized_graph) {
|
||||
return;
|
||||
}
|
||||
ctx->optimized_graph = true;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
if (ctx->opt_feature.reorder) opt_for_reorder(cgraph->nodes[i], stream);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_backend_sycl_graph_compute_impl(ggml_backend_sycl_context * sycl_ctx, ggml_cgraph * cgraph) {
|
||||
ggml_sycl_set_main_device(sycl_ctx->device);
|
||||
if (!g_ggml_sycl_disable_optimize) optimize_graph_once(cgraph, sycl_ctx);
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
|
@ -3840,6 +3847,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_TANH:
|
||||
case GGML_UNARY_OP_EXP:
|
||||
case GGML_UNARY_OP_SGN:
|
||||
case GGML_UNARY_OP_ABS:
|
||||
case GGML_UNARY_OP_ELU:
|
||||
#if defined (GGML_SYCL_F16)
|
||||
return ggml_is_contiguous(op->src[0]) && (op->type == op->src[0]->type);
|
||||
#else
|
||||
|
|
@ -3863,6 +3873,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
if (a->ne[3] != b->ne[3]) {
|
||||
return false;
|
||||
}
|
||||
if (!ggml_is_contiguous(b)) {
|
||||
return false;
|
||||
}
|
||||
ggml_type a_type = a->type;
|
||||
if (a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ4_XS ||
|
||||
a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ3_S ||
|
||||
|
|
|
|||
|
|
@ -71,6 +71,22 @@ if (Vulkan_FOUND)
|
|||
add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
endif()
|
||||
|
||||
# Compile a test shader to determine whether GL_EXT_bfloat16 is supported.
|
||||
# If it's not, there will be an error to stderr.
|
||||
# If it's supported, set a define to indicate that we should compile those shaders
|
||||
execute_process(COMMAND ${Vulkan_GLSLC_EXECUTABLE} -o - -fshader-stage=compute --target-env=vulkan1.3 "${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_bfloat16_support.comp"
|
||||
OUTPUT_VARIABLE glslc_output
|
||||
ERROR_VARIABLE glslc_error)
|
||||
|
||||
if (${glslc_error} MATCHES ".*extension not supported: GL_EXT_bfloat16.*")
|
||||
message(STATUS "GL_EXT_bfloat16 not supported by glslc")
|
||||
set(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT OFF)
|
||||
else()
|
||||
message(STATUS "GL_EXT_bfloat16 supported by glslc")
|
||||
set(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT ON)
|
||||
add_compile_definitions(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
endif()
|
||||
|
||||
target_link_libraries(ggml-vulkan PRIVATE Vulkan::Vulkan)
|
||||
target_include_directories(ggml-vulkan PRIVATE ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
|
|
@ -142,6 +158,7 @@ if (Vulkan_FOUND)
|
|||
-DGGML_VULKAN_COOPMAT_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT_GLSLC_SUPPORT}
|
||||
-DGGML_VULKAN_COOPMAT2_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT}
|
||||
-DGGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT=${GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT}
|
||||
-DGGML_VULKAN_BFLOAT16_GLSLC_SUPPORT=${GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT}
|
||||
BUILD_COMMAND ${CMAKE_COMMAND} --build .
|
||||
INSTALL_COMMAND ${CMAKE_COMMAND} --install .
|
||||
INSTALL_DIR ${CMAKE_BINARY_DIR}
|
||||
|
|
|
|||
|
|
@ -51,6 +51,24 @@
|
|||
|
||||
#include "ggml-vulkan-shaders.hpp"
|
||||
|
||||
// remove this once it's more widely available in the SDK
|
||||
#if !defined(VK_KHR_shader_bfloat16)
|
||||
|
||||
#define VK_KHR_shader_bfloat16 1
|
||||
#define VK_KHR_SHADER_BFLOAT16_SPEC_VERSION 1
|
||||
#define VK_KHR_SHADER_BFLOAT16_EXTENSION_NAME "VK_KHR_shader_bfloat16"
|
||||
#define VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR ((VkStructureType)1000141000)
|
||||
#define VK_COMPONENT_TYPE_BFLOAT16_KHR ((VkComponentTypeKHR)1000141000)
|
||||
|
||||
typedef struct VkPhysicalDeviceShaderBfloat16FeaturesKHR {
|
||||
VkStructureType sType;
|
||||
void* pNext;
|
||||
VkBool32 shaderBFloat16Type;
|
||||
VkBool32 shaderBFloat16DotProduct;
|
||||
VkBool32 shaderBFloat16CooperativeMatrix;
|
||||
} VkPhysicalDeviceShaderBfloat16FeaturesKHR;
|
||||
#endif
|
||||
|
||||
#define ROUNDUP_POW2(M, N) (((M) + (N) - 1) & ~((N) - 1))
|
||||
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
|
||||
static bool is_pow2(uint32_t x) { return x > 1 && (x & (x-1)) == 0; }
|
||||
|
|
@ -266,8 +284,9 @@ struct vk_device_struct {
|
|||
bool subgroup_require_full_support;
|
||||
|
||||
bool coopmat_support;
|
||||
bool coopmat_acc_f32_support;
|
||||
bool coopmat_acc_f16_support;
|
||||
bool coopmat_acc_f32_support {};
|
||||
bool coopmat_acc_f16_support {};
|
||||
bool coopmat_bf16_support {};
|
||||
uint32_t coopmat_m;
|
||||
uint32_t coopmat_n;
|
||||
uint32_t coopmat_k;
|
||||
|
|
@ -293,6 +312,7 @@ struct vk_device_struct {
|
|||
|
||||
vk_matmul_pipeline pipeline_matmul_f32 {};
|
||||
vk_matmul_pipeline pipeline_matmul_f32_f16 {};
|
||||
vk_matmul_pipeline pipeline_matmul_bf16 {};
|
||||
vk_matmul_pipeline2 pipeline_matmul_f16;
|
||||
vk_matmul_pipeline2 pipeline_matmul_f16_f32;
|
||||
|
||||
|
|
@ -301,6 +321,7 @@ struct vk_device_struct {
|
|||
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_COUNT];
|
||||
|
||||
vk_matmul_pipeline pipeline_matmul_id_f32 {};
|
||||
vk_matmul_pipeline pipeline_matmul_id_bf16 {};
|
||||
vk_matmul_pipeline2 pipeline_matmul_id_f16;
|
||||
vk_matmul_pipeline2 pipeline_matmul_id_f16_f32;
|
||||
|
||||
|
|
@ -319,11 +340,17 @@ struct vk_device_struct {
|
|||
vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_acc_f32;
|
||||
vk_pipeline pipeline_add_f32, pipeline_add_f32_norepeat;
|
||||
vk_pipeline pipeline_add_f16_f32_f16, pipeline_add_f16_f32_f16_norepeat;
|
||||
vk_pipeline pipeline_sub_f32, pipeline_sub_f32_norepeat;
|
||||
vk_pipeline pipeline_mul_f32, pipeline_mul_f32_norepeat;
|
||||
vk_pipeline pipeline_div_f32, pipeline_div_f32_norepeat;
|
||||
|
||||
// [src0 0=fp32,1=fp16][src1 0=fp32,1=fp16][dst 0=fp32,1=fp16]
|
||||
vk_pipeline pipeline_add[2][2][2];
|
||||
vk_pipeline pipeline_add_norepeat[2][2][2];
|
||||
vk_pipeline pipeline_sub[2][2][2];
|
||||
vk_pipeline pipeline_sub_norepeat[2][2][2];
|
||||
vk_pipeline pipeline_mul[2][2][2];
|
||||
vk_pipeline pipeline_mul_norepeat[2][2][2];
|
||||
vk_pipeline pipeline_div[2][2][2];
|
||||
vk_pipeline pipeline_div_norepeat[2][2][2];
|
||||
|
||||
vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
|
||||
vk_pipeline pipeline_upscale_f32;
|
||||
vk_pipeline pipeline_scale_f32;
|
||||
|
|
@ -333,8 +360,8 @@ struct vk_device_struct {
|
|||
vk_pipeline pipeline_clamp_f32;
|
||||
vk_pipeline pipeline_pad_f32;
|
||||
vk_pipeline pipeline_repeat_f32, pipeline_repeat_back_f32;
|
||||
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16;
|
||||
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16;
|
||||
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16, pipeline_cpy_f16_f32, pipeline_cpy_f32_bf16;
|
||||
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16, pipeline_contig_cpy_f16_f32, pipeline_contig_cpy_f32_bf16;
|
||||
vk_pipeline pipeline_cpy_f32_quant[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_cpy_quant_f32[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_norm_f32;
|
||||
|
|
@ -342,14 +369,17 @@ struct vk_device_struct {
|
|||
vk_pipeline pipeline_rms_norm_f32;
|
||||
vk_pipeline pipeline_rms_norm_back_f32;
|
||||
vk_pipeline pipeline_l2_norm_f32;
|
||||
vk_pipeline pipeline_gelu_f32;
|
||||
vk_pipeline pipeline_gelu_quick_f32;
|
||||
vk_pipeline pipeline_silu_f32;
|
||||
vk_pipeline pipeline_silu_back_f32;
|
||||
vk_pipeline pipeline_relu_f32;
|
||||
|
||||
// [src/dst 0=fp32,1=fp16]
|
||||
vk_pipeline pipeline_gelu[2];
|
||||
vk_pipeline pipeline_gelu_quick[2];
|
||||
vk_pipeline pipeline_silu[2];
|
||||
vk_pipeline pipeline_relu[2];
|
||||
vk_pipeline pipeline_tanh[2];
|
||||
vk_pipeline pipeline_sigmoid[2];
|
||||
|
||||
vk_pipeline pipeline_leaky_relu_f32;
|
||||
vk_pipeline pipeline_tanh_f32;
|
||||
vk_pipeline pipeline_sigmoid_f32;
|
||||
vk_pipeline pipeline_silu_back_f32;
|
||||
vk_pipeline pipeline_diag_mask_inf_f32;
|
||||
vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16;
|
||||
vk_pipeline pipeline_soft_max_f32_wg512, pipeline_soft_max_f32_f16_wg512;
|
||||
|
|
@ -368,6 +398,8 @@ struct vk_device_struct {
|
|||
vk_pipeline pipeline_rwkv_wkv6_f32;
|
||||
vk_pipeline pipeline_rwkv_wkv7_f32;
|
||||
vk_pipeline pipeline_opt_step_adamw_f32;
|
||||
vk_pipeline pipeline_conv2d_dw_whcn_f32;
|
||||
vk_pipeline pipeline_conv2d_dw_cwhn_f32;
|
||||
|
||||
// [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned}
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D64[GGML_TYPE_COUNT][2][2][2];
|
||||
|
|
@ -680,6 +712,24 @@ struct vk_op_rwkv_wkv7_push_constants {
|
|||
uint32_t H;
|
||||
};
|
||||
|
||||
struct vk_op_conv2d_dw_push_constants {
|
||||
uint32_t ne;
|
||||
uint32_t batches;
|
||||
uint32_t channels;
|
||||
uint32_t dst_w;
|
||||
uint32_t dst_h;
|
||||
uint32_t src_w;
|
||||
uint32_t src_h;
|
||||
uint32_t knl_w;
|
||||
uint32_t knl_h;
|
||||
int32_t stride_x;
|
||||
int32_t stride_y;
|
||||
int32_t pad_x;
|
||||
int32_t pad_y;
|
||||
int32_t dilation_x;
|
||||
int32_t dilation_y;
|
||||
};
|
||||
|
||||
struct vk_op_upscale_push_constants {
|
||||
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
|
||||
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
|
||||
|
|
@ -1791,6 +1841,12 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
if (!device->pipeline_matmul_id_f32) {
|
||||
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
}
|
||||
if (!device->pipeline_matmul_bf16) {
|
||||
device->pipeline_matmul_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
}
|
||||
if (!device->pipeline_matmul_id_bf16) {
|
||||
device->pipeline_matmul_id_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
}
|
||||
|
||||
std::vector<std::future<void>> compiles;
|
||||
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint,
|
||||
|
|
@ -1900,6 +1956,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
|
||||
|
||||
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
|
||||
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (device->coopmat_bf16_support) {
|
||||
CREATE_MM(pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
|
||||
}
|
||||
#endif
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
||||
|
|
@ -1921,6 +1982,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
||||
|
||||
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
|
||||
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (device->coopmat_bf16_support) {
|
||||
CREATE_MM(pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
|
||||
}
|
||||
#endif
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
||||
|
|
@ -1974,6 +2040,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (device->coopmat_bf16_support) {
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, )
|
||||
}
|
||||
#endif
|
||||
|
||||
if (device->coopmat_acc_f16_support) {
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
|
|
@ -2022,6 +2093,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (device->coopmat_bf16_support) {
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (device->coopmat_acc_f16_support) {
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
|
|
@ -2104,6 +2180,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
|
|
@ -2139,6 +2217,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
|
||||
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
|
|
@ -2191,6 +2271,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16_f32.f32acc, matmul_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
|
|
@ -2226,6 +2308,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
|
||||
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
|
|
@ -2246,8 +2330,26 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
#undef CREATE_MM
|
||||
}
|
||||
// reusing CREATE_MM from the fp32 path
|
||||
if ((device->coopmat2 || device->coopmat_support)
|
||||
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
&& !device->coopmat_bf16_support
|
||||
#endif
|
||||
) {
|
||||
// use scalar tile sizes
|
||||
l_warptile = { 128, 128, 128, 16, subgroup_size_8 * 2, 64, 2, 4, 4, 1, subgroup_size_8 };
|
||||
m_warptile = { 128, 64, 64, 16, subgroup_size_8, 32, 2, 4, 2, 1, subgroup_size_8 };
|
||||
s_warptile = { subgroup_size_16, 32, 32, 16, 32, 32, 2, 2, 2, 1, subgroup_size_8 };
|
||||
|
||||
l_wg_denoms = {128, 128, 1 };
|
||||
m_wg_denoms = { 64, 64, 1 };
|
||||
s_wg_denoms = { 32, 32, 1 };
|
||||
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
|
||||
}
|
||||
#undef CREATE_MM
|
||||
|
||||
// mul mat vec
|
||||
|
||||
|
|
@ -2266,6 +2368,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32_"+std::to_string(i+1), mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32_"+std::to_string(i+1), mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f32_f32_"+std::to_string(i+1), mul_mat_vec_bf16_f32_f32_len, mul_mat_vec_bf16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
|
|
@ -2288,6 +2391,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32_"+std::to_string(i+1), mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32_"+std::to_string(i+1), mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f16_f32_"+std::to_string(i+1), mul_mat_vec_bf16_f16_f32_len, mul_mat_vec_bf16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
|
|
@ -2311,6 +2415,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_BF16], "mul_mat_vec_id_bf16_f32", mul_mat_vec_id_bf16_f32_len, mul_mat_vec_id_bf16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
|
|
@ -2356,6 +2461,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
// get_rows
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F32 ], "get_rows_f32", get_rows_f32_len, get_rows_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F16 ], "get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_BF16], "get_rows_bf16", get_rows_bf16_len, get_rows_bf16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_0], "get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_1], "get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_0], "get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
|
|
@ -2373,6 +2479,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f32_f32", get_rows_f32_f32_len, get_rows_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F16 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_BF16], "get_rows_bf16_f32", get_rows_bf16_f32_len, get_rows_bf16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_0], "get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_1], "get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_0], "get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
|
|
@ -2399,7 +2506,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true);
|
||||
}
|
||||
}
|
||||
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 9 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
|
||||
|
|
@ -2410,10 +2517,15 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f32, "cpy_f16_f32", cpy_f16_f32_len, cpy_f16_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_bf16,"cpy_f32_bf16",cpy_f32_bf16_len,cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f32, "contig_cpy_f16_f32", contig_cpy_f16_f32_len, contig_cpy_f16_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_bf16,"contig_cpy_f32_bf16",contig_cpy_f32_bf16_len,contig_cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
if (device->float_controls_rte_fp16) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_rte_len, cpy_f32_q4_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_rte_len, cpy_f32_q4_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
|
||||
|
|
@ -2437,20 +2549,32 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q8_0], "cpy_q8_0_f32", cpy_q8_0_f32_len, cpy_q8_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_IQ4_NL], "cpy_iq4_nl_f32", cpy_iq4_nl_f32_len, cpy_iq4_nl_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_add_f32_norepeat, "add_f32_norepeat", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16_norepeat, "add_f16_f32_f16_norepeat", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
||||
auto get_suffix = [](bool src0_f16, bool src1_f16, bool dst_f16) {
|
||||
std::string s;
|
||||
s += std::string(src0_f16 ? "_f16" : "_f32");
|
||||
s += std::string(src1_f16 ? "_f16" : "_f32");
|
||||
s += std::string(dst_f16 ? "_f16" : "_f32");
|
||||
return s;
|
||||
};
|
||||
|
||||
#define CREATE_BINARY(name, namemod, spec) \
|
||||
for (int s0 : {0,1}) for (int s1 : {0,1}) for (int d : {0,1}) \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_ ## name ## namemod[s0][s1][d], \
|
||||
#name + get_suffix(s0, s1, d) + #namemod, name ## _len[s0][s1][d], name ## _data[s0][s1][d], \
|
||||
"main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, spec, 1);
|
||||
|
||||
CREATE_BINARY(add, , {0})
|
||||
CREATE_BINARY(add, _norepeat, {1})
|
||||
CREATE_BINARY(sub, , {0})
|
||||
CREATE_BINARY(sub, _norepeat, {1})
|
||||
CREATE_BINARY(mul, , {0})
|
||||
CREATE_BINARY(mul, _norepeat, {1})
|
||||
CREATE_BINARY(div, , {0})
|
||||
CREATE_BINARY(div, _norepeat, {1})
|
||||
#undef CREATE_BINARY
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_sub_f32, "sub_f32", sub_f32_len, sub_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_sub_f32_norepeat, "sub_f32_norepeat", sub_f32_len, sub_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_mul_f32_norepeat, "mul_f32_norepeat", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_div_f32, "div_f32", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_div_f32_norepeat, "div_f32_norepeat", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_concat_f32, "concat_f32", concat_f32_len, concat_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
|
@ -2470,14 +2594,20 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
ggml_vk_create_pipeline(device, device->pipeline_repeat_f32, "repeat_f32", repeat_f32_len, repeat_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_repeat_back_f32, "repeat_back_f32", repeat_back_f32_len, repeat_back_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_gelu_quick_f32, "gelu_quick_f32", gelu_quick_f32_len, gelu_quick_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_silu_back_f32, "silu_back_f32", silu_back_f32_len, silu_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_relu_f32, "relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
#define CREATE_UNARY(name) \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32", name ## _f32_len, name ## _f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16", name ## _f16_len, name ## _f16_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
CREATE_UNARY(gelu)
|
||||
CREATE_UNARY(gelu_quick)
|
||||
CREATE_UNARY(silu)
|
||||
CREATE_UNARY(relu)
|
||||
CREATE_UNARY(tanh)
|
||||
CREATE_UNARY(sigmoid)
|
||||
#undef CREATE_UNARY
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_tanh_f32, "tanh_f32", tanh_f32_len, tanh_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_sigmoid_f32, "sigmoid_f32", sigmoid_f32_len, sigmoid_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_silu_back_f32, "silu_back_f32", silu_back_f32_len, silu_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {1, 512, 1}, {}, 1, true);
|
||||
|
||||
|
|
@ -2529,6 +2659,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f32, "conv2d_dw_cwhn_f32", conv2d_dw_cwhn_f32_len, conv2d_dw_cwhn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
for (auto &c : compiles) {
|
||||
c.wait();
|
||||
}
|
||||
|
|
@ -2578,6 +2711,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
|||
bool coopmat2_support = false;
|
||||
device->coopmat_support = false;
|
||||
device->integer_dot_product = false;
|
||||
bool bfloat16_support = false;
|
||||
|
||||
for (const auto& properties : ext_props) {
|
||||
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
|
||||
|
|
@ -2608,6 +2742,9 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
|||
!getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) {
|
||||
device->integer_dot_product = true;
|
||||
#endif
|
||||
} else if (strcmp("VK_KHR_shader_bfloat16", properties.extensionName) == 0 &&
|
||||
!getenv("GGML_VK_DISABLE_BFLOAT16")) {
|
||||
bfloat16_support = true;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -2794,6 +2931,17 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
|||
}
|
||||
#endif
|
||||
|
||||
#if defined(VK_KHR_shader_bfloat16)
|
||||
VkPhysicalDeviceShaderBfloat16FeaturesKHR bfloat16_features {};
|
||||
bfloat16_features.pNext = nullptr;
|
||||
bfloat16_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR;
|
||||
if (bfloat16_support) {
|
||||
last_struct->pNext = (VkBaseOutStructure *)&bfloat16_features;
|
||||
last_struct = (VkBaseOutStructure *)&bfloat16_features;
|
||||
device_extensions.push_back("VK_KHR_shader_bfloat16");
|
||||
}
|
||||
#endif
|
||||
|
||||
VkPhysicalDeviceMaintenance4Features maint4_features {};
|
||||
maint4_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES;
|
||||
if (maintenance4_support) {
|
||||
|
|
@ -2991,6 +3139,25 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
|||
device->coopmat_int_n = prop.NSize;
|
||||
device->coopmat_int_k = prop.KSize;
|
||||
}
|
||||
#if defined(VK_KHR_shader_bfloat16) && defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (prop.AType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
|
||||
prop.BType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
|
||||
prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
|
||||
prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
|
||||
(vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup
|
||||
) {
|
||||
// coopmat sizes not set yet
|
||||
if (device->coopmat_m == 0) {
|
||||
device->coopmat_bf16_support = true;
|
||||
device->coopmat_m = prop.MSize;
|
||||
device->coopmat_n = prop.NSize;
|
||||
device->coopmat_k = prop.KSize;
|
||||
} else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
|
||||
// Only enable if shape is identical
|
||||
device->coopmat_bf16_support = true;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if (device->coopmat_m == 0 || !device->coopmat_acc_f32_support) {
|
||||
|
|
@ -2998,11 +3165,19 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
|||
GGML_LOG_DEBUG("ggml_vulkan: WARNING: No suitable matrix core mode found. Disabling matrix cores.\n");
|
||||
device->coopmat_support = false;
|
||||
}
|
||||
if (getenv("GGML_VK_DISABLE_BFLOAT16")) {
|
||||
device->coopmat_bf16_support = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (device->coopmat_support) {
|
||||
device_extensions.push_back("VK_KHR_cooperative_matrix");
|
||||
}
|
||||
#if defined(VK_KHR_shader_bfloat16)
|
||||
if (device->coopmat_bf16_support) {
|
||||
device_extensions.push_back("VK_KHR_shader_bfloat16");
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
device->name = GGML_VK_NAME + std::to_string(idx);
|
||||
|
||||
|
|
@ -3459,6 +3634,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte
|
|||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
|
||||
return ctx->device->pipeline_matmul_f32_f16;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
|
||||
return ctx->device->pipeline_matmul_bf16;
|
||||
}
|
||||
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
|
||||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_matmul_f16_f32.f16acc;
|
||||
|
|
@ -3530,6 +3708,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context *
|
|||
switch (a_type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
|
|
@ -3562,6 +3741,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co
|
|||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_matmul_id_f32;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
|
||||
return ctx->device->pipeline_matmul_id_bf16;
|
||||
}
|
||||
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
|
||||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_matmul_id_f16_f32.f16acc;
|
||||
|
|
@ -3615,6 +3797,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context
|
|||
switch (a_type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
|
|
@ -4350,6 +4533,20 @@ static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const
|
|||
return ctx->device->pipeline_cpy_f16_f16;
|
||||
}
|
||||
}
|
||||
if (src->type == GGML_TYPE_F16 && to == GGML_TYPE_F32) {
|
||||
if (contig) {
|
||||
return ctx->device->pipeline_contig_cpy_f16_f32;
|
||||
} else {
|
||||
return ctx->device->pipeline_cpy_f16_f32;
|
||||
}
|
||||
}
|
||||
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_BF16) {
|
||||
if (contig) {
|
||||
return ctx->device->pipeline_contig_cpy_f32_bf16;
|
||||
} else {
|
||||
return ctx->device->pipeline_cpy_f32_bf16;
|
||||
}
|
||||
}
|
||||
if (src->type == GGML_TYPE_F32) {
|
||||
switch (to) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
|
|
@ -4477,8 +4674,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
|
||||
!ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
|
||||
(src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
|
||||
!ggml_vk_dim01_contiguous(src1);
|
||||
|
||||
// If src0 is BF16, try to use a BF16 x BF16 multiply
|
||||
ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
|
||||
|
||||
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
|
||||
|
||||
bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && (ne11 * ne10) % 4 == 0;
|
||||
|
|
@ -4488,25 +4689,25 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
|
||||
if (mmp == nullptr) {
|
||||
// Fall back to f16 dequant mul mat
|
||||
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
|
||||
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
|
||||
quantize_y = false;
|
||||
}
|
||||
|
||||
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
|
||||
const bool qy_needs_dequant = !quantize_y && ((src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig);
|
||||
const bool qy_needs_dequant = !quantize_y && ((src1->type != f16_type && !y_f32_kernel) || y_non_contig);
|
||||
|
||||
if (qx_needs_dequant) {
|
||||
// Fall back to dequant + f16 mulmat
|
||||
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
|
||||
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
|
||||
}
|
||||
|
||||
// Not implemented
|
||||
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
|
||||
|
||||
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
|
||||
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
|
||||
const bool aligned = !quantize_y && ne10 == kpad && ne01 > 8 && ne11 > 8;
|
||||
|
||||
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
|
||||
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
|
||||
|
||||
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
|
||||
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) : ne11;
|
||||
|
|
@ -4527,12 +4728,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
vk_pipeline to_q8_1 = nullptr;
|
||||
|
||||
if (x_non_contig) {
|
||||
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
|
||||
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
|
||||
} else {
|
||||
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
|
||||
}
|
||||
if (y_non_contig) {
|
||||
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
|
||||
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
|
||||
} else {
|
||||
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
|
||||
}
|
||||
|
|
@ -4949,6 +5150,8 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||
const uint64_t nb01 = src0->nb[1];
|
||||
const uint64_t nb02 = src0->nb[2];
|
||||
|
||||
const uint64_t nb12 = src1->nb[2];
|
||||
|
||||
// const uint64_t ne10 = src1->ne[0];
|
||||
const uint64_t ne11 = src1->ne[1];
|
||||
const uint64_t ne12 = src1->ne[2];
|
||||
|
|
@ -4974,6 +5177,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||
|
||||
const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t);
|
||||
const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t);
|
||||
const uint32_t channel_stride_y = nb12 / sizeof(float);
|
||||
|
||||
const uint64_t qx_sz = ggml_nbytes(src0);
|
||||
const uint64_t qy_sz = ggml_nbytes(src1);
|
||||
|
|
@ -5004,7 +5208,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||
const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
|
||||
|
||||
// compute
|
||||
const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
||||
const std::array<uint32_t, 9> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, channel_stride_y, (uint32_t)(ne12 / ne02), (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32,
|
||||
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||
|
|
@ -5029,7 +5233,7 @@ static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, c
|
|||
// mul_mat_vec supports batching ne12*ne13 when ne11==1, or treating ne11 as the batch size (up to four)
|
||||
// when ne12 and ne13 are one.
|
||||
} else if ((dst->ne[1] == 1 || (dst->ne[1] <= mul_mat_vec_max_cols && src1->ne[2] * src1->ne[3] == 1)) &&
|
||||
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
|
||||
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || ggml_is_quantized(src0->type))) {
|
||||
ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun);
|
||||
} else {
|
||||
ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun);
|
||||
|
|
@ -5097,27 +5301,31 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
|
||||
!ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
|
||||
(src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
|
||||
!ggml_vk_dim01_contiguous(src1);
|
||||
|
||||
// If src0 is BF16, try to use a BF16 x BF16 multiply
|
||||
ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
|
||||
|
||||
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
|
||||
|
||||
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
|
||||
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
|
||||
|
||||
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
|
||||
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
|
||||
const bool qy_needs_dequant = (src1->type != f16_type && !y_f32_kernel) || y_non_contig;
|
||||
|
||||
if (qx_needs_dequant) {
|
||||
// Fall back to dequant + f16 mulmat
|
||||
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
|
||||
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
|
||||
}
|
||||
|
||||
// Not implemented
|
||||
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
|
||||
|
||||
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? GGML_TYPE_F16 : src0->type));
|
||||
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? f16_type : src0->type));
|
||||
const bool aligned = ne10 == kpad && ne01 > 8 && nei1 > 8;
|
||||
|
||||
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type);
|
||||
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? f16_type : src0->type);
|
||||
|
||||
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
|
||||
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) :ne11;
|
||||
|
|
@ -5136,12 +5344,12 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
vk_pipeline to_fp16_vk_1 = nullptr;
|
||||
|
||||
if (x_non_contig) {
|
||||
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
|
||||
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
|
||||
} else {
|
||||
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
|
||||
}
|
||||
if (y_non_contig) {
|
||||
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
|
||||
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
|
||||
} else {
|
||||
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
|
||||
}
|
||||
|
|
@ -5722,26 +5930,37 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||
}
|
||||
return nullptr;
|
||||
case GGML_OP_ADD:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f32_norepeat : ctx->device->pipeline_add_f32;
|
||||
}
|
||||
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
|
||||
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f16_f32_f16_norepeat : ctx->device->pipeline_add_f16_f32_f16;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_SUB:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_sub_f32_norepeat : ctx->device->pipeline_sub_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_MUL:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_f32_norepeat : ctx->device->pipeline_mul_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_DIV:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_f32_norepeat : ctx->device->pipeline_div_f32;
|
||||
if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
|
||||
(src1->type != GGML_TYPE_F32 && src1->type != GGML_TYPE_F16) ||
|
||||
(dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16)) {
|
||||
return nullptr;
|
||||
}
|
||||
switch (op) {
|
||||
case GGML_OP_ADD:
|
||||
{
|
||||
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_norepeat : ctx->device->pipeline_add;
|
||||
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
|
||||
}
|
||||
case GGML_OP_SUB:
|
||||
{
|
||||
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_sub_norepeat : ctx->device->pipeline_sub;
|
||||
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
|
||||
}
|
||||
case GGML_OP_MUL:
|
||||
{
|
||||
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_norepeat : ctx->device->pipeline_mul;
|
||||
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
|
||||
}
|
||||
case GGML_OP_DIV:
|
||||
{
|
||||
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_norepeat : ctx->device->pipeline_div;
|
||||
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_CONCAT:
|
||||
|
|
@ -5835,37 +6054,25 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||
}
|
||||
return nullptr;
|
||||
case GGML_OP_UNARY:
|
||||
if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
|
||||
(dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16) ||
|
||||
(src0->type != dst->type)) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
switch (ggml_get_unary_op(dst)) {
|
||||
case GGML_UNARY_OP_SILU:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_silu_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_silu[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_GELU:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_gelu_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_gelu[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_gelu_quick_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_gelu_quick[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_RELU:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_relu_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_relu[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_TANH:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_tanh_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_tanh[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_sigmoid_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_sigmoid[dst->type == GGML_TYPE_F16];
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
|
@ -5988,6 +6195,15 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||
return ctx->device->pipeline_leaky_relu_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
if (ggml_is_contiguous(src1)) {
|
||||
return ctx->device->pipeline_conv2d_dw_whcn_f32;
|
||||
} else if (ggml_is_contiguous_channels(src1)) {
|
||||
return ctx->device->pipeline_conv2d_dw_cwhn_f32;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
|
|
@ -6014,6 +6230,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
|
|||
case GGML_OP_REPEAT_BACK:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
|
|
@ -6310,6 +6527,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_UNARY:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
{
|
||||
const uint32_t ne = ggml_nelements(dst);
|
||||
if (ne > 262144) {
|
||||
|
|
@ -7096,6 +7314,30 @@ static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, c
|
|||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
||||
vk_op_conv2d_dw_push_constants p{};
|
||||
p.ne = ggml_nelements(dst);
|
||||
p.channels = dst->ne[2];
|
||||
p.batches = dst->ne[3];
|
||||
p.dst_w = dst->ne[0];
|
||||
p.dst_h = dst->ne[1];
|
||||
p.src_w = src1->ne[0];
|
||||
p.src_h = src1->ne[1];
|
||||
p.knl_w = src0->ne[0];
|
||||
p.knl_h = src0->ne[1];
|
||||
p.stride_x = dst->op_params[0];
|
||||
p.stride_y = dst->op_params[1];
|
||||
p.pad_x = dst->op_params[2];
|
||||
p.pad_y = dst->op_params[3];
|
||||
p.dilation_x = dst->op_params[4];
|
||||
p.dilation_y = dst->op_params[5];
|
||||
|
||||
GGML_ASSERT(src0->ne[3] == p.channels);
|
||||
GGML_ASSERT(src1->ne[3] == p.batches);
|
||||
|
||||
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_2D_DW, std::move(p), dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
const float * op_params = (const float *)dst->op_params;
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun);
|
||||
|
|
@ -8116,6 +8358,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
case GGML_OP_RWKV_WKV7:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
|
|
@ -8179,6 +8422,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
{
|
||||
// These operations all go through ggml_vk_op_f32, so short-circuit and
|
||||
|
|
@ -8352,6 +8596,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||
case GGML_OP_POOL_2D:
|
||||
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
|
||||
|
||||
break;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
ggml_vk_conv_2d_dw(ctx, compute_ctx, src0, src1, node, dryrun);
|
||||
|
||||
break;
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
ggml_vk_leaky_relu(ctx, compute_ctx, src0, node, dryrun);
|
||||
|
|
@ -8473,6 +8721,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
|
|||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
case GGML_OP_RWKV_WKV7:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
|
|
@ -9209,7 +9458,10 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_TANH:
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
|
||||
return ggml_is_contiguous(op->src[0]) &&
|
||||
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
|
||||
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) &&
|
||||
(op->src[0]->type == op->type);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
|
@ -9227,6 +9479,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
switch (src0_type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
|
|
@ -9262,10 +9515,15 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
if (a->ne[3] != b->ne[3]) {
|
||||
return false;
|
||||
}
|
||||
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) ||
|
||||
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_BF16) ||
|
||||
!(ggml_vk_dim01_contiguous(op->src[1]) || op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16)) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->type == GGML_TYPE_BF16 && op->src[1]->type == GGML_TYPE_F16) {
|
||||
// We currently don't have a bf16 x f16 shader, or an fp16->bf16 copy shader.
|
||||
// So don't support this combination for now.
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
} break;
|
||||
|
|
@ -9338,6 +9596,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
|
|
@ -9368,6 +9627,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
switch (src1_type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
|
|
@ -9381,6 +9641,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
}
|
||||
if (src1_type == GGML_TYPE_F32) {
|
||||
switch (src0_type) {
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
|
|
@ -9419,6 +9680,9 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
|
||||
(op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16) &&
|
||||
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
|
||||
case GGML_OP_SILU_BACK:
|
||||
case GGML_OP_RMS_NORM_BACK:
|
||||
case GGML_OP_SQR:
|
||||
|
|
@ -9442,6 +9706,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
case GGML_OP_COUNT_EQUAL:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
case GGML_OP_RWKV_WKV7:
|
||||
|
|
|
|||
|
|
@ -12,6 +12,9 @@ endif()
|
|||
if (GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
endif()
|
||||
if (GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
add_compile_definitions(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
endif()
|
||||
set(TARGET vulkan-shaders-gen)
|
||||
add_executable(${TARGET} vulkan-shaders-gen.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
|
|
|
|||
|
|
@ -18,7 +18,11 @@ void main() {
|
|||
// fast path for when all four iterations are in-bounds
|
||||
if (idx + (num_iter-1)*num_threads < p.ne) {
|
||||
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
|
||||
#if defined(DATA_D_BF16)
|
||||
float f = float(data_a[get_aoffset() + idx]);
|
||||
data_d[get_doffset() + idx] = D_TYPE(fp32_to_bf16(f));
|
||||
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
|
||||
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
|
||||
#else
|
||||
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];
|
||||
|
|
@ -31,7 +35,10 @@ void main() {
|
|||
continue;
|
||||
}
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
#if defined(DATA_D_BF16)
|
||||
float f = float(data_a[get_aoffset() + idx]);
|
||||
data_d[get_doffset() + idx] = D_TYPE(fp32_to_bf16(f));
|
||||
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
|
||||
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
|
||||
#else
|
||||
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];
|
||||
|
|
|
|||
|
|
@ -0,0 +1,105 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
|
||||
layout (push_constant) uniform parameter
|
||||
{
|
||||
uint ne;
|
||||
uint batches;
|
||||
uint channels;
|
||||
uint dst_w;
|
||||
uint dst_h;
|
||||
uint src_w;
|
||||
uint src_h;
|
||||
uint knl_w;
|
||||
uint knl_h;
|
||||
int stride_x;
|
||||
int stride_y;
|
||||
int pad_x;
|
||||
int pad_y;
|
||||
int dilation_x;
|
||||
int dilation_y;
|
||||
} p;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE knl_data[];};
|
||||
layout (binding = 1) readonly buffer B {B_TYPE src_data[];};
|
||||
layout (binding = 2) writeonly buffer D {D_TYPE dst_data[];};
|
||||
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
FLOAT_TYPE conv_2d_dw_whcn(uint idx) {
|
||||
uint i0 = idx / p.dst_w;
|
||||
uint dst_x = idx - i0 * p.dst_w;
|
||||
uint i1 = i0 / p.dst_h;
|
||||
uint dst_y = i0 - i1 * p.dst_h;
|
||||
uint n = i1 / p.channels;
|
||||
uint c = i1 - n * p.channels;
|
||||
|
||||
uint src_i = n * p.channels * p.src_h * p.src_w + c * p.src_h * p.src_w;
|
||||
uint knl_i = c * p.knl_h * p.knl_w;
|
||||
|
||||
FLOAT_TYPE sum = 0.0;
|
||||
for (uint knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||
uint src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
|
||||
if (src_y >= p.src_h) { // src_y < 0 will wrap to a large unsigned int
|
||||
continue;
|
||||
}
|
||||
for (uint knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||
uint src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
|
||||
if (src_x >= p.src_w) { // src_x < 0 will wrap to a large unsigned int
|
||||
continue;
|
||||
}
|
||||
FLOAT_TYPE v = FLOAT_TYPE(src_data[src_i + src_y * p.src_w + src_x]);
|
||||
FLOAT_TYPE k = FLOAT_TYPE(knl_data[knl_i + knl_y * p.knl_w + knl_x]);
|
||||
sum = fma(v, k, sum);
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
FLOAT_TYPE conv_2d_dw_cwhn(uint idx) {
|
||||
uint i0 = idx / p.channels;
|
||||
uint c = idx - i0 * p.channels;
|
||||
uint i1 = i0 / p.dst_w;
|
||||
uint dst_x = i0 - i1 * p.dst_w;
|
||||
uint n = i1 / p.dst_h;
|
||||
uint dst_y = i1 - n * p.dst_h;
|
||||
|
||||
uint src_i = n * p.channels * p.src_h * p.src_w;
|
||||
uint src_row = p.src_w * p.channels;
|
||||
uint knl_row = p.knl_w * p.channels;
|
||||
|
||||
FLOAT_TYPE sum = 0.0;
|
||||
for (uint knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||
uint src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
|
||||
if (src_y >= p.src_h) { // src_y < 0 will wrap to a large unsigned int
|
||||
continue;
|
||||
}
|
||||
for (uint knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||
uint src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
|
||||
if (src_x >= p.src_w) { // src_x < 0 will wrap to a large unsigned int
|
||||
continue;
|
||||
}
|
||||
FLOAT_TYPE v = FLOAT_TYPE(src_data[src_i + src_y * src_row + src_x * p.channels + c]);
|
||||
FLOAT_TYPE k = FLOAT_TYPE(knl_data[ knl_y * knl_row + knl_x * p.channels + c]);
|
||||
sum = fma(v, k, sum);
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
void main() {
|
||||
uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
|
||||
if (idx >= p.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
FLOAT_TYPE result =
|
||||
#ifdef WHCN
|
||||
conv_2d_dw_whcn(idx);
|
||||
#else
|
||||
conv_2d_dw_cwhn(idx);
|
||||
#endif
|
||||
dst_data[idx] = D_TYPE(result);
|
||||
}
|
||||
|
||||
|
|
@ -12,7 +12,10 @@ void main() {
|
|||
return;
|
||||
}
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
#if defined(DATA_D_BF16)
|
||||
float f = float(data_a[get_aoffset() + src0_idx(idx)]);
|
||||
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(fp32_to_bf16(f));
|
||||
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
|
||||
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
|
||||
#else
|
||||
data_d[get_doffset() + dst_idx(idx)] = data_a[get_aoffset() + src0_idx(idx)];
|
||||
|
|
|
|||
|
|
@ -23,6 +23,12 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
|||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_BF16)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
return vec2(bf16_to_fp32(data_a[a_offset + ib]), bf16_to_fp32(data_a[a_offset + ib + 1]));
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q4_0)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
|
||||
|
|
@ -428,7 +434,7 @@ vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
|
|||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_F32) || defined(DATA_A_F16)
|
||||
#if defined(DATA_A_F32) || defined(DATA_A_F16) || defined(DATA_A_BF16)
|
||||
vec2 get_dm(uint ib, uint a_offset) {
|
||||
return vec2(0, 0);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -482,7 +482,7 @@ float16_t dequantFuncIQ2_XXS(const in decodeBufIQ2_XXS bl, const in uint blockCo
|
|||
const uint ib8 = (idx & 0x18) >> 3; // 0..3
|
||||
const uint iqs = 8 * ib32 + ib8;
|
||||
|
||||
const uint8_t qs = bl.block.qs[iqs];
|
||||
const uint qs = bl.block.qs[iqs];
|
||||
const uint signscale = pack32(u16vec2(bl16.block.qs[4*ib32+2], bl16.block.qs[4*ib32+3]));
|
||||
|
||||
const float dscale = float(bl.block.d) * 0.25 * (0.5 + float(signscale >> 28));
|
||||
|
|
|
|||
|
|
@ -20,9 +20,14 @@ void main() {
|
|||
const uint a_offset = get_aoffset() + i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
|
||||
const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[d_offset + i00] = D_TYPE(data_a[a_offset + i00]);
|
||||
#if defined(DATA_A_BF16)
|
||||
FLOAT_TYPE v = FLOAT_TYPE(bf16_to_fp32(data_a[a_offset + i00]));
|
||||
#else
|
||||
data_d[d_offset + i00] = data_a[a_offset + i00];
|
||||
FLOAT_TYPE v = FLOAT_TYPE(data_a[a_offset + i00]);
|
||||
#endif
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[d_offset + i00] = D_TYPE(v);
|
||||
#else
|
||||
data_d[d_offset + i00] = D_TYPE(v);
|
||||
#endif
|
||||
}
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
|
||||
#if !defined(DATA_A_F32) && !defined(DATA_A_F16) && !defined(DATA_A_BF16)
|
||||
#define K_PER_ITER 8
|
||||
#else
|
||||
#define K_PER_ITER 2
|
||||
|
|
|
|||
|
|
@ -21,7 +21,9 @@ layout (push_constant) uniform parameter
|
|||
uint nrows_x;
|
||||
uint row_stride_x;
|
||||
uint channel_stride_x;
|
||||
uint channel_stride_y;
|
||||
uint channel_x_divisor;
|
||||
uint ne12;
|
||||
uint b_offset;
|
||||
uint d_offset;
|
||||
} p;
|
||||
|
|
@ -33,6 +35,7 @@ void main() {
|
|||
const uint row_x = gl_GlobalInvocationID.y;
|
||||
const uint channel = gl_GlobalInvocationID.z;
|
||||
const uint channel_x = channel / p.channel_x_divisor;
|
||||
const uint channel_y = channel % p.ne12;
|
||||
|
||||
const uint nrows_y = p.ncols_x;
|
||||
const uint nrows_dst = p.nrows_x;
|
||||
|
|
@ -56,7 +59,7 @@ void main() {
|
|||
const uint row_y = col_x;
|
||||
|
||||
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
|
||||
const uint iy = channel*nrows_y + row_y;
|
||||
const uint iy = channel_y*p.channel_stride_y + row_y;
|
||||
|
||||
const vec4 av4 = vec4(data_a_v4[ix / 4]);
|
||||
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
|
||||
|
|
@ -72,7 +75,7 @@ void main() {
|
|||
const uint row_y = col_x;
|
||||
|
||||
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
|
||||
const uint iy = channel*nrows_y + row_y;
|
||||
const uint iy = channel_y*p.channel_stride_y + row_y;
|
||||
|
||||
const vec4 av4 = vec4(data_a_v4[ix / 4]);
|
||||
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
|
||||
|
|
@ -89,7 +92,7 @@ void main() {
|
|||
const uint row_y = col_x;
|
||||
|
||||
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
|
||||
const uint iy = channel*nrows_y + row_y;
|
||||
const uint iy = channel_y*p.channel_stride_y + row_y;
|
||||
|
||||
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
|
||||
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue