new function `llama_tensor_update_stats`
This commit is contained in:
parent
0c976fafd7
commit
aaf010edeb
|
|
@ -175,7 +175,14 @@ static void llama_tensor_dequantize_impl(
|
|||
workers.clear();
|
||||
}
|
||||
|
||||
static ggml_type llama_tensor_get_type_impl(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype, bool update_stats) {
|
||||
// internal logic for selecting the target tensor type for a given quantization
|
||||
// and model arch
|
||||
static ggml_type llama_tensor_get_type_impl(
|
||||
quantize_state_impl & qs,
|
||||
ggml_type new_type,
|
||||
const ggml_tensor * tensor,
|
||||
const llama_ftype ftype
|
||||
) {
|
||||
const std::string name = ggml_get_name(tensor);
|
||||
|
||||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||||
|
|
@ -257,9 +264,6 @@ static ggml_type llama_tensor_get_type_impl(quantize_state_impl & qs, ggml_type
|
|||
if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
||||
else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
|
||||
if (update_stats) {
|
||||
++qs.i_attention_wv;
|
||||
}
|
||||
}
|
||||
else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
|
|
@ -268,9 +272,6 @@ static ggml_type llama_tensor_get_type_impl(quantize_state_impl & qs, ggml_type
|
|||
if (qs.i_ffn_down < qs.n_ffn_down/8) {
|
||||
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
|
||||
}
|
||||
if (update_stats) {
|
||||
++qs.i_ffn_down;
|
||||
}
|
||||
}
|
||||
else if (name.find("attn_output.weight") != std::string::npos) {
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
|
|
@ -317,9 +318,6 @@ static ggml_type llama_tensor_get_type_impl(quantize_state_impl & qs, ggml_type
|
|||
// TODO: explore better strategies
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
if (update_stats) {
|
||||
++qs.i_attention_wv;
|
||||
}
|
||||
} else if (name.find("attn_k.weight") != std::string::npos) {
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||||
|
|
@ -383,9 +381,6 @@ static ggml_type llama_tensor_get_type_impl(quantize_state_impl & qs, ggml_type
|
|||
// same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
|
||||
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
|
||||
}
|
||||
if (update_stats) {
|
||||
++qs.i_ffn_down;
|
||||
}
|
||||
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||||
if (arch != LLM_ARCH_FALCON) {
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
|
|
@ -419,9 +414,6 @@ static ggml_type llama_tensor_get_type_impl(quantize_state_impl & qs, ggml_type
|
|||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
||||
new_type = GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
if (update_stats) {
|
||||
++qs.i_ffn_gate;
|
||||
}
|
||||
}
|
||||
else if (name.find("ffn_up") != std::string::npos) {
|
||||
auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
|
||||
|
|
@ -429,23 +421,17 @@ static ggml_type llama_tensor_get_type_impl(quantize_state_impl & qs, ggml_type
|
|||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
||||
new_type = GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
if (update_stats) {
|
||||
++qs.i_ffn_up;
|
||||
}
|
||||
}
|
||||
|
||||
return new_type;
|
||||
}
|
||||
|
||||
// determine the ggml_type that this tensor should be quantized to.
|
||||
//
|
||||
// `qs` statistics will only be updated if the `update_stats` parameter is true.
|
||||
// determine the ggml_type that this tensor should be quantized to
|
||||
static ggml_type llama_tensor_get_type(
|
||||
quantize_state_impl & qs,
|
||||
const llama_model_quantize_params * params,
|
||||
const ggml_tensor * tensor,
|
||||
ggml_type default_type,
|
||||
bool update_stats
|
||||
const ggml_type default_type
|
||||
) {
|
||||
ggml_type new_type = default_type;
|
||||
// get more optimal quantization type based on the tensor shape, layer, etc.
|
||||
|
|
@ -470,7 +456,7 @@ static ggml_type llama_tensor_get_type(
|
|||
|
||||
// if not manual - use the standard logic for choosing the quantization type based on the selected mixture
|
||||
if (!manual) {
|
||||
new_type = llama_tensor_get_type_impl(qs, new_type, tensor, params->ftype, update_stats);
|
||||
new_type = llama_tensor_get_type_impl(qs, new_type, tensor, params->ftype);
|
||||
}
|
||||
|
||||
// incompatible tensor shapes are handled here - fallback to a compatible type
|
||||
|
|
@ -484,10 +470,6 @@ static ggml_type llama_tensor_get_type(
|
|||
if (nx % qk_k != 0) {
|
||||
LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type));
|
||||
convert_incompatible_tensor = true;
|
||||
} else {
|
||||
if (update_stats) {
|
||||
++qs.n_k_quantized;
|
||||
}
|
||||
}
|
||||
|
||||
if (convert_incompatible_tensor) {
|
||||
|
|
@ -512,10 +494,6 @@ static ggml_type llama_tensor_get_type(
|
|||
if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
|
||||
new_type = GGML_TYPE_F16;
|
||||
}
|
||||
if (update_stats) {
|
||||
LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
|
||||
++qs.n_fallback;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -528,6 +506,20 @@ static ggml_type llama_tensor_get_type(
|
|||
return new_type;
|
||||
}
|
||||
|
||||
// update internal quantization state statistics based on the tensor name
|
||||
static void llama_tensor_update_stats(quantize_state_impl & qs, const std::string & name) {
|
||||
if (name.find("attn_v.weight") != std::string::npos ||
|
||||
name.find("attn_kv_b.weight") != std::string::npos) {
|
||||
++qs.i_attention_wv;
|
||||
} else if (name.find("ffn_down") != std::string::npos) {
|
||||
++qs.i_ffn_down;
|
||||
} else if (name.find("ffn_gate") != std::string::npos) {
|
||||
++qs.i_ffn_gate;
|
||||
} else if (name.find("ffn_up") != std::string::npos) {
|
||||
++qs.i_ffn_up;
|
||||
}
|
||||
}
|
||||
|
||||
static size_t llama_tensor_quantize_impl(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
||||
if (nthread < 2) {
|
||||
// single-thread
|
||||
|
|
@ -869,7 +861,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|||
}
|
||||
gguf_add_tensor(ctx_outs[i_split].get(), tensor);
|
||||
|
||||
ggml_type target_type = llama_tensor_get_type(qs, params, tensor, default_type, false);
|
||||
ggml_type target_type = llama_tensor_get_type(qs, params, tensor, default_type);
|
||||
|
||||
if (!params->imatrix &&
|
||||
tensor_allows_quantization(params, model.arch, tensor) &&
|
||||
|
|
@ -975,12 +967,14 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|||
|
||||
// if so, what will be the target type?
|
||||
if (do_quantize) {
|
||||
new_type = llama_tensor_get_type(qs, params, tensor, default_type, true);
|
||||
new_type = llama_tensor_get_type(qs, params, tensor, default_type);
|
||||
// If we've decided to quantize to the same type the tensor is already
|
||||
// in then there's nothing to do.
|
||||
do_quantize = tensor->type != new_type;
|
||||
}
|
||||
|
||||
llama_tensor_update_stats(qs, name);
|
||||
|
||||
void * new_data;
|
||||
size_t new_size;
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue