feat: run on win (#24)

* move qnn_instance function implementation into cpp

* wip

* wip

* move dl related function into separated file

* use cast op for gpu

* Revert "use cast op for gpu"

This reverts commit 05df7362a15c022d05940d682e84cf480a082c6a.

* Reapply "use cast op for gpu"

This reverts commit 2520e5922a216faceb6d7efcde23dafe6947a4b3.

* fix compiling error in win

* fix align_alloc in win

* fix compiling error

* add get sys free/total mem for win

* wip

* suppress warning in win

* add missing chrono header

* set the correct qnn lib name for windows

* add flag to control cpu backend

* wip

* wip

* Revert "Reapply "use cast op for gpu""

This reverts commit f56519c374a7d46faac706cf214de48ff5fc5139.

* fix compiling error for linux build

* fix cdsprpc dynamic library name

* wip

* skip rpc load fail

* fix page_align_alloc

* suppress some warning in gcc

* wip

* reuse align to function

* more log

* add log and fix warning

* wip

* fix asan errors and memory leaks

* fix the get_io_tensors_from_graph

* improve comment

* print GGML_QNN_DEFAULT_LIB_SEARCH_PATH

* revert some unused changes

* move library search path setter into qnn module

* fix android library loading

* skip qnn_device_get_platform_info for npu emulator
This commit is contained in:
nullname 2025-02-24 10:47:47 +08:00 committed by GitHub
parent 12c75f17c4
commit a822d00753
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 782 additions and 592 deletions

View File

@ -4,12 +4,15 @@ if(CMAKE_SYSTEM_NAME STREQUAL "Android")
find_library(LOG_LIB log)
set(QNN_LINK_LIBRARIES ${LOG_LIB})
set(QNN_DEFAULT_LIB_SEARCH_PATH "/data/local/tmp/" CACHE STRING "customized library search path for QNN backend")
elseif(CMAKE_SYSTEM_NAME STREQUAL "Windows" OR CMAKE_SYSTEM_NAME STREQUAL "Linux")
set(QNN_DEFAULT_LIB_SEARCH_PATH "" CACHE STRING "customized library search path for QNN backend")
else()
message(FATAL_ERROR "QNN now only available on Android")
message(FATAL_ERROR "QNN now only available on Android, Windows and Linux")
endif()
if(NOT DEFINED GGML_QNN_SDK_PATH)
# try read from environment variable
# TODO: create a function to search for the SDK path
if(DEFINED ENV{QNN_SDK_PATH})
set(GGML_QNN_SDK_PATH $ENV{QNN_SDK_PATH})
else()
@ -29,5 +32,14 @@ ggml_add_backend_library(ggml-qnn
target_include_directories(ggml-qnn PRIVATE ${GGML_QNN_SDK_PATH}/include/QNN ${CMAKE_CURRENT_LIST_DIR})
target_link_libraries(ggml-qnn PRIVATE ${QNN_LINK_LIBRARIES})
string(REGEX REPLACE "/$" "" GGML_QNN_DEFAULT_LIB_SEARCH_PATH "${QNN_DEFAULT_LIB_SEARCH_PATH}")
target_compile_definitions(ggml-qnn PRIVATE GGML_QNN_DEFAULT_LIB_SEARCH_PATH="${QNN_DEFAULT_LIB_SEARCH_PATH}/")
if(NOT "${QNN_DEFAULT_LIB_SEARCH_PATH}" STREQUAL "")
string(REGEX REPLACE "/$" "" QNN_DEFAULT_LIB_SEARCH_PATH "${QNN_DEFAULT_LIB_SEARCH_PATH}")
endif()
message("GGML_QNN_DEFAULT_LIB_SEARCH_PATH: ${QNN_DEFAULT_LIB_SEARCH_PATH}")
target_compile_definitions(ggml-qnn PRIVATE GGML_QNN_DEFAULT_LIB_SEARCH_PATH="${QNN_DEFAULT_LIB_SEARCH_PATH}")
if(GGML_QNN_ENABLE_CPU_BACKEND)
message("GGML_QNN_ENABLE_CPU_BACKEND is enabled")
target_compile_definitions(ggml-qnn PRIVATE GGML_QNN_ENABLE_CPU_BACKEND)
endif()

View File

@ -389,7 +389,7 @@ bool ggml_qnn_supports_tensor(ggml_backend_qnn_device_context *ctx, const ggml_t
case GGML_TYPE_F16:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
if (!(ctx->supported_types & (1 << tensor->type))) {
if (!(ctx->supported_types & (uint64_t(1) << tensor->type))) {
QNN_LOG_DEBUG("[%s]unsupported data type %s, supported_types: 0x%x", qnn::get_backend_name(ctx->device),
ggml_type_name(tensor->type), ctx->supported_types);
return false;

View File

@ -133,11 +133,14 @@ public:
if (data) {
memcpy(_buffer, data, size);
}
QNN_LOG_DEBUG("alloc buffer: %p, size: %ld", _buffer, size);
}
explicit qnn_mem_buffer(size_t size) : qnn_mem_buffer(nullptr, size) {}
~qnn_mem_buffer() {
QNN_LOG_DEBUG("free buffer: %p, size: %ld", _buffer, _size);
// the free will do nothing if the _buffer is nullptr
qnn::align_free(_buffer);
}

View File

@ -0,0 +1,71 @@
#pragma once
#ifdef __linux__
#include <dlfcn.h>
#include <fcntl.h>
#elif defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#endif
#include <string>
namespace qnn {
#ifdef __linux__
typedef void *dl_handler_t;
inline qnn::dl_handler_t dl_load(const std::string &lib_path) {
return dlopen(lib_path.c_str(), RTLD_NOW | RTLD_LOCAL);
}
inline void *dl_sym(qnn::dl_handler_t handle, const std::string &symbol) { return dlsym(handle, symbol.c_str()); }
inline bool dl_unload(qnn::dl_handler_t handle) { return dlclose(handle) == 0; }
inline const char *dl_error() { return dlerror(); }
#elif defined(_WIN32)
using dl_handler_t = HMODULE;
inline qnn::dl_handler_t dl_load(const std::string &lib_path) {
// suppress error dialogs for missing DLLs
auto old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
auto handle = LoadLibraryA(lib_path.c_str()); // TODO: use wstring version for unicode paths
SetErrorMode(old_mode);
return handle;
}
inline void *dl_sym(qnn::dl_handler_t handle, const std::string &symbol) {
auto old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
void *p = (void *)GetProcAddress(handle, symbol.c_str());
SetErrorMode(old_mode);
return p;
}
inline bool dl_unload(qnn::dl_handler_t handle) {
FreeLibrary(handle);
return true;
}
inline const char *dl_error() {
// TODO: implement dl_error for Windows
return nullptr;
}
#endif
template <typename Fn>
Fn dl_sym_typed(qnn::dl_handler_t handle, const std::string &function_name) {
return reinterpret_cast<Fn>(dl_sym(handle, function_name));
}
} // namespace qnn

View File

@ -1,23 +1,7 @@
#include "ggml-qnn.h"
#include <cassert>
#include <chrono>
#include <condition_variable>
#include <fstream>
#include <functional>
#include <iostream>
#include <list>
#include <memory>
#include <mutex>
#include <queue>
#include <random>
#include <regex>
#include <set>
#include <sstream>
#include <thread>
#include <tuple>
#include <unordered_set>
#include <utility>
#include <vector>
#include "ggml-backend-impl.h"
@ -44,6 +28,16 @@
namespace {
#ifdef _WIN32
constexpr const char *kQnnCpuLibName = "QnnCpu.dll";
constexpr const char *kQnnGpuLibName = "QnnGpu.dll";
constexpr const char *kQnnNpuLibName = "QnnHtp.dll";
#else
constexpr const char *kQnnCpuLibName = "libQnnCpu.so";
constexpr const char *kQnnGpuLibName = "libQnnGpu.so";
constexpr const char *kQnnNpuLibName = "libQnnHtp.so";
#endif
struct qnn_device_caps {
const char *name;
const char *description;
@ -59,7 +53,7 @@ constexpr const qnn_device_caps kDeviceCaps[] = {
// https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/CpuOpDefSupplement.html#matmul
"qnn-cpu",
"Qualcomm Kryo CPU",
"libQnnCpu.so",
kQnnCpuLibName,
GGML_BACKEND_DEVICE_TYPE_CPU,
(1 << GGML_TYPE_I8) | (1 << GGML_TYPE_F32),
},
@ -67,7 +61,7 @@ constexpr const qnn_device_caps kDeviceCaps[] = {
// https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/GpuOpDefSupplement.html#matmul
"qnn-gpu",
"Qualcomm Adreno GPU",
"libQnnGpu.so",
kQnnGpuLibName,
GGML_BACKEND_DEVICE_TYPE_GPU,
(1 << GGML_TYPE_F32) | (1 << GGML_TYPE_F16),
},
@ -75,7 +69,7 @@ constexpr const qnn_device_caps kDeviceCaps[] = {
// https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/HtpOpDefSupplement.html#matmul
"qnn-npu",
"Qualcomm NPU",
"libQnnHtp.so",
kQnnNpuLibName,
GGML_BACKEND_DEVICE_TYPE_ACCEL,
(1 << GGML_TYPE_F32) | (1 << GGML_TYPE_F16) | (1 << GGML_TYPE_I16) | (1 << GGML_TYPE_I8),
},
@ -214,6 +208,8 @@ void ggml_backend_qnn_free(ggml_backend_t backend) {
instance->qnn_finalize();
instance.reset();
}
delete backend;
}
bool ggml_backend_qnn_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor *src,
@ -332,42 +328,10 @@ ggml_backend_t ggml_backend_qnn_init_with_device_context(ggml_backend_dev_t dev,
const auto device = dev_ctx->device;
QNN_LOG_DEBUG("device %s", qnn::get_backend_name(device));
QNN_LOG_DEBUG("extend_lib_search_path %s", extend_lib_search_path);
std::string path = extend_lib_search_path;
// TODO: Fix this for other platforms
#if defined(__ANDROID__) || defined(ANDROID)
if (device == QNN_BACKEND_NPU) {
if (setenv("LD_LIBRARY_PATH",
(path + ":/vendor/dsp/cdsp:/vendor/lib64:/vendor/dsp/"
"dsp:/vendor/dsp/images")
.c_str(),
1) == 0) {
QNN_LOG_DEBUG("QNN NPU backend setenv successfully");
} else {
QNN_LOG_ERROR("QNN NPU backend setenv failure");
}
if (setenv("ADSP_LIBRARY_PATH",
(path + ";/vendor/dsp/cdsp;/vendor/lib/rfsa/adsp;/system/lib/"
"rfsa/adsp;/vendor/dsp/dsp;/vendor/dsp/images;/dsp")
.c_str(),
1) == 0) {
QNN_LOG_DEBUG("QNN NPU backend setenv successfully");
} else {
QNN_LOG_ERROR("QNN NPU backend setenv failure");
}
} else {
if (setenv("LD_LIBRARY_PATH", path.c_str(), 1) == 0) {
QNN_LOG_DEBUG("%s backend setenv successfully", qnn::get_backend_name(device));
} else {
QNN_LOG_ERROR("%s backend setenv failure", qnn::get_backend_name(device));
}
}
#endif
auto instance = std::make_shared<qnn::qnn_instance>(path, dev_ctx->lib_name, "ggml");
auto instance = std::make_shared<qnn::qnn_instance>(extend_lib_search_path, dev_ctx->lib_name);
auto result = instance->qnn_init(nullptr);
if (result != 0) {
QNN_LOG_WARN("init qnn subsystem failed with qnn backend %s, pls check why", qnn::get_backend_name(device));
QNN_LOG_WARN("failed to init qnn backend %s", qnn::get_backend_name(device));
return nullptr;
}
auto qnn_interface = instance->get_qnn_interface();
@ -466,6 +430,7 @@ struct ggml_backend_qnn_reg_impl : ggml_backend_reg {
QNN_LOG_DEBUG("qnn backend registry init");
for (size_t i = 0; i < QNN_BACKEND_COUNT; i++) {
const auto device_enum = (QNNBackend)(QNN_BACKEND_COUNT - 1 - i); // init from the last device, i.e. NPU
#ifndef GGML_QNN_ENABLE_CPU_BACKEND
if (device_enum == QNN_BACKEND_CPU) {
/*
* here we skip the initialization of CPU device,
@ -473,6 +438,7 @@ struct ggml_backend_qnn_reg_impl : ggml_backend_reg {
*/
continue;
}
#endif
device_contexts.emplace_back(std::make_unique<ggml_backend_qnn_device_context>(
/* .device = */ device_enum, // init from the last device, i.e. NPU

View File

@ -1,7 +1,7 @@
#include "graph.hpp"
#include <set>
#include <algorithm>
#include <unordered_map>
#include "ggml-impl.h"
@ -106,13 +106,29 @@ bool bind_src_tensors(ggml_tensor *op, qnn::qnn_tensor_array_t &tensor_wrappers,
return true;
}
/**
* @brief Extracts input and output tensors from a computational graph.
*
* This function identifies the input and output tensors of a computational graph by analyzing the connectivity between
* tensor nodes. It does this by iterating over each node in the graph, using a connectivity map that associates every
* tensor with its number of incoming connections (in_degree), outgoing connections (out_degree), and an insertion index
* that preserves order. The insertion index is used later to sort the tensors in their original discovery order.
*
* TODO: this algorithm is not perfect and may not work for all cases. It assumes that the tensors are
* connected in a way that allows for unambiguous categorization.
* It also assumes that the tensors are connected in a way that allows for unambiguous categorization.
*/
int get_io_tensors_from_graph(const ggml_cgraph *cgraph, qnn::ggml_tensor_array_t &inputs,
qnn::ggml_tensor_array_t &outputs) {
using ggml_tensor_set_t = std::set<ggml_tensor *>;
struct _tensor_connectivity_info {
size_t in_degree = 0;
size_t out_degree = 0;
size_t insert_index = 0;
};
ggml_tensor_set_t input_set;
ggml_tensor_set_t output_set;
ggml_tensor_set_t visited_set;
using ggml_tensor_connectivity_map_t = std::unordered_map<ggml_tensor *, _tensor_connectivity_info>;
ggml_tensor_connectivity_map_t connectivity_map;
int rank = 0;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor *dst = cgraph->nodes[i];
@ -126,25 +142,50 @@ int get_io_tensors_from_graph(const ggml_cgraph *cgraph, qnn::ggml_tensor_array_
}
rank = std::max(rank, ggml_n_dims(dst));
input_set.erase(dst);
if (!visited_set.count(dst)) {
output_set.insert(dst);
visited_set.insert(dst);
if (connectivity_map.count(dst) == 0) {
connectivity_map[dst] = {
1, // in-degree, at least 1
0,
connectivity_map.size(),
};
} else {
++(connectivity_map[dst].in_degree);
}
for (size_t i = 0; i < GGML_MAX_DIMS && dst->src[i]; ++i) {
auto *src = dst->src[i];
rank = std::max(rank, ggml_n_dims(src));
output_set.erase(src);
if (!visited_set.count(src)) {
input_set.insert(src);
visited_set.insert(src);
if (connectivity_map.count(src) == 0) {
connectivity_map[src] = {
0,
1, // out-degree, at least 1
connectivity_map.size(),
};
} else {
++(connectivity_map[src].out_degree);
}
}
}
inputs.assign(input_set.begin(), input_set.end());
outputs.assign(output_set.begin(), output_set.end());
for (const auto &kv : connectivity_map) {
if (kv.second.in_degree == 0) {
inputs.push_back(kv.first);
}
if (kv.second.out_degree == 0) {
outputs.push_back(kv.first);
}
}
std::sort(inputs.begin(), inputs.end(), [&connectivity_map](ggml_tensor *lhs, ggml_tensor *rhs) {
return connectivity_map[lhs].insert_index < connectivity_map[rhs].insert_index;
});
std::sort(outputs.begin(), outputs.end(), [&connectivity_map](ggml_tensor *lhs, ggml_tensor *rhs) {
return connectivity_map[lhs].insert_index < connectivity_map[rhs].insert_index;
});
return rank;
}
@ -187,7 +228,7 @@ qnn_graph::qnn_graph(const std::string &graph_name, QNNBackend device, std::shar
QnnHtpGraph_CustomConfig_t vtcm_config;
vtcm_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_VTCM_SIZE;
vtcm_config.vtcmSizeInMB = vtcm_size_in_mb;
vtcm_config.vtcmSizeInMB = (uint32_t)vtcm_size_in_mb;
QnnGraph_Config_t graph_vtcm_config;
graph_vtcm_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
graph_vtcm_config.customConfig = &vtcm_config;

View File

@ -1,8 +1,7 @@
#include "logger.hpp"
#include <stdio.h>
#include <cstdio>
#include <mutex>
#if defined(__ANDROID__) || defined(ANDROID)
@ -23,10 +22,12 @@ void qnn::internal_log(ggml_log_level level, const char * /*file*/, const char *
int len = vsnprintf(s_qnn_internal_log_buf + len_prefix, QNN_LOGBUF_LEN - len_prefix, format, args);
if (len < (QNN_LOGBUF_LEN - len_prefix)) {
#if defined(__ANDROID__) || defined(ANDROID)
// for Android APK
// print to android logcat
__android_log_print(level, "ggml-qnn", "%s\n", s_qnn_internal_log_buf);
#else
(void)level;
#endif
// for Android command line application or WoA(Windows on ARM)
// print to stdout
printf("%s\n", s_qnn_internal_log_buf);
}
va_end(args);
@ -36,7 +37,7 @@ void qnn::internal_log(ggml_log_level level, const char * /*file*/, const char *
#if ENABLE_QNNSDK_LOG
void qnn::sdk_logcallback(const char *fmt, QnnLog_Level_t level, uint64_t /*timestamp*/, va_list argp) {
static std::mutex log_mutex;
static unsigned char s_ggml_qnn_logbuf[QNN_LOGBUF_LEN];
static char s_ggml_qnn_logbuf[QNN_LOGBUF_LEN];
const char *log_level_desc = "";
switch (level) {
@ -62,9 +63,7 @@ void qnn::sdk_logcallback(const char *fmt, QnnLog_Level_t level, uint64_t /*time
{
std::lock_guard<std::mutex> lock(log_mutex);
memset(s_ggml_qnn_logbuf, 0, QNN_LOGBUF_LEN);
vsnprintf(reinterpret_cast<char *const>(s_ggml_qnn_logbuf), QNN_LOGBUF_LEN, fmt, argp);
vsnprintf(s_ggml_qnn_logbuf, QNN_LOGBUF_LEN, fmt, argp);
QNN_LOG_INFO("[%s]%s", log_level_desc, s_ggml_qnn_logbuf);
}
}

View File

@ -5,17 +5,17 @@ namespace {
using op_constructor_t = std::shared_ptr<qnn::ggml_qnn_op_config> (*)(const ggml_tensor *, const std::string &,
std::shared_ptr<qnn::qnn_instance>);
using op_dims_calc_func_t = void (*)(const std::vector<const qnn::ggml_dimension_array_t> &input_dims,
using op_dims_calc_func_t = void (*)(const std::vector<qnn::ggml_dimension_array_t> &input_dims,
qnn::ggml_dimension_array_t &output_dims);
void element_wise_op_dims(const std::vector<const qnn::ggml_dimension_array_t> &input_dims,
void element_wise_op_dims(const std::vector<qnn::ggml_dimension_array_t> &input_dims,
qnn::ggml_dimension_array_t &output_dims) {
for (size_t i = 1; i < std::size(output_dims); i++) {
output_dims[i] = input_dims.front()[i];
}
}
void mat_mul_op_dims(const std::vector<const qnn::ggml_dimension_array_t> &input_dims,
void mat_mul_op_dims(const std::vector<qnn::ggml_dimension_array_t> &input_dims,
qnn::ggml_dimension_array_t &output_dims) {
GGML_ASSERT(input_dims.size() == 2);
output_dims[0] = input_dims.front()[1];
@ -374,15 +374,6 @@ size_t get_qnn_op_index(const ggml_tensor *tensor) {
return tensor->op;
}
void get_ggml_op_output_dimensions(const std::vector<const ggml_dimension_array_t> &input_dims, const ggml_tensor *op,
ggml_dimension_array_t &output_dims) {
auto op_index = get_qnn_op_index(op);
GGML_ASSERT(op_index < std::size(kOpCaps));
auto get_dims = kOpCaps[op_index].calc_dims_func;
GGML_ASSERT(get_dims);
get_dims(input_dims, output_dims);
}
const char *get_qnn_op_name(const ggml_tensor *op) {
auto op_index = get_qnn_op_index(op);
GGML_ASSERT(op_index < std::size(kOpCaps));

View File

@ -276,7 +276,7 @@ qnn_tensor_ptr_t ggml_qnn_matmul_op_config::create_gather_nodes(QNNBackend devic
auto index_buffer = std::make_shared<qnn_mem_buffer>(dimensions[axis] * sizeof(uint32_t));
for (uint32_t *curr = reinterpret_cast<uint32_t *>(index_buffer->get_buffer()), *end = curr + dimensions[axis];
curr < end; curr++) {
*curr = (curr - reinterpret_cast<uint32_t *>(index_buffer->get_buffer())) / scale;
*curr = uint32_t((curr - reinterpret_cast<uint32_t *>(index_buffer->get_buffer())) / scale);
}
auto gather_index = std::make_shared<ggml_qnn_tensor>(

View File

@ -15,9 +15,6 @@ namespace qnn {
constexpr const size_t kGgmlUnaryOpStart = GGML_OP_COUNT;
size_t get_qnn_op_index(const ggml_tensor *tensor);
void get_ggml_op_output_dimensions(const std::vector<const ggml_dimension_array_t> &input_dims, const ggml_tensor *op,
ggml_dimension_array_t &output_dims);
const char *get_qnn_op_name(const ggml_tensor *op);
size_t get_qnn_op_input_param_count(const ggml_tensor *op);
std::shared_ptr<ggml_qnn_op_config> create_op(const ggml_tensor *op, const std::string &name,

View File

@ -1,35 +1,536 @@
#include "qnn-lib.hpp"
#include <filesystem>
#if defined(__linux__)
#include <unistd.h>
#endif
namespace {
#ifdef _WIN32
constexpr const char *kQnnSystemLibName = "QnnSystem.dll";
constexpr const char *kQnnRpcLibName = "libcdsprpc.dll";
#else
constexpr const char *kQnnSystemLibName = "libQnnSystem.so";
constexpr const char *kQnnRpcLibName = "libcdsprpc.so";
#endif
void insert_path(std::string &path, std::string insert_path, const char separator = ':') {
if (!insert_path.empty() && !path.empty()) {
insert_path += separator;
}
path.insert(0, insert_path);
}
// TODO: Fix this for other platforms, or use a more portable way to set the library search path
bool set_qnn_lib_search_path(const std::string &custom_lib_search_path) {
#if defined(__linux__)
{
auto *original = getenv("LD_LIBRARY_PATH");
std::string lib_search_path = original ? original : "";
insert_path(lib_search_path,
"/vendor/dsp/cdsp:/vendor/lib64:"
"/vendor/dsp/dsp:/vendor/dsp/images");
insert_path(lib_search_path, custom_lib_search_path);
if (setenv("LD_LIBRARY_PATH", lib_search_path.c_str(), 1)) {
return false;
}
}
#if defined(__ANDROID__) || defined(ANDROID)
{
// See also: https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-2/dsp_runtime.html
std::string adsp_lib_search_path = custom_lib_search_path +
";/vendor/dsp/cdsp;/vendor/lib/rfsa/adsp;/system/lib/"
"rfsa/adsp;/vendor/dsp/dsp;/vendor/dsp/images;/dsp";
if (setenv("ADSP_LIBRARY_PATH", adsp_lib_search_path.c_str(), 1)) {
return false;
}
QNN_LOG_DEBUG("ADSP_LIBRARY_PATH=%s", getenv("ADSP_LIBRARY_PATH"));
}
#endif
QNN_LOG_DEBUG("LD_LIBRARY_PATH=%s", getenv("LD_LIBRARY_PATH"));
#else
(void)custom_lib_search_path;
#endif
return true;
}
qnn::dl_handler_t load_lib_with_fallback(const std::string &lib_path, const std::string &load_directory) {
std::filesystem::path full_path(load_directory);
full_path /= std::filesystem::path(lib_path).filename();
auto handle = qnn::dl_load(full_path.string());
if (!handle) {
QNN_LOG_WARN("failed to load %s, fallback to %s", full_path.c_str(), lib_path.c_str());
handle = qnn::dl_load(lib_path);
}
return handle;
}
} // namespace
namespace qnn {
qnn_system_interface::qnn_system_interface(const QnnSystemInterface_t &qnn_sys_interface, dl_handler_t lib_handle) :
_qnn_sys_interface(qnn_sys_interface), _lib_handle(lib_handle) {
qnn_system_interface::qnn_system_interface(const QnnSystemInterface_t &qnn_sys_interface, dl_handler_t lib_handle)
: _qnn_sys_interface(qnn_sys_interface), _lib_handle(lib_handle) {
qnn_system_context_create(&_qnn_system_handle);
if (_qnn_system_handle) {
QNN_LOG_INFO("initialize qnn system successfully\n");
QNN_LOG_INFO("initialize qnn system successfully");
} else {
QNN_LOG_WARN("can not create QNN system contenxt\n");
QNN_LOG_WARN("can not create QNN system contenxt");
}
}
qnn_system_interface::~qnn_system_interface() {
if (_qnn_system_handle) {
if (qnn_system_context_free(_qnn_system_handle) != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN system context\n");
QNN_LOG_WARN("failed to free QNN system context");
}
} else {
QNN_LOG_WARN("system handle is null\n");
QNN_LOG_WARN("system handle is null");
}
if (_lib_handle) {
int dlclose_error = dl_unload(_lib_handle);
if (dlclose_error != 0) {
QNN_LOG_WARN("failed to close QnnSystem library, error %s\n", dl_error());
if (!dl_unload(_lib_handle)) {
QNN_LOG_WARN("failed to close QnnSystem library, error %s", dl_error());
}
} else {
QNN_LOG_WARN("system lib handle is null\n");
QNN_LOG_WARN("system lib handle is null");
}
}
qnn_instance::qnn_instance(const std::string &lib_path, const std::string &backend_lib_name)
: _additional_lib_load_path(lib_path), _backend_lib_name(std::move(backend_lib_name)) {
if (set_qnn_lib_search_path(lib_path)) {
QNN_LOG_DEBUG("[%s] set_qnn_lib_search_path succeed", _backend_lib_name.c_str());
} else {
QNN_LOG_ERROR("[%s] set_qnn_lib_search_path failed", _backend_lib_name.c_str());
}
}
int qnn_instance::qnn_init(const QnnSaver_Config_t **saver_config) {
BackendIdType backend_id = QNN_BACKEND_ID_NULL;
QNN_LOG_DEBUG("enter qnn_init");
std::lock_guard<std::mutex> lock(_init_mutex);
if (load_system() != 0) {
QNN_LOG_WARN("failed to load QNN system lib");
return 1;
} else {
QNN_LOG_DEBUG("load QNN system lib successfully");
}
std::string backend_lib_path = _backend_lib_name;
if (_lib_path_to_backend_id.count(backend_lib_path) == 0) {
if (load_backend(backend_lib_path, saver_config) != 0) {
QNN_LOG_WARN("failed to load QNN backend");
return 2;
}
}
backend_id = _lib_path_to_backend_id[backend_lib_path];
if (_loaded_backend.count(backend_id) == 0 || _loaded_lib_handle.count(backend_id) == 0) {
QNN_LOG_WARN(
"library %s is loaded but loaded backend count=%zu, "
"loaded lib_handle count=%zu",
backend_lib_path.c_str(), _loaded_backend.count(backend_id), _loaded_lib_handle.count(backend_id));
return 3;
}
_qnn_interface = std::make_shared<qnn_interface>(*_loaded_backend[backend_id]);
_qnn_interface->qnn_log_create(qnn::sdk_logcallback, _qnn_log_level, &_qnn_log_handle);
if (!_qnn_log_handle) {
// NPU backend not work on Qualcomm SoC equipped low-end phone
QNN_LOG_WARN("why failed to initialize qnn log");
return 4;
} else {
QNN_LOG_DEBUG("initialize qnn log successfully");
}
std::vector<const QnnBackend_Config_t *> temp_backend_config;
_qnn_interface->qnn_backend_create(
_qnn_log_handle, temp_backend_config.empty() ? nullptr : temp_backend_config.data(), &_qnn_backend_handle);
if (!_qnn_backend_handle) {
QNN_LOG_WARN("why failed to initialize qnn backend");
return 5;
} else {
QNN_LOG_DEBUG("initialize qnn backend successfully");
}
auto qnn_status = _qnn_interface->qnn_property_has_capability(QNN_PROPERTY_GROUP_DEVICE);
if (QNN_PROPERTY_NOT_SUPPORTED == qnn_status) {
QNN_LOG_WARN("device property is not supported");
}
if (QNN_PROPERTY_ERROR_UNKNOWN_KEY == qnn_status) {
QNN_LOG_WARN("device property is not known to backend");
}
qnn_status = QNN_SUCCESS;
if (_backend_lib_name.find("Htp") != _backend_lib_name.npos) {
const QnnDevice_PlatformInfo_t *p_info = nullptr;
qnn_status = _qnn_interface->qnn_device_get_platform_info(nullptr, &p_info);
if (qnn_status == QNN_SUCCESS) {
QNN_LOG_INFO("device counts %d", p_info->v1.numHwDevices);
QnnDevice_HardwareDeviceInfo_t *infos = p_info->v1.hwDevices;
QnnHtpDevice_OnChipDeviceInfoExtension_t chipinfo = {};
for (uint32_t i = 0; i < p_info->v1.numHwDevices; i++) {
QNN_LOG_INFO("deviceID:%d, deviceType:%d, numCores %d", infos[i].v1.deviceId, infos[i].v1.deviceType,
infos[i].v1.numCores);
QnnDevice_DeviceInfoExtension_t devinfo = infos[i].v1.deviceInfoExtension;
chipinfo = devinfo->onChipDevice;
size_t htp_arch = (size_t)chipinfo.arch;
QNN_LOG_INFO("htp_type:%d(%s)", devinfo->devType,
(devinfo->devType == QNN_HTP_DEVICE_TYPE_ON_CHIP) ? "ON_CHIP" : "");
QNN_LOG_INFO("qualcomm soc_model:%d(%s), htp_arch:%d(%s), vtcm_size:%d MB", chipinfo.socModel,
qnn::get_chipset_desc(chipinfo.socModel), htp_arch, qnn::get_htparch_desc(htp_arch),
chipinfo.vtcmSize);
_soc_info = {chipinfo.socModel, htp_arch, chipinfo.vtcmSize};
}
_qnn_interface->qnn_device_free_platform_info(nullptr, p_info);
} else {
// For emulator, we can't get platform info
QNN_LOG_WARN("failed to get platform info, are we in emulator?");
_soc_info = {NONE, UNKNOWN_SM, 0};
}
QnnHtpDevice_CustomConfig_t soc_customconfig;
soc_customconfig.option = QNN_HTP_DEVICE_CONFIG_OPTION_SOC;
soc_customconfig.socModel = _soc_info.soc_model;
QnnDevice_Config_t soc_devconfig;
soc_devconfig.option = QNN_DEVICE_CONFIG_OPTION_CUSTOM;
soc_devconfig.customConfig = &soc_customconfig;
QnnHtpDevice_CustomConfig_t arch_customconfig;
arch_customconfig.option = QNN_HTP_DEVICE_CONFIG_OPTION_ARCH;
arch_customconfig.arch.arch = (QnnHtpDevice_Arch_t)_soc_info.htp_arch;
arch_customconfig.arch.deviceId = 0; // Id of device to be used. 0 will use by default.
QnnDevice_Config_t arch_devconfig;
arch_devconfig.option = QNN_DEVICE_CONFIG_OPTION_CUSTOM;
arch_devconfig.customConfig = &arch_customconfig;
const QnnDevice_Config_t *p_deviceconfig[] = {&soc_devconfig, &arch_devconfig, nullptr};
qnn_status = _qnn_interface->qnn_device_create(_qnn_log_handle, p_deviceconfig, &_qnn_device_handle);
} else {
qnn_status = _qnn_interface->qnn_device_create(_qnn_log_handle, nullptr, &_qnn_device_handle);
}
if (QNN_SUCCESS != qnn_status && QNN_DEVICE_ERROR_UNSUPPORTED_FEATURE != qnn_status) {
QNN_LOG_WARN("failed to create QNN device");
} else {
QNN_LOG_INFO("create QNN device successfully");
}
if (_profile_level != sdk_profile_level::profile_off) {
QNN_LOG_INFO("profiling turned on; level = %d", _profile_level);
auto profile_level =
_profile_level == sdk_profile_level::profile_detail ? QNN_PROFILE_LEVEL_DETAILED : QNN_PROFILE_LEVEL_BASIC;
if (QNN_PROFILE_NO_ERROR !=
_qnn_interface->qnn_profile_create(_qnn_backend_handle, profile_level, &_qnn_profile_handle)) {
QNN_LOG_WARN("unable to create profile handle in the backend");
return 6;
} else {
QNN_LOG_DEBUG("initialize qnn profile successfully");
}
}
_rpc_lib_handle = load_lib_with_fallback(kQnnRpcLibName, _additional_lib_load_path);
if (_rpc_lib_handle) {
_pfn_rpc_mem_alloc = reinterpret_cast<qnn::pfn_rpc_mem_alloc>(dl_sym(_rpc_lib_handle, "rpcmem_alloc"));
_pfn_rpc_mem_free = reinterpret_cast<qnn::pfn_rpc_mem_free>(dl_sym(_rpc_lib_handle, "rpcmem_free"));
_pfn_rpc_mem_to_fd = reinterpret_cast<qnn::pfn_rpc_mem_to_fd>(dl_sym(_rpc_lib_handle, "rpcmem_to_fd"));
if (!_pfn_rpc_mem_alloc || !_pfn_rpc_mem_free || !_pfn_rpc_mem_to_fd) {
QNN_LOG_WARN("unable to access symbols in QNN RPC lib. error: %s", dl_error());
dl_unload(_rpc_lib_handle);
return 9;
}
_pfn_rpc_mem_init = reinterpret_cast<qnn::pfn_rpc_mem_init>(dl_sym(_rpc_lib_handle, "rpcmem_init"));
_pfn_rpc_mem_deinit = reinterpret_cast<qnn::pfn_rpc_mem_deinit>(dl_sym(_rpc_lib_handle, "rpcmem_deinit"));
if (_pfn_rpc_mem_init) {
_pfn_rpc_mem_init();
}
_rpcmem_initialized = true;
QNN_LOG_DEBUG("load rpcmem lib successfully");
} else {
QNN_LOG_WARN("failed to load qualcomm rpc lib, skipping, error:%s", dl_error());
}
/* TODO: not used, keep it for further usage
QnnContext_Config_t qnn_context_config = QNN_CONTEXT_CONFIG_INIT;
qnn_context_config.priority = QNN_PRIORITY_DEFAULT;
const QnnContext_Config_t * context_configs[] = {&qnn_context_config, nullptr};
*/
_qnn_interface->qnn_context_create(_qnn_backend_handle, _qnn_device_handle, nullptr, &_qnn_context_handle);
if (nullptr == _qnn_context_handle) {
QNN_LOG_WARN("why failed to initialize qnn context");
return 10;
} else {
QNN_LOG_DEBUG("initialize qnn context successfully");
}
if (_backend_lib_name.find("Htp") != _backend_lib_name.npos) {
// TODO: faster approach to probe the accurate capacity of rpc ion memory
size_t candidate_size = 0;
uint8_t *rpc_buffer = nullptr;
const int size_in_mb = (1 << 20);
size_t probe_slots[] = {1024, 1536, 2048 - 48, 2048};
size_t probe_counts = sizeof(probe_slots) / sizeof(size_t);
for (size_t idx = 0; idx < probe_counts; idx++) {
rpc_buffer = static_cast<uint8_t *>(alloc_rpcmem(probe_slots[idx] * size_in_mb, sizeof(void *)));
if (!rpc_buffer) {
QNN_LOG_DEBUG("alloc rpcmem %d (MB) failure, %s", probe_slots[idx], strerror(errno));
break;
} else {
candidate_size = probe_slots[idx];
free_rpcmem(rpc_buffer);
rpc_buffer = nullptr;
}
}
_rpcmem_capacity = std::max(candidate_size, _rpcmem_capacity);
QNN_LOG_INFO("capacity of QNN rpc ion memory is about %d MB", _rpcmem_capacity);
if (init_htp_perfinfra() != 0) {
QNN_LOG_WARN("initialize HTP performance failure");
}
if (set_rpc_polling() != 0) {
QNN_LOG_WARN("set RPC polling failure");
}
if (set_high_performance_mode() != 0) {
QNN_LOG_WARN("set HTP high performance mode failure");
}
}
QNN_LOG_DEBUG("leave qnn_init");
return 0;
}
int qnn_instance::qnn_finalize() {
int ret_status = 0;
Qnn_ErrorHandle_t error = QNN_SUCCESS;
if (_rpc_lib_handle) {
if (_pfn_rpc_mem_deinit) {
_pfn_rpc_mem_deinit();
_pfn_rpc_mem_deinit = nullptr;
}
if (dl_unload(_rpc_lib_handle)) {
QNN_LOG_DEBUG("succeed to close rpcmem lib");
} else {
QNN_LOG_WARN("failed to unload qualcomm's rpc lib, error:%s", dl_error());
}
}
if (_backend_lib_name.find("Htp") != _backend_lib_name.npos) {
_qnn_htp_perfinfra->destroyPowerConfigId(_qnn_power_configid);
}
if (_qnn_context_handle) {
error = _qnn_interface->qnn_context_free(_qnn_context_handle, _qnn_profile_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN context_handle: ID %u, error %d", _qnn_interface->get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_context_handle = nullptr;
}
if (_qnn_profile_handle) {
error = _qnn_interface->qnn_profile_free(_qnn_profile_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN profile_handle: ID %u, error %d", _qnn_interface->get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_profile_handle = nullptr;
}
if (_qnn_device_handle) {
error = _qnn_interface->qnn_device_free(_qnn_device_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN device_handle: ID %u, error %d", _qnn_interface->get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_device_handle = nullptr;
}
if (_qnn_backend_handle) {
error = _qnn_interface->qnn_backend_free(_qnn_backend_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN backend_handle: ID %u, error %d", _qnn_interface->get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_backend_handle = nullptr;
}
if (nullptr != _qnn_log_handle) {
error = _qnn_interface->qnn_log_free(_qnn_log_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN log_handle: ID %u, error %d", _qnn_interface->get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_log_handle = nullptr;
}
unload_backend();
_qnn_sys_interface.reset();
return ret_status;
}
int qnn_instance::load_system() {
QNN_LOG_DEBUG("[%s]lib: %s", _backend_lib_name.c_str(), kQnnSystemLibName);
auto system_lib_handle = load_lib_with_fallback(kQnnSystemLibName, _additional_lib_load_path);
if (!system_lib_handle) {
QNN_LOG_WARN("can not load QNN library %s, error: %s", kQnnSystemLibName, dl_error());
return 1;
}
auto *get_providers =
dl_sym_typed<qnn::pfn_qnnsysteminterface_getproviders *>(system_lib_handle, "QnnSystemInterface_getProviders");
if (!get_providers) {
QNN_LOG_WARN("can not load QNN symbol QnnSystemInterface_getProviders: %s", dl_error());
return 2;
}
uint32_t num_providers = 0;
const QnnSystemInterface_t **provider_list = nullptr;
Qnn_ErrorHandle_t error = get_providers(&provider_list, &num_providers);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to get providers, error %d", QNN_GET_ERROR_CODE(error));
return 3;
}
QNN_LOG_DEBUG("num_providers: %d", num_providers);
if (num_providers != _required_num_providers) {
QNN_LOG_WARN("providers is %d instead of required %d", num_providers, _required_num_providers);
return 4;
}
if (!provider_list) {
QNN_LOG_WARN("can not get providers");
return 5;
}
QNN_SYSTEM_INTERFACE_VER_TYPE qnn_system_interface;
bool found_valid_system_interface = false;
for (size_t idx = 0; idx < num_providers; idx++) {
if (QNN_SYSTEM_API_VERSION_MAJOR == provider_list[idx]->systemApiVersion.major &&
QNN_SYSTEM_API_VERSION_MINOR <= provider_list[idx]->systemApiVersion.minor) {
found_valid_system_interface = true;
qnn_system_interface = provider_list[idx]->QNN_SYSTEM_INTERFACE_VER_NAME;
break;
}
}
if (!found_valid_system_interface) {
QNN_LOG_WARN("unable to find a valid qnn system interface");
return 6;
} else {
QNN_LOG_DEBUG("find a valid qnn system interface");
}
auto qnn_sys_interface = std::make_shared<qnn::qnn_system_interface>(*provider_list[0], system_lib_handle);
if (!qnn_sys_interface->is_valid()) {
QNN_LOG_WARN("failed to create QNN system interface");
return 7;
}
_qnn_sys_interface = qnn_sys_interface;
return 0;
}
int qnn_instance::load_backend(std::string &lib_path, const QnnSaver_Config_t ** /*saver_config*/) {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
QNN_LOG_DEBUG("lib_path:%s", lib_path.c_str());
auto lib_handle = load_lib_with_fallback(lib_path, _additional_lib_load_path);
if (!lib_handle) {
QNN_LOG_WARN("can not open QNN library %s, with error: %s", lib_path.c_str(), dl_error());
return 1;
}
auto get_providers = dl_sym_typed<qnn::pfn_qnninterface_getproviders *>(lib_handle, "QnnInterface_getProviders");
if (!get_providers) {
QNN_LOG_WARN("can not load symbol QnnInterface_getProviders : %s", dl_error());
return 2;
}
std::uint32_t num_providers = 0;
const QnnInterface_t **provider_list = nullptr;
error = get_providers(&provider_list, &num_providers);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to get providers, error %d", QNN_GET_ERROR_CODE(error));
return 3;
}
QNN_LOG_DEBUG("num_providers=%d", num_providers);
if (num_providers != _required_num_providers) {
QNN_LOG_WARN("providers is %d instead of required %d", num_providers, _required_num_providers);
return 4;
}
if (!provider_list) {
QNN_LOG_WARN("failed to get qnn interface providers");
return 5;
}
bool found_valid_interface = false;
QNN_INTERFACE_VER_TYPE qnn_interface;
for (size_t idx = 0; idx < num_providers; idx++) {
if (QNN_API_VERSION_MAJOR == provider_list[idx]->apiVersion.coreApiVersion.major &&
QNN_API_VERSION_MINOR <= provider_list[idx]->apiVersion.coreApiVersion.minor) {
found_valid_interface = true;
qnn_interface = provider_list[idx]->QNN_INTERFACE_VER_NAME;
break;
}
}
if (!found_valid_interface) {
QNN_LOG_WARN("unable to find a valid qnn interface");
return 6;
} else {
QNN_LOG_DEBUG("find a valid qnn interface");
}
BackendIdType backend_id = provider_list[0]->backendId;
_lib_path_to_backend_id[lib_path] = backend_id;
if (_loaded_backend.count(backend_id) > 0) {
QNN_LOG_WARN("lib_path %s is loaded, but backend %d already exists", lib_path.c_str(), backend_id);
}
_loaded_backend[backend_id] = provider_list[0];
if (_loaded_lib_handle.count(backend_id) > 0) {
QNN_LOG_WARN("closing %p", _loaded_lib_handle[backend_id]);
if (!dl_unload(_loaded_lib_handle[backend_id])) {
QNN_LOG_WARN("fail to close %p with error %s", _loaded_lib_handle[backend_id], dl_error());
}
}
_loaded_lib_handle[backend_id] = lib_handle;
_backend_id = backend_id;
return 0;
}
int qnn_instance::unload_backend() {
for (auto &it : _loaded_lib_handle) {
if (!dl_unload(it.second)) {
QNN_LOG_WARN("failed to close QNN backend %d, error %s", it.first, dl_error());
}
}
_loaded_lib_handle.clear();
_lib_path_to_backend_id.clear();
_loaded_backend.clear();
return 0;
}
} // namespace qnn

View File

@ -1,8 +1,10 @@
#pragma once
#include <math.h>
#include <algorithm>
#include <atomic>
#include <cmath>
#include <cstring>
#include <memory>
#include <mutex>
#include <string>
#include <unordered_map>
@ -22,27 +24,12 @@
#include <QnnTypes.h>
#include <System/QnnSystemInterface.h>
#include "dl_loader.hpp"
#include "qnn-types.hpp"
#include "utils.hpp"
namespace qnn {
// TODO: those function should be moved to a separate file, and have separate implementation for each platform
typedef void *dl_handler_t;
inline dl_handler_t dl_load(const std::string &lib_path) { return dlopen(lib_path.c_str(), RTLD_NOW | RTLD_LOCAL); }
inline void *dl_sym(dl_handler_t handle, const std::string &symbol) { return dlsym(handle, symbol.c_str()); }
inline int dl_unload(dl_handler_t handle) { return dlclose(handle); }
inline const char *dl_error() { return dlerror(); }
template <typename Fn>
Fn dl_sym_typed(dl_handler_t handle, const std::string &function_name) {
return reinterpret_cast<Fn>(dl_sym(handle, function_name));
}
// =================================================================================================
//
// wrapper class of Qualcomm QNN(Qualcomm Neural Network, aka Qualcomm AI Engine Direct) SDK
@ -52,6 +39,7 @@ Fn dl_sym_typed(dl_handler_t handle, const std::string &function_name) {
// TODO: fix this for other compilers
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wextra-semi"
#pragma GCC diagnostic ignored "-Wpedantic"
class qnn_system_interface {
@ -188,273 +176,10 @@ class qnn_instance {
public:
using BackendIdType = decltype(QnnInterface_t{}.backendId);
explicit qnn_instance(const std::string &lib_path, const std::string &backend_name, const std::string &model_name)
: _lib_path(std::move(lib_path)), _backend_name(std::move(backend_name)), _model_name(std::move(model_name)) {}
explicit qnn_instance(const std::string &lib_path, const std::string &backend_lib_name);
~qnn_instance() {}
int qnn_init(const QnnSaver_Config_t **saver_config) {
BackendIdType backend_id = QNN_BACKEND_ID_NULL;
QNN_LOG_DEBUG("enter qnn_init");
std::lock_guard<std::mutex> lock(_init_mutex);
if (load_system() != 0) {
QNN_LOG_WARN("can not load QNN system lib, pls check why?");
return 1;
} else {
QNN_LOG_DEBUG("load QNN system lib successfully");
}
std::string backend_lib_path = _lib_path + _backend_name;
if (_lib_path_to_backend_id.count(backend_lib_path) == 0) {
int is_load_ok = load_backend(backend_lib_path, saver_config);
if (is_load_ok != 0) {
QNN_LOG_WARN("failed to load QNN backend");
return 2;
}
}
backend_id = _lib_path_to_backend_id[backend_lib_path];
if (_loaded_backend.count(backend_id) == 0 || _loaded_lib_handle.count(backend_id) == 0) {
QNN_LOG_WARN(
"library %s is loaded but loaded backend count=%zu, "
"loaded lib_handle count=%zu",
backend_lib_path.c_str(), _loaded_backend.count(backend_id), _loaded_lib_handle.count(backend_id));
return 3;
}
_qnn_interface = std::make_shared<qnn_interface>(*_loaded_backend[backend_id]);
_qnn_interface->qnn_log_create(qnn::sdk_logcallback, _qnn_log_level, &_qnn_log_handle);
if (nullptr == _qnn_log_handle) {
// NPU backend not work on Qualcomm SoC equipped low-end phone
QNN_LOG_WARN("why failed to initialize qnn log");
return 4;
} else {
QNN_LOG_DEBUG("initialize qnn log successfully");
}
std::vector<const QnnBackend_Config_t *> temp_backend_config;
_qnn_interface->qnn_backend_create(
_qnn_log_handle, temp_backend_config.empty() ? nullptr : temp_backend_config.data(), &_qnn_backend_handle);
if (nullptr == _qnn_backend_handle) {
QNN_LOG_WARN("why failed to initialize qnn backend");
return 5;
} else {
QNN_LOG_DEBUG("initialize qnn backend successfully");
}
Qnn_ErrorHandle_t qnn_status = _qnn_interface->qnn_property_has_capability(QNN_PROPERTY_GROUP_DEVICE);
if (QNN_PROPERTY_NOT_SUPPORTED == qnn_status) {
QNN_LOG_WARN("device property is not supported");
}
if (QNN_PROPERTY_ERROR_UNKNOWN_KEY == qnn_status) {
QNN_LOG_WARN("device property is not known to backend");
}
qnn_status = QNN_SUCCESS;
if (_backend_name.find("Htp") != _backend_name.npos) {
const QnnDevice_PlatformInfo_t *p_info = nullptr;
_qnn_interface->qnn_device_get_platform_info(nullptr, &p_info);
QNN_LOG_INFO("device counts %d", p_info->v1.numHwDevices);
QnnDevice_HardwareDeviceInfo_t *infos = p_info->v1.hwDevices;
QnnHtpDevice_OnChipDeviceInfoExtension_t chipinfo = {};
for (uint32_t i = 0; i < p_info->v1.numHwDevices; i++) {
QNN_LOG_INFO("deviceID:%d, deviceType:%d, numCores %d", infos[i].v1.deviceId, infos[i].v1.deviceType,
infos[i].v1.numCores);
QnnDevice_DeviceInfoExtension_t devinfo = infos[i].v1.deviceInfoExtension;
chipinfo = devinfo->onChipDevice;
QnnHtpDevice_Arch_t htp_arch = chipinfo.arch;
QNN_LOG_INFO("htp_type:%d(%s)", devinfo->devType,
(devinfo->devType == QNN_HTP_DEVICE_TYPE_ON_CHIP) ? "ON_CHIP" : "");
QNN_LOG_INFO("qualcomm soc_model:%d(%s), htp_arch:%d(%s), vtcm_size:%d MB", chipinfo.socModel,
qnn::get_chipset_desc(chipinfo.socModel), htp_arch, qnn::get_htparch_desc(htp_arch),
chipinfo.vtcmSize);
_soc_info = {chipinfo.socModel, htp_arch, chipinfo.vtcmSize};
}
_qnn_interface->qnn_device_free_platform_info(nullptr, p_info);
QnnHtpDevice_CustomConfig_t soc_customconfig;
soc_customconfig.option = QNN_HTP_DEVICE_CONFIG_OPTION_SOC;
soc_customconfig.socModel = chipinfo.socModel;
QnnDevice_Config_t soc_devconfig;
soc_devconfig.option = QNN_DEVICE_CONFIG_OPTION_CUSTOM;
soc_devconfig.customConfig = &soc_customconfig;
QnnHtpDevice_CustomConfig_t arch_customconfig;
arch_customconfig.option = QNN_HTP_DEVICE_CONFIG_OPTION_ARCH;
arch_customconfig.arch.arch = chipinfo.arch;
arch_customconfig.arch.deviceId = 0; // Id of device to be used. If single device is used by default 0.
QnnDevice_Config_t arch_devconfig;
arch_devconfig.option = QNN_DEVICE_CONFIG_OPTION_CUSTOM;
arch_devconfig.customConfig = &arch_customconfig;
const QnnDevice_Config_t *p_deviceconfig[] = {&soc_devconfig, &arch_devconfig, nullptr};
qnn_status = _qnn_interface->qnn_device_create(_qnn_log_handle, p_deviceconfig, &_qnn_device_handle);
} else {
qnn_status = _qnn_interface->qnn_device_create(_qnn_log_handle, nullptr, &_qnn_device_handle);
}
if (QNN_SUCCESS != qnn_status && QNN_DEVICE_ERROR_UNSUPPORTED_FEATURE != qnn_status) {
QNN_LOG_WARN("failed to create QNN device");
} else {
QNN_LOG_INFO("create QNN device successfully");
}
if (_profile_level != sdk_profile_level::profile_off) {
QNN_LOG_INFO("profiling turned on; level = %d", _profile_level);
auto profile_level = _profile_level == sdk_profile_level::profile_detail ? QNN_PROFILE_LEVEL_DETAILED
: QNN_PROFILE_LEVEL_BASIC;
if (QNN_PROFILE_NO_ERROR !=
_qnn_interface->qnn_profile_create(_qnn_backend_handle, profile_level, &_qnn_profile_handle)) {
QNN_LOG_WARN("unable to create profile handle in the backend");
return 6;
} else {
QNN_LOG_DEBUG("initialize qnn profile successfully");
}
}
_rpc_lib_handle = dl_load("libcdsprpc.so");
if (nullptr == _rpc_lib_handle) {
QNN_LOG_WARN("failed to load qualcomm's rpc lib, error:%s", dl_error());
return 8;
} else {
QNN_LOG_DEBUG("load rpcmem lib successfully");
set_rpcmem_initialized(true);
}
_pfn_rpc_mem_init = reinterpret_cast<qnn::pfn_rpc_mem_init>(dl_sym(_rpc_lib_handle, "rpcmem_init"));
_pfn_rpc_mem_deinit = reinterpret_cast<qnn::pfn_rpc_mem_deinit>(dl_sym(_rpc_lib_handle, "rpcmem_deinit"));
_pfn_rpc_mem_alloc = reinterpret_cast<qnn::pfn_rpc_mem_alloc>(dl_sym(_rpc_lib_handle, "rpcmem_alloc"));
_pfn_rpc_mem_free = reinterpret_cast<qnn::pfn_rpc_mem_free>(dl_sym(_rpc_lib_handle, "rpcmem_free"));
_pfn_rpc_mem_to_fd = reinterpret_cast<qnn::pfn_rpc_mem_to_fd>(dl_sym(_rpc_lib_handle, "rpcmem_to_fd"));
if (nullptr == _pfn_rpc_mem_alloc || nullptr == _pfn_rpc_mem_free || nullptr == _pfn_rpc_mem_to_fd) {
QNN_LOG_WARN("unable to access symbols in QNN RPC lib. error: %s", dl_error());
dl_unload(_rpc_lib_handle);
return 9;
}
if (nullptr != _pfn_rpc_mem_init) { // make Qualcomm's SoC equipped low-end phone happy
_pfn_rpc_mem_init();
}
/* TODO: not used, keep it for further usage
QnnContext_Config_t qnn_context_config = QNN_CONTEXT_CONFIG_INIT;
qnn_context_config.priority = QNN_PRIORITY_DEFAULT;
const QnnContext_Config_t * context_configs[] = {&qnn_context_config, nullptr};
*/
_qnn_interface->qnn_context_create(_qnn_backend_handle, _qnn_device_handle, nullptr, &_qnn_context_handle);
if (nullptr == _qnn_context_handle) {
QNN_LOG_WARN("why failed to initialize qnn context");
return 10;
} else {
QNN_LOG_DEBUG("initialize qnn context successfully");
}
if (_backend_name.find("Htp") != _backend_name.npos) {
// TODO: faster approach to probe the accurate capacity of rpc ion memory
size_t candidate_size = 0;
uint8_t *rpc_buffer = nullptr;
const int size_in_mb = (1 << 20);
size_t probe_slots[] = {1024, 1536, 2048 - 48, 2048};
size_t probe_counts = sizeof(probe_slots) / sizeof(size_t);
for (size_t idx = 0; idx < probe_counts; idx++) {
rpc_buffer = static_cast<uint8_t *>(alloc_rpcmem(probe_slots[idx] * size_in_mb, sizeof(void *)));
if (!rpc_buffer) {
QNN_LOG_DEBUG("alloc rpcmem %d (MB) failure, %s", probe_slots[idx], strerror(errno));
break;
} else {
candidate_size = probe_slots[idx];
free_rpcmem(rpc_buffer);
rpc_buffer = nullptr;
}
}
_rpcmem_capacity = std::max(candidate_size, _rpcmem_capacity);
QNN_LOG_INFO("capacity of QNN rpc ion memory is about %d MB", _rpcmem_capacity);
if (0 != init_htp_perfinfra()) {
QNN_LOG_WARN("initialize HTP performance failure");
}
if (0 != set_rpc_polling()) {
QNN_LOG_WARN("set RPC polling failure");
}
if (0 != set_high_performance_mode()) {
QNN_LOG_WARN("set HTP high performance mode failure");
}
}
QNN_LOG_DEBUG("leave qnn_init");
return 0;
}
int qnn_finalize() {
int ret_status = 0;
Qnn_ErrorHandle_t error = QNN_SUCCESS;
if (nullptr != _pfn_rpc_mem_deinit) // make Qualcomm's SoC equipped low-end phone happy
_pfn_rpc_mem_deinit();
if (dl_unload(_rpc_lib_handle) != 0) {
QNN_LOG_WARN("failed to unload qualcomm's rpc lib, error:%s", dl_error());
} else {
QNN_LOG_DEBUG("succeed to close rpcmem lib");
}
if (_backend_name.find("Htp") != _backend_name.npos) {
_qnn_htp_perfinfra->destroyPowerConfigId(_qnn_power_configid);
}
if (nullptr != _qnn_context_handle) {
error = _qnn_interface->qnn_context_free(_qnn_context_handle, _qnn_profile_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN context_handle: ID %u, error %d", _qnn_interface->get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_context_handle = nullptr;
}
if (nullptr != _qnn_profile_handle) {
error = _qnn_interface->qnn_profile_free(_qnn_profile_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN profile_handle: ID %u, error %d", _qnn_interface->get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_profile_handle = nullptr;
}
if (nullptr != _qnn_device_handle) {
error = _qnn_interface->qnn_device_free(_qnn_device_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN device_handle: ID %u, error %d", _qnn_interface->get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_device_handle = nullptr;
}
if (nullptr != _qnn_backend_handle) {
error = _qnn_interface->qnn_backend_free(_qnn_backend_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN backend_handle: ID %u, error %d", _qnn_interface->get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_backend_handle = nullptr;
}
if (nullptr != _qnn_log_handle) {
error = _qnn_interface->qnn_log_free(_qnn_log_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN log_handle: ID %u, error %d", _qnn_interface->get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_log_handle = nullptr;
}
unload_backend();
_qnn_sys_interface.reset();
return ret_status;
}
int qnn_init(const QnnSaver_Config_t **saver_config);
int qnn_finalize();
std::shared_ptr<qnn_interface> get_qnn_interface() {
if (!_qnn_interface) {
@ -477,7 +202,7 @@ public:
int init_htp_perfinfra() {
QnnDevice_Infrastructure_t device_infra = nullptr;
int error = _qnn_interface->qnn_device_get_infrastructure(&device_infra);
auto error = _qnn_interface->qnn_device_get_infrastructure(&device_infra);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to get qnn device infra");
return 1;
@ -578,8 +303,6 @@ public:
bool is_rpcmem_initialized() { return _rpcmem_initialized; }
void set_rpcmem_initialized(bool initialized) { _rpcmem_initialized = initialized; }
size_t get_rpcmem_capacity() { return _rpcmem_capacity; }
void *alloc_rpcmem(size_t bytes, size_t alignment) {
@ -665,7 +388,7 @@ public:
}
void unregister_rpcmem(Qnn_MemHandle_t mem_handle) {
Qnn_ErrorHandle_t error = _qnn_interface->qnn_mem_de_register(&mem_handle, 1);
auto error = _qnn_interface->qnn_mem_de_register(&mem_handle, 1);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to unregister shared memory, error %d", QNN_GET_ERROR_CODE(error));
}
@ -686,163 +409,15 @@ public:
const qnn::qcom_socinfo &get_soc_info() { return _soc_info; }
private:
int load_system() {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
std::string system_lib_path = _lib_path + "libQnnSystem.so";
QNN_LOG_DEBUG("system_lib_path:%s", system_lib_path.c_str());
auto system_lib_handle = dl_load(system_lib_path);
if (!system_lib_handle) {
QNN_LOG_WARN("can not load QNN library %s, error: %s", system_lib_path.c_str(), dl_error());
return 1;
}
auto *get_providers = dl_sym_typed<qnn::pfn_qnnsysteminterface_getproviders *>(
system_lib_handle, "QnnSystemInterface_getProviders");
if (!get_providers) {
QNN_LOG_WARN("can not load QNN symbol QnnSystemInterface_getProviders: %s", dl_error());
return 2;
}
uint32_t num_providers = 0;
const QnnSystemInterface_t **provider_list = nullptr;
error = get_providers(&provider_list, &num_providers);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to get providers, error %d", QNN_GET_ERROR_CODE(error));
return 3;
}
if (num_providers != _required_num_providers) {
QNN_LOG_WARN("providers is %d instead of required %d", num_providers, _required_num_providers);
return 4;
}
if (!provider_list) {
QNN_LOG_WARN("can not get providers");
return 5;
}
QNN_SYSTEM_INTERFACE_VER_TYPE qnn_system_interface;
bool found_valid_system_interface = false;
for (size_t idx = 0; idx < num_providers; idx++) {
if (QNN_SYSTEM_API_VERSION_MAJOR == provider_list[idx]->systemApiVersion.major &&
QNN_SYSTEM_API_VERSION_MINOR <= provider_list[idx]->systemApiVersion.minor) {
found_valid_system_interface = true;
qnn_system_interface = provider_list[idx]->QNN_SYSTEM_INTERFACE_VER_NAME;
break;
}
}
if (!found_valid_system_interface) {
QNN_LOG_WARN("unable to find a valid qnn system interface");
return 6;
} else {
QNN_LOG_DEBUG("find a valid qnn system interface");
}
auto qnn_sys_interface = std::make_shared<qnn::qnn_system_interface>(*provider_list[0], system_lib_handle);
if (!qnn_sys_interface->is_valid()) {
QNN_LOG_WARN("failed to create QNN system interface");
return 7;
}
_qnn_sys_interface = qnn_sys_interface;
return 0;
}
int load_backend(std::string &lib_path, const QnnSaver_Config_t ** /*saver_config*/) {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
QNN_LOG_DEBUG("lib_path:%s", lib_path.c_str());
auto lib_handle = dl_load(lib_path.c_str());
if (!lib_handle) {
QNN_LOG_WARN("can not open QNN library %s, with error: %s", lib_path.c_str(), dl_error());
return 1;
}
auto get_providers =
qnn::dl_sym_typed<qnn::pfn_qnninterface_getproviders *>(lib_handle, "QnnInterface_getProviders");
if (!get_providers) {
QNN_LOG_WARN("can not load symbol QnnInterface_getProviders : %s", dl_error());
return 2;
}
std::uint32_t num_providers = 0;
const QnnInterface_t **provider_list = nullptr;
error = get_providers(&provider_list, &num_providers);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to get providers, error %d", QNN_GET_ERROR_CODE(error));
return 3;
}
QNN_LOG_DEBUG("num_providers=%d", num_providers);
if (num_providers != _required_num_providers) {
QNN_LOG_WARN("providers is %d instead of required %d", num_providers, _required_num_providers);
return 4;
}
if (!provider_list) {
QNN_LOG_WARN("failed to get qnn interface providers");
return 5;
}
bool found_valid_interface = false;
QNN_INTERFACE_VER_TYPE qnn_interface;
for (size_t idx = 0; idx < num_providers; idx++) {
if (QNN_API_VERSION_MAJOR == provider_list[idx]->apiVersion.coreApiVersion.major &&
QNN_API_VERSION_MINOR <= provider_list[idx]->apiVersion.coreApiVersion.minor) {
found_valid_interface = true;
qnn_interface = provider_list[idx]->QNN_INTERFACE_VER_NAME;
break;
}
}
if (!found_valid_interface) {
QNN_LOG_WARN("unable to find a valid qnn interface");
return 6;
} else {
QNN_LOG_DEBUG("find a valid qnn interface");
}
BackendIdType backend_id = provider_list[0]->backendId;
_lib_path_to_backend_id[lib_path] = backend_id;
if (_loaded_backend.count(backend_id) > 0) {
QNN_LOG_WARN("lib_path %s is loaded, but backend %d already exists", lib_path.c_str(), backend_id);
}
_loaded_backend[backend_id] = provider_list[0];
if (_loaded_lib_handle.count(backend_id) > 0) {
QNN_LOG_WARN("closing %p", _loaded_lib_handle[backend_id]);
int dlclose_error = dl_unload(_loaded_lib_handle[backend_id]);
if (dlclose_error != 0) {
QNN_LOG_WARN("fail to close %p with error %s", _loaded_lib_handle[backend_id], dl_error());
}
}
_loaded_lib_handle[backend_id] = lib_handle;
_backend_id = backend_id;
return 0;
}
int unload_backend() {
int dlclose_error = 0;
for (auto &it : _loaded_lib_handle) {
dlclose_error = dl_unload(it.second);
if (dlclose_error != 0) {
QNN_LOG_WARN("failed to close QNN backend %d, error %s", it.first, dl_error());
}
}
_loaded_lib_handle.clear();
_lib_path_to_backend_id.clear();
_loaded_backend.clear();
return 0;
}
int load_system();
int load_backend(std::string &lib_path, const QnnSaver_Config_t ** /*saver_config*/);
int unload_backend();
private:
static constexpr const int _required_num_providers = 1;
std::string _lib_path;
std::string _backend_name;
std::string _model_name; // Qualcomm's dedicated prebuilt model name, keep it for further usage
std::string _additional_lib_load_path;
std::string _backend_lib_name;
BackendIdType _backend_id;
QnnLog_Level_t _qnn_log_level = QNN_LOG_LEVEL_DEBUG;
@ -874,17 +449,17 @@ private:
std::unordered_map<void *, Qnn_MemHandle_t> _qnn_rpc_buffer_to_handles;
std::mutex _init_mutex;
std::unordered_map<BackendIdType, void *> _loaded_lib_handle;
std::unordered_map<BackendIdType, dl_handler_t> _loaded_lib_handle;
std::unordered_map<std::string, BackendIdType> _lib_path_to_backend_id;
std::unordered_map<BackendIdType, const QnnInterface_t *> _loaded_backend;
dl_handler_t _rpc_lib_handle = nullptr;
std::atomic_bool _rpcmem_initialized{false};
qnn::pfn_rpc_mem_alloc _pfn_rpc_mem_alloc;
qnn::pfn_rpc_mem_free _pfn_rpc_mem_free;
qnn::pfn_rpc_mem_to_fd _pfn_rpc_mem_to_fd;
qnn::pfn_rpc_mem_init _pfn_rpc_mem_init;
qnn::pfn_rpc_mem_deinit _pfn_rpc_mem_deinit;
qnn::pfn_rpc_mem_alloc _pfn_rpc_mem_alloc = nullptr;
qnn::pfn_rpc_mem_free _pfn_rpc_mem_free = nullptr;
qnn::pfn_rpc_mem_to_fd _pfn_rpc_mem_to_fd = nullptr;
qnn::pfn_rpc_mem_init _pfn_rpc_mem_init = nullptr;
qnn::pfn_rpc_mem_deinit _pfn_rpc_mem_deinit = nullptr;
std::unordered_map<void *, void *> _rpcmem_store_map;
size_t _rpcmem_capacity = 512;

View File

@ -59,7 +59,7 @@ public:
return true;
}
can_unbind = false;
_can_unbind = false;
return false;
}
@ -68,7 +68,7 @@ public:
return true;
}
can_unbind = false;
_can_unbind = false;
return false;
}
@ -93,7 +93,7 @@ public:
}
bool bind_ggml_tensor(ggml_tensor *tensor) {
if (!can_unbind) {
if (!_can_unbind) {
QNN_LOG_DEBUG("[%s]already has buffer storage, skip bind", _tensor_name.c_str());
return true;
}
@ -137,7 +137,7 @@ public:
return false;
}
if (!can_unbind) {
if (!_can_unbind) {
QNN_LOG_DEBUG("[%s]already has buffer storage, stop unbind", _tensor_name.c_str());
return true;
}
@ -294,11 +294,14 @@ private:
new_tensor_type);
}
bool should_use_mem_handle() const { return false; }
bool should_use_mem_handle() const {
// TODO: figure out how to set rpc mem to multiple tensor
return false;
}
std::string _tensor_name;
qnn_buffer_ptr _buffer;
bool can_unbind = true;
bool _can_unbind = true;
QNNBackend _device;
std::shared_ptr<qnn_instance> _qnn_instance;
Qnn_Tensor_t _qnn_tensor = qnn_tensor_init(kDefaultQnnTensorVersion);

View File

@ -1,8 +1,6 @@
#include "utils.hpp"
#include <unistd.h>
#include <cstdlib>
#include "ggml-qnn.h"
@ -10,11 +8,23 @@
#include "QnnGraph.h"
#include "qnn-types.hpp"
#ifdef __linux__
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/sysinfo.h>
#include <unistd.h>
#endif
namespace {
template <typename _Ty>
_Ty align_to_generic(size_t alignment, _Ty offset) {
return offset % alignment == 0 ? offset
: offset + (static_cast<_Ty>(alignment) - (offset % static_cast<_Ty>(alignment)));
}
} // namespace
namespace qnn {
qnn_dimension_array_t get_internal_dimension(const ggml_dimension_array_t &dims, uint32_t rank) {
@ -33,7 +43,7 @@ qnn_dimension_array_t get_internal_dimension(const ggml_dimension_array_t &dims,
* The ggml tensor will have dimensions [3, 2], while the qnn tensor will have dimensions [2, 3].
*/
for (uint32_t i = 0; i < rank; i++) {
internal_dims[i] = std::max<uint32_t>(dims[rank - 1 - i], 1);
internal_dims[i] = std::max<uint32_t>((uint32_t)dims[rank - 1 - i], 1);
}
return internal_dims;
@ -219,37 +229,41 @@ const char *get_htparch_desc(size_t htp_arch) {
}
}
intptr_t align_to(size_t alignment, intptr_t offset) {
return offset % alignment == 0
? offset
: offset + (static_cast<intptr_t>(alignment) - (offset % static_cast<intptr_t>(alignment)));
intptr_t align_to(size_t alignment, intptr_t offset) { return align_to_generic<intptr_t>(alignment, offset); }
uint32_t get_ggml_tensor_data_size(const ggml_tensor *tensor) { return (uint32_t)ggml_nbytes(tensor); }
#ifdef _WIN32
static void *_align_alloc(size_t alignment, size_t size) { return _aligned_malloc(size, alignment); }
static size_t _get_page_size() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return si.dwPageSize;
}
uint32_t get_ggml_tensor_data_size(const ggml_tensor *tensor) { return ggml_nbytes(tensor); }
void align_free(void *ptr) { _aligned_free(ptr); }
#else
static void *_align_alloc(size_t alignment, size_t size) { return std::aligned_alloc(alignment, size); }
static size_t _get_page_size() { return sysconf(_SC_PAGESIZE); }
void align_free(void *ptr) { std::free(ptr); }
#endif
void *page_align_alloc(size_t size) {
// TODO: fix this for other platforms
const size_t alignment = sysconf(_SC_PAGESIZE);
return align_alloc(alignment, size);
}
void *align_alloc(size_t alignment, size_t size) {
size_t size_aligned = size;
if ((size_aligned % alignment) != 0) {
size_aligned += (alignment - (size_aligned % alignment));
}
void *data = std::aligned_alloc(alignment, size_aligned);
const size_t alignment = _get_page_size();
size_t size_aligned = align_to_generic<size_t>(alignment, size);
QNN_LOG_DEBUG("_align_alloc success, alignment: %ld, size: %ld, size_aligned: %ld", alignment, size, size_aligned);
void *data = _align_alloc(alignment, size_aligned);
if (!data) {
QNN_LOG_WARN("aligned_alloc failed\n");
QNN_LOG_WARN("_align_alloc failed, alignment: %ld, size: %ld, size_aligned: %ld", alignment, size, size_aligned);
return nullptr;
}
return data;
}
void align_free(void *ptr) { std::free(ptr); }
// =================================================================================================
//
// QNN backend internal helper functions
@ -359,7 +373,29 @@ const char *get_qnn_error_string(Qnn_ErrorHandle_t error) {
}
}
#ifdef __linux__
#ifdef _WIN32
size_t get_system_total_memory_in_bytes() {
MEMORYSTATUSEX mem = {};
mem.dwLength = sizeof(mem);
if (GlobalMemoryStatusEx(&mem)) {
return mem.ullTotalPhys;
}
return 0;
}
size_t get_system_free_memory_in_bytes() {
MEMORYSTATUSEX mem = {};
mem.dwLength = sizeof(mem);
if (GlobalMemoryStatusEx(&mem)) {
return mem.ullAvailPhys;
}
return 0;
}
#else
size_t get_system_total_memory_in_bytes() {
struct sysinfo info = {};

View File

@ -1,12 +1,8 @@
#pragma once
#include <dlfcn.h>
#include <fcntl.h>
#include <inttypes.h>
#include <stddef.h>
#include <stdint.h>
#include <array>
#include <cstddef>
#include <cstdint>
#include <string>
#include "ggml.h"
@ -36,7 +32,6 @@ intptr_t align_to(size_t alignment, intptr_t offset);
uint32_t get_ggml_tensor_data_size(const ggml_tensor *tensor);
void *page_align_alloc(size_t size);
void *align_alloc(size_t alignment, size_t size);
void align_free(void *ptr);
const char *opname_from_ggmlop(enum ggml_op ggmlop);