Add tensor type and depth heuristics

This commit is contained in:
Ed Addario 2025-10-16 11:20:24 +01:00
parent b7911f1431
commit a6853ea2ae
No known key found for this signature in database
GPG Key ID: E7875815A3230993
1 changed files with 83 additions and 11 deletions

View File

@ -16,6 +16,7 @@
#include <thread>
#include <unordered_map>
#include <optional>
#include <unordered_set>
// Quantization types. Changes to this struct must be replicated in quantize.cpp
struct tensor_quantization {
@ -685,13 +686,6 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
GGML_TYPE_F16
};
const char * important_tensors[] = {
".output.weight",
".attn_output.weight",
".ffn_down.weight",
".ffn_down_shexp.weight"
};
constexpr double epsilon = 1e-12;
constexpr double infinity = std::numeric_limits<double>::infinity();
constexpr uint32_t file_magic = 0x42505731; // BPW1
@ -1544,11 +1538,89 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
return emit_overrides();
}
auto is_important = [&](const std::string & tensor_name) -> bool {
return std::any_of(std::begin(important_tensors), std::end(important_tensors), [&](const char* imp) {
return tensor_name.find(imp) != std::string::npos;
auto tensor_importance = [&](const std::vector<tensor_info> & all_vec) -> std::unordered_map<std::string, float> {
std::unordered_map<std::string, float> scores;
for (const auto & ti : all_vec) {
const std::string name = ggml_get_name(ti.w->tensor);
float total_score = 0.0f;
float depth_score = 0.0f;
float type_score = 0.0f;
// Depth component: output, embeddings & early/late layers are important
if (name.find("output.weight") != std::string::npos ||
name.find("token_embd.weight") != std::string::npos) {
depth_score = 1.0f;
}
);
else if (name.find(".attn_output.weight") != std::string::npos) {
depth_score = 0.9f;
} else {
static const std::regex layer_pattern(R"(blk\.(\d+)\.)");
std::smatch match;
if (std::regex_search(name, match, layer_pattern)) {
const int layer = std::stoi(match[1]);
const float normalized_layer = (float)layer / (float)std::max(1, (int)model.hparams.n_layer - 1);
const float center_dist = std::abs(normalized_layer - 0.5f) * 2.0f;
depth_score = 0.2f + 0.6f * center_dist;
}
}
// Type component: certain tensor types are more important
if (name.find("output.weight") != std::string::npos) {
type_score = 1.0f;
} else if (name.find(".attn_output.weight") != std::string::npos) {
type_score = 0.9f;
} else if (name.find(".ffn_down.weight") != std::string::npos ||
name.find(".ffn_down_shexp.weight") != std::string::npos ||
name.find(".ffn_down_exps.weight") != std::string::npos) {
type_score = 0.8f;
} else if (name.find(".attn_q.weight") != std::string::npos ||
name.find(".attn_k.weight") != std::string::npos ||
name.find(".attn_v.weight") != std::string::npos ||
name.find(".attn_qkv.weight") != std::string::npos) {
type_score = 0.7f;
} else if (name.find(".ffn_up.weight") != std::string::npos ||
name.find(".ffn_gate.weight") != std::string::npos ||
name.find(".ffn_up_shexp.weight") != std::string::npos ||
name.find(".ffn_gate_shexp.weight") != std::string::npos ||
name.find(".ffn_up_exps.weight") != std::string::npos ||
name.find(".ffn_gate_exps.weight") != std::string::npos) {
type_score = 0.6f;
} else if (name.find("token_embd.weight") != std::string::npos) {
type_score = 0.5f;
}
// Weighted combination
total_score = 0.80f * type_score + 0.20f * depth_score; // 80% type + 20% depth
scores[name] = total_score;
}
return scores;
};
auto select_tensors = [&](const std::vector<tensor_info> & all_vec) -> std::unordered_set<std::string> {
const auto scores = tensor_importance(all_vec);
// Sort by score
std::vector<std::pair<std::string, float>> sorted_scores(scores.begin(), scores.end());
std::sort(sorted_scores.begin(), sorted_scores.end(), [](const auto & a, const auto & b) { return a.second > b.second; });
// Select top percentile
const size_t n_important = std::max<size_t>(1, std::llround((double)sorted_scores.size() * 0.25f)); // top 25%
std::unordered_set<std::string> important;
for (size_t i = 0; i < std::min(n_important, sorted_scores.size()); ++i) {
important.insert(sorted_scores[i].first);
//LLAMA_LOG_DEBUG("\t%s: important tensor %s (score %.4f)\n", func, sorted_scores[i].first.c_str(), sorted_scores[i].second);
}
LLAMA_LOG_INFO("%s: prioritizing %zu out off %zu tensors\n", func, important.size(), sorted_scores.size());
return important;
};
const auto important_set = select_tensors(all);
auto is_important = [&](const std::string & tensor_name) -> bool {
return important_set.count(tensor_name) > 0;
};
// Lagrangian relaxation to minimise error subject to a bpw target constraint