conv3D WIP: fixed a launch param bug, results now correct; performace 3x slower than im2col

This commit is contained in:
bssrdf 2025-11-02 12:33:19 -05:00
parent e802036eb5
commit a5b68bcea7
2 changed files with 23 additions and 21 deletions

View File

@ -1007,7 +1007,7 @@ static void conv3d_implicit_cuda(const float * X_D, const T * K_D, float * Y_D,
const uint TM = conv_shapes[6][CONV_SHAPE];
const uint TN = conv_shapes[7][CONV_SHAPE];
const uint NUM_THREADS = conv_shapes[8][CONV_SHAPE];
int blockx = ((P.Oh * P.Ow + BM - 1) / BM); // blockx number
int blockx = ((P.Od * P.Oh * P.Ow + BM - 1) / BM); // blockx number
int blocky = (P.k + BN-1) / BN; // blocky number
int blockz = P.n; // blockz number
int thready = 1; // thready number per block

View File

@ -241,7 +241,7 @@ struct ggml_cgraph * build_graph_1(const test_model& model, const int64_t ic, co
ic, n, oc);
ggml_set_name(wino_res, "wino_res");
ggml_build_forward_expand(gf, wino_res);
// ne = wino_res->ne;
// int64_t *ne = wino_res->ne;
// printf("wino: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
ggml_free(ctx0);
return gf;
@ -323,9 +323,13 @@ int main(void)
// std::make_tuple(960,320,104,152,3,3),
// std::make_tuple(1280,1280,26,38,3,3),
std::make_tuple(320,1280,26,38,8,3,3,3),
// std::make_tuple(1280,1280,26,38,8,3,3,3),
// std::make_tuple(320,1280,52,76,8,3,3,3),
// std::make_tuple(1280,1280,52,76,8,3,3,3),
std::make_tuple(1280,1280,26,38,8,3,3,3),
std::make_tuple(320,1280,52,76,8,3,3,3),
std::make_tuple(1280,1280,52,76,8,3,3,3),
std::make_tuple(320,1280,104,152,8,3,3,3),
std::make_tuple(1280,1280,104,152,8,3,3,3),
std::make_tuple(320,1280,208,304,4,3,3,3),
std::make_tuple(640,1280,208,304,4,3,3,3),
// std::make_tuple(1280,1280,26,38,1,1),
// std::make_tuple(256,128,768,1024,3,3),
// std::make_tuple(128,3,768,1024,3,3),
@ -393,29 +397,27 @@ int main(void)
if(k==0) {
k = 1;
fprintf(stderr, "| (IC, OC, IW, IH, KW, KH) | im2col+GEMM TIME | im2col+GEMM VRAM | implicit GEMM TIME | implicit GEMM VRAM \n");
fprintf(stderr, "| (IC, OC, IW, IH, ID, KW, KH, KD) | im2col+GEMM TIME | im2col+GEMM VRAM | implicit GEMM TIME | implicit GEMM VRAM \n");
fprintf(stderr, "| --- | --- | --- | --- | --- \n");
}
fprintf(stderr, " | (%d, %d, %d, %d, %d, %d) | %.2f ms | %.2f MB | %.2f ms | %.2f MB\n",
std::get<0>(c), std::get<1>(c), std::get<2>(c), std::get<3>(c), std::get<4>(c), std::get<5>(c),
fprintf(stderr, " | (%d, %d, %d, %d, %d, %d, %d, %d) | %.2f ms | %.2f MB | %.2f ms | %.2f MB\n",
std::get<0>(c), std::get<1>(c), std::get<2>(c),
std::get<3>(c), std::get<4>(c), std::get<5>(c),
std::get<6>(c), std::get<7>(c),
run_time0, mem_size0/1024.0f/1024.0f,
run_time1, mem_size1/1024.0f/1024.0f);
// for(int i = 0; i < ggml_nelements(wino_res); i++) {
// for(int i = 0; i < 26*38; i++) {
for(int i = 0; i < conv2d_data.size(); i++) {
// float diff = fabs(conv2d_data[i] - wino_data[i]);
float diff = fabs(im2col_data[i] - conv2d_data[i]);
// if(diff > 0.5) {
printf("(%7.3f, %7.3f, %.2f, %d) \n",
im2col_data[i], conv2d_data[i],
diff, i);
// break;
// }
}
// for(int i = 0; i < conv2d_data.size(); i++) {
// float diff = fabs(im2col_data[i] - conv2d_data[i]);
// // if(diff > 0.5) {
// printf("(%7.3f, %7.3f, %.2f, %d) \n",
// im2col_data[i], conv2d_data[i],
// diff, i);
// // break;
// // }
// }
ggml_free(model.ctx);
ggml_backend_buffer_free(model.buffer);