add vm types

This commit is contained in:
Xuan Son Nguyen 2025-12-27 12:12:07 +01:00
parent 15b7c50e95
commit a35fcb00b5
3 changed files with 637 additions and 226 deletions

View File

@ -0,0 +1,242 @@
#include "jinja-lexer.h"
#include <vector>
#include <string>
#include <map>
#include <regex>
#include <stdexcept>
#include <cctype>
#include <functional>
// #define JJ_DEBUG(msg, ...) printf("jinja-lexer: " msg "\n", __VA_ARGS__)
#define JJ_DEBUG(msg, ...) // no-op
namespace jinja {
std::string lexer::preprocess(const std::string & template_str, const preprocess_options & options) const {
std::string result = template_str;
// According to https://jinja.palletsprojects.com/en/3.0.x/templates/#whitespace-control
// In the default configuration:
// - a single trailing newline is stripped if present
// - other whitespace (spaces, tabs, newlines etc.) is returned unchanged
if (!result.empty() && result.back() == '\n') {
result.pop_back();
}
if (options.lstrip_blocks) {
// The lstrip_blocks option can also be set to strip tabs and spaces from the
// beginning of a line to the start of a block. (Nothing will be stripped if
// there are other characters before the start of the block.)
// result = std::regex_replace(result, std::regex(R"((?m)^[ \t]*(\{[#%-]))"), "$1");
throw std::runtime_error("lstrip_blocks option is not implemented yet");
}
if (options.trim_blocks) {
// If an application configures Jinja to trim_blocks, the first newline after
// a template tag is removed automatically (like in PHP).
result = std::regex_replace(result, std::regex(R"(([#%-]\})\n)"), "$1");
}
// Handle whitespace control with - in tags
result = std::regex_replace(result, std::regex(R"(-%\}\s*)"), "%}");
result = std::regex_replace(result, std::regex(R"(\s*\{%-)"), "{%");
result = std::regex_replace(result, std::regex(R"(-\}\}\s*)"), "}}");
result = std::regex_replace(result, std::regex(R"(\s*\{\{-)"), "{{");
result = std::regex_replace(result, std::regex(R"(-#\}\s*)"), "#}");
result = std::regex_replace(result, std::regex(R"(\s*\{\#-)"), "{#");
// Handle custom transformers-specific `generation` tag
// See https://github.com/huggingface/transformers/pull/30650 for more information.
// result = std::regex_replace(result, std::regex(R"((?s)\{%\s*generation\s*%\}.+?\{%\s*endgeneration\s*%\})"), "");
return result;
}
std::vector<token> lexer::tokenize(const std::string & input, const preprocess_options & options) {
std::vector<token> tokens;
std::string src = preprocess(input, options);
JJ_DEBUG("preprocessed input: '%s'", src.c_str());
size_t pos = 0;
size_t curly_bracket_depth = 0;
using pred = std::function<bool(char)>;
auto consume_while = [&](pred predicate) -> std::string {
std::string str;
while (predicate(src[pos])) {
// check for escape char
if (src[pos] == '\\') {
// consume backslash
++pos;
// check for end of input
if (pos >= src.size()) {
throw std::runtime_error("lexer: unexpected end of input after escape character");
}
// add escaped char
char escaped_char = src[pos++];
if (escape_chars.find(escaped_char) == escape_chars.end()) {
throw std::runtime_error(std::string("lexer: unknown escape character \\") + escaped_char);
}
char unescaped_char = escape_chars.at(escaped_char);
str += unescaped_char;
continue;
}
str += src[pos++];
if (pos > src.size()) {
throw std::runtime_error("lexer: unexpected end of input during consume_while");
}
}
return str;
};
auto next_pos_is = [&](std::initializer_list<char> chars) -> bool {
if (pos + 1 >= src.size()) return false;
for (char c : chars) {
if (src[pos + 1] == c) return true;
}
return false;
};
while (pos < src.size()) {
JJ_DEBUG("lexer main loop at pos %zu: '%s...'", pos, src.substr(pos, 10).c_str());
// First, consume all text that is outside of a Jinja statement or expression
token::type last_token_type = tokens.empty()
? token::undefined
: tokens.back().t;
if (last_token_type == token::undefined ||
last_token_type == token::close_statement ||
last_token_type == token::close_expression ||
last_token_type == token::comment) {
std::string text;
while (pos < src.size() &&
// Keep going until we hit the next Jinja statement or expression
!(
src[pos] == '{' &&
next_pos_is( {'%', '{', '#'} )
)) {
text += src[pos++];
}
JJ_DEBUG("consumed text: '%s'", text.c_str());
if (!text.empty()) {
tokens.push_back({token::text, text});
continue;
}
}
// Possibly consume a comment
if (src[pos] == '{' && next_pos_is( {'#'} )) {
pos += 2; // Skip the opening {#
std::string comment;
while (!(src[pos] == '#' && next_pos_is( {'}'} ))) {
if (pos + 2 >= src.size()) {
throw std::runtime_error("lexer: missing end of comment tag");
}
comment += src[pos++];
}
JJ_DEBUG("consumed comment: '%s'", comment.c_str());
tokens.push_back({token::comment, comment});
pos += 2; // Skip the closing #}
continue;
}
// Consume (and ignore) all whitespace inside Jinja statements or expressions
consume_while([](char c) { return std::isspace(static_cast<unsigned char>(c)); });
if (pos >= src.size()) break;
char ch = src[pos];
// Check for unary operators
if (ch == '-' || ch == '+') {
token::type last_token_type = tokens.empty() ? token::undefined : tokens.back().t;
if (last_token_type == token::text || last_token_type == token::undefined) {
throw std::runtime_error(std::string("lexer: unexpected character: ") + ch);
}
switch (last_token_type) {
case token::identifier:
case token::numeric_literal:
case token::string_literal:
case token::close_paren:
case token::close_square_bracket:
// Part of a binary operator
// a - 1, 1 - 1, true - 1, "apple" - 1, (1) - 1, a[1] - 1
// Continue parsing normally
break;
default: {
// Is part of a unary operator
// (-1), [-1], (1 + -1), not -1, -apple
++pos; // Consume the operator
// Check for numbers following the unary operator
std::string num = consume_while(is_integer);
std::string value = std::string(1, ch) + num;
token::type t = num.empty() ? token::unary_operator : token::numeric_literal;
JJ_DEBUG("consumed unary operator or numeric literal: '%s'", value.c_str());
tokens.push_back({t, value});
continue;
}
}
}
// Try to match one of the tokens in the mapping table
bool matched = false;
for (const auto & [seq, typ] : ordered_mapping_table) {
// Inside an object literal, don't treat "}}" as expression-end
if (seq == "}}" && curly_bracket_depth > 0) {
continue;
}
if (pos + seq.size() <= src.size() && src.substr(pos, seq.size()) == seq) {
tokens.push_back({typ, seq});
if (typ == token::open_expression) {
curly_bracket_depth = 0;
} else if (typ == token::open_curly_bracket) {
++curly_bracket_depth;
} else if (typ == token::close_curly_bracket) {
--curly_bracket_depth;
}
pos += seq.size();
matched = true;
break; // continue main loop
}
}
if (matched) continue; // continue main loop
// Strings
if (ch == '\'' || ch == '"') {
++pos; // Skip opening quote
std::string str = consume_while([ch](char c) { return c != ch; });
tokens.push_back({token::string_literal, str});
++pos; // Skip closing quote
continue;
}
// Numbers
if (is_integer(ch)) {
std::string num = consume_while(is_integer);
if (pos < src.size() && src[pos] == '.' && pos + 1 < src.size() && is_integer(src[pos + 1])) {
++pos; // Consume '.'
std::string frac = consume_while(is_integer);
num += "." + frac;
}
tokens.push_back({token::numeric_literal, num});
continue;
}
// Identifiers
if (is_word(ch)) {
std::string word = consume_while(is_word);
tokens.push_back({token::identifier, word});
continue;
}
throw std::runtime_error(std::string("lexer: unexpected character: ") + ch);
}
return tokens;
}
} // namespace jinja

View File

@ -6,9 +6,6 @@
#include <cctype>
#include <functional>
// #define JJ_DEBUG(msg, ...) printf("jinja-lexer: " msg "\n", __VA_ARGS__)
#define JJ_DEBUG(msg, ...) // no-op
namespace jinja {
struct preprocess_options {
@ -107,230 +104,9 @@ struct lexer {
{"=", token::equals},
};
std::string preprocess(const std::string& template_str, const preprocess_options& options) const {
std::string result = template_str;
// According to https://jinja.palletsprojects.com/en/3.0.x/templates/#whitespace-control
std::string preprocess(const std::string& template_str, const preprocess_options& options) const;
// In the default configuration:
// - a single trailing newline is stripped if present
// - other whitespace (spaces, tabs, newlines etc.) is returned unchanged
if (!result.empty() && result.back() == '\n') {
result.pop_back();
}
if (options.lstrip_blocks) {
// The lstrip_blocks option can also be set to strip tabs and spaces from the
// beginning of a line to the start of a block. (Nothing will be stripped if
// there are other characters before the start of the block.)
// result = std::regex_replace(result, std::regex(R"((?m)^[ \t]*(\{[#%-]))"), "$1");
throw std::runtime_error("lstrip_blocks option is not implemented yet");
}
if (options.trim_blocks) {
// If an application configures Jinja to trim_blocks, the first newline after
// a template tag is removed automatically (like in PHP).
result = std::regex_replace(result, std::regex(R"(([#%-]\})\n)"), "$1");
}
// Handle whitespace control with - in tags
result = std::regex_replace(result, std::regex(R"(-%\}\s*)"), "%}");
result = std::regex_replace(result, std::regex(R"(\s*\{%-)"), "{%");
result = std::regex_replace(result, std::regex(R"(-\}\}\s*)"), "}}");
result = std::regex_replace(result, std::regex(R"(\s*\{\{-)"), "{{");
result = std::regex_replace(result, std::regex(R"(-#\}\s*)"), "#}");
result = std::regex_replace(result, std::regex(R"(\s*\{\#-)"), "{#");
// Handle custom transformers-specific `generation` tag
// See https://github.com/huggingface/transformers/pull/30650 for more information.
// result = std::regex_replace(result, std::regex(R"((?s)\{%\s*generation\s*%\}.+?\{%\s*endgeneration\s*%\})"), "");
return result;
}
std::vector<token> tokenize(const std::string & input, const preprocess_options & options = {}) {
std::vector<token> tokens;
std::string src = preprocess(input, options);
JJ_DEBUG("preprocessed input: '%s'", src.c_str());
size_t pos = 0;
size_t curly_bracket_depth = 0;
using pred = std::function<bool(char)>;
auto consume_while = [&](pred predicate) -> std::string {
std::string str;
while (predicate(src[pos])) {
// check for escape char
if (src[pos] == '\\') {
// consume backslash
++pos;
// check for end of input
if (pos >= src.size()) {
throw std::runtime_error("lexer: unexpected end of input after escape character");
}
// add escaped char
char escaped_char = src[pos++];
if (escape_chars.find(escaped_char) == escape_chars.end()) {
throw std::runtime_error(std::string("lexer: unknown escape character \\") + escaped_char);
}
char unescaped_char = escape_chars.at(escaped_char);
str += unescaped_char;
continue;
}
str += src[pos++];
if (pos > src.size()) {
throw std::runtime_error("lexer: unexpected end of input during consume_while");
}
}
return str;
};
auto next_pos_is = [&](std::initializer_list<char> chars) -> bool {
if (pos + 1 >= src.size()) return false;
for (char c : chars) {
if (src[pos + 1] == c) return true;
}
return false;
};
while (pos < src.size()) {
JJ_DEBUG("lexer main loop at pos %zu: '%s...'", pos, src.substr(pos, 10).c_str());
// First, consume all text that is outside of a Jinja statement or expression
token::type last_token_type = tokens.empty()
? token::undefined
: tokens.back().t;
if (last_token_type == token::undefined ||
last_token_type == token::close_statement ||
last_token_type == token::close_expression ||
last_token_type == token::comment) {
std::string text;
while (pos < src.size() &&
// Keep going until we hit the next Jinja statement or expression
!(
src[pos] == '{' &&
next_pos_is( {'%', '{', '#'} )
)) {
text += src[pos++];
}
JJ_DEBUG("consumed text: '%s'", text.c_str());
if (!text.empty()) {
tokens.push_back({token::text, text});
continue;
}
}
// Possibly consume a comment
if (src[pos] == '{' && next_pos_is( {'#'} )) {
pos += 2; // Skip the opening {#
std::string comment;
while (!(src[pos] == '#' && next_pos_is( {'}'} ))) {
if (pos + 2 >= src.size()) {
throw std::runtime_error("lexer: missing end of comment tag");
}
comment += src[pos++];
}
JJ_DEBUG("consumed comment: '%s'", comment.c_str());
tokens.push_back({token::comment, comment});
pos += 2; // Skip the closing #}
continue;
}
// Consume (and ignore) all whitespace inside Jinja statements or expressions
consume_while([](char c) { return std::isspace(static_cast<unsigned char>(c)); });
if (pos >= src.size()) break;
char ch = src[pos];
// Check for unary operators
if (ch == '-' || ch == '+') {
token::type last_token_type = tokens.empty() ? token::undefined : tokens.back().t;
if (last_token_type == token::text || last_token_type == token::undefined) {
throw std::runtime_error(std::string("lexer: unexpected character: ") + ch);
}
switch (last_token_type) {
case token::identifier:
case token::numeric_literal:
case token::string_literal:
case token::close_paren:
case token::close_square_bracket:
// Part of a binary operator
// a - 1, 1 - 1, true - 1, "apple" - 1, (1) - 1, a[1] - 1
// Continue parsing normally
break;
default: {
// Is part of a unary operator
// (-1), [-1], (1 + -1), not -1, -apple
++pos; // Consume the operator
// Check for numbers following the unary operator
std::string num = consume_while(is_integer);
std::string value = std::string(1, ch) + num;
token::type t = num.empty() ? token::unary_operator : token::numeric_literal;
JJ_DEBUG("consumed unary operator or numeric literal: '%s'", value.c_str());
tokens.push_back({t, value});
continue;
}
}
}
// Try to match one of the tokens in the mapping table
bool matched = false;
for (const auto & [seq, typ] : ordered_mapping_table) {
// Inside an object literal, don't treat "}}" as expression-end
if (seq == "}}" && curly_bracket_depth > 0) {
continue;
}
if (pos + seq.size() <= src.size() && src.substr(pos, seq.size()) == seq) {
tokens.push_back({typ, seq});
if (typ == token::open_expression) {
curly_bracket_depth = 0;
} else if (typ == token::open_curly_bracket) {
++curly_bracket_depth;
} else if (typ == token::close_curly_bracket) {
--curly_bracket_depth;
}
pos += seq.size();
matched = true;
break; // continue main loop
}
}
if (matched) continue; // continue main loop
// Strings
if (ch == '\'' || ch == '"') {
++pos; // Skip opening quote
std::string str = consume_while([ch](char c) { return c != ch; });
tokens.push_back({token::string_literal, str});
++pos; // Skip closing quote
continue;
}
// Numbers
if (is_integer(ch)) {
std::string num = consume_while(is_integer);
if (pos < src.size() && src[pos] == '.' && pos + 1 < src.size() && is_integer(src[pos + 1])) {
++pos; // Consume '.'
std::string frac = consume_while(is_integer);
num += "." + frac;
}
tokens.push_back({token::numeric_literal, num});
continue;
}
// Identifiers
if (is_word(ch)) {
std::string word = consume_while(is_word);
tokens.push_back({token::identifier, word});
continue;
}
throw std::runtime_error(std::string("lexer: unexpected character: ") + ch);
}
return tokens;
}
std::vector<token> tokenize(const std::string & input, const preprocess_options & options);
};
} // namespace jinja

393
common/jinja/jinja-vm.h Normal file
View File

@ -0,0 +1,393 @@
#include "jinja-lexer.h"
#include <string>
#include <vector>
#include <cassert>
#include <memory>
namespace jinja {
struct context {
// TODO
};
/**
* Base class for all nodes in the AST.
*/
struct statement {
virtual ~statement() = default;
virtual std::string type() const { return "Statement"; }
virtual void execute(context & ctx) = 0;
};
using statement_ptr = std::unique_ptr<statement>;
using statements = std::vector<statement_ptr>;
// Type Checking Utilities
template<typename T>
static void chk_type(const statement_ptr & ptr) {
if (!ptr) return; // Allow null for optional fields
assert(dynamic_cast<T *>(ptr.get()) != nullptr);
}
template<typename T, typename U>
static void chk_type(const statement_ptr & ptr) {
if (!ptr) return;
assert(dynamic_cast<T *>(ptr.get()) != nullptr || dynamic_cast<U *>(ptr.get()) != nullptr);
}
// Base Types
/**
* Expressions will result in a value at runtime (unlike statements).
*/
struct expression : public statement {
std::string type() const override { return "Expression"; }
void execute(context & ctx) override {}
};
// Statements
struct program : public statement {
statements body;
explicit program(statements && body) : body(std::move(body)) {}
std::string type() const override { return "Program"; }
void execute(context & ctx) override {}
};
struct if_statement : public statement {
statement_ptr test;
statements body;
statements alternate;
if_statement(statement_ptr && test, statements && body, statements && alternate)
: test(std::move(test)), body(std::move(body)), alternate(std::move(alternate)) {
chk_type<expression>(this->test);
}
std::string type() const override { return "If"; }
void execute(context & ctx) override {}
};
struct identifier;
struct tuple_literal;
/**
* Loop over each item in a sequence
* https://jinja.palletsprojects.com/en/3.0.x/templates/#for
*/
struct for_statement : public statement {
statement_ptr loopvar; // Identifier | TupleLiteral
statement_ptr iterable;
statements body;
statements default_block; // if no iteration took place
for_statement(statement_ptr && loopvar, statement_ptr && iterable, statements && body, statements && default_block)
: loopvar(std::move(loopvar)), iterable(std::move(iterable)),
body(std::move(body)), default_block(std::move(default_block)) {
chk_type<identifier, tuple_literal>(this->loopvar);
chk_type<expression>(this->iterable);
}
std::string type() const override { return "For"; }
void execute(context & ctx) override {}
};
struct break_statement : public statement {
std::string type() const override { return "Break"; }
void execute(context & ctx) override {}
};
struct continue_statement : public statement {
std::string type() const override { return "Continue"; }
void execute(context & ctx) override {}
};
struct set_statement : public statement {
statement_ptr assignee;
statement_ptr value;
statements body;
set_statement(statement_ptr && assignee, statement_ptr && value, statements && body)
: assignee(std::move(assignee)), value(std::move(value)), body(std::move(body)) {
chk_type<expression>(this->assignee);
chk_type<expression>(this->value);
}
std::string type() const override { return "Set"; }
void execute(context & ctx) override {}
};
struct macro_statement : public statement {
statement_ptr name;
statements args;
statements body;
macro_statement(statement_ptr && name, statements && args, statements && body)
: name(std::move(name)), args(std::move(args)), body(std::move(body)) {
chk_type<identifier>(this->name);
for (const auto& arg : this->args) chk_type<expression>(arg);
}
std::string type() const override { return "Macro"; }
void execute(context & ctx) override {}
};
struct comment_statement : public statement {
std::string value;
explicit comment_statement(const std::string & value) : value(value) {}
std::string type() const override { return "Comment"; }
void execute(context & ctx) override {}
};
// Expressions
struct member_expression : public expression {
statement_ptr object;
statement_ptr property;
bool computed;
member_expression(statement_ptr && object, statement_ptr && property, bool computed)
: object(std::move(object)), property(std::move(property)), computed(computed) {
chk_type<expression>(this->object);
chk_type<expression>(this->property);
}
std::string type() const override { return "MemberExpression"; }
};
struct call_expression : public expression {
statement_ptr callee;
statements args;
call_expression(statement_ptr && callee, statements && args)
: callee(std::move(callee)), args(std::move(args)) {
chk_type<expression>(this->callee);
for (const auto& arg : this->args) chk_type<expression>(arg);
}
std::string type() const override { return "CallExpression"; }
};
/**
* Represents a user-defined variable or symbol in the template.
*/
struct identifier : public expression {
std::string value;
explicit identifier(const std::string & value) : value(value) {}
std::string type() const override { return "Identifier"; }
};
// Literals
/**
* Abstract base class for all Literal expressions.
* Should not be instantiated directly.
*/
template <typename T>
struct literal : public expression {
T value;
explicit literal(T && value) : value(std::move(value)) {}
std::string type() const override { return "Literal"; }
};
struct integer_literal : public literal<int64_t> {
std::string type() const override { return "IntegerLiteral"; }
};
struct float_literal : public literal<double> {
std::string type() const override { return "FloatLiteral"; }
};
struct string_literal : public literal<std::string> {
std::string type() const override { return "StringLiteral"; }
};
struct array_literal : public expression {
statements value;
explicit array_literal(statements && value) : value(std::move(value)) {
for (const auto& item : this->value) chk_type<expression>(item);
}
std::string type() const override { return "ArrayLiteral"; }
};
struct tuple_literal : public expression {
statements value;
explicit tuple_literal(statements && value) : value(std::move(value)) {
for (const auto& item : this->value) chk_type<expression>(item);
}
std::string type() const override { return "TupleLiteral"; }
};
struct object_literal : public expression {
std::vector<std::pair<statement_ptr, statement_ptr>> value;
explicit object_literal(std::vector<std::pair<statement_ptr, statement_ptr>> && value)
: value(std::move(value)) {
for (const auto & pair : this->value) {
chk_type<expression>(pair.first);
chk_type<expression>(pair.second);
}
}
std::string type() const override { return "ObjectLiteral"; }
};
// Complex Expressions
/**
* An operation with two sides, separated by an operator.
* Note: Either side can be a Complex Expression, with order
* of operations being determined by the operator.
*/
struct binary_expression : public expression {
token::type op;
statement_ptr left;
statement_ptr right;
binary_expression(token::type op, statement_ptr && left, statement_ptr && right)
: op(op), left(std::move(left)), right(std::move(right)) {
chk_type<expression>(this->left);
chk_type<expression>(this->right);
}
std::string type() const override { return "BinaryExpression"; }
};
/**
* An operation with two sides, separated by the | operator.
* Operator precedence: https://github.com/pallets/jinja/issues/379#issuecomment-168076202
*/
struct filter_expression : public expression {
statement_ptr operand;
statement_ptr filter;
filter_expression(statement_ptr && operand, statement_ptr && filter)
: operand(std::move(operand)), filter(std::move(filter)) {
chk_type<expression>(this->operand);
chk_type<identifier, call_expression>(this->filter);
}
std::string type() const override { return "FilterExpression"; }
};
struct filter_statement : public statement {
statement_ptr filter;
statements body;
filter_statement(statement_ptr && filter, statements && body)
: filter(std::move(filter)), body(std::move(body)) {
chk_type<identifier, call_expression>(this->filter);
}
std::string type() const override { return "FilterStatement"; }
void execute(context & ctx) override {}
};
/**
* An operation which filters a sequence of objects by applying a test to each object,
* and only selecting the objects with the test succeeding.
*
* It may also be used as a shortcut for a ternary operator.
*/
struct select_expression : public expression {
statement_ptr lhs;
statement_ptr test;
select_expression(statement_ptr && lhs, statement_ptr && test)
: lhs(std::move(lhs)), test(std::move(test)) {
chk_type<expression>(this->lhs);
chk_type<expression>(this->test);
}
std::string type() const override { return "SelectExpression"; }
};
/**
* An operation with two sides, separated by the "is" operator.
*/
struct test_expression : public expression {
statement_ptr operand;
bool negate;
statement_ptr test;
test_expression(statement_ptr && operand, bool negate, statement_ptr && test)
: operand(std::move(operand)), negate(negate), test(std::move(test)) {
chk_type<expression>(this->operand);
chk_type<identifier>(this->test);
}
std::string type() const override { return "TestExpression"; }
};
/**
* An operation with one side (operator on the left).
*/
struct unary_expression : public expression {
token op;
statement_ptr argument;
unary_expression(token op, statement_ptr && argument)
: op(std::move(op)), argument(std::move(argument)) {
chk_type<expression>(this->argument);
}
std::string type() const override { return "UnaryExpression"; }
};
struct slice_expression : public expression {
statement_ptr start;
statement_ptr stop;
statement_ptr step;
slice_expression(statement_ptr && start, statement_ptr && stop, statement_ptr && step)
: start(std::move(start)), stop(std::move(stop)), step(std::move(step)) {
chk_type<expression>(this->start);
chk_type<expression>(this->stop);
chk_type<expression>(this->step);
}
std::string type() const override { return "SliceExpression"; }
};
struct keyword_argument_expression : public expression {
statement_ptr key;
statement_ptr value;
keyword_argument_expression(statement_ptr && key, statement_ptr && value)
: key(std::move(key)), value(std::move(value)) {
chk_type<identifier>(this->key);
chk_type<expression>(this->value);
}
std::string type() const override { return "KeywordArgumentExpression"; }
};
struct spread_expression : public expression {
statement_ptr argument;
explicit spread_expression(statement_ptr && argument) : argument(std::move(argument)) {
chk_type<expression>(this->argument);
}
std::string type() const override { return "SpreadExpression"; }
};
struct call_statement : public statement {
statement_ptr call;
statements caller_args;
statements body;
call_statement(statement_ptr && call, statements && caller_args, statements && body)
: call(std::move(call)), caller_args(std::move(caller_args)), body(std::move(body)) {
chk_type<call_expression>(this->call);
for (const auto& arg : this->caller_args) chk_type<expression>(arg);
}
std::string type() const override { return "CallStatement"; }
void execute(context & ctx) override {}
};
struct ternary_expression : public expression {
statement_ptr condition;
statement_ptr true_expr;
statement_ptr false_expr;
ternary_expression(statement_ptr && condition, statement_ptr && true_expr, statement_ptr && false_expr)
: condition(std::move(condition)), true_expr(std::move(true_expr)), false_expr(std::move(false_expr)) {
chk_type<expression>(this->condition);
chk_type<expression>(this->true_expr);
chk_type<expression>(this->false_expr);
}
std::string type() const override { return "Ternary"; }
};
} // namespace jinja