address review comments

This commit is contained in:
Radoslav Gerganov 2026-01-10 15:03:27 +02:00
parent df27d80ae3
commit 9a67778451
1 changed files with 39 additions and 39 deletions

View File

@ -862,32 +862,6 @@ static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggm
ctx->dispatcher->send(RPC_CMD_SET_TENSOR, input_ptr, input_size);
}
static void ggml_backend_rpc_buffer_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
rpc_tensor rpc_tensor = serialize_tensor(tensor);
if (size > HASH_THRESHOLD) {
auto request = std::make_shared<rpc_msg_set_tensor_hash_req>();
request->tensor = rpc_tensor;
request->offset = offset;
request->hash = fnv_hash((const uint8_t*)data, size);
rpc_msg_set_tensor_hash_rsp response;
// TODO: make this async
ctx->dispatcher->send(RPC_CMD_SET_TENSOR_HASH, request, sizeof(*request), &response, sizeof(response));
if (response.result) {
// the server has the same data, no need to send it
return;
}
}
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes)
size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
uint8_t * input = new uint8_t[input_size]();
memcpy(input, &rpc_tensor, sizeof(rpc_tensor));
memcpy(input + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input + sizeof(rpc_tensor) + sizeof(offset), data, size);
std::shared_ptr<uint8_t> input_ptr(input, std::default_delete<uint8_t[]>());
ctx->dispatcher->send_async(RPC_CMD_SET_TENSOR, input_ptr, input_size);
}
static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
auto request = std::make_shared<rpc_msg_get_tensor_req>();
@ -897,15 +871,6 @@ static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, con
ctx->dispatcher->send(RPC_CMD_GET_TENSOR, request, sizeof(*request), data, size);
}
static void ggml_backend_rpc_buffer_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
auto request = std::make_shared<rpc_msg_get_tensor_req>();
request->tensor = serialize_tensor(tensor);
request->offset = offset;
request->size = size;
ctx->dispatcher->send_async(RPC_CMD_GET_TENSOR, request, sizeof(*request), data, size);
}
static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
if (ggml_backend_buffer_is_rpc(src->buffer)) {
// check if src and dst are on the same server
@ -1054,6 +1019,41 @@ static void ggml_backend_rpc_free(ggml_backend_t backend) {
delete backend;
}
static void ggml_backend_rpc_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
rpc_tensor rpc_tensor = serialize_tensor(tensor);
if (size > HASH_THRESHOLD) {
auto request = std::make_shared<rpc_msg_set_tensor_hash_req>();
request->tensor = rpc_tensor;
request->offset = offset;
request->hash = fnv_hash((const uint8_t*)data, size);
rpc_msg_set_tensor_hash_rsp response;
// TODO: make this async
ctx->dispatcher->send(RPC_CMD_SET_TENSOR_HASH, request, sizeof(*request), &response, sizeof(response));
if (response.result) {
// the server has the same data, no need to send it
return;
}
}
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes)
size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
uint8_t * input = new uint8_t[input_size]();
memcpy(input, &rpc_tensor, sizeof(rpc_tensor));
memcpy(input + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input + sizeof(rpc_tensor) + sizeof(offset), data, size);
std::shared_ptr<uint8_t> input_ptr(input, std::default_delete<uint8_t[]>());
ctx->dispatcher->send_async(RPC_CMD_SET_TENSOR, input_ptr, input_size);
}
static void ggml_backend_rpc_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
auto request = std::make_shared<rpc_msg_get_tensor_req>();
request->tensor = serialize_tensor(tensor);
request->offset = offset;
request->size = size;
ctx->dispatcher->send_async(RPC_CMD_GET_TENSOR, request, sizeof(*request), data, size);
}
static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
rpc_ctx->dispatcher->synchronize();
@ -1126,16 +1126,16 @@ static void ggml_backend_rpc_event_record(ggml_backend_t backend, ggml_backend_e
rpc_ctx->dispatcher->event_record(event);
}
static void ggml_backend_rpc_event_wait(ggml_backend_t dev, ggml_backend_event_t event) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)dev->context;
static void ggml_backend_rpc_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
ctx->dispatcher->event_synchronize(event);
}
static ggml_backend_i ggml_backend_rpc_interface = {
/* .get_name = */ ggml_backend_rpc_name,
/* .free = */ ggml_backend_rpc_free,
/* .set_tensor_async = */ ggml_backend_rpc_buffer_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_rpc_buffer_get_tensor_async,
/* .set_tensor_async = */ ggml_backend_rpc_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_rpc_get_tensor_async,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ ggml_backend_rpc_synchronize,
/* .graph_plan_create = */ NULL,