opencl: refactor repeat

This commit is contained in:
Li He 2026-01-30 17:28:58 -08:00
parent 93b642ea44
commit 90cfdf00bd
2 changed files with 80 additions and 82 deletions

View File

@ -462,7 +462,6 @@ struct ggml_backend_opencl_context {
cl_program program_softmax_4_f16;
cl_program program_argsort_f32_i32;
cl_program program_sum_rows_f32;
cl_program program_repeat;
cl_program program_pad;
cl_program program_tanh;
cl_program program_upscale;
@ -543,7 +542,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
cl_kernel kernel_argsort_f32_i32;
cl_kernel kernel_sum_rows_f32;
cl_kernel kernel_repeat;
cl_kernel kernel_repeat_f32;
cl_kernel kernel_pad;
cl_kernel kernel_tanh_f32_nd;
cl_kernel kernel_tanh_f16_nd;
@ -1812,16 +1811,11 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
#else
const std::string kernel_src = read_file("repeat.cl");
#endif
if (!kernel_src.empty()) {
backend_ctx->program_repeat =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
backend_ctx->program_repeat = nullptr;
backend_ctx->kernel_repeat = nullptr;
}
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_repeat_f32 = clCreateKernel(prog, "kernel_repeat_f32", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// pad
@ -7308,53 +7302,58 @@ static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, con
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
if (backend_ctx->kernel_repeat == nullptr) {
GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
return;
}
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
cl_ulong off_dst = extra_dst->offset + dst->view_offs;
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1];
const int ne2 = dst->ne[2];
const int ne3 = dst->ne[3];
cl_kernel kernel = backend_ctx->kernel_repeat;
const cl_ulong nb0 = dst->nb[0];
const cl_ulong nb1 = dst->nb[1];
const cl_ulong nb2 = dst->nb[2];
const cl_ulong nb3 = dst->nb[3];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
cl_kernel kernel = backend_ctx->kernel_repeat_f32;
size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb3));
size_t global_work_size[] = { gws0, gws1, gws2 };
int nth = 64;
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
size_t global_work_size[] = {(size_t)ne1*nth, (size_t)ne2, (size_t)ne3};
size_t local_work_size[] = {(size_t)nth, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {

View File

@ -1,39 +1,38 @@
kernel void kernel_repeat(
global const char * src0_data_in,
global char * dst_data_in,
ulong src0_offset,
ulong dst_offset,
int src0_ne0, int src0_ne1, int src0_ne2, int src0_ne3,
ulong src0_nb0, ulong src0_nb1, ulong src0_nb2, ulong src0_nb3,
int dst_ne0, int dst_ne1, int dst_ne2, int dst_ne3,
ulong dst_nb0, ulong dst_nb1, ulong dst_nb2, ulong dst_nb3
kernel void kernel_repeat_f32(
global const char * src0,
ulong offset0,
global char * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne0,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
) {
global const char * src0_data = src0_data_in + src0_offset;
global char * dst_data = dst_data_in + dst_offset;
src0 = src0 + offset0;
dst = dst + offsetd;
const int d3 = get_global_id(2);
const int d2 = get_global_id(1);
const int d1 = get_global_id(0);
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
if (d3 >= dst_ne3 || d2 >= dst_ne2 || d1 >= dst_ne1) {
return;
}
const int i03 = i3%ne03;
const int i02 = i2%ne02;
const int i01 = i1%ne01;
const int s3 = d3 % src0_ne3;
const int s2 = d2 % src0_ne2;
const int s1 = d1 % src0_ne1;
global const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
global char * dst_ptr = dst + i3*nb3 + i2*nb2 + i1*nb1;
const global char * p_src0_slice = src0_data + (ulong)s3*src0_nb3 + (ulong)s2*src0_nb2 + (ulong)s1*src0_nb1;
global char * p_dst_slice = dst_data + (ulong)d3*dst_nb3 + (ulong)d2*dst_nb2 + (ulong)d1*dst_nb1;
for (int d0 = 0; d0 < dst_ne0; ++d0) {
// Determine source index for dimension 0 based on tiling/broadcasting.
const int s0 = d0 % src0_ne0;
const global char * restrict current_src_el_ptr = p_src0_slice + (ulong)s0*src0_nb0;
global char * restrict current_dst_el_ptr = p_dst_slice + (ulong)d0*dst_nb0;
for (int k = 0; k < src0_nb0; ++k) {
current_dst_el_ptr[k] = current_src_el_ptr[k];
}
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const int i00 = i0%ne00;
*((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i00*nb00));
}
}