model-conversion : add device option to run-org-model.py (#18318)
* model-conversion : add device option to run-org-model.py This commit refactors the `run-org-model.py` script to include a `--device` argument, to allow users to specify the device on which to run the model (e.g., cpu, cuda, mps, auto). It also extracts a few common functions to prepare for future changes where some code duplication will be removed which there currently exists in embedding scripts. The Makefile is also been updated to pass the device argument, for example: ```console (venv) $ make causal-verify-logits DEVICE=cpu ``` * fix error handling and remove parser reference This commit fixes the error handling which previously referenced an undefined 'parser' variable.
This commit is contained in:
parent
12ee1763a6
commit
8e3ead6e4d
|
|
@ -25,6 +25,8 @@ define quantize_model
|
|||
@echo "Export the quantized model path to $(2) variable in your environment"
|
||||
endef
|
||||
|
||||
DEVICE ?= auto
|
||||
|
||||
###
|
||||
### Casual Model targets/recipes
|
||||
###
|
||||
|
|
@ -53,7 +55,7 @@ causal-convert-mm-model:
|
|||
|
||||
causal-run-original-model:
|
||||
$(call validate_model_path,causal-run-original-model)
|
||||
@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py
|
||||
@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py --device "$(DEVICE)"
|
||||
|
||||
causal-run-converted-model:
|
||||
@CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/causal/run-converted-model.sh
|
||||
|
|
|
|||
|
|
@ -4,149 +4,179 @@ import argparse
|
|||
import os
|
||||
import sys
|
||||
import importlib
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from pathlib import Path
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
|
||||
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig
|
||||
import torch
|
||||
import numpy as np
|
||||
from utils.common import debug_hook
|
||||
|
||||
parser = argparse.ArgumentParser(description="Process model with specified path")
|
||||
parser.add_argument("--model-path", "-m", help="Path to the model")
|
||||
parser.add_argument("--prompt-file", "-f", help="Optional prompt file", required=False)
|
||||
parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose debug output")
|
||||
args = parser.parse_args()
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser(description="Process model with specified path")
|
||||
parser.add_argument("--model-path", "-m", help="Path to the model")
|
||||
parser.add_argument("--prompt-file", "-f", help="Optional prompt file", required=False)
|
||||
parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose debug output")
|
||||
parser.add_argument("--device", "-d", help="Device to use (cpu, cuda, mps, auto)", default="auto")
|
||||
return parser.parse_args()
|
||||
|
||||
model_path = os.environ.get("MODEL_PATH", args.model_path)
|
||||
if model_path is None:
|
||||
parser.error(
|
||||
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
|
||||
)
|
||||
def load_model_and_tokenizer(model_path, device="auto"):
|
||||
print("Loading model and tokenizer using AutoTokenizer:", model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||
multimodal = False
|
||||
full_config = config
|
||||
|
||||
### If you want to dump RoPE activations, uncomment the following lines:
|
||||
### === START ROPE DEBUG ===
|
||||
# from utils.common import setup_rope_debug
|
||||
# setup_rope_debug("transformers.models.apertus.modeling_apertus")
|
||||
### == END ROPE DEBUG ===
|
||||
|
||||
|
||||
print("Loading model and tokenizer using AutoTokenizer:", model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||
multimodal = False
|
||||
full_config = config
|
||||
|
||||
print("Model type: ", config.model_type)
|
||||
if "vocab_size" not in config and "text_config" in config:
|
||||
config = config.text_config
|
||||
multimodal = True
|
||||
print("Vocab size: ", config.vocab_size)
|
||||
print("Hidden size: ", config.hidden_size)
|
||||
print("Number of layers: ", config.num_hidden_layers)
|
||||
print("BOS token id: ", config.bos_token_id)
|
||||
print("EOS token id: ", config.eos_token_id)
|
||||
|
||||
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
|
||||
if unreleased_model_name:
|
||||
model_name_lower = unreleased_model_name.lower()
|
||||
unreleased_module_path = (
|
||||
f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||||
)
|
||||
class_name = f"{unreleased_model_name}ForCausalLM"
|
||||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||||
|
||||
try:
|
||||
model_class = getattr(
|
||||
importlib.import_module(unreleased_module_path), class_name
|
||||
)
|
||||
model = model_class.from_pretrained(
|
||||
model_path
|
||||
) # Note: from_pretrained, not fromPretrained
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Failed to import or load model: {e}")
|
||||
exit(1)
|
||||
else:
|
||||
if multimodal:
|
||||
model = AutoModelForImageTextToText.from_pretrained(
|
||||
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=full_config
|
||||
)
|
||||
# Determine device_map based on device argument
|
||||
if device == "cpu":
|
||||
device_map = {"": "cpu"}
|
||||
print("Forcing CPU usage")
|
||||
elif device == "auto":
|
||||
device_map = "auto"
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=config
|
||||
device_map = {"": device}
|
||||
|
||||
print("Model type: ", config.model_type)
|
||||
if "vocab_size" not in config and "text_config" in config:
|
||||
config = config.text_config
|
||||
multimodal = True
|
||||
|
||||
print("Vocab size: ", config.vocab_size)
|
||||
print("Hidden size: ", config.hidden_size)
|
||||
print("Number of layers: ", config.num_hidden_layers)
|
||||
print("BOS token id: ", config.bos_token_id)
|
||||
print("EOS token id: ", config.eos_token_id)
|
||||
|
||||
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
|
||||
if unreleased_model_name:
|
||||
model_name_lower = unreleased_model_name.lower()
|
||||
unreleased_module_path = (
|
||||
f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||||
)
|
||||
class_name = f"{unreleased_model_name}ForCausalLM"
|
||||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||||
|
||||
if args.verbose:
|
||||
for name, module in model.named_modules():
|
||||
if len(list(module.children())) == 0: # only leaf modules
|
||||
module.register_forward_hook(debug_hook(name))
|
||||
try:
|
||||
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
||||
model = model_class.from_pretrained(
|
||||
model_path,
|
||||
device_map=device_map,
|
||||
offload_folder="offload",
|
||||
trust_remote_code=True,
|
||||
config=config
|
||||
)
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Failed to import or load model: {e}")
|
||||
exit(1)
|
||||
else:
|
||||
if multimodal:
|
||||
model = AutoModelForImageTextToText.from_pretrained(
|
||||
model_path,
|
||||
device_map=device_map,
|
||||
offload_folder="offload",
|
||||
trust_remote_code=True,
|
||||
config=full_config
|
||||
)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
device_map=device_map,
|
||||
offload_folder="offload",
|
||||
trust_remote_code=True,
|
||||
config=config
|
||||
)
|
||||
|
||||
model_name = os.path.basename(model_path)
|
||||
# Printing the Model class to allow for easier debugging. This can be useful
|
||||
# when working with models that have not been publicly released yet and this
|
||||
# migth require that the concrete class is imported and used directly instead
|
||||
# of using AutoModelForCausalLM.
|
||||
print(f"Model class: {model.__class__.__name__}")
|
||||
print(f"Model class: {model.__class__.__name__}")
|
||||
|
||||
device = next(model.parameters()).device
|
||||
if args.prompt_file:
|
||||
with open(args.prompt_file, encoding='utf-8') as f:
|
||||
prompt = f.read()
|
||||
elif os.getenv("MODEL_TESTING_PROMPT"):
|
||||
prompt = os.getenv("MODEL_TESTING_PROMPT")
|
||||
else:
|
||||
prompt = "Hello, my name is"
|
||||
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
||||
return model, tokenizer, config
|
||||
|
||||
print(f"Input tokens: {input_ids}")
|
||||
print(f"Input text: {repr(prompt)}")
|
||||
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
|
||||
def enable_torch_debugging(model):
|
||||
for name, module in model.named_modules():
|
||||
if len(list(module.children())) == 0: # only leaf modules
|
||||
module.register_forward_hook(debug_hook(name))
|
||||
|
||||
batch_size = 512
|
||||
def get_prompt(args):
|
||||
if args.prompt_file:
|
||||
with open(args.prompt_file, encoding='utf-8') as f:
|
||||
return f.read()
|
||||
elif os.getenv("MODEL_TESTING_PROMPT"):
|
||||
return os.getenv("MODEL_TESTING_PROMPT")
|
||||
else:
|
||||
return "Hello, my name is"
|
||||
|
||||
with torch.no_grad():
|
||||
past = None
|
||||
outputs = None
|
||||
for i in range(0, input_ids.size(1), batch_size):
|
||||
print(f"Processing chunk with tokens {i} to {i + batch_size}")
|
||||
chunk = input_ids[:, i:i + batch_size]
|
||||
outputs = model(chunk.to(model.device), past_key_values=past, use_cache=True)
|
||||
past = outputs.past_key_values
|
||||
def main():
|
||||
args = parse_arguments()
|
||||
model_path = os.environ.get("MODEL_PATH", args.model_path)
|
||||
if model_path is None:
|
||||
print("Error: Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
|
||||
sys.exit(1)
|
||||
|
||||
logits = outputs.logits # type: ignore
|
||||
|
||||
# Extract logits for the last token (next token prediction)
|
||||
last_logits = logits[0, -1, :].float().cpu().numpy()
|
||||
model, tokenizer, config = load_model_and_tokenizer(model_path, args.device)
|
||||
|
||||
print(f"Logits shape: {logits.shape}")
|
||||
print(f"Last token logits shape: {last_logits.shape}")
|
||||
print(f"Vocab size: {len(last_logits)}")
|
||||
if args.verbose:
|
||||
enable_torch_debugging(model)
|
||||
|
||||
data_dir = Path("data")
|
||||
data_dir.mkdir(exist_ok=True)
|
||||
bin_filename = data_dir / f"pytorch-{model_name}.bin"
|
||||
txt_filename = data_dir / f"pytorch-{model_name}.txt"
|
||||
model_name = os.path.basename(model_path)
|
||||
|
||||
# Save to file for comparison
|
||||
last_logits.astype(np.float32).tofile(bin_filename)
|
||||
# Iterate over the model parameters (the tensors) and get the first one
|
||||
# and use it to get the device the model is on.
|
||||
device = next(model.parameters()).device
|
||||
prompt = get_prompt(args)
|
||||
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
||||
|
||||
# Also save as text file for easy inspection
|
||||
with open(txt_filename, "w") as f:
|
||||
for i, logit in enumerate(last_logits):
|
||||
f.write(f"{i}: {logit:.6f}\n")
|
||||
print(f"Input tokens: {input_ids}")
|
||||
print(f"Input text: {repr(prompt)}")
|
||||
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
|
||||
|
||||
# Print some sample logits for quick verification
|
||||
print(f"First 10 logits: {last_logits[:10]}")
|
||||
print(f"Last 10 logits: {last_logits[-10:]}")
|
||||
batch_size = 512
|
||||
|
||||
# Show top 5 predicted tokens
|
||||
top_indices = np.argsort(last_logits)[-5:][::-1]
|
||||
print("Top 5 predictions:")
|
||||
for idx in top_indices:
|
||||
token = tokenizer.decode([idx])
|
||||
print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
|
||||
with torch.no_grad():
|
||||
past = None
|
||||
outputs = None
|
||||
for i in range(0, input_ids.size(1), batch_size):
|
||||
print(f"Processing chunk with tokens {i} to {i + batch_size}")
|
||||
chunk = input_ids[:, i:i + batch_size]
|
||||
outputs = model(chunk.to(model.device), past_key_values=past, use_cache=True)
|
||||
past = outputs.past_key_values
|
||||
|
||||
print(f"Saved bin logits to: {bin_filename}")
|
||||
print(f"Saved txt logist to: {txt_filename}")
|
||||
logits = outputs.logits # type: ignore
|
||||
|
||||
# Extract logits for the last token (next token prediction)
|
||||
last_logits = logits[0, -1, :].float().cpu().numpy()
|
||||
|
||||
print(f"Logits shape: {logits.shape}")
|
||||
print(f"Last token logits shape: {last_logits.shape}")
|
||||
print(f"Vocab size: {len(last_logits)}")
|
||||
|
||||
data_dir = Path("data")
|
||||
data_dir.mkdir(exist_ok=True)
|
||||
bin_filename = data_dir / f"pytorch-{model_name}.bin"
|
||||
txt_filename = data_dir / f"pytorch-{model_name}.txt"
|
||||
|
||||
# Save to file for comparison
|
||||
last_logits.astype(np.float32).tofile(bin_filename)
|
||||
|
||||
# Also save as text file for easy inspection
|
||||
with open(txt_filename, "w") as f:
|
||||
for i, logit in enumerate(last_logits):
|
||||
f.write(f"{i}: {logit:.6f}\n")
|
||||
|
||||
# Print some sample logits for quick verification
|
||||
print(f"First 10 logits: {last_logits[:10]}")
|
||||
print(f"Last 10 logits: {last_logits[-10:]}")
|
||||
|
||||
# Show top 5 predicted tokens
|
||||
top_indices = np.argsort(last_logits)[-5:][::-1]
|
||||
print("Top 5 predictions:")
|
||||
for idx in top_indices:
|
||||
token = tokenizer.decode([idx])
|
||||
print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
|
||||
|
||||
print(f"Saved bin logits to: {bin_filename}")
|
||||
print(f"Saved txt logist to: {txt_filename}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
|
|||
Loading…
Reference in New Issue