model-conversion : add device option to run-org-model.py (#18318)

* model-conversion : add device option to run-org-model.py

This commit refactors the `run-org-model.py` script to include a
`--device` argument, to allow users to specify the device on which to
run the model (e.g., cpu, cuda, mps, auto).
It also extracts a few common functions to prepare for future changes
where some code duplication will be removed which there currently
exists in embedding scripts.

The Makefile is also been updated to pass the device argument, for
example:
```console
(venv) $ make causal-verify-logits DEVICE=cpu
```

* fix error handling and remove parser reference

This commit fixes the error handling which previously referenced an
undefined 'parser' variable.
This commit is contained in:
Daniel Bevenius 2025-12-23 14:07:25 +01:00 committed by GitHub
parent 12ee1763a6
commit 8e3ead6e4d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 154 additions and 122 deletions

View File

@ -25,6 +25,8 @@ define quantize_model
@echo "Export the quantized model path to $(2) variable in your environment"
endef
DEVICE ?= auto
###
### Casual Model targets/recipes
###
@ -53,7 +55,7 @@ causal-convert-mm-model:
causal-run-original-model:
$(call validate_model_path,causal-run-original-model)
@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py
@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py --device "$(DEVICE)"
causal-run-converted-model:
@CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/causal/run-converted-model.sh

View File

@ -4,149 +4,179 @@ import argparse
import os
import sys
import importlib
import torch
import numpy as np
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig
# Add parent directory to path for imports
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig
import torch
import numpy as np
from utils.common import debug_hook
parser = argparse.ArgumentParser(description="Process model with specified path")
parser.add_argument("--model-path", "-m", help="Path to the model")
parser.add_argument("--prompt-file", "-f", help="Optional prompt file", required=False)
parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose debug output")
args = parser.parse_args()
def parse_arguments():
parser = argparse.ArgumentParser(description="Process model with specified path")
parser.add_argument("--model-path", "-m", help="Path to the model")
parser.add_argument("--prompt-file", "-f", help="Optional prompt file", required=False)
parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose debug output")
parser.add_argument("--device", "-d", help="Device to use (cpu, cuda, mps, auto)", default="auto")
return parser.parse_args()
model_path = os.environ.get("MODEL_PATH", args.model_path)
if model_path is None:
parser.error(
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
)
def load_model_and_tokenizer(model_path, device="auto"):
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
multimodal = False
full_config = config
### If you want to dump RoPE activations, uncomment the following lines:
### === START ROPE DEBUG ===
# from utils.common import setup_rope_debug
# setup_rope_debug("transformers.models.apertus.modeling_apertus")
### == END ROPE DEBUG ===
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
multimodal = False
full_config = config
print("Model type: ", config.model_type)
if "vocab_size" not in config and "text_config" in config:
config = config.text_config
multimodal = True
print("Vocab size: ", config.vocab_size)
print("Hidden size: ", config.hidden_size)
print("Number of layers: ", config.num_hidden_layers)
print("BOS token id: ", config.bos_token_id)
print("EOS token id: ", config.eos_token_id)
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = (
f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
)
class_name = f"{unreleased_model_name}ForCausalLM"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(
importlib.import_module(unreleased_module_path), class_name
)
model = model_class.from_pretrained(
model_path
) # Note: from_pretrained, not fromPretrained
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
if multimodal:
model = AutoModelForImageTextToText.from_pretrained(
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=full_config
)
# Determine device_map based on device argument
if device == "cpu":
device_map = {"": "cpu"}
print("Forcing CPU usage")
elif device == "auto":
device_map = "auto"
else:
model = AutoModelForCausalLM.from_pretrained(
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=config
device_map = {"": device}
print("Model type: ", config.model_type)
if "vocab_size" not in config and "text_config" in config:
config = config.text_config
multimodal = True
print("Vocab size: ", config.vocab_size)
print("Hidden size: ", config.hidden_size)
print("Number of layers: ", config.num_hidden_layers)
print("BOS token id: ", config.bos_token_id)
print("EOS token id: ", config.eos_token_id)
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = (
f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
)
class_name = f"{unreleased_model_name}ForCausalLM"
print(f"Importing unreleased model module: {unreleased_module_path}")
if args.verbose:
for name, module in model.named_modules():
if len(list(module.children())) == 0: # only leaf modules
module.register_forward_hook(debug_hook(name))
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(
model_path,
device_map=device_map,
offload_folder="offload",
trust_remote_code=True,
config=config
)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
if multimodal:
model = AutoModelForImageTextToText.from_pretrained(
model_path,
device_map=device_map,
offload_folder="offload",
trust_remote_code=True,
config=full_config
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map=device_map,
offload_folder="offload",
trust_remote_code=True,
config=config
)
model_name = os.path.basename(model_path)
# Printing the Model class to allow for easier debugging. This can be useful
# when working with models that have not been publicly released yet and this
# migth require that the concrete class is imported and used directly instead
# of using AutoModelForCausalLM.
print(f"Model class: {model.__class__.__name__}")
print(f"Model class: {model.__class__.__name__}")
device = next(model.parameters()).device
if args.prompt_file:
with open(args.prompt_file, encoding='utf-8') as f:
prompt = f.read()
elif os.getenv("MODEL_TESTING_PROMPT"):
prompt = os.getenv("MODEL_TESTING_PROMPT")
else:
prompt = "Hello, my name is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
return model, tokenizer, config
print(f"Input tokens: {input_ids}")
print(f"Input text: {repr(prompt)}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
def enable_torch_debugging(model):
for name, module in model.named_modules():
if len(list(module.children())) == 0: # only leaf modules
module.register_forward_hook(debug_hook(name))
batch_size = 512
def get_prompt(args):
if args.prompt_file:
with open(args.prompt_file, encoding='utf-8') as f:
return f.read()
elif os.getenv("MODEL_TESTING_PROMPT"):
return os.getenv("MODEL_TESTING_PROMPT")
else:
return "Hello, my name is"
with torch.no_grad():
past = None
outputs = None
for i in range(0, input_ids.size(1), batch_size):
print(f"Processing chunk with tokens {i} to {i + batch_size}")
chunk = input_ids[:, i:i + batch_size]
outputs = model(chunk.to(model.device), past_key_values=past, use_cache=True)
past = outputs.past_key_values
def main():
args = parse_arguments()
model_path = os.environ.get("MODEL_PATH", args.model_path)
if model_path is None:
print("Error: Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
sys.exit(1)
logits = outputs.logits # type: ignore
# Extract logits for the last token (next token prediction)
last_logits = logits[0, -1, :].float().cpu().numpy()
model, tokenizer, config = load_model_and_tokenizer(model_path, args.device)
print(f"Logits shape: {logits.shape}")
print(f"Last token logits shape: {last_logits.shape}")
print(f"Vocab size: {len(last_logits)}")
if args.verbose:
enable_torch_debugging(model)
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}.bin"
txt_filename = data_dir / f"pytorch-{model_name}.txt"
model_name = os.path.basename(model_path)
# Save to file for comparison
last_logits.astype(np.float32).tofile(bin_filename)
# Iterate over the model parameters (the tensors) and get the first one
# and use it to get the device the model is on.
device = next(model.parameters()).device
prompt = get_prompt(args)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
# Also save as text file for easy inspection
with open(txt_filename, "w") as f:
for i, logit in enumerate(last_logits):
f.write(f"{i}: {logit:.6f}\n")
print(f"Input tokens: {input_ids}")
print(f"Input text: {repr(prompt)}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
# Print some sample logits for quick verification
print(f"First 10 logits: {last_logits[:10]}")
print(f"Last 10 logits: {last_logits[-10:]}")
batch_size = 512
# Show top 5 predicted tokens
top_indices = np.argsort(last_logits)[-5:][::-1]
print("Top 5 predictions:")
for idx in top_indices:
token = tokenizer.decode([idx])
print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
with torch.no_grad():
past = None
outputs = None
for i in range(0, input_ids.size(1), batch_size):
print(f"Processing chunk with tokens {i} to {i + batch_size}")
chunk = input_ids[:, i:i + batch_size]
outputs = model(chunk.to(model.device), past_key_values=past, use_cache=True)
past = outputs.past_key_values
print(f"Saved bin logits to: {bin_filename}")
print(f"Saved txt logist to: {txt_filename}")
logits = outputs.logits # type: ignore
# Extract logits for the last token (next token prediction)
last_logits = logits[0, -1, :].float().cpu().numpy()
print(f"Logits shape: {logits.shape}")
print(f"Last token logits shape: {last_logits.shape}")
print(f"Vocab size: {len(last_logits)}")
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}.bin"
txt_filename = data_dir / f"pytorch-{model_name}.txt"
# Save to file for comparison
last_logits.astype(np.float32).tofile(bin_filename)
# Also save as text file for easy inspection
with open(txt_filename, "w") as f:
for i, logit in enumerate(last_logits):
f.write(f"{i}: {logit:.6f}\n")
# Print some sample logits for quick verification
print(f"First 10 logits: {last_logits[:10]}")
print(f"Last 10 logits: {last_logits[-10:]}")
# Show top 5 predicted tokens
top_indices = np.argsort(last_logits)[-5:][::-1]
print("Top 5 predictions:")
for idx in top_indices:
token = tokenizer.decode([idx])
print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
print(f"Saved bin logits to: {bin_filename}")
print(f"Saved txt logist to: {txt_filename}")
if __name__ == "__main__":
main()