NCCL support

This commit is contained in:
Johannes Gäßler 2026-02-10 21:01:59 +01:00
parent c531444411
commit 8de41b5b40
9 changed files with 105 additions and 7 deletions

View File

@ -7,6 +7,8 @@ set(GGML_VERSION_MINOR 9)
set(GGML_VERSION_PATCH 5)
set(GGML_VERSION_BASE "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
find_program(GIT_EXE NAMES git git.exe NO_CMAKE_FIND_ROOT_PATH)
if(GIT_EXE)
# Get current git commit hash
@ -203,6 +205,7 @@ option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM"
option(GGML_CUDA_FA "ggml: compile ggml FlashAttention CUDA kernels" ON)
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
option(GGML_CUDA_NCCL "ggml: use NVIDIA Collective Comm. Library" ON)
set (GGML_CUDA_COMPRESSION_MODE "size" CACHE STRING
"ggml: cuda link binary compression mode; requires cuda 12.8+")
set_property(CACHE GGML_CUDA_COMPRESSION_MODE PROPERTY STRINGS "none;speed;balance;size")

34
ggml/cmake/FindNCCL.cmake Normal file
View File

@ -0,0 +1,34 @@
# cmake/FindNCCL.cmake
find_path(NCCL_INCLUDE_DIR
NAMES nccl.h
HINTS ${NCCL_ROOT} $ENV{NCCL_ROOT} $ENV{CUDA_HOME} /usr/local/cuda
PATH_SUFFIXES include
)
find_library(NCCL_LIBRARY
NAMES nccl
HINTS ${NCCL_ROOT} $ENV{NCCL_ROOT} $ENV{CUDA_HOME} /usr/local/cuda
PATH_SUFFIXES lib lib64
)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(NCCL
DEFAULT_MSG
NCCL_LIBRARY NCCL_INCLUDE_DIR
)
if(NCCL_FOUND)
set(NCCL_LIBRARIES ${NCCL_LIBRARY})
set(NCCL_INCLUDE_DIRS ${NCCL_INCLUDE_DIR})
if(NOT TARGET NCCL::NCCL)
add_library(NCCL::NCCL UNKNOWN IMPORTED)
set_target_properties(NCCL::NCCL PROPERTIES
IMPORTED_LOCATION "${NCCL_LIBRARY}"
INTERFACE_INCLUDE_DIRECTORIES "${NCCL_INCLUDE_DIR}"
)
endif()
endif()
mark_as_advanced(NCCL_INCLUDE_DIR NCCL_LIBRARY)

View File

@ -209,7 +209,9 @@ extern "C" {
// Common functions that may be obtained using ggml_backend_reg_get_proc_address
// Split buffer type for tensor parallelism
// AllReduce operation for tensor parallelism (meta backend)
typedef bool (*ggml_backend_allreduce_tensor_t)(ggml_backend_t * backends, struct ggml_tensor ** tensors, size_t n_backends);
// Split buffer type for tensor parallelism (old)
typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
// Set the number of threads for the backend
typedef void (*ggml_backend_set_n_threads_t)(ggml_backend_t backend, int n_threads);

View File

@ -27,6 +27,9 @@ GGML_BACKEND_API bool ggml_backend_is_cuda(ggml_backend_t backend);
// device buffer
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// conduct allreduce operation between devices
GGML_BACKEND_API bool ggml_backend_cuda_allreduce_tensor(ggml_backend_t * backends, struct ggml_tensor ** tensors, size_t n_backends);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split);

View File

@ -946,9 +946,11 @@ static enum ggml_status ggml_backend_meta_graph_compute(ggml_backend_t backend,
}
}
if (i < n_subgraphs - 1) {
if (n_backends > 1 && i < n_subgraphs - 1) {
bool backend_allreduce_success = false;
if (backend_ctx->backend_configs[0].backend->iface.allreduce_tensor_async) {
ggml_backend_allreduce_tensor_t allreduce_tensor = (ggml_backend_allreduce_tensor_t) ggml_backend_reg_get_proc_address(
ggml_backend_dev_backend_reg(ggml_backend_get_device(backend_ctx->backend_configs[0].backend)), "ggml_backend_allreduce_tensor");
if (allreduce_tensor) {
std::vector<ggml_backend_t> backends;
backends.reserve(n_backends);
std::vector<ggml_tensor *> nodes;
@ -957,11 +959,8 @@ static enum ggml_status ggml_backend_meta_graph_compute(ggml_backend_t backend,
auto & bcj = backend_ctx->backend_configs[j];
backends.push_back(bcj.backend);
nodes.push_back(bcj.cgraphs[i].cgraph_main.nodes[bcj.cgraphs[i].cgraph_main.n_nodes-1]);
GGML_ASSERT(nodes.back()->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(nodes.back()));
}
backend_allreduce_success = backend_ctx->backend_configs[0].backend->iface.allreduce_tensor_async(
backends.data(), nodes.data(), n_backends);
backend_allreduce_success = allreduce_tensor(backends.data(), nodes.data(), n_backends);
}
if (!backend_allreduce_success) {

View File

@ -182,6 +182,16 @@ if (CUDAToolkit_FOUND)
target_link_libraries(ggml-cuda PRIVATE CUDA::cuda_driver)
endif()
if (GGML_CUDA_NCCL)
find_package(NCCL)
if (NCCL_FOUND)
add_compile_definitions(GGML_USE_NCCL)
target_link_libraries(ggml-cuda PRIVATE NCCL::NCCL)
else()
message(STATUS "Warning: NCCL not found, performance for multiple CUDA GPUs will be suboptimal")
endif()
endif()
set(CUDA_CXX_FLAGS "")
set(CUDA_FLAGS -use_fast_math -extended-lambda)

View File

@ -186,6 +186,10 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
#ifdef GGML_USE_NCCL
#define NCCL_CHECK(err) CUDA_CHECK_GEN(err, ncclSuccess, ncclGetErrorString)
#endif // GGML_USE_NCCL
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
static const char * cu_get_error_str(CUresult err) {
const char * err_str;
@ -1050,6 +1054,8 @@ struct ggml_cuda_device_info {
cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
ncclComm_t comms[GGML_CUDA_MAX_DEVICES];
};
const ggml_cuda_device_info & ggml_cuda_info();

View File

@ -322,6 +322,13 @@ static ggml_cuda_device_info ggml_cuda_init() {
}
}
}
int dev_ids[GGML_CUDA_MAX_DEVICES];
for (int id = 0; id < info.device_count; ++id) {
dev_ids[id] = id;
}
NCCL_CHECK(ncclCommInitAll(info.comms, info.device_count, dev_ids));
return info;
}
@ -1077,6 +1084,33 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_inte
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
};
bool ggml_backend_cuda_allreduce_tensor(ggml_backend_t * backends, struct ggml_tensor ** tensors, size_t n_backends) {
#ifdef GGML_USE_NCCL
const ggml_cuda_device_info info = ggml_cuda_info();
const size_t ne = ggml_nelements(tensors[0]);
NCCL_CHECK(ncclGroupStart());
for (size_t i = 0; i < n_backends; ++i) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backends[i]->context;
NCCL_CHECK(ncclAllReduce(tensors[i]->data, tensors[i]->data, ne, ncclFloat, ncclSum, info.comms[cuda_ctx->device], cuda_ctx->stream()));
}
NCCL_CHECK(ncclGroupEnd());
return true;
#else
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
static bool warning_printed = false;
if (!warning_printed) {
GGML_LOG_WARN("%s: NVIDIA Collective Communications Library (NCCL) is unavailable, multi GPU performance will be suboptimal\n");
warning_printed = true;
}
GGML_UNUSED_VARS(backends, tensors, n_backends);
return false;
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
#endif // GGML_USE_NCCL
}
ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
@ -5049,6 +5083,9 @@ static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t
static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
GGML_UNUSED(reg);
if (strcmp(name, "ggml_backend_allreduce_tensor") == 0) {
return (void *)ggml_backend_cuda_allreduce_tensor;
}
if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
return (void *)ggml_backend_cuda_split_buffer_type;
}

View File

@ -6,6 +6,10 @@
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#ifdef GGML_USE_NCCL
#include <nccl.h>
#endif // GGML_USE_NCCL
#if CUDART_VERSION >= 12050
#include <cuda_fp8.h>
#endif // CUDART_VERSION >= 12050