diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp index 354876574a..c43fdcca64 100644 --- a/ggml/src/ggml-backend.cpp +++ b/ggml/src/ggml-backend.cpp @@ -1453,6 +1453,10 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s int split_backend_id = split->backend_id; ggml_backend_t split_backend = sched->backends[split_backend_id]; + if (sched->events[split_backend_id][sched->cur_copy] == NULL) { + ggml_backend_synchronize(split_backend); + } + // copy the input tensors to the split backend for (int input_id = 0; input_id < split->n_inputs; input_id++) { ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[input_id]); @@ -1463,16 +1467,12 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done if (sched->events[split_backend_id][sched->cur_copy] != NULL) { ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]); - } else { - ggml_backend_synchronize(split_backend); } - ggml_backend_tensor_copy(input, input_cpy); + ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy); } else { // wait for the split backend to finish using the input before overwriting it if (sched->events[split_backend_id][sched->cur_copy] != NULL) { ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]); - } else { - ggml_backend_synchronize(split_backend); } // when offloading MoE weights, we can reduce the amount of data copied by copying only the experts that are used @@ -1576,6 +1576,10 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s } } + if (sched->events[split_backend_id][sched->cur_copy] == NULL) { + ggml_backend_synchronize(split_backend); + } + if (!sched->callback_eval) { enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph); if (ec != GGML_STATUS_SUCCESS) { diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index 08383edb40..b0abffc132 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -2794,11 +2794,14 @@ static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_ ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer; ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer; - if (!ggml_backend_is_cuda(backend_src) || !ggml_backend_is_cuda(backend_dst)) { + //enables async copies from CPU to CUDA, instead of only CUDA-to-CUDA + bool copy_from_host = ggml_backend_buffer_is_host(src->buffer) && ggml_backend_dev_type(backend_src->device) == GGML_BACKEND_DEVICE_TYPE_CPU; + + if (!(copy_from_host || ggml_backend_is_cuda(backend_src)) || !ggml_backend_is_cuda(backend_dst)) { return false; } - if (!ggml_backend_buffer_is_cuda(src->buffer) || !ggml_backend_buffer_is_cuda(dst->buffer)) { + if (!(copy_from_host || ggml_backend_buffer_is_cuda(src->buffer)) || !ggml_backend_buffer_is_cuda(dst->buffer)) { return false; } @@ -2809,14 +2812,17 @@ static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_ ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context; ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context; - if (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device) { + if ((copy_from_host && cuda_ctx_dst->device != buf_ctx_dst->device) || + !copy_from_host && (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device)) { #ifndef NDEBUG GGML_LOG_DEBUG("%s: backend and buffer devices do not match\n", __func__); #endif return false; } - if (backend_src != backend_dst) { + if (copy_from_host) { + CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyHostToDevice, cuda_ctx_dst->stream())); + } else if (backend_src != backend_dst) { // copy on src stream if (cuda_ctx_src->device == cuda_ctx_dst->device) { CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));