Refactor conv2d_implicit_kernel for improved bitwise operations; add test for implicit convolution
This commit is contained in:
parent
4b0f9d571f
commit
83a3b7d6a9
|
|
@ -37,16 +37,16 @@ static __global__ void conv2d_implicit_kernel(const float * __restrict__ input,
|
|||
|
||||
|
||||
// Warp tile
|
||||
const int lane_id = threadIdx.x % 32;
|
||||
const int warp_id = threadIdx.x / 32;
|
||||
const int mma_tid_x = (lane_id / 2) % 8;
|
||||
const int mma_tid_y = (lane_id / 16) * 2 + (lane_id % 2);
|
||||
const int lane_id = threadIdx.x & 31;
|
||||
const int warp_id = threadIdx.x >> 5;
|
||||
const int mma_tid_x = (lane_id >> 1) % 8;
|
||||
const int mma_tid_y = (lane_id >> 4) * 2 + (lane_id & 1);
|
||||
// lds addr
|
||||
int weight_lds_addr = (warp_id / 2) * 32 + mma_tid_y * 4;
|
||||
int input_lds_addr = (warp_id % 2) * 64 + mma_tid_x * 4;
|
||||
int weight_lds_addr = (warp_id >> 1) * 32 + mma_tid_y * 4;
|
||||
int input_lds_addr = (warp_id & 1) * 64 + mma_tid_x * 4;
|
||||
|
||||
int x = bx * 128 + input_lds_addr;
|
||||
int y = by * 128 + weight_lds_addr;
|
||||
// int x = bx * 128 + input_lds_addr;
|
||||
// int y = by * 128 + weight_lds_addr;
|
||||
int z = blockIdx.z;
|
||||
|
||||
T weight_ldg_reg[4];
|
||||
|
|
@ -56,20 +56,20 @@ static __global__ void conv2d_implicit_kernel(const float * __restrict__ input,
|
|||
int posw_ori[4];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; ++i){
|
||||
posh_ori[i] = ((bx * 128 + tx % 32 + i * 32) / param.Ow) * param.u - param.p;
|
||||
posw_ori[i] = ((bx * 128 + tx % 32 + i * 32) % param.Ow) * param.v - param.q;
|
||||
posh_ori[i] = ((bx * 128 + lane_id + i * 32) / param.Ow) * param.u - param.p;
|
||||
posw_ori[i] = ((bx * 128 + lane_id + i * 32) % param.Ow) * param.v - param.q;
|
||||
}
|
||||
|
||||
int inOffset = z * param.c * param.h * param.w;
|
||||
int weiOffset = (by * 128 + tx / 8 * 4) * param.c * param.r * param.s;
|
||||
int weiOffset = (by * 128 + (tx >> 3) * 4) * param.c * param.r * param.s;
|
||||
int inChannelOffset = param.h * param.w;
|
||||
int weightChannelOffset = param.r * param.s;
|
||||
// int weightChannelOffset = param.r * param.s;
|
||||
int weightKOffset = param.c * param.r * param.s;
|
||||
|
||||
// sts addr
|
||||
int weight_sts_addr = (tx % 8) * 132 +
|
||||
(tx / 8) * 4;
|
||||
int input_sts_addr = (tx / 32) * 128 + (tx % 32);
|
||||
int weight_sts_addr = (tx & 7) * 132 +
|
||||
(tx >> 3) * 4;
|
||||
int input_sts_addr = (warp_id) * 128 + (lane_id);
|
||||
|
||||
int write_flag = 1;
|
||||
T weight_frag[2][8];
|
||||
|
|
@ -85,16 +85,16 @@ static __global__ void conv2d_implicit_kernel(const float * __restrict__ input,
|
|||
// ldg
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; ++i){
|
||||
if (tx % 8 < weightKOffset && by * 128 + tx / 8 * 4 + i < param.k){
|
||||
weight_ldg_reg[i] = kernel[weiOffset + tx % 8 + i * weightKOffset];
|
||||
if (tx % 8 < weightKOffset && by * 128 + (tx >> 3) * 4 + i < param.k){
|
||||
weight_ldg_reg[i] = kernel[weiOffset + (tx & 7) + i * weightKOffset];
|
||||
}
|
||||
else{
|
||||
weight_ldg_reg[i] = (T)0.f;
|
||||
}
|
||||
}
|
||||
int curC = (tx / 32) / (param.r * param.s); // channel offset
|
||||
int curR = ((tx / 32) % (param.r * param.s)) / param.s; // kernel r offset
|
||||
int curS = ((tx / 32) % (param.r * param.s)) % param.s; // kernel s offset
|
||||
int curC = (warp_id) / (param.r * param.s); // channel offset
|
||||
int curR = ((warp_id) % (param.r * param.s)) / param.s; // kernel r offset
|
||||
int curS = ((warp_id) % (param.r * param.s)) % param.s; // kernel s offset
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; ++i){
|
||||
int curH = posh_ori[i] + curR * param.d_h; // input h
|
||||
|
|
@ -127,21 +127,23 @@ static __global__ void conv2d_implicit_kernel(const float * __restrict__ input,
|
|||
input_frag[0][i] = smeminput[input_lds_addr + i];
|
||||
input_frag[0][i + 4] = smeminput[input_lds_addr + i + 32];
|
||||
}
|
||||
|
||||
// main loop
|
||||
for (int crs = 0; crs < param.r * param.s * param.c; crs += 8){
|
||||
// ldg
|
||||
int weiOffsetTmp = crs + 8 + tx % 8;
|
||||
int weiOffsetTmp = crs + 8 + (tx & 7);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; ++i){
|
||||
if (weiOffsetTmp < weightKOffset && by * 128 + tx / 8 * 4 + i < param.k){
|
||||
if (weiOffsetTmp < weightKOffset && by * 128 + (tx >> 3) * 4 + i < param.k){
|
||||
weight_ldg_reg[i] = kernel[weiOffset + weiOffsetTmp + i * weightKOffset];
|
||||
}
|
||||
else{
|
||||
weight_ldg_reg[i] = (T)0.f;
|
||||
}
|
||||
}
|
||||
curC = (crs + 8 + tx / 32) / (param.r * param.s); // channel offset
|
||||
curR = ((crs + 8 + tx / 32) % (param.r * param.s)) / param.s; // kernel r offset
|
||||
curS = ((crs + 8 + tx / 32) % (param.r * param.s)) % param.s; // kernel s offset
|
||||
curC = (crs + 8 + warp_id) / (param.r * param.s); // channel offset
|
||||
curR = ((crs + 8 + warp_id) % (param.r * param.s)) / param.s; // kernel r offset
|
||||
curS = ((crs + 8 + warp_id) % (param.r * param.s)) % param.s; // kernel s offset
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; ++i){
|
||||
|
|
@ -160,13 +162,25 @@ static __global__ void conv2d_implicit_kernel(const float * __restrict__ input,
|
|||
for (int subcrs = 0; subcrs < 8 - 1; ++subcrs){
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; ++i){
|
||||
weight_frag[(subcrs + 1) % 2][i] = smemweight[load_flag * 132 * 8 + weight_lds_addr + (subcrs + 1) * 132 + i];
|
||||
weight_frag[(subcrs + 1) % 2][i + 4] = smemweight[load_flag * 132 * 8 + weight_lds_addr + (subcrs + 1) * 132 + i + 16];
|
||||
weight_frag[(subcrs + 1) & 1][i] = smemweight[load_flag * 132 * 8 + weight_lds_addr + (subcrs + 1) * 132 + i];
|
||||
weight_frag[(subcrs + 1) & 1][i + 4] = smemweight[load_flag * 132 * 8 + weight_lds_addr + (subcrs + 1) * 132 + i + 16];
|
||||
}
|
||||
// // compute base pointer once
|
||||
// T* base_ptr = smemweight + load_flag * 132 * 8 + weight_lds_addr + (subcrs + 1) * 132;
|
||||
|
||||
// // first 4 values -> weight_frag[...][0..3]
|
||||
// float4 v0 = *reinterpret_cast<const float4*>(base_ptr);
|
||||
|
||||
// // next 4 values (offset +16) -> weight_frag[...][4..7]
|
||||
// float4 v1 = *reinterpret_cast<const float4*>(base_ptr + 16);
|
||||
|
||||
// // unpack into weight_frag
|
||||
// *reinterpret_cast<float4*>(&weight_frag[(subcrs + 1) % 2][0]) = v0;
|
||||
// *reinterpret_cast<float4*>(&weight_frag[(subcrs + 1) % 2][4]) = v1;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; ++i){
|
||||
input_frag[(subcrs + 1) % 2][i] = smeminput[load_flag * 128 * 8 + input_lds_addr + (subcrs + 1) * 128 + i];
|
||||
input_frag[(subcrs + 1) % 2][i + 4] = smeminput[load_flag * 128 * 8 + input_lds_addr + (subcrs + 1) * 128 + i + 32];
|
||||
input_frag[(subcrs + 1) & 1][i] = smeminput[load_flag * 128 * 8 + input_lds_addr + (subcrs + 1) * 128 + i];
|
||||
input_frag[(subcrs + 1) & 1][i + 4] = smeminput[load_flag * 128 * 8 + input_lds_addr + (subcrs + 1) * 128 + i + 32];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
|
|
|
|||
|
|
@ -198,6 +198,7 @@ if (NOT LLAMA_SANITIZE_ADDRESS)
|
|||
endif()
|
||||
llama_build_and_test(test-gguf.cpp)
|
||||
llama_build_and_test(test-backend-ops.cpp)
|
||||
llama_build_and_test(test-conv2d-implicit.cpp)
|
||||
|
||||
llama_build_and_test(test-model-load-cancel.cpp LABEL "model")
|
||||
llama_build_and_test(test-autorelease.cpp LABEL "model")
|
||||
|
|
|
|||
|
|
@ -0,0 +1,390 @@
|
|||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
//#include <cuda_runtime.h>
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
fputs(text, stderr);
|
||||
fflush(stderr);
|
||||
}
|
||||
|
||||
struct test_model {
|
||||
struct ggml_tensor * a;
|
||||
struct ggml_tensor * b;
|
||||
ggml_backend_t backend = NULL;
|
||||
ggml_backend_buffer_t buffer;
|
||||
struct ggml_context * ctx;
|
||||
};
|
||||
|
||||
|
||||
|
||||
void load_model(test_model & model, int ic, int oc, int iw, int ih, bool use_gpu = false ) {
|
||||
// create data
|
||||
int KW = 3, KH = 3, IC = ic, OC = oc;
|
||||
int IW = iw, IH = ih, N = 1;
|
||||
|
||||
// printf(" input: IC = %d, OC = %d, IW = %d, IH = %d \n ", IC, OC, IW, IH);
|
||||
|
||||
// Initialize adata
|
||||
std::vector<float> adata(KW * KH * IC * OC);
|
||||
for (int i = 0; i < KW * KH * IC * OC; i++) {
|
||||
adata[i] = 2.5f;
|
||||
}
|
||||
|
||||
// Convert adata to fp16 format
|
||||
// std::vector<ggml_fp16_t> hadata(KW * KH * IC * OC);
|
||||
// ggml_fp32_to_fp16_row(adata.data(), hadata.data(), KW * KH * IC * OC);
|
||||
|
||||
// Initialize bdata
|
||||
std::vector<float> bdata(IW * IH * IC * N);
|
||||
for (int i = 0; i < IW * IH * IC * N; i++) {
|
||||
bdata[i] = 1.5f;
|
||||
}
|
||||
|
||||
size_t buffer_size = 0;
|
||||
{
|
||||
buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F32); // tensor a
|
||||
buffer_size += IW * IH * IC * N * ggml_type_size(GGML_TYPE_F32); // tensor b
|
||||
buffer_size += 1024; // overhead
|
||||
}
|
||||
|
||||
// printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
|
||||
// printf("%s: backend buffer size = %0.2f MB\n", __func__, (buffer_size/ 1024.f/ 1024.f));
|
||||
|
||||
int num_tensors = 2;
|
||||
struct ggml_init_params params {
|
||||
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
|
||||
// initialize the backend
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (use_gpu) {
|
||||
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||
model.backend = ggml_backend_cuda_init(0);
|
||||
if (!model.backend) {
|
||||
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (use_gpu) {
|
||||
fprintf(stderr, "%s: using Metal backend\n", __func__);
|
||||
ggml_backend_metal_log_set_callback(ggml_log_callback_default, nullptr);
|
||||
model.backend = ggml_backend_metal_init();
|
||||
if (!model.backend) {
|
||||
fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if(!model.backend) {
|
||||
// fallback to CPU backend
|
||||
model.backend = ggml_backend_cpu_init();
|
||||
}
|
||||
|
||||
model.buffer = ggml_backend_alloc_buffer(model.backend, buffer_size);
|
||||
|
||||
// create context
|
||||
model.ctx = ggml_init(params);
|
||||
|
||||
// create tensors
|
||||
model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, KW, KH, IC, OC);
|
||||
model.b = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, IW, IH, IC, N);
|
||||
|
||||
// create a allocator
|
||||
struct ggml_tallocr alloc = ggml_tallocr_new(model.buffer);
|
||||
|
||||
// alloc memory
|
||||
ggml_tallocr_alloc(&alloc, model.a);
|
||||
|
||||
// load data to buffer
|
||||
if(ggml_backend_is_cpu(model.backend)) {
|
||||
memcpy(model.a->data, adata.data(), ggml_nbytes(model.a));
|
||||
} else {
|
||||
ggml_backend_tensor_set(model.a, adata.data(), 0, ggml_nbytes(model.a));
|
||||
}
|
||||
|
||||
// alloc memory
|
||||
ggml_tallocr_alloc(&alloc, model.b);
|
||||
|
||||
if(ggml_backend_is_cpu(model.backend)
|
||||
#ifdef GGML_USE_METAL
|
||||
|| ggml_backend_is_metal(model.backend)
|
||||
#endif
|
||||
) {
|
||||
memcpy(model.b->data, bdata.data(), ggml_nbytes(model.b));
|
||||
} else {
|
||||
ggml_backend_tensor_set(model.b, bdata.data(), 0, ggml_nbytes(model.b));
|
||||
}
|
||||
}
|
||||
|
||||
typedef struct ggml_cgraph* (*build_graph_t)(const test_model& model);
|
||||
|
||||
struct ggml_cgraph * build_graph_0(const test_model& model) {
|
||||
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
|
||||
static std::vector<uint8_t> buf(buf_size);
|
||||
|
||||
struct ggml_init_params params0 = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ buf.data(),
|
||||
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
|
||||
};
|
||||
|
||||
// create a temporally context to build the graph
|
||||
struct ggml_context * ctx0 = ggml_init(params0);
|
||||
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
int s0 = 1;
|
||||
int s1 = 1;
|
||||
int p0 = 1;
|
||||
int p1 = 1;
|
||||
int d0 = 1;
|
||||
int d1 = 1;
|
||||
|
||||
|
||||
|
||||
// recalculate for avoid fragmentation
|
||||
struct ggml_tensor* conv2d_res = ggml_conv_2d(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
|
||||
ggml_set_name(conv2d_res, "conv2d_res");
|
||||
ggml_build_forward_expand(gf, conv2d_res);
|
||||
// int64_t *ne = conv2d_res->ne;
|
||||
// printf("conv2d: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
|
||||
|
||||
|
||||
// struct ggml_tensor* wino_res = ggml_conv_2d_3x3(ctx0, model.a, model.b);
|
||||
// ggml_set_name(wino_res, "wino_res");
|
||||
// ggml_build_forward_expand(gf, wino_res);
|
||||
// ne = wino_res->ne;
|
||||
// printf("wino: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
|
||||
ggml_free(ctx0);
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_graph_1(const test_model& model) {
|
||||
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
|
||||
static std::vector<uint8_t> buf(buf_size);
|
||||
|
||||
struct ggml_init_params params0 = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ buf.data(),
|
||||
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
|
||||
};
|
||||
|
||||
// create a temporally context to build the graph
|
||||
struct ggml_context * ctx0 = ggml_init(params0);
|
||||
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
int s0 = 1;
|
||||
int s1 = 1;
|
||||
int p0 = 1;
|
||||
int p1 = 1;
|
||||
int d0 = 1;
|
||||
int d1 = 1;
|
||||
|
||||
|
||||
|
||||
// recalculate for avoid fragmentation
|
||||
// struct ggml_tensor* conv2d_res = ggml_conv_2d(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
|
||||
// ggml_set_name(conv2d_res, "conv2d_res");
|
||||
// ggml_build_forward_expand(gf, conv2d_res);
|
||||
// int64_t *ne = conv2d_res->ne;
|
||||
// printf("conv2d: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
|
||||
|
||||
|
||||
struct ggml_tensor* wino_res = ggml_conv_2d_implicitgemm(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
|
||||
ggml_set_name(wino_res, "wino_res");
|
||||
ggml_build_forward_expand(gf, wino_res);
|
||||
// ne = wino_res->ne;
|
||||
// printf("wino: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
|
||||
ggml_free(ctx0);
|
||||
return gf;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
std::vector<float> compute_graph(const test_model & model, ggml_gallocr_t allocr,
|
||||
build_graph_t build_graph, int iters, double *t) {
|
||||
struct ggml_cgraph * gf = build_graph(model);
|
||||
|
||||
|
||||
// allocate tensors
|
||||
ggml_gallocr_alloc_graph(allocr, gf);
|
||||
int n_threads = 1;
|
||||
|
||||
if (ggml_backend_is_cpu(model.backend)) {
|
||||
ggml_backend_cpu_set_n_threads(model.backend, n_threads);
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (ggml_backend_is_metal(model.backend)) {
|
||||
ggml_backend_metal_set_n_cb(model.backend, n_threads);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
ggml_backend_graph_compute(model.backend, gf);
|
||||
|
||||
ggml_backend_synchronize(model.backend);
|
||||
|
||||
int64_t start_time = ggml_time_us();
|
||||
|
||||
for(int iter=0; iter<iters; iter++){
|
||||
ggml_backend_graph_compute(model.backend, gf);
|
||||
ggml_backend_synchronize(model.backend);
|
||||
}
|
||||
|
||||
// ggml_backend_synchronize(model.backend);
|
||||
int64_t end_time = ggml_time_us();
|
||||
double time_us = end_time - start_time;
|
||||
|
||||
time_us = time_us/iters;
|
||||
// printf(" Taking %f ms\n ", time_us/1000);
|
||||
|
||||
//ggml_graph_print(gf);
|
||||
|
||||
struct ggml_tensor *res = NULL;
|
||||
|
||||
for(int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
|
||||
if(strcmp(ggml_get_name(ggml_graph_node(gf, i)), "wino_res") == 0) {
|
||||
res = ggml_graph_node(gf, i);
|
||||
} else if(strcmp(ggml_get_name(ggml_graph_node(gf, i)), "conv2d_res") == 0) {
|
||||
res = ggml_graph_node(gf, i);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<float> data(ggml_nelements(res));
|
||||
ggml_backend_tensor_get(res, data.data(), 0, ggml_nbytes(res));
|
||||
|
||||
*t = time_us/1000;
|
||||
return data;
|
||||
|
||||
}
|
||||
|
||||
|
||||
int main(void)
|
||||
{
|
||||
ggml_time_init();
|
||||
std::vector<std::tuple<int, int, int, int>> configs = {
|
||||
std::make_tuple(64,64,48,64),
|
||||
std::make_tuple(320,320,104,152),
|
||||
std::make_tuple(640,640,52,76),
|
||||
std::make_tuple(640,640,104,152),
|
||||
std::make_tuple(960,320,104,152),
|
||||
std::make_tuple(1280,1280,26,38),
|
||||
std::make_tuple(1280,640,52,76),
|
||||
std::make_tuple(1920,1280,26,38),
|
||||
std::make_tuple(2560,1280,26,38),
|
||||
std::make_tuple(512,512,104,152),
|
||||
std::make_tuple(512,512,208,304),
|
||||
std::make_tuple(512,256,416,608),
|
||||
std::make_tuple(256,128,832,1216),
|
||||
std::make_tuple(256,256,832,1216),
|
||||
std::make_tuple(320,256,1024,1920)
|
||||
};
|
||||
|
||||
int k = 0;
|
||||
|
||||
for (auto c : configs){
|
||||
test_model model;
|
||||
load_model(model, std::get<0>(c), std::get<1>(c), std::get<2>(c), std::get<3>(c), true);
|
||||
|
||||
ggml_gallocr_t allocr = NULL;
|
||||
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
||||
|
||||
//create the worst case graph for memory usage estimation
|
||||
struct ggml_cgraph * gf = build_graph_0(model);
|
||||
|
||||
// compute the required memory
|
||||
ggml_gallocr_reserve(allocr, gf);
|
||||
size_t mem_size0 = ggml_gallocr_get_buffer_size(allocr, 0);
|
||||
// fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f);
|
||||
|
||||
|
||||
struct ggml_cgraph * gf_res_0 = NULL;
|
||||
int iterations = 20;
|
||||
|
||||
double run_time0;
|
||||
std::vector<float> conv2d_data = compute_graph(model, allocr, build_graph_0, iterations, &run_time0);
|
||||
|
||||
ggml_gallocr_free(allocr);
|
||||
|
||||
allocr = NULL;
|
||||
|
||||
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
||||
|
||||
//create the worst case graph for memory usage estimation
|
||||
gf = build_graph_1(model);
|
||||
|
||||
// compute the required memory
|
||||
ggml_gallocr_reserve(allocr, gf);
|
||||
size_t mem_size1 = ggml_gallocr_get_buffer_size(allocr, 0);
|
||||
// fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f);
|
||||
|
||||
|
||||
struct ggml_cgraph * gf_res_1 = NULL;
|
||||
|
||||
double run_time1;
|
||||
std::vector<float> wino_data = compute_graph(model, allocr, build_graph_1, iterations, &run_time1);
|
||||
|
||||
if(k==0) {
|
||||
k = 1;
|
||||
fprintf(stderr, "| (IC, OC, IW, IH) | im2col+GEMM TIME | im2col+GEMM VRAM | implicit GEMM TIME | implicit GEMM VRAM \n");
|
||||
fprintf(stderr, "| --- | --- | --- | --- | --- \n");
|
||||
}
|
||||
|
||||
fprintf(stderr, " | (%d, %d, %d, %d) | %.2f ms | %.2f MB | %.2f ms | %.2f MB\n",
|
||||
std::get<0>(c), std::get<1>(c), std::get<2>(c), std::get<3>(c),
|
||||
run_time0, mem_size0/1024.0f/1024.0f,
|
||||
run_time1, mem_size1/1024.0f/1024.0f);
|
||||
|
||||
|
||||
// for(int i = 0; i < ggml_nelements(wino_res); i++) {
|
||||
// for(int i = 0; i < 3*28; i++) {
|
||||
// float diff = fabs(conv2d_data[i] - wino_data[i]);
|
||||
// // if(diff > 1.e-4) {
|
||||
// printf("(%f, %f, %f, %d) \n",
|
||||
// conv2d_data[i],
|
||||
// wino_data[i], diff, i);
|
||||
// // break;
|
||||
// // }
|
||||
// }
|
||||
|
||||
ggml_free(model.ctx);
|
||||
ggml_backend_buffer_free(model.buffer);
|
||||
ggml_backend_free(model.backend);
|
||||
ggml_gallocr_free(allocr);
|
||||
|
||||
}
|
||||
|
||||
|
||||
// printf("\nPerforming test:\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
Loading…
Reference in New Issue