opencl: add sqr, sqrt, mean and ssm_conv (#17476)

* opencl: add sqr

* opencl: add sqrt

* opencl: add mean

* opencl: add ssm_conv

* opencl: add missing cl_khr_fp16

* opencl: do sqrt in f32 then convert to f16 for better precision
This commit is contained in:
lhez 2025-11-26 13:29:58 -08:00 committed by GitHub
parent 5449367b21
commit 7cba58bbea
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 557 additions and 0 deletions

View File

@ -70,6 +70,7 @@ set(GGML_OPENCL_KERNELS
group_norm
im2col_f32
im2col_f16
mean
mul_mat_Ab_Bi_8x4
mul_mv_f16_f16
mul_mv_f16_f32_1row
@ -109,6 +110,9 @@ set(GGML_OPENCL_KERNELS
softmax_4_f16
softmax_f32
softmax_f16
sqr
sqrt
ssm_conv
sub
sum_rows
transpose

View File

@ -449,6 +449,9 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
cl_kernel kernel_add_id;
cl_kernel kernel_scale;
cl_kernel kernel_sqr_cont_f32, kernel_sqr_cont_f32_4, kernel_sqr_cont_f16, kernel_sqr_cont_f16_4;
cl_kernel kernel_sqrt_cont_f32, kernel_sqrt_cont_f32_4, kernel_sqrt_cont_f16, kernel_sqrt_cont_f16_4;
cl_kernel kernel_mean_f32;
cl_kernel kernel_silu, kernel_silu_4;
cl_kernel kernel_gelu, kernel_gelu_4;
cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
@ -509,6 +512,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_conv_2d_f16;
cl_kernel kernel_conv_2d_f32;
cl_kernel kernel_conv_2d_f16_f32;
cl_kernel kernel_ssm_conv_f32_f32, kernel_ssm_conv_f32_f32_4;
cl_kernel kernel_timestep_embedding;
cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
@ -1552,6 +1556,66 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// sqr
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "sqr.cl.h"
};
#else
const std::string kernel_src = read_file("sqr.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_sqr_cont_f32 = clCreateKernel(prog, "kernel_sqr_cont_f32", &err), err));
CL_CHECK((backend_ctx->kernel_sqr_cont_f32_4 = clCreateKernel(prog, "kernel_sqr_cont_f32_4", &err), err));
CL_CHECK((backend_ctx->kernel_sqr_cont_f16 = clCreateKernel(prog, "kernel_sqr_cont_f16", &err), err));
CL_CHECK((backend_ctx->kernel_sqr_cont_f16_4 = clCreateKernel(prog, "kernel_sqr_cont_f16_4", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// sqrt
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "sqrt.cl.h"
};
#else
const std::string kernel_src = read_file("sqrt.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_sqrt_cont_f32 = clCreateKernel(prog, "kernel_sqrt_cont_f32", &err), err));
CL_CHECK((backend_ctx->kernel_sqrt_cont_f32_4 = clCreateKernel(prog, "kernel_sqrt_cont_f32_4", &err), err));
CL_CHECK((backend_ctx->kernel_sqrt_cont_f16 = clCreateKernel(prog, "kernel_sqrt_cont_f16", &err), err));
CL_CHECK((backend_ctx->kernel_sqrt_cont_f16_4 = clCreateKernel(prog, "kernel_sqrt_cont_f16_4", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// mean
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mean.cl.h"
};
#else
const std::string kernel_src = read_file("mean.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mean_f32 = clCreateKernel(prog, "kernel_mean_f32", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// sub
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -1825,6 +1889,24 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
}
}
// ssm_conv
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "ssm_conv.cl.h"
};
#else
const std::string kernel_src = read_file("ssm_conv.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32", &err), err));
CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32_4 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32_4", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// mul_mv_id_q4_0_f32_8x_flat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -2959,6 +3041,10 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
case GGML_OP_ADD_ID:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_SQR:
case GGML_OP_SQRT:
return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
ggml_is_contiguous(op->src[0]);
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_GELU:
@ -3007,6 +3093,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
(op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
(op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
case GGML_OP_SSM_CONV:
return (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
case GGML_OP_CONCAT:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
case GGML_OP_TIMESTEP_EMBEDDING:
@ -3075,6 +3163,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
}
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
case GGML_OP_FLASH_ATTN_EXT:
{
@ -5193,6 +5282,224 @@ static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const
}
}
static void ggml_cl_sqr(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel;
// Currently assumes src0 is contiguous
int n = ggml_nelements(dst);
if (n % 4 == 0) {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_sqr_cont_f32_4;
} else {
kernel = backend_ctx->kernel_sqr_cont_f16_4;
}
n /= 4;
} else {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_sqr_cont_f32;
} else {
kernel = backend_ctx->kernel_sqr_cont_f16;
}
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
size_t * local_work_size_ptr = local_work_size;
if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr;
}
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_sqrt(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel;
// Currently assumes src0 is contiguous
int n = ggml_nelements(dst);
if (n % 4 == 0) {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_sqrt_cont_f32_4;
} else {
kernel = backend_ctx->kernel_sqrt_cont_f16_4;
}
n /= 4;
} else {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_sqrt_cont_f32;
} else {
kernel = backend_ctx->kernel_sqrt_cont_f16;
}
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
size_t * local_work_size_ptr = local_work_size;
if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr;
}
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_mean(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
GGML_UNUSED(src1);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(ggml_is_contiguous(src0));
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const cl_ulong nb1 = dst->nb[1];
const cl_ulong nb2 = dst->nb[2];
const cl_ulong nb3 = dst->nb[3];
cl_kernel kernel = backend_ctx->kernel_mean_f32;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)64, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
static void ggml_cl_ssm_conv(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
int ne01 = src0->ne[1];
cl_ulong nb00 = src0->nb[0];
cl_ulong nb01 = src0->nb[1];
cl_ulong nb02 = src0->nb[2];
int ne10 = src1->ne[0];
cl_ulong nb11 = src1->nb[1];
int ne1 = dst->ne[1];
int ne2 = dst->ne[2];
cl_ulong nb0 = dst->nb[0];
cl_ulong nb1 = dst->nb[1];
cl_ulong nb2 = dst->nb[2];
cl_kernel kernel = backend_ctx->kernel_ssm_conv_f32_f32;
if (ne10 % 4 == 0) {
kernel = backend_ctx->kernel_ssm_conv_f32_f32_4;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
size_t global_work_size[] = {(size_t)ne01, (size_t)ne1, (size_t)ne2};
size_t local_work_size[] = {64, 1, 1};
size_t * local_work_size_ptr = local_work_size;
if (ne01 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr;
}
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@ -9091,6 +9398,24 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_sub;
break;
case GGML_OP_SQR:
if (!any_on_device) {
return false;
}
func = ggml_cl_sqr;
break;
case GGML_OP_SQRT:
if (!any_on_device) {
return false;
}
func = ggml_cl_sqrt;
break;
case GGML_OP_MEAN:
if (!any_on_device) {
return false;
}
func = ggml_cl_mean;
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_GELU:
@ -9192,6 +9517,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_conv_2d;
break;
case GGML_OP_SSM_CONV:
if (!any_on_device) {
return false;
}
func = ggml_cl_ssm_conv;
break;
case GGML_OP_CONCAT:
if (!any_on_device) {
return false;

View File

@ -0,0 +1,39 @@
kernel void kernel_mean_f32(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = (global float *)((global char *)src0 + offset0);
dst = (global float *)((global char *)dst + offsetd);
int i3 = get_global_id(2);
int i2 = get_global_id(1);
int i1 = get_global_id(0);
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
global float * src_row = (global float *) ((global char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
global float * dst_row = (global float *) ((global char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
for (int i0 = 0; i0 < ne00; i0++) {
row_sum += src_row[i0];
}
dst_row[0] = row_sum / ne00;
}

View File

@ -0,0 +1,53 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
kernel void kernel_sqr_cont_f32(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd
) {
src0 = (global float*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = src0[gid] * src0[gid];
}
kernel void kernel_sqr_cont_f32_4(
global float4 * src0,
ulong offset0,
global float4 * dst,
ulong offsetd
) {
src0 = (global float4*)((global char*)src0 + offset0);
dst = (global float4*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = src0[gid] * src0[gid];
}
kernel void kernel_sqr_cont_f16(
global half * src0,
ulong offset0,
global half * dst,
ulong offsetd
) {
src0 = (global half*)((global char*)src0 + offset0);
dst = (global half*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = src0[gid] * src0[gid];
}
kernel void kernel_sqr_cont_f16_4(
global half4 * src0,
ulong offset0,
global half4 * dst,
ulong offsetd
) {
src0 = (global half4*)((global char*)src0 + offset0);
dst = (global half4*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = src0[gid] * src0[gid];
}

View File

@ -0,0 +1,53 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
kernel void kernel_sqrt_cont_f32(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd
) {
src0 = (global float*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = sqrt(src0[gid]);
}
kernel void kernel_sqrt_cont_f32_4(
global float4 * src0,
ulong offset0,
global float4 * dst,
ulong offsetd
) {
src0 = (global float4*)((global char*)src0 + offset0);
dst = (global float4*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = sqrt(src0[gid]);
}
kernel void kernel_sqrt_cont_f16(
global half * src0,
ulong offset0,
global half * dst,
ulong offsetd
) {
src0 = (global half*)((global char*)src0 + offset0);
dst = (global half*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = convert_half(sqrt(convert_float(src0[gid])));
}
kernel void kernel_sqrt_cont_f16_4(
global half4 * src0,
ulong offset0,
global half4 * dst,
ulong offsetd
) {
src0 = (global half4*)((global char*)src0 + offset0);
dst = (global half4*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = convert_half4(sqrt(convert_float4(src0[gid])));
}

View File

@ -0,0 +1,77 @@
kernel void kernel_ssm_conv_f32_f32(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb00,
ulong nb01,
ulong nb02,
int ne10,
ulong nb11,
ulong nb0,
ulong nb1,
ulong nb2
){
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int ir = get_global_id(0);
int i2 = get_global_id(1);
int i3 = get_global_id(2);
int nc = ne10;
global float * s = (global float *) (src0 + ir*nb01 + i2*nb00 + i3*nb02);
global float * c = (global float *) (src1 + ir*nb11);
global float * d = (global float *) (dst + ir*nb0 + i2*nb1 + i3*nb2);
float sumf = 0.0f;
for (int i0 = 0; i0 < nc; ++i0) {
sumf += s[i0] * c[i0];
}
d[0] = sumf;
}
kernel void kernel_ssm_conv_f32_f32_4(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb00,
ulong nb01,
ulong nb02,
int ne10,
ulong nb11,
ulong nb0,
ulong nb1,
ulong nb2
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int ir = get_global_id(0);
int i2 = get_global_id(1);
int i3 = get_global_id(2);
int nc = ne10;
global float4 * s = (global float4 *) (src0 + ir*nb01 + i2*nb00 + i3*nb02);
global float4 * c = (global float4 *) (src1 + ir*nb11);
global float * d = (global float *) (dst + ir*nb0 + i2*nb1 + i3*nb2);
float sumf = 0.0f;
for (int i0 = 0; i0 < nc/4; ++i0) {
sumf += dot(s[i0], c[i0]);
}
d[0] = sumf;
}