Merge branch 'master' into xsn/ggml_scale_bias

This commit is contained in:
Xuan Son Nguyen 2025-07-08 23:02:15 +02:00
commit 7af3fd98a1
223 changed files with 9797 additions and 7507 deletions

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e
# Read the first argument into a variable

View File

@ -40,7 +40,7 @@ body:
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL]
multiple: true
validations:
required: true

View File

@ -42,7 +42,7 @@ body:
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL]
multiple: true
validations:
required: true

11
.github/labeler.yml vendored
View File

@ -1,10 +1,4 @@
# https://github.com/actions/labeler
Kompute:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-kompute.h
- ggml/src/ggml-kompute/**
- README-kompute.md
Apple Metal:
- changed-files:
- any-glob-to-any-file:
@ -93,3 +87,8 @@ Ascend NPU:
- ggml/include/ggml-cann.h
- ggml/src/ggml-cann/**
- docs/backend/CANN.md
OpenCL:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-opencl.h
- ggml/src/ggml-opencl/**

View File

@ -84,7 +84,8 @@ jobs:
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DGGML_METAL_EMBED_LIBRARY=OFF \
-DGGML_METAL_SHADER_DEBUG=ON \
-DGGML_RPC=ON
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
@ -341,7 +342,7 @@ jobs:
cd build
export GGML_VK_VISIBLE_DEVICES=0
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 3600
ctest -L main --verbose --timeout 4200
ubuntu-22-cmake-hip:
runs-on: ubuntu-22.04
@ -664,7 +665,7 @@ jobs:
./build-xcframework.sh
windows-msys2:
runs-on: windows-latest
runs-on: windows-2025
strategy:
fail-fast: false
@ -714,7 +715,7 @@ jobs:
cmake --build build --config ${{ matrix.build }} -j $(nproc)
windows-latest-cmake:
runs-on: windows-latest
runs-on: windows-2025
env:
OPENBLAS_VERSION: 0.3.23
@ -725,17 +726,20 @@ jobs:
matrix:
include:
- build: 'cpu-x64 (static)'
arch: 'x64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF'
- build: 'openblas-x64'
arch: 'x64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'vulkan-x64'
arch: 'x64'
defines: '-DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
- build: 'llvm-arm64'
arch: 'arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
- build: 'llvm-arm64-opencl-adreno'
arch: 'arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
# - build: 'kompute-x64'
# defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
steps:
- name: Clone
@ -749,12 +753,6 @@ jobs:
variant: ccache
evict-old-files: 1d
- name: Clone Kompute submodule
id: clone_kompute
if: ${{ matrix.build == 'kompute-x64' }}
run: |
git submodule update --init ggml/src/ggml-kompute/kompute
- name: Download OpenBLAS
id: get_openblas
if: ${{ matrix.build == 'openblas-x64' }}
@ -770,7 +768,7 @@ jobs:
- name: Install Vulkan SDK
id: get_vulkan
if: ${{ matrix.build == 'kompute-x64' || matrix.build == 'vulkan-x64' }}
if: ${{ matrix.build == 'vulkan-x64' }}
run: |
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/vulkansdk-windows-X64-${env:VULKAN_VERSION}.exe"
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
@ -805,6 +803,8 @@ jobs:
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
with:
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
- name: Build
id: cmake_build
@ -825,7 +825,7 @@ jobs:
- name: Test
id: cmake_test
if: ${{ matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' }}
if: ${{ matrix.arch == 'x64' }}
run: |
cd build
ctest -L main -C Release --verbose --timeout 900
@ -930,7 +930,7 @@ jobs:
cmake --build build --config Release
windows-latest-cmake-sycl:
runs-on: windows-latest
runs-on: windows-2022
defaults:
run:
@ -964,7 +964,7 @@ jobs:
windows-latest-cmake-hip:
if: ${{ github.event.inputs.create_release != 'true' }}
runs-on: windows-latest
runs-on: windows-2022
steps:
- name: Clone

View File

@ -49,7 +49,8 @@ jobs:
run: |
sysctl -a
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DCMAKE_INSTALL_RPATH='@loader_path' \
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
@ -103,7 +104,8 @@ jobs:
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
# https://github.com/ggml-org/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DCMAKE_INSTALL_RPATH='@loader_path' \
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON
@ -160,6 +162,8 @@ jobs:
id: cmake_build
run: |
cmake -B build \
-DCMAKE_INSTALL_RPATH='$ORIGIN' \
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
-DGGML_BACKEND_DL=ON \
-DGGML_NATIVE=OFF \
-DGGML_CPU_ALL_VARIANTS=ON \
@ -211,6 +215,8 @@ jobs:
id: cmake_build
run: |
cmake -B build \
-DCMAKE_INSTALL_RPATH='$ORIGIN' \
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
-DGGML_BACKEND_DL=ON \
-DGGML_NATIVE=OFF \
-DGGML_CPU_ALL_VARIANTS=ON \
@ -235,7 +241,7 @@ jobs:
name: llama-bin-ubuntu-vulkan-x64.zip
windows-cpu:
runs-on: windows-latest
runs-on: windows-2025
strategy:
matrix:
@ -271,7 +277,7 @@ jobs:
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" ${{ matrix.arch }}
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" ${{ matrix.arch == 'x64' && 'x64' || 'amd64_arm64' }}
cmake -S . -B build -G "Ninja Multi-Config" ^
-D CMAKE_TOOLCHAIN_FILE=cmake/${{ matrix.arch }}-windows-llvm.cmake ^
-DGGML_NATIVE=OFF ^
@ -288,7 +294,7 @@ jobs:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.42.34433\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.44.35112\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
- name: Upload artifacts
@ -298,7 +304,7 @@ jobs:
name: llama-bin-win-cpu-${{ matrix.arch }}.zip
windows:
runs-on: windows-latest
runs-on: windows-2025
env:
OPENBLAS_VERSION: 0.3.23
@ -448,7 +454,7 @@ jobs:
name: cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
windows-sycl:
runs-on: windows-latest
runs-on: windows-2022
defaults:
run:
@ -520,7 +526,7 @@ jobs:
name: llama-bin-win-sycl-x64.zip
windows-hip:
runs-on: windows-latest
runs-on: windows-2022
strategy:
matrix:

3
.gitmodules vendored
View File

@ -1,3 +0,0 @@
[submodule "kompute"]
path = ggml/src/ggml-kompute/kompute
url = https://github.com/nomic-ai/kompute.git

View File

@ -120,7 +120,6 @@ endfunction()
llama_option_depr(FATAL_ERROR LLAMA_CUBLAS GGML_CUDA)
llama_option_depr(WARNING LLAMA_CUDA GGML_CUDA)
llama_option_depr(WARNING LLAMA_KOMPUTE GGML_KOMPUTE)
llama_option_depr(WARNING LLAMA_METAL GGML_METAL)
llama_option_depr(WARNING LLAMA_METAL_EMBED_LIBRARY GGML_METAL_EMBED_LIBRARY)
llama_option_depr(WARNING LLAMA_NATIVE GGML_NATIVE)

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
#
# Options
IOS_MIN_OS_VERSION=16.4

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
#
# sample usage:
#

View File

@ -2734,6 +2734,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.public_path = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
add_opt(common_arg(
{"--api-prefix"}, "PREFIX",
string_format("prefix path the server serves from, without the trailing slash (default: %s)", params.api_prefix.c_str()),
[](common_params & params, const std::string & value) {
params.api_prefix = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_API_PREFIX"));
add_opt(common_arg(
{"--no-webui"},
string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
@ -2794,6 +2801,16 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.ssl_file_cert = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
add_opt(common_arg(
{"--chat-template-kwargs"}, "STRING",
string_format("sets additional params for the json template parser"),
[](common_params & params, const std::string & value) {
auto parsed = json::parse(value);
for (const auto & item : parsed.items()) {
params.default_template_kwargs[item.key()] = item.value().dump();
}
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_CHAT_TEMPLATE_KWARGS"));
add_opt(common_arg(
{"-to", "--timeout"}, "N",
string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),

View File

@ -17,6 +17,8 @@
#include <string>
#include <vector>
using json = nlohmann::ordered_json;
static std::string format_time(const std::chrono::system_clock::time_point & now, const std::string & format) {
auto time = std::chrono::system_clock::to_time_t(now);
auto local_time = *std::localtime(&time);
@ -140,6 +142,7 @@ struct templates_params {
bool add_generation_prompt = true;
bool enable_thinking = true;
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
json extra_context;
};
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice) {
@ -720,16 +723,23 @@ static void foreach_function(const json & tools, const std::function<void(const
static std::string apply(
const common_chat_template & tmpl,
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json())
const struct templates_params & inputs,
const std::optional<json> & messages_override = std::nullopt,
const std::optional<json> & tools_override = std::nullopt,
const std::optional<json> & additional_context = std::nullopt)
{
minja::chat_template_inputs tmpl_inputs;
tmpl_inputs.messages = messages;
tmpl_inputs.tools = tools;
tmpl_inputs.add_generation_prompt = add_generation_prompt;
tmpl_inputs.extra_context = extra_context;
tmpl_inputs.messages = messages_override ? *messages_override : inputs.messages;
if (tools_override) {
tmpl_inputs.tools = *tools_override;
} else {
tmpl_inputs.tools = inputs.tools.empty() ? json() : inputs.tools;
}
tmpl_inputs.add_generation_prompt = inputs.add_generation_prompt;
tmpl_inputs.extra_context = inputs.extra_context;
if (additional_context) {
tmpl_inputs.extra_context.merge_patch(*additional_context);
}
// TODO: add flag to control date/time, if only for testing purposes.
// tmpl_inputs.now = std::chrono::system_clock::now();
@ -828,7 +838,7 @@ static common_chat_params common_chat_params_init_generic(const common_chat_temp
inputs.messages,
"Respond in JSON format, either with `tool_call` (a request to call tools) or with `response` reply to the user's request");
data.prompt = apply(tmpl, tweaked_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.prompt = apply(tmpl, inputs, /* messages_override= */ tweaked_messages);
data.format = COMMON_CHAT_FORMAT_GENERIC;
return data;
}
@ -904,7 +914,7 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
data.preserved_tokens = {
"[TOOL_CALLS]",
};
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
return data;
}
@ -934,7 +944,7 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
adjusted_messages.push_back(msg);
}
}
data.prompt = apply(tmpl, adjusted_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {});
data.prompt = apply(tmpl, inputs, /* messages_override= */ adjusted_messages);
data.format = COMMON_CHAT_FORMAT_COMMAND_R7B;
if (string_ends_with(data.prompt, "<|START_THINKING|>")) {
if (!inputs.enable_thinking) {
@ -1122,7 +1132,7 @@ static common_chat_params common_chat_params_init_llama_3_x(const common_chat_te
} else {
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
}
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ std::nullopt, json {
{"date_string", format_time(inputs.now, "%d %b %Y")},
{"tools_in_user_message", false},
{"builtin_tools", builtin_tools.empty() ? json() : builtin_tools},
@ -1187,7 +1197,7 @@ static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool w
static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
auto prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
auto prompt = apply(tmpl, inputs);
// Hacks to fix the official (broken) prompt.
// It is advisable to use --chat-template-file models/templates/llama-cpp-deepseek-r1.jinja instead,
@ -1282,7 +1292,7 @@ static void common_chat_parse_deepseek_r1(common_chat_msg_parser & builder) {
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
LOG_DBG("%s\n", __func__);
common_chat_params data;
data.prompt = apply(tmpl, inputs.messages, /* tools= */ nullptr, inputs.add_generation_prompt, {
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ json(), json {
{"datetime", format_time(inputs.now, "%b %d %Y %H:%M:%S GMT")},
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
});
@ -1338,7 +1348,7 @@ static common_chat_params common_chat_params_init_functionary_v3_2(const common_
// Using ">>>f1\n", ">>>f2\n"... as trigger words for the grammar
// If the function is python, we also allow raw python code (if the line after `python\n` doesn't start w/ opening `{`), which the model seems to prefer for multiline code.
common_chat_params data;
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2;
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
@ -1465,7 +1475,7 @@ static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(con
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
}
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.prompt = apply(tmpl, inputs);
// TODO: if (has_raw_python)
return data;
}
@ -1498,14 +1508,15 @@ static void common_chat_parse_functionary_v3_1_llama_3_1(common_chat_msg_parser
static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
json additional_context = {
json extra_context = json {
{"enable_thinking", inputs.enable_thinking},
};
extra_context.update(inputs.extra_context);
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, additional_context);
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ std::nullopt, extra_context);
data.format = COMMON_CHAT_FORMAT_HERMES_2_PRO;
if (string_ends_with(data.prompt, "<think>\n")) {
if (!inputs.enable_thinking) {
if (!extra_context["enable_thinking"]) {
data.prompt += "</think>";
} else {
data.thinking_forced_open = true;
@ -1691,7 +1702,7 @@ static void common_chat_parse_hermes_2_pro(common_chat_msg_parser & builder) {
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
data.grammar_lazy = false;
if (!inputs.json_schema.is_null()) {
@ -1722,6 +1733,12 @@ static common_chat_params common_chat_templates_apply_jinja(
params.enable_thinking = inputs.enable_thinking;
params.grammar = inputs.grammar;
params.now = inputs.now;
params.extra_context = json::object();
for (auto el : inputs.chat_template_kwargs) {
params.extra_context[el.first] = json::parse(el.second);
}
if (!inputs.json_schema.empty()) {
params.json_schema = json::parse(inputs.json_schema);
}

View File

@ -7,6 +7,7 @@
#include <chrono>
#include <string>
#include <vector>
#include <map>
struct common_chat_templates;
@ -125,6 +126,7 @@ struct common_chat_templates_inputs {
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
bool enable_thinking = true;
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
std::map<std::string, std::string> chat_template_kwargs;
};
struct common_chat_params {

View File

@ -8,6 +8,7 @@
#include <string>
#include <string_view>
#include <vector>
#include <map>
#include <sstream>
#ifdef _WIN32
@ -369,6 +370,7 @@ struct common_params {
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
std::string api_prefix = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
@ -381,6 +383,8 @@ struct common_params {
std::string ssl_file_key = ""; // NOLINT
std::string ssl_file_cert = ""; // NOLINT
std::map<std::string, std::string> default_template_kwargs;
// "advanced" endpoints are disabled by default for better security
bool webui = true;
bool endpoint_slots = false;

View File

@ -815,6 +815,9 @@ class TextModel(ModelBase):
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
# ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
res = "hunyuan"
if res is None:
logger.warning("\n")
@ -2743,6 +2746,52 @@ class Qwen2Model(TextModel):
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Ernie4_5_ForCausalLM")
class Ernie4_5Model(TextModel):
model_arch = gguf.MODEL_ARCH.ERNIE4_5
def set_vocab(self):
self._set_vocab_sentencepiece()
def set_gguf_parameters(self):
super().set_gguf_parameters()
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
num_heads = self.hparams["num_attention_heads"]
num_kv_heads = self.hparams["num_key_value_heads"]
head_dim = self.hparams["head_dim"]
if "ernie." in name:
name = name.replace("ernie.", "model.")
# split the qkv weights
# qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
if "qkv_proj" in name:
name_q = name.replace("qkv_proj.weight", "q_proj.weight")
name_k = name.replace("qkv_proj.weight", "k_proj.weight")
name_v = name.replace("qkv_proj.weight", "v_proj.weight")
total_q_dim = num_heads * head_dim
total_k_dim = num_kv_heads * head_dim
total_v_dim = num_kv_heads * head_dim
q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
return [
(self.map_tensor_name(name_q), q_proj_weight),
(self.map_tensor_name(name_k), k_proj_weight),
(self.map_tensor_name(name_v), v_proj_weight)
]
# split the up_gate_proj into gate and up
# up_gate_proj shape: [2 * intermediate_size, hidden_size]
if "up_gate_proj" in name:
name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
dim_half = data_torch.shape[0] // 2
gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
return [
(self.map_tensor_name(name_gate), gate_proj_weight),
(self.map_tensor_name(name_up), up_proj_weight)
]
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register(
"Qwen2VLModel",
"Qwen2VLForConditionalGeneration",
@ -4362,9 +4411,6 @@ class Gemma3NModel(Gemma3Model):
]
def set_vocab(self):
with open(self.dir_model / "chat_template.jinja") as f:
# quick hack to make sure chat template is added
self.gguf_writer.add_chat_template(f.read())
super().set_vocab()
def set_gguf_parameters(self):
@ -4735,6 +4781,14 @@ class ARwkv7Model(Rwkv7Model):
class MambaModel(TextModel):
model_arch = gguf.MODEL_ARCH.MAMBA
def __init__(self, dir_model: Path, *args, **kwargs):
# Avoid using AutoConfig for hparams
hparams = kwargs.pop("hparams", None)
if hparams is None:
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
super().__init__(dir_model, *args, hparams=hparams, **kwargs)
def set_vocab(self):
vocab_size = self.hparams["vocab_size"]
# Round vocab size to next multiple of 8
@ -4809,6 +4863,100 @@ class MambaModel(TextModel):
return [(new_name, data_torch)]
@ModelBase.register("Mamba2ForCausalLM")
class Mamba2Model(TextModel):
model_arch = gguf.MODEL_ARCH.MAMBA2
def __init__(self, dir_model: Path, *args, **kwargs):
# Avoid using AutoConfig for hparams
# It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
hparams = kwargs.pop("hparams", None)
if hparams is None:
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
super().__init__(dir_model, *args, hparams=hparams, **kwargs)
def set_vocab(self):
vocab_size = self.hparams["vocab_size"]
# Round vocab size to next multiple of 16
pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
# pad using ceiling division
# ref: https://stackoverflow.com/a/17511341/22827863
vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
self.hparams["vocab_size"] = vocab_size
if (self.dir_model / "tokenizer.model").is_file():
self._set_vocab_sentencepiece()
elif (self.dir_model / "tokenizer.model.v3").is_file():
# mamba-codestral
raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
elif (self.dir_model / "tokenizer.json").is_file():
self._set_vocab_gpt2()
else:
# Use the GPT-NeoX tokenizer when no tokenizer files are present
self._set_vocab_builtin("gpt-neox", vocab_size)
def set_gguf_parameters(self):
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
head_dim = self.find_hparam(["head_dim"], optional=True) or 64
n_group = self.find_hparam(["n_groups"], optional=True) or 1
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
# Fail early for models which don't have a block expansion factor of 2
# TODO: does this really matter?
assert d_inner == 2 * d_model
assert d_inner % head_dim == 0
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
self.gguf_writer.add_embedding_length(d_model)
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_ssm_conv_kernel(d_conv)
self.gguf_writer.add_ssm_inner_size(d_inner)
self.gguf_writer.add_ssm_state_size(d_state)
self.gguf_writer.add_ssm_time_step_rank(d_inner // head_dim)
self.gguf_writer.add_ssm_group_count(n_group)
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("model.backbone") or name.startswith("model.lm_head"):
# map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
name = name.removeprefix("model.")
if name.endswith(".dt_bias"):
name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
new_name = self.map_tensor_name(name)
if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
data_torch = data_torch.squeeze()
elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
gguf.MODEL_TENSOR.SSM_A,
gguf.MODEL_TENSOR.SSM_D,
]):
# unsqueeze A to use similar shape semantics as Mamba-1
# (D is also unsqueezed, but for more straightforward broadcast internally)
data_torch = data_torch.reshape((*data_torch.shape, 1))
elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
n_group = self.hparams.get("n_groups", 1)
data_torch = data_torch.reshape((n_group, d_inner // n_group))
if name.endswith(".A_log"):
logger.debug("A_log --> A ==> " + new_name)
data_torch = -torch.exp(data_torch)
yield (new_name, data_torch)
@ModelBase.register("CohereForCausalLM")
class CommandR2Model(TextModel):
model_arch = gguf.MODEL_ARCH.COMMAND_R
@ -6390,6 +6538,160 @@ class UltravoxWhisperEncoderModel(WhisperEncoderModel):
super().set_gguf_parameters()
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
@ModelBase.register("HunYuanMoEV1ForCausalLM")
class HunYuanMoEModel(TextModel):
model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# For handling tied embeddings
self._tok_embd = None
def set_vocab(self):
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
# 1. Get the pre-tokenizer identifier hash
tokpre = self.get_vocab_base_pre(tokenizer)
# 2. Reverse-engineer the merges list from mergeable_ranks
merges = []
vocab = {}
mergeable_ranks = tokenizer.mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[QwenModel.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
if len(merged) == 2: # todo this is an assert in Qwen, why?
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
# 3. Generate the tokens and toktypes lists
vocab_size = self.hparams["vocab_size"]
assert tokenizer.vocab_size == vocab_size
special_tokens = tokenizer.special_tokens
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
tokens: list[str] = []
toktypes: list[int] = []
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token = reverse_vocab[i]
tokens.append(token)
if i in special_tokens.values():
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.NORMAL)
# 4. Write all vocab-related fields to the GGUF writer
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_token_merges(merges)
# 5. Add special tokens and chat templates
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.add_to_gguf(self.gguf_writer)
# FIX for BOS token: Overwrite incorrect id read from config.json
self.gguf_writer.add_bos_token_id(127959) # <|bos|>
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_expert_count(hparams["num_experts"])
self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
moe_intermediate_size = hparams["moe_intermediate_size"]
assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
moe_topk = hparams["moe_topk"]
assert all(topk == moe_topk[0] for topk in moe_topk)
self.gguf_writer.add_expert_used_count(moe_topk[0])
moe_shared_expert = hparams["num_shared_expert"]
assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
# Rope
rope_scaling = hparams.get("rope_scaling", {})
if rope_scaling.get("type") == "dynamic":
# HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
# 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
alpha = rope_scaling.get("alpha", 1000)
base = hparams.get("rope_theta", 10000.0)
dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
self.gguf_writer.add_rope_freq_base(scaled_base)
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_rope_scaling_factor(1)
# There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
self.gguf_writer.add_context_length(256 * 1024) # 256k context length
# if any of our assumptions about the values are wrong, something has changed and this may need to be updated
assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
"HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name == "model.embed_tokens.weight":
self._tok_embd = data_torch.clone()
if name == "lm_head.weight":
if self.hparams.get("tie_word_embeddings", False):
logger.info("Skipping tied output layer 'lm_head.weight'")
return []
if name.find("mlp.experts") != -1:
n_experts = self.hparams["num_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
tensors: list[tuple[str, Tensor]] = []
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("SmolLM3ForCausalLM")
class SmolLM3Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.SMOLLM3
###### CONVERSION LOGIC ######
@ -6569,12 +6871,20 @@ def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> st
# maybe we should fallback to text model's arch in that case, since not many models have both
text_config = hparams.get("text_config", {})
vision_config = hparams.get("vision_config", {})
arch = hparams["architectures"][0]
arch = None
if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
arch = arches[0]
elif "ssm_cfg" in hparams:
# For non-hf Mamba and Mamba2 models
arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
# if "architectures" is found in the sub-config, use that instead
if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
arch = text_config["architectures"][0]
elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
arch = vision_config["architectures"][0]
if arch is None:
raise ValueError("Failed to detect model architecture")
return arch

View File

@ -137,6 +137,7 @@ pre_computed_hashes = [
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
]

View File

@ -83,20 +83,22 @@ NOTE: Tensor names must end with `.weight` or `.bias` suffixes, that is the conv
### 2. Define the model architecture in `llama.cpp`
The model params and tensors layout must be defined in `llama.cpp`:
1. Define a new `llm_arch`
2. Define the tensors layout in `LLM_TENSOR_NAMES`
3. Add any non-standard metadata in `llm_load_hparams`
4. Create the tensors for inference in `llm_load_tensors`
5. If the model has a RoPE operation, add the rope type in `llama_rope_type`
The model params and tensors layout must be defined in `llama.cpp` source files:
1. Define a new `llm_arch` enum value in `src/llama-arch.h`.
2. In `src/llama-arch.cpp`:
- Add the architecture name to the `LLM_ARCH_NAMES` map.
- Add the tensor mappings to the `LLM_TENSOR_NAMES` map.
3. Add any non-standard metadata loading in the `llama_model_loader` constructor in `src/llama-model-loader.cpp`.
4. If the model has a RoPE operation, add a case for the architecture in `llama_model_rope_type` function in `src/llama-model.cpp`.
NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorch` dimensions.
### 3. Build the GGML graph implementation
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`.
Have a look at existing implementations like `build_llama`, `build_dbrx` or `build_bert`.
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `src/llama-model.cpp`.
Create a new struct that inherits from `llm_graph_context` and implement the graph-building logic in its constructor.
Have a look at existing implementations like `llm_build_llama`, `llm_build_dbrx` or `llm_build_bert`.
Then, in the `llama_model::build_graph` method, add a case for your architecture to instantiate your new graph-building struct.
Some `ggml` backends do not support all operations. Backend implementations can be added in a separate PR.

View File

@ -25,6 +25,9 @@ Additionally, there the following images, similar to the above:
- `ghcr.io/ggml-org/llama.cpp:full-intel`: Same as `full` but compiled with SYCL support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:light-intel`: Same as `light` but compiled with SYCL support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:server-intel`: Same as `server` but compiled with SYCL support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:full-vulkan`: Same as `full` but compiled with Vulkan support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:light-vulkan`: Same as `light` but compiled with Vulkan support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:server-vulkan`: Same as `server` but compiled with Vulkan support. (platforms: `linux/amd64`)
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e
AI_NAME="${AI_NAME:-Miku}"

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -euo pipefail

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
#
# Temporary script - will be removed in the future

View File

@ -55,6 +55,8 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
} else if (type == GGML_TYPE_F32) {
v = *(float *) &data[i];
} else if (type == GGML_TYPE_I64) {
v = (float) *(int64_t *) &data[i];
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) &data[i];
} else if (type == GGML_TYPE_I16) {
@ -134,6 +136,11 @@ static bool run(llama_context * ctx, const common_params & params) {
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
if (tokens.empty()) {
LOG_ERR("%s : there are not input tokens to process - (try to provide a prompt with '-p')\n", __func__);
return false;
}
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e
MODEL=./models/ggml-vicuna-13b-1.1-q4_0.bin

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
cd `dirname $0`
cd ..

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e

View File

@ -113,15 +113,16 @@ int main(int argc, char ** argv) {
while (true) {
// check if we have enough space in the context to evaluate this batch
int n_ctx = llama_n_ctx(ctx);
int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx), 0);
int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx), 0) + 1;
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");
exit(0);
}
if (llama_decode(ctx, batch)) {
GGML_ABORT("failed to decode\n");
int ret = llama_decode(ctx, batch);
if (ret != 0) {
GGML_ABORT("failed to decode, ret = %d\n", ret);
}
// sample the next token

View File

@ -1,4 +1,4 @@
#!/usr/bin/env bash
# MIT license
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: MIT

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
# MIT license
# Copyright (C) 2024 Intel Corporation

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
# MIT license
# Copyright (C) 2025 Intel Corporation

View File

@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
#
# ./examples/ts-type-to-grammar.sh "{a:string,b:string,c?:string}"
# python examples/json_schema_to_grammar.py https://json.schemastore.org/tsconfig.json

View File

@ -181,7 +181,6 @@ option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug ou
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
@ -266,7 +265,6 @@ set(GGML_PUBLIC_HEADERS
include/ggml-cann.h
include/ggml-cpp.h
include/ggml-cuda.h
include/ggml-kompute.h
include/ggml-opt.h
include/ggml-metal.h
include/ggml-rpc.h
@ -360,6 +358,13 @@ write_basic_package_version_file(
VERSION ${GGML_INSTALL_VERSION}
COMPATIBILITY SameMajorVersion)
target_compile_definitions(ggml-base PRIVATE
GGML_VERSION="${GGML_INSTALL_VERSION}"
GGML_COMMIT="${GGML_BUILD_COMMIT}"
)
message(STATUS "ggml version: ${GGML_INSTALL_VERSION}")
message(STATUS "ggml commit: ${GGML_BUILD_COMMIT}")
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml)

View File

@ -339,7 +339,7 @@ extern "C" {
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
// Compare the output of two backends
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node);
// Tensor initialization
GGML_API enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);

View File

@ -134,6 +134,7 @@ extern "C" {
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp32_to_fp16(const float *, ggml_fp16_t *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp16_to_fp32(const ggml_fp16_t *, float *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp32_to_bf16(const float *, ggml_bf16_t *, int64_t);

View File

@ -1,50 +0,0 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_KOMPUTE_MAX_DEVICES 16
struct ggml_vk_device {
int index;
int type; // same as VkPhysicalDeviceType
size_t heapSize;
const char * name;
const char * vendor;
int subgroupSize;
uint64_t bufferAlignment;
uint64_t maxAlloc;
};
struct ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count);
bool ggml_vk_get_device(struct ggml_vk_device * device, size_t memoryRequired, const char * name);
bool ggml_vk_has_vulkan(void);
bool ggml_vk_has_device(void);
struct ggml_vk_device ggml_vk_current_device(void);
//
// backend API
//
// forward declaration
typedef struct ggml_backend * ggml_backend_t;
GGML_BACKEND_API ggml_backend_t ggml_backend_kompute_init(int device);
GGML_BACKEND_API bool ggml_backend_is_kompute(ggml_backend_t backend);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_kompute_reg(void);
#ifdef __cplusplus
}
#endif

View File

@ -314,6 +314,13 @@
extern "C" {
#endif
// Function type used in fatal error callbacks
typedef void (*ggml_abort_callback_t)(const char * error_message);
// Set the abort callback (passing null will restore original abort functionality: printing a message to stdout)
// Returns the old callback for chaining
GGML_API ggml_abort_callback_t ggml_set_abort_callback(ggml_abort_callback_t callback);
GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
@ -470,6 +477,7 @@ extern "C" {
GGML_OP_TRANSPOSE,
GGML_OP_GET_ROWS,
GGML_OP_GET_ROWS_BACK,
GGML_OP_SET_ROWS,
GGML_OP_DIAG,
GGML_OP_DIAG_MASK_INF,
GGML_OP_DIAG_MASK_ZERO,
@ -481,12 +489,13 @@ extern "C" {
GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_IM2COL,
GGML_OP_IM2COL_BACK,
GGML_OP_CONV_2D,
GGML_OP_CONV_2D_DW,
GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D,
GGML_OP_POOL_2D,
GGML_OP_POOL_2D_BACK,
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_UPSCALE,
GGML_OP_PAD,
GGML_OP_PAD_REFLECT_1D,
GGML_OP_ROLL,
@ -519,6 +528,8 @@ extern "C" {
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
GGML_OP_OPT_STEP_ADAMW,
GGML_OP_GLU,
GGML_OP_COUNT,
};
@ -542,6 +553,16 @@ extern "C" {
GGML_UNARY_OP_COUNT,
};
enum ggml_glu_op {
GGML_GLU_OP_REGLU,
GGML_GLU_OP_GEGLU,
GGML_GLU_OP_SWIGLU,
GGML_GLU_OP_GEGLU_ERF,
GGML_GLU_OP_GEGLU_QUICK,
GGML_GLU_OP_COUNT,
};
enum ggml_object_type {
GGML_OBJECT_TYPE_TENSOR,
GGML_OBJECT_TYPE_GRAPH,
@ -627,6 +648,9 @@ extern "C" {
// misc
GGML_API const char * ggml_version(void);
GGML_API const char * ggml_commit(void);
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
GGML_API int64_t ggml_time_ms(void);
GGML_API int64_t ggml_time_us(void);
@ -657,6 +681,7 @@ extern "C" {
GGML_API const char * ggml_op_symbol(enum ggml_op op);
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
GGML_API const char * ggml_glu_op_name(enum ggml_glu_op op);
GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
@ -687,6 +712,9 @@ extern "C" {
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
// true if the elements in dimension 0 are contiguous, or there is just 1 block of elements
GGML_API bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor);
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
@ -758,6 +786,7 @@ extern "C" {
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor);
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
@ -1086,6 +1115,89 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// gated linear unit ops
// A: n columns, r rows,
// result is n / 2 columns, r rows,
// expects gate in second half of row, unless swapped is true
GGML_API struct ggml_tensor * ggml_glu(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_glu_op op,
bool swapped);
GGML_API struct ggml_tensor * ggml_reglu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_reglu_swapped(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_geglu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_geglu_swapped(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_swiglu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_swiglu_swapped(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_geglu_erf(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_geglu_erf_swapped(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_geglu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_geglu_quick_swapped(
struct ggml_context * ctx,
struct ggml_tensor * a);
// A: n columns, r rows,
// B: n columns, r rows,
GGML_API struct ggml_tensor * ggml_glu_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
enum ggml_glu_op op);
GGML_API struct ggml_tensor * ggml_reglu_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_geglu_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_swiglu_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_geglu_erf_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_geglu_quick_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// normalize along rows
GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
@ -1388,6 +1500,23 @@ extern "C" {
struct ggml_tensor * b, // row indices
struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
// a TD [n_embd, ne1, ne2, ne3]
// b TS [n_embd, n_rows, ne02, ne03] | ne02 == ne2, ne03 == ne3
// c I64 [n_rows, ne11, ne12, 1] | c[i] in [0, ne1)
//
// undefined behavior if destination rows overlap
//
// broadcast:
// ne2 % ne11 == 0
// ne3 % ne12 == 0
//
// return view(a)
GGML_API struct ggml_tensor * ggml_set_rows(
struct ggml_context * ctx,
struct ggml_tensor * a, // destination
struct ggml_tensor * b, // source
struct ggml_tensor * c); // row indices
GGML_API struct ggml_tensor * ggml_diag(
struct ggml_context * ctx,
struct ggml_tensor * a);
@ -1425,8 +1554,14 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// a [ne0, ne01, ne02, ne03]
// mask [ne0, ne11, ne12, ne13] | ne11 >= ne01, F16 or F32, optional
//
// broadcast:
// ne02 % ne12 == 0
// ne03 % ne13 == 0
//
// fused soft_max(a*scale + mask*(ALiBi slope))
// mask is optional
// max_bias = 0.0f for no ALiBi
GGML_API struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx,
@ -1736,6 +1871,17 @@ extern "C" {
struct ggml_tensor * b,
int stride);
GGML_API struct ggml_tensor * ggml_conv_2d_direct(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel [KW, KH, IC, OC]
struct ggml_tensor * b, // input data [W, H, C, N]
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1); // dilation dimension 1
enum ggml_op_pool {
GGML_OP_POOL_MAX,
GGML_OP_POOL_AVG,
@ -1778,6 +1924,12 @@ extern "C" {
enum ggml_scale_mode {
GGML_SCALE_MODE_NEAREST = 0,
GGML_SCALE_MODE_BILINEAR = 1,
GGML_SCALE_MODE_COUNT
};
enum ggml_scale_flag {
GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
};
// interpolate
@ -1790,14 +1942,26 @@ extern "C" {
// interpolate
// interpolate scale to specified dimensions
GGML_API struct ggml_tensor * ggml_upscale_ext(
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_upscale_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1,
int ne2,
int ne3,
enum ggml_scale_mode mode);
enum ggml_scale_mode mode),
"use ggml_interpolate instead");
// Up- or downsamples the input to the specified size.
// 2D scale modes (eg. bilinear) are applied to the first two dimensions.
GGML_API struct ggml_tensor * ggml_interpolate(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
uint32_t mode); // ggml_scale_mode [ | ggml_scale_flag...]
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
GGML_API struct ggml_tensor * ggml_pad(
@ -1860,11 +2024,17 @@ extern "C" {
#define GGML_KQ_MASK_PAD 64
// q: [n_embd_k, n_batch, n_head, 1]
// k: [n_embd_k, n_kv, n_head_kv, 1]
// v: [n_embd_v, n_kv, n_head_kv, 1] !! not transposed !!
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd_v, n_head, n_batch, 1] !! permuted !!
// q: [n_embd_k, n_batch, n_head, ne3 ]
// k: [n_embd_k, n_kv, n_head_kv, ne3 ]
// v: [n_embd_v, n_kv, n_head_kv, ne3 ] !! not transposed !!
// mask: [n_kv, n_batch_pad, ne32, ne33] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd_v, n_head, n_batch, ne3 ] !! permuted !!
//
// broadcast:
// n_head % n_head_kv == 0
// n_head % ne32 == 0
// ne3 % ne33 == 0
//
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,
@ -1903,7 +2073,8 @@ extern "C" {
struct ggml_tensor * dt,
struct ggml_tensor * A,
struct ggml_tensor * B,
struct ggml_tensor * C);
struct ggml_tensor * C,
struct ggml_tensor * ids);
// partition into non-overlapping windows with padding if needed
// example:

View File

@ -365,7 +365,6 @@ ggml_add_backend(BLAS)
ggml_add_backend(CANN)
ggml_add_backend(CUDA)
ggml_add_backend(HIP)
ggml_add_backend(Kompute)
ggml_add_backend(METAL)
ggml_add_backend(MUSA)
ggml_add_backend(RPC)

View File

@ -61,10 +61,6 @@
#include "ggml-cann.h"
#endif
#ifdef GGML_USE_KOMPUTE
#include "ggml-kompute.h"
#endif
// disable C++17 deprecation warning for std::codecvt_utf8
#if defined(__clang__)
# pragma clang diagnostic push
@ -189,9 +185,6 @@ struct ggml_backend_registry {
#ifdef GGML_USE_RPC
register_backend(ggml_backend_rpc_reg());
#endif
#ifdef GGML_USE_KOMPUTE
register_backend(ggml_backend_kompute_reg());
#endif
#ifdef GGML_USE_CPU
register_backend(ggml_backend_cpu_reg());
#endif
@ -575,7 +568,6 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
ggml_backend_load_best("cann", silent, dir_path);
ggml_backend_load_best("cuda", silent, dir_path);
ggml_backend_load_best("hip", silent, dir_path);
ggml_backend_load_best("kompute", silent, dir_path);
ggml_backend_load_best("metal", silent, dir_path);
ggml_backend_load_best("rpc", silent, dir_path);
ggml_backend_load_best("sycl", silent, dir_path);

View File

@ -817,8 +817,9 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
}
if (sched->debug > 1) {
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s] use=%d:", i, ggml_op_name(node->op), node->name,
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node),
graph->use_counts[ggml_hash_find(&graph->visited_hash_set, node)]);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
@ -1826,7 +1827,7 @@ void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
ggml_free(copy.ctx_unallocated);
}
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node) {
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
if (copy.buffer == NULL) {
return false;
@ -1837,28 +1838,45 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
assert(g1->n_nodes == g2->n_nodes);
for (int i = 0; i < g1->n_nodes; i++) {
struct ggml_tensor * t1 = g1->nodes[i];
struct ggml_tensor * t2 = g2->nodes[i];
if (test_node != nullptr) {
// Compute the whole graph and only test the output for a specific tensor
ggml_backend_graph_compute(backend1, g1);
ggml_backend_graph_compute(backend2, g2);
assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
ggml_backend_graph_compute(backend1, &g1v);
ggml_backend_graph_compute(backend2, &g2v);
if (ggml_is_view_op(t1->op)) {
continue;
int test_node_idx = -1;
for (int i = 0; i < g1->n_nodes; i++) {
struct ggml_tensor * t1 = g1->nodes[i];
if (t1 == test_node) {
test_node_idx = i;
break;
}
}
GGML_ASSERT(test_node_idx != -1);
// compare results, calculate rms etc
if (!callback(i, t1, t2, user_data)) {
break;
callback(test_node_idx, g1->nodes[test_node_idx], g2->nodes[test_node_idx], user_data);
} else {
for (int i = 0; i < g1->n_nodes; i++) {
struct ggml_tensor * t1 = g1->nodes[i];
struct ggml_tensor * t2 = g2->nodes[i];
assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
ggml_backend_graph_compute(backend1, &g1v);
ggml_backend_graph_compute(backend2, &g2v);
if (ggml_is_view_op(t1->op)) {
continue;
}
// compare results, calculate rms etc
if (!callback(i, t1, t2, user_data)) {
break;
}
}
}
ggml_backend_graph_copy_free(copy);
return true;

View File

@ -65,8 +65,9 @@
#include <aclnnop/aclnn_eq_tensor.h>
#include <aclnnop/aclnn_gt_scalar.h>
#include <aclnnop/aclnn_pow.h>
#include <aclnnop/aclnn_grouped_matmul_v2.h>
#include <aclnnop/aclnn_grouped_matmul_v3.h>
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
#include <aclnnop/aclnn_zero.h>
#include <float.h>
#include <cmath>
@ -804,10 +805,11 @@ static aclTensor* aclnn_zero(ggml_backend_cann_context& ctx, void* buffer,
nb[i] = nb[i - 1] * ne[i - 1];
}
ggml_cann_async_memset(ctx, buffer, n_bytes, 0);
aclTensor* zero =
ggml_cann_create_tensor(buffer, type, type_size, ne, nb, dims);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceZero, zero);
return zero;
GGML_UNUSED(n_bytes);
}
/**
@ -2654,6 +2656,67 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb));
}
#ifdef ASCEND_310P
ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
if (src0->type == GGML_TYPE_F16) {
src0_row.type = GGML_TYPE_F32;
}
// src0_row [D, M, 1, 1] weight without permute
src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
src0_row.nb[0] = ori_src0_nb[0];
src0_row.nb[1] = ori_src0_nb[1];
src0_row.nb[2] = ori_src0_nb[1];
src0_row.nb[3] = ori_src0_nb[1];
// src1_row [D, 1, 1, 1] -> input
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;
// dst_row [M, 1, 1, 1] -> out
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;
//create weight for one row
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
// expert index
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);
// If B = 1 (broadcast), always use 0; otherwise, use id.
int64_t i11 = (ne11 == 1 ? 0 : id);
int64_t i12 = iid1;
int64_t i1 = id;
int64_t i2 = i12;
void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
src0_row.data = src0_tmp_ptr;
src1_row.data = src1_tmp_ptr;
dst_row.data = dst_tmp_ptr;
dst_row.src[0] = &src0_row;
dst_row.src[1] = &src1_row;
ggml_cann_mul_mat(ctx, &dst_row);
}
}
return;
#endif
std::vector<aclTensor*> src0_tensor_vec;
std::vector<aclTensor*> src1_tensor_vec;
std::vector<aclTensor*> dst_tensor_vec;
@ -2701,9 +2764,9 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
}
size_t GROUP_SIZE = 128;
// GroupedMatmulV2 required tensor_list.size < 128
// GroupedMatmulV3 required tensor_list.size < 128
for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) {
// split and call GroupedMatmulV2
// split and call GroupedMatmulV3
size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size());
std::vector<aclTensor*> src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end);
std::vector<aclTensor*> src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end);
@ -2713,7 +2776,7 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size());
aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size());
GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV2, src1_tensor_list, src0_tensor_list,
GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV3, src1_tensor_list, src0_tensor_list,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list);
ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list);

View File

@ -359,7 +359,7 @@ struct ggml_backend_cann_context {
ggml_cann_set_device(device);
description = aclrtGetSocName();
bool async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
device, async_mode ? "ON" : "OFF");
}

View File

@ -2086,6 +2086,12 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
return false;
}
} break;
case GGML_OP_SET_ROWS:
{
// TODO: add support
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
return false;
} break;
case GGML_OP_CPY: {
ggml_tensor *src = op->src[0];
if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||
@ -2187,7 +2193,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_SQRT:
case GGML_OP_CLAMP:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
@ -2205,6 +2210,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_COUNT_EQUAL:
return true;
case GGML_OP_SOFT_MAX:
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
case GGML_OP_FLASH_ATTN_EXT:{
// derived from [ggml-cuda.cu]
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
@ -2227,6 +2236,8 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
// DeepSeek MLA
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
if (op->src[0]->ne[3] != 1) {
return false;
}

View File

@ -5,7 +5,7 @@ function(ggml_add_cpu_backend_features cpu_name arch)
# build, using set_source_files_properties() to set the arch flags is not possible
set(GGML_CPU_FEATS_NAME ${cpu_name}-feats)
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/arch/${arch}/cpu-feats.cpp)
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . ../include)
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARGN})
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
@ -589,4 +589,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
if (EMSCRIPTEN)
set_target_properties(${GGML_CPU_NAME} PROPERTIES COMPILE_FLAGS "-msimd128")
endif()
if (CMAKE_CXX_COMPILER_ID STREQUAL "IntelLLVM")
# The compiler automatically enables "-ffast-math" which can cause NaNs in tests due to "-fassociative-math"
target_compile_options(${GGML_CPU_NAME} PRIVATE "-fno-associative-math")
endif()
endfunction()

View File

@ -195,6 +195,7 @@ typedef pthread_t ggml_thread_t;
static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
[GGML_TYPE_F32] = {
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_fp32,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
.vec_dot_type = GGML_TYPE_F32,
.nrows = 1,
@ -1192,7 +1193,7 @@ static void ggml_compute_forward_mul_mat_one_chunk(
}
}
static void ggml_compute_forward_mul_mat(
void ggml_compute_forward_mul_mat(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
@ -1817,6 +1818,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_get_rows_back(params, tensor);
} break;
case GGML_OP_SET_ROWS:
{
ggml_compute_forward_set_rows(params, tensor);
} break;
case GGML_OP_DIAG:
{
ggml_compute_forward_diag(params, tensor);
@ -1861,6 +1866,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_im2col_back_f32(params, tensor);
} break;
case GGML_OP_CONV_2D:
{
ggml_compute_forward_conv_2d(params, tensor);
} break;
case GGML_OP_CONV_2D_DW:
{
ggml_compute_forward_conv_2d_dw(params, tensor);
@ -1944,6 +1953,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_unary(params, tensor);
} break;
case GGML_OP_GLU:
{
ggml_compute_forward_glu(params, tensor);
} break;
case GGML_OP_GET_REL_POS:
{
ggml_compute_forward_get_rel_pos(params, tensor);
@ -2154,6 +2167,20 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
GGML_ABORT("fatal error");
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(node)) {
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
{
n_tasks = n_threads;
} break;
default:
GGML_ABORT("fatal error");
}
break;
case GGML_OP_SILU_BACK:
case GGML_OP_MUL:
case GGML_OP_DIV:
@ -2170,6 +2197,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
n_tasks = n_threads;
} break;
case GGML_OP_GET_ROWS:
case GGML_OP_SET_ROWS:
{
// FIXME: get_rows can use additional threads, but the cost of launching additional threads
// decreases performance with GPU offloading
@ -2206,6 +2234,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
} break;
case GGML_OP_IM2COL:
case GGML_OP_IM2COL_BACK:
case GGML_OP_CONV_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_CONV_TRANSPOSE_2D:
@ -2724,6 +2753,10 @@ struct ggml_cplan ggml_graph_plan(
GGML_ABORT("fatal error");
}
} break;
case GGML_OP_CONV_2D:
{
cur = GGML_IM2COL_WORK_SIZE;
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
const int64_t ne00 = node->src[0]->ne[0]; // W
@ -3124,6 +3157,10 @@ enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct g
return ggml_graph_compute(cgraph, &cplan);
}
void ggml_cpu_fp32_to_fp32(const float * x, float * y, int64_t n) {
memcpy(y, x, n * sizeof(float));
}
void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
int64_t i = 0;
#if defined(__F16C__)

View File

@ -416,6 +416,7 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
switch (op->op) {
case GGML_OP_CPY:
case GGML_OP_SET_ROWS:
return
op->type != GGML_TYPE_IQ3_XXS &&
op->type != GGML_TYPE_IQ3_S &&

File diff suppressed because it is too large Load Diff

View File

@ -20,6 +20,9 @@
static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
// Work buffer size for im2col operations in CONV2D
#define GGML_IM2COL_WORK_SIZE (16 * 1024 * 1024)
#ifdef __cplusplus
extern "C" {
#endif
@ -53,6 +56,7 @@ void ggml_compute_forward_permute(const struct ggml_compute_params * params, str
void ggml_compute_forward_transpose(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_get_rows(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_get_rows_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_set_rows(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_diag(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_diag_mask_inf(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_diag_mask_zero(const struct ggml_compute_params * params, struct ggml_tensor * dst);
@ -64,6 +68,7 @@ void ggml_compute_forward_clamp(const struct ggml_compute_params * params, struc
void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_2d_dw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pool_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
@ -93,6 +98,7 @@ void ggml_compute_forward_ssm_scan(const struct ggml_compute_params * params, st
void ggml_compute_forward_win_part(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_win_unpart(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_unary(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_glu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_get_rel_pos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_add_rel_pos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_rwkv_wkv6(const struct ggml_compute_params * params, struct ggml_tensor * dst);
@ -105,6 +111,7 @@ void ggml_compute_forward_custom(const struct ggml_compute_params * params, stru
void ggml_compute_forward_cross_entropy_loss(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_cross_entropy_loss_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_opt_step_adamw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
#ifdef __cplusplus
}

View File

@ -189,7 +189,7 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
#define GGML_F32xt_LOAD(...) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_STORE_IMPL(pg,a,b) svst1_f32(pg, a, b)
#define GGML_F32xt_STORE(...) GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, a, b, c)
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, b, c, a)
#define GGML_F32xt_FMA(...) GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_ADD_IMPL(pg, a, b) svadd_f32_m(pg, a, b)
#define GGML_F32xt_ADD(...) GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__)

View File

@ -37,35 +37,35 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
for (int i = 0; i < np; i += ggml_f32_step) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
sum1 = GGML_F32_VEC_FMA(sum1, ax1, ay1);
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
sum2 = GGML_F32_VEC_FMA(ax2, ay2, sum2);
sum2 = GGML_F32_VEC_FMA(sum2, ax2, ay2);
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
sum3 = GGML_F32_VEC_FMA(ax3, ay3, sum3);
sum3 = GGML_F32_VEC_FMA(sum3, ax3, ay3);
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
sum4 = GGML_F32_VEC_FMA(ax4, ay4, sum4);
sum4 = GGML_F32_VEC_FMA(sum4, ax4, ay4);
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
sum5 = GGML_F32_VEC_FMA(ax5, ay5, sum5);
sum5 = GGML_F32_VEC_FMA(sum5, ax5, ay5);
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
sum6 = GGML_F32_VEC_FMA(ax6, ay6, sum6);
sum6 = GGML_F32_VEC_FMA(sum6, ax6, ay6);
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
sum7 = GGML_F32_VEC_FMA(ax7, ay7, sum7);
sum7 = GGML_F32_VEC_FMA(sum7, ax7, ay7);
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
sum8 = GGML_F32_VEC_FMA(ax8, ay8, sum8);
sum8 = GGML_F32_VEC_FMA(sum8, ax8, ay8);
}
// leftovers
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
@ -73,7 +73,7 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
for (int i = np; i < np2; i += ggml_f32_epr) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
sum1 = GGML_F32_VEC_FMA(sum1, ax1, ay1);
}
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np2 < n) {
@ -254,6 +254,30 @@ void ggml_vec_silu_f32(const int n, float * y, const float * x) {
}
}
void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float * g) {
int i = 0;
#if defined(__AVX512F__) && defined(__AVX512DQ__)
for (; i + 15 < n; i += 16) {
_mm512_storeu_ps(y + i, _mm512_mul_ps(ggml_v_silu(_mm512_loadu_ps(x + i)), _mm512_loadu_ps(g + i)));
}
#elif defined(__AVX2__) && defined(__FMA__)
for (; i + 7 < n; i += 8) {
_mm256_storeu_ps(y + i, _mm256_mul_ps(ggml_v_silu(_mm256_loadu_ps(x + i)), _mm256_loadu_ps(g + i)));
}
#elif defined(__SSE2__)
for (; i + 3 < n; i += 4) {
_mm_storeu_ps(y + i, _mm_mul_ps(ggml_v_silu(_mm_loadu_ps(x + i)), _mm_loadu_ps(g + i)));
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
vst1q_f32(y + i, vmulq_f32(ggml_v_silu(vld1q_f32(x + i)), vld1q_f32(g + i)));
}
#endif
for (; i < n; ++i) {
y[i] = ggml_silu_f32(x[i]) * g[i];
}
}
ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
int i = 0;
ggml_float sum = 0;

View File

@ -163,49 +163,49 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
ay1 = GGML_F32_VEC_FMA(ay1, ax1, vx);
GGML_F32_VEC_STORE(y + i, ay1);
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_FMA(ax2, vx, ay2);
ay2 = GGML_F32_VEC_FMA(ay2, ax2, vx);
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_FMA(ax3, vx, ay3);
ay3 = GGML_F32_VEC_FMA(ay3, ax3, vx);
GGML_F32_VEC_STORE(y + i + 2*ggml_f32_epr, ay3);
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_FMA(ax4, vx, ay4);
ay4 = GGML_F32_VEC_FMA(ay4, ax4, vx);
GGML_F32_VEC_STORE(y + i + 3*ggml_f32_epr, ay4);
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_FMA(ax5, vx, ay5);
ay5 = GGML_F32_VEC_FMA(ay5, ax5, vx);
GGML_F32_VEC_STORE(y + i + 4*ggml_f32_epr, ay5);
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_FMA(ax6, vx, ay6);
ay6 = GGML_F32_VEC_FMA(ay6, ax6, vx);
GGML_F32_VEC_STORE(y + i + 5*ggml_f32_epr, ay6);
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_FMA(ax7, vx, ay7);
ay7 = GGML_F32_VEC_FMA(ay7, ax7, vx);
GGML_F32_VEC_STORE(y + i + 6*ggml_f32_epr, ay7);
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_FMA(ax8, vx, ay8);
ay8 = GGML_F32_VEC_FMA(ay8, ax8, vx);
GGML_F32_VEC_STORE(y + i + 7*ggml_f32_epr, ay8);
}
@ -215,7 +215,7 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
for (int i = np; i < np2; i += ggml_f32_epr) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
ay1 = GGML_F32_VEC_FMA(ay1, ax1, vx);
GGML_F32_VEC_STORE(y + i, ay1);
}
@ -905,6 +905,100 @@ inline static void ggml_vec_silu_backward_f16(const int n, ggml_fp16_t * dx, con
}
}
inline static void ggml_vec_reglu_f32 (const int n, float * y, const float * x, const float * g) {
for (int i = 0; i < n; ++i) {
y[i] = (x[i] > 0.f) ? x[i] * g[i] : 0.f;
}
}
inline static void ggml_vec_reglu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
for (int i = 0; i < n; ++i) {
float v = GGML_CPU_FP16_TO_FP32(x[i]);
y[i] = GGML_CPU_FP32_TO_FP16((v > 0.f) ? v * GGML_CPU_FP16_TO_FP32(g[i]) : 0.f);
}
}
#ifdef GGML_GELU_FP16
inline static void ggml_vec_geglu_f32(const int n, float * y, const float * x, const float * g) {
uint16_t t;
for (int i = 0; i < n; ++i) {
if (x[i] <= -10.0f) {
y[i] = 0.0f;
} else if (x[i] >= 10.0f) {
y[i] = x[i] * g[i];
} else {
ggml_fp16_t fp16 = GGML_CPU_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_CPU_FP16_TO_FP32(ggml_table_gelu_f16[t]) * g[i];
}
}
}
#else
inline static void ggml_vec_geglu_f32(const int n, float * y, const float * x, const float * g) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_f32(x[i]) * g[i];
}
}
#endif
inline static void ggml_vec_geglu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
const uint16_t * i16 = (const uint16_t *) x;
for (int i = 0; i < n; ++i) {
float v = GGML_CPU_FP16_TO_FP32(g[i]);
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(ggml_table_gelu_f16[i16[i]]) * v);
}
}
void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float * g);
inline static void ggml_vec_swiglu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
for (int i = 0; i < n; ++i) {
float v = GGML_CPU_FP16_TO_FP32(x[i]);
float w = GGML_CPU_FP16_TO_FP32(g[i]);
y[i] = GGML_CPU_FP32_TO_FP16((v/(1.0f + expf(-v))) * w);
}
}
inline static void ggml_vec_geglu_erf_f32(const int n, float * y, const float * x, const float * g) {
for (int i = 0; i < n; ++i) {
float xi = x[i];
y[i] = 0.5f * xi * (1.0f + erff(xi*SQRT_2_INV)) * g[i];
}
}
inline static void ggml_vec_geglu_erf_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
for (int i = 0; i < n; ++i) {
float xi = GGML_CPU_FP16_TO_FP32(x[i]);
float gi = GGML_CPU_FP16_TO_FP32(g[i]);
y[i] = GGML_CPU_FP32_TO_FP16(0.5f * xi * (1.0f + erff(xi*SQRT_2_INV)) * gi);
}
}
#ifdef GGML_GELU_QUICK_FP16
inline static void ggml_vec_geglu_quick_f32(const int n, float * y, const float * x, const float * g) {
uint16_t t;
for (int i = 0; i < n; ++i) {
ggml_fp16_t fp16 = GGML_CPU_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_CPU_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]) * g[i];
}
}
#else
inline static void ggml_vec_geglu_quick_f32(const int n, float * y, const float * x, const float * g) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_quick_f32(x[i]) * g[i];
}
}
#endif
inline static void ggml_vec_geglu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
const uint16_t * i16 = (const uint16_t *) x;
for (int i = 0; i < n; ++i) {
float v = GGML_CPU_FP16_TO_FP32(g[i]);
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(ggml_table_gelu_quick_f16[i16[i]]) * v);
}
}
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
#ifndef GGML_USE_ACCELERATE
ggml_float sum = 0.0;

View File

@ -175,6 +175,23 @@ static const char * cu_get_error_str(CUresult err) {
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
#endif
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
# define CUDA_SET_SHARED_MEMORY_LIMIT(kernel, nbytes) \
do { \
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = { false }; \
const int id = ggml_cuda_get_device(); \
if (!shared_memory_limit_raised[id]) { \
CUDA_CHECK(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes)); \
shared_memory_limit_raised[id] = true; \
} \
} while (0)
#else
# define CUDA_SET_SHARED_MEMORY_LIMIT(kernel, nbytes) \
do { \
GGML_UNUSED(nbytes); \
} while (0)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
#else

View File

@ -728,3 +728,25 @@ to_fp16_nc_cuda_t ggml_get_to_fp16_nc_cuda(ggml_type type) {
return nullptr;
}
}
to_bf16_nc_cuda_t ggml_get_to_bf16_nc_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return convert_unary_cuda<float, nv_bfloat16>;
case GGML_TYPE_F16:
return convert_unary_cuda<half, nv_bfloat16>;
default:
return nullptr;
}
}
to_fp32_nc_cuda_t ggml_get_to_fp32_nc_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_F16:
return convert_unary_cuda<half, float>;
case GGML_TYPE_BF16:
return convert_unary_cuda<nv_bfloat16, float>;
default:
return nullptr;
}
}

View File

@ -22,5 +22,10 @@ using to_t_nc_cuda_t = void (*)(const void * x, T * y,
int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne03,
int64_t s01, int64_t s02, int64_t s03, cudaStream_t stream);
typedef to_t_nc_cuda_t<float> to_fp32_nc_cuda_t;
typedef to_t_nc_cuda_t<half> to_fp16_nc_cuda_t;
typedef to_t_nc_cuda_t<nv_bfloat16> to_bf16_nc_cuda_t;
to_fp32_nc_cuda_t ggml_get_to_fp32_nc_cuda(ggml_type type);
to_fp16_nc_cuda_t ggml_get_to_fp16_nc_cuda(ggml_type type);
to_bf16_nc_cuda_t ggml_get_to_bf16_nc_cuda(ggml_type type);

View File

@ -123,13 +123,7 @@ void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor *
ggml_cuda_pool_alloc<float> dst_tmp(pool, blocks_num.x);
if (nbytes_shared <= smpbo) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shared_memory_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_f32<true>, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo));
shared_memory_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
CUDA_SET_SHARED_MEMORY_LIMIT((cross_entropy_loss_f32<true>), smpbo);
cross_entropy_loss_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
} else {
cross_entropy_loss_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
@ -175,13 +169,7 @@ void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_ten
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
if (nbytes_shared <= smpbo) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shared_memory_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_back_f32<true>, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo));
shared_memory_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
CUDA_SET_SHARED_MEMORY_LIMIT((cross_entropy_loss_back_f32<true>), smpbo);
cross_entropy_loss_back_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00);
} else {
cross_entropy_loss_back_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00);

View File

@ -32,7 +32,9 @@ typedef void (* fattn_kernel_t)(
const int ne12,
const int ne13,
const int ne31,
const int ne32,
const int nb31,
const int nb32,
const int nb01,
const int nb02,
const int nb03,
@ -851,7 +853,8 @@ void launch_fattn(
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
mask ? mask->ne[1] : 0, mask ? mask->ne[2] : 0,
mask ? mask->nb[1] : 0, mask ? mask->nb[2] : 0,
Q->nb[1], Q->nb[2], Q->nb[3],
nb11, nb12, nb13,
nb21, nb22, nb23,

View File

@ -1223,7 +1223,9 @@ static __global__ void flash_attn_ext_f16(
const int ne12,
const int ne13,
const int ne31,
const int ne32,
const int nb31,
const int nb32,
const int nb01,
const int nb02,
const int nb03,
@ -1288,7 +1290,8 @@ static __global__ void flash_attn_ext_f16(
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2);
const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio));
const half2 * mask_h2 = ncols2 > 1 || mask ? (const half2 *) mask + (nb31/sizeof(half2))*jt*ncols1 : nullptr;
const half2 * mask_h2 = ncols2 == 1 && !mask ? nullptr :
(const half2 *) (mask + nb32*(channel % ne32) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2);
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
@ -1327,7 +1330,8 @@ static __global__ void flash_attn_ext_f16(
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2);
const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio));
const half2 * mask_h2 = ncols2 > 1 || mask ? (const half2 *) mask + (nb31/sizeof(half2))*jt*ncols1 : nullptr;
const half2 * mask_h2 = ncols2 == 1 && !mask ? nullptr :
(const half2 *) (mask + nb32*(channel % ne32) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2);
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
@ -1348,8 +1352,8 @@ static __global__ void flash_attn_ext_f16(
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap); GGML_UNUSED(ne00);
GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03); GGML_UNUSED(ne10);
GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21);
GGML_UNUSED(nb22); GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
GGML_UNUSED(ne2); GGML_UNUSED(ne3);

View File

@ -6,7 +6,7 @@
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
__launch_bounds__(nwarps*WARP_SIZE, 2)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
static __global__ void flash_attn_tile_ext_f16(
const char * __restrict__ Q,
@ -30,7 +30,9 @@ static __global__ void flash_attn_tile_ext_f16(
const int ne12,
const int ne13,
const int ne31,
const int ne32,
const int nb31,
const int nb32,
const int nb01,
const int nb02,
const int nb03,
@ -64,7 +66,7 @@ static __global__ void flash_attn_tile_ext_f16(
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.z + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.z / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.z / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) mask + ne11*ic0;
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const int stride_KV2 = nb11 / sizeof(half2);
@ -288,8 +290,8 @@ static __global__ void flash_attn_tile_ext_f16(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);

View File

@ -6,7 +6,7 @@
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
__launch_bounds__(nwarps*WARP_SIZE, 2)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
static __global__ void flash_attn_tile_ext_f32(
const char * __restrict__ Q,
@ -30,7 +30,9 @@ static __global__ void flash_attn_tile_ext_f32(
const int ne12,
const int ne13,
const int ne31,
const int ne32,
const int nb31,
const int nb32,
const int nb01,
const int nb02,
const int nb03,
@ -58,8 +60,8 @@ static __global__ void flash_attn_tile_ext_f32(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
@ -76,7 +78,7 @@ static __global__ void flash_attn_tile_ext_f32(
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.z + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.z / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.z / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) mask + ne11*ic0;
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const int stride_KV2 = nb11 / sizeof(half2);
@ -297,14 +299,14 @@ static __global__ void flash_attn_tile_ext_f32(
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
GGML_UNUSED(ne2); GGML_UNUSED(ne3);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32);
GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
GGML_UNUSED(ne0); GGML_UNUSED(ne1); GGML_UNUSED(ne2); GGML_UNUSED(ne3);
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}

View File

@ -27,7 +27,9 @@ static __global__ void flash_attn_vec_ext_f16(
const int ne12,
const int ne13,
const int ne31,
const int ne32,
const int nb31,
const int nb32,
const int nb01,
const int nb02,
const int nb03,
@ -68,7 +70,7 @@ static __global__ void flash_attn_vec_ext_f16(
K += nb12*(blockIdx.z / gqa_ratio);
V += nb22*(blockIdx.z / gqa_ratio);
const half * maskh = (const half *) mask + ne11*ic0;
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const float slopef = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
@ -342,8 +344,8 @@ static __global__ void flash_attn_vec_ext_f16(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);

View File

@ -27,7 +27,9 @@ static __global__ void flash_attn_vec_ext_f32(
const int ne12,
const int ne13,
const int ne31,
const int ne32,
const int nb31,
const int nb32,
const int nb01,
const int nb02,
const int nb03,
@ -51,8 +53,8 @@ static __global__ void flash_attn_vec_ext_f32(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
@ -79,7 +81,8 @@ static __global__ void flash_attn_vec_ext_f32(
Q += nb02* blockIdx.z + nb01*ic0;
K += nb12*(blockIdx.z / gqa_ratio);
V += nb22*(blockIdx.z / gqa_ratio); // K and V have same shape
const half * maskh = (const half *) mask + ne11*ic0;
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const float slope = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
@ -334,13 +337,15 @@ static __global__ void flash_attn_vec_ext_f32(
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap); GGML_UNUSED(ne00);
GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03); GGML_UNUSED(ne10);
GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21);
GGML_UNUSED(nb22); GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
GGML_UNUSED(ne2); GGML_UNUSED(ne3);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32);
GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
GGML_UNUSED(ne0); GGML_UNUSED(ne1); GGML_UNUSED(ne2); GGML_UNUSED(ne3);
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}

View File

@ -46,7 +46,9 @@ static __global__ void flash_attn_ext_f16(
const int ne12,
const int ne13,
const int ne31,
const int ne32,
const int nb31,
const int nb32,
const int nb01,
const int nb02,
const int nb03,
@ -94,11 +96,11 @@ static __global__ void flash_attn_ext_f16(
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float * Q_f = (const float *) (Q + nb02* blockIdx.z + nb01*ic0);
const half * K_h = (const half *) (K + nb12*(blockIdx.z / gqa_ratio));
const half * V_h = (const half *) (V + nb12*(blockIdx.z / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
const float * Q_f = (const float *) (Q + nb02* blockIdx.z + nb01*ic0);
const half * K_h = (const half *) (K + nb12*(blockIdx.z / gqa_ratio));
const half * V_h = (const half *) (V + nb12*(blockIdx.z / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const half2 * mask2 = (const half2 *) maskh;
const int stride_Q = nb01 / sizeof(float);
const int stride_KV = nb11 / sizeof(half);
@ -440,7 +442,7 @@ static __global__ void flash_attn_ext_f16(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
GGML_UNUSED(ne31); GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
GGML_UNUSED(ne0); GGML_UNUSED(ne1); GGML_UNUSED(ne2); GGML_UNUSED(ne3);

View File

@ -168,6 +168,10 @@ static void ggml_cuda_get_rows_switch_src0_type(
get_rows_cuda_float((const float *) src0_d, src1_d, dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_I32:
get_rows_cuda_float((const int32_t *) src0_d, src1_d, dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_BF16:
get_rows_cuda_float((const nv_bfloat16 *) src0_d, src1_d, dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
@ -210,6 +214,10 @@ void get_rows_cuda(
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (float *) dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_I32:
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (int32_t *) dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_F16:
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (half *) dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);

View File

@ -1749,7 +1749,7 @@ static void ggml_cuda_op_mul_mat(
}
static __global__ void k_compute_batched_ptrs(
const half * src0_as_f16, const half * src1_as_f16, char * dst,
const void * src0_as_f16, const void * src1_as_f16, char * dst,
const void ** ptrs_src, void ** ptrs_dst,
int64_t ne12, int64_t ne13,
int64_t ne23,
@ -1772,83 +1772,131 @@ static __global__ void k_compute_batched_ptrs(
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
}
static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
// Type traits for mapping ggml types to CUDA/cuBLAS types
template<ggml_type T>
struct batched_mul_mat_traits;
template<>
struct batched_mul_mat_traits<GGML_TYPE_F32> {
using cuda_type = float;
static inline const cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
static inline const cudaDataType_t data_type = CUDA_R_32F;
static inline const ggml_type ggml_type_val = GGML_TYPE_F32;
static inline const float alpha = 1.0f;
static inline const float beta = 0.0f;
static inline const void* get_alpha() { static const float val = alpha; return &val; }
static inline const void* get_beta() { static const float val = beta; return &val; }
static inline auto get_nc_converter(ggml_type src_type) { return ggml_get_to_fp32_nc_cuda(src_type); }
};
template<>
struct batched_mul_mat_traits<GGML_TYPE_BF16> {
using cuda_type = nv_bfloat16;
static inline const cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
static inline const cudaDataType_t data_type = CUDA_R_16BF;
static inline const ggml_type ggml_type_val = GGML_TYPE_BF16;
static inline const float alpha = 1.0f;
static inline const float beta = 0.0f;
static inline const void* get_alpha() { static const float val = alpha; return &val; }
static inline const void* get_beta() { static const float val = beta; return &val; }
static inline auto get_nc_converter(ggml_type src_type) { return ggml_get_to_bf16_nc_cuda(src_type); }
};
template<>
struct batched_mul_mat_traits<GGML_TYPE_F16> {
using cuda_type = half;
static inline const cublasComputeType_t compute_type = CUBLAS_COMPUTE_16F;
static inline const cudaDataType_t data_type = CUDA_R_16F;
static inline const ggml_type ggml_type_val = GGML_TYPE_F16;
static inline const half alpha = 1.0;
static inline const half beta = 0.0;
static inline const void* get_alpha() { static const half val = alpha; return &val; }
static inline const void* get_beta() { static const half val = beta; return &val; }
static inline auto get_nc_converter(ggml_type src_type) { return ggml_get_to_fp16_nc_cuda(src_type); }
};
template<ggml_type src0_type>
static void ggml_cuda_mul_mat_batched_cublas_impl(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
using traits = batched_mul_mat_traits<src0_type>;
using cuda_t = typename traits::cuda_type;
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == src0_type);
GGML_ASSERT(ggml_is_contiguous(dst));
// Byte offsets and tensor dimensions are currently used in an inconsistent way for dst.
// As long as dst is contiguous this does not matter though.
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t ne_dst = ggml_nelements(dst);
cudaStream_t main_stream = ctx.stream();
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
const half * src0_f16 = (const half *) src0->data;
float * dst_ddf = (float *) dst->data;
const half * src1_f16 = (const half *) src1->data;
const size_t ts_src1 = ggml_type_size(src1->type);
GGML_ASSERT(nb10 == ts_src1);
int64_t s11 = nb11 / ts_src1;
int64_t s12 = nb12 / ts_src1;
int64_t s13 = nb13 / ts_src1;
ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
// convert src1 to fp16
if (src1->type != GGML_TYPE_F16) {
const to_fp16_nc_cuda_t to_fp16_cuda = ggml_get_to_fp16_nc_cuda(src1->type);
const cuda_t * src0_ptr = nullptr;
const cuda_t * src1_ptr = nullptr;
ggml_cuda_pool_alloc<cuda_t> src0_alloc(ctx.pool());
ggml_cuda_pool_alloc<cuda_t> src1_alloc(ctx.pool());
// Handle src0
src0_ptr = (const cuda_t *) src0->data;
// Handle src1 - convert if necessary
if (src1->type == src0_type) {
src1_ptr = (const cuda_t *) src1->data;
} else {
// Convert src1 to target type using traits conversion functions
const int64_t ne_src1 = ggml_nelements(src1);
src1_f16_alloc.alloc(ne_src1);
GGML_ASSERT(to_fp16_cuda != nullptr);
src1_alloc.alloc(ne_src1);
to_fp16_cuda(src1_f16, src1_f16_alloc.get(), ne10, ne11, ne12, ne13, s11, s12, s13, main_stream);
src1_f16 = src1_f16_alloc.get();
const auto convert_func = traits::get_nc_converter(src1->type);
GGML_ASSERT(convert_func != nullptr);
convert_func(src1->data, src1_alloc.get(), ne10, ne11, ne12, ne13, s11, s12, s13, main_stream);
src1_ptr = src1_alloc.get();
s11 = ne10;
s12 = ne11*s11;
s13 = ne12*s12;
}
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
// Setup destination buffer
ggml_cuda_pool_alloc<cuda_t> dst_temp(ctx.pool());
char * dst_t;
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
cudaDataType_t cu_data_type = CUDA_R_16F;
// dst strides
size_t nbd2 = dst->nb[2];
size_t nbd3 = dst->nb[3];
const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
cublasComputeType_t cu_compute_type = traits::compute_type;
cudaDataType_t cu_data_type = traits::data_type;
cudaDataType_t cu_data_type_a = traits::data_type;
cudaDataType_t cu_data_type_b = traits::data_type;
const void * alpha = traits::get_alpha();
const void * beta = traits::get_beta();
const float alpha_f32 = 1.0f;
const float beta_f32 = 0.0f;
const void * alpha = &alpha_f16;
const void * beta = &beta_f16;
const float beta_f32 = 0.0f;
if (dst->op_params[0] == GGML_PREC_DEFAULT) {
dst_t = (char *) dst_f16.alloc(ne_dst);
nbd2 /= sizeof(float) / sizeof(half);
nbd3 /= sizeof(float) / sizeof(half);
if constexpr (src0_type == GGML_TYPE_F32) {
dst_t = (char *) dst_ddf; // Direct F32 output
} else {
dst_t = (char *) dst_temp.alloc(ne_dst);
nbd2 /= sizeof(float) / sizeof(cuda_t);
nbd3 /= sizeof(float) / sizeof(cuda_t);
}
} else {
dst_t = (char *) dst_ddf;
cu_compute_type = CUBLAS_COMPUTE_32F;
cu_data_type = CUDA_R_32F;
cu_data_type = CUDA_R_32F;
alpha = &alpha_f32;
beta = &beta_f32;
beta = &beta_f32;
}
int id = ggml_cuda_get_device();
@ -1856,7 +1904,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
if (GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA4(cc)) {
cu_compute_type = CUBLAS_COMPUTE_32F;
alpha = &alpha_f32;
beta = &beta_f32;
beta = &beta_f32;
}
GGML_ASSERT(ne12 % ne02 == 0);
@ -1866,35 +1914,15 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
#if 0
// use cublasGemmEx
{
for (int i13 = 0; i13 < ne13; ++i13) {
for (int i12 = 0; i12 < ne12; ++i12) {
int i03 = i13 / r3;
int i02 = i12 / r2;
CUBLAS_CHECK(
cublasGemmEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const char *) src0_f16 + i03*nb03 + i02*nb02, CUDA_R_16F, nb01/sizeof(half),
src1_f16 + i13*s13 + i12*s12, CUDA_R_16F, s11,
beta, ( char *) dst_t + i13*nbd3 + i12*nbd2, cu_data_type, ne0,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
}
}
}
#else
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
// use cublasGemmStridedBatchedEx
CUBLAS_CHECK(
cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
src1_f16, CUDA_R_16F, s11, s12, // strideB
beta, dst_t, cu_data_type, ne0, ne1*ne0, // strideC
alpha, src0_ptr, cu_data_type_a, nb01/nb00, nb02/nb00, // strideA
src1_ptr, cu_data_type_b, s11, s12, // strideB
beta, dst_t, cu_data_type, ne0, ne1*ne0, // strideC
ne12*ne13,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
@ -1905,34 +1933,55 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
size_t src1_stride_size = sizeof(cuda_t);
dim3 block_dims(ne13, ne12);
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
src0_f16, src1_f16, dst_t,
src0_ptr, src1_ptr, dst_t,
ptrs_src.get(), ptrs_dst.get(),
ne12, ne13,
ne23,
nb02, nb03,
src1->type == GGML_TYPE_F16 ? nb12 : s12*sizeof(half),
src1->type == GGML_TYPE_F16 ? nb13 : s13*sizeof(half),
(src1->type == src0_type) ? nb12 : s12*src1_stride_size,
(src1->type == src0_type) ? nb13 : s13*src1_stride_size,
nbd2, nbd3,
r2, r3);
CUDA_CHECK(cudaGetLastError());
CUBLAS_CHECK(
cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
(const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, s11,
beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne0,
alpha, (const void **) (ptrs_src.get() + 0*ne23), cu_data_type_a, nb01/nb00,
(const void **) (ptrs_src.get() + 1*ne23), cu_data_type_b, s11,
beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne0,
ne23,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
}
#endif
if (dst->op_params[0] == GGML_PREC_DEFAULT && cu_data_type == CUDA_R_16F) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
// Convert output back to F32 if needed
if (dst->op_params[0] == GGML_PREC_DEFAULT && cu_data_type != CUDA_R_32F) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(traits::ggml_type_val);
to_fp32_cuda(dst_temp.get(), dst_ddf, ne_dst, main_stream);
}
}
static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || src0->type == GGML_TYPE_F32);
switch (src0->type) {
case GGML_TYPE_F32:
ggml_cuda_mul_mat_batched_cublas_impl<GGML_TYPE_F32>(ctx, src0, src1, dst);
break;
case GGML_TYPE_BF16:
ggml_cuda_mul_mat_batched_cublas_impl<GGML_TYPE_BF16>(ctx, src0, src1, dst);
break;
case GGML_TYPE_F16:
ggml_cuda_mul_mat_batched_cublas_impl<GGML_TYPE_F16>(ctx, src0, src1, dst);
break;
default:
GGML_ABORT("Unsupported type");
}
}
@ -1984,6 +2033,12 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
//TODO update for generic tensor parallelism
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
bool use_batched_cublas_f16 = src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16);
bool use_batched_cublas_bf16 = src0->type == GGML_TYPE_BF16 && bf16_mma_hardware_available(cc);
bool use_batched_cublas_f32 = src0->type == GGML_TYPE_F32;
if (!split && use_mul_mat_vec) {
// the custom F16 vector kernel can be used over batched cuBLAS GEMM
// but this is only faster for GPUs without tensor cores or with a thin src0 matrix (particularly KQV in attention)
@ -1992,8 +2047,8 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, nullptr, dst);
} else if (!split && use_mul_mat_q) {
ggml_cuda_mul_mat_q(ctx, src0, src1, nullptr, dst);
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16) &&
!ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
} else if (!split && (use_batched_cublas_f16 || use_batched_cublas_bf16 || use_batched_cublas_f32)
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// general KQ + KQV multi-batch without FlashAttention
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
} else if (use_mul_mat_vec) {
@ -2248,6 +2303,27 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
return false;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(dst)) {
case GGML_GLU_OP_REGLU:
ggml_cuda_op_reglu(ctx, dst);
break;
case GGML_GLU_OP_GEGLU:
ggml_cuda_op_geglu(ctx, dst);
break;
case GGML_GLU_OP_SWIGLU:
ggml_cuda_op_swiglu(ctx, dst);
break;
case GGML_GLU_OP_GEGLU_ERF:
ggml_cuda_op_geglu_erf(ctx, dst);
break;
case GGML_GLU_OP_GEGLU_QUICK:
ggml_cuda_op_geglu_quick(ctx, dst);
break;
default:
return false;
}
break;
case GGML_OP_NORM:
ggml_cuda_op_norm(ctx, dst);
break;
@ -3041,6 +3117,18 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return false;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(op)) {
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous_1(op->src[0]);
default:
return false;
}
break;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
{
@ -3112,6 +3200,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
switch (op->src[0]->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_BF16:
case GGML_TYPE_I32:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@ -3241,12 +3331,26 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_LOG:
case GGML_OP_SSM_SCAN:
case GGML_OP_SSM_CONV:
return true;
case GGML_OP_SSM_SCAN: {
if (op->src[3]->ne[0] == 1) {
// Mamba2
// (kernel only supports d_state == 128 && d_head % 16 == 0)
return op->src[0]->ne[0] == 128 && op->src[0]->ne[1] % 16 == 0;
} else {
// Mamba
// (kernel only supports d_state == 16, d_head == 1, n_head % 128 == 0, n_group == 1)
return op->src[0]->ne[0] == 16 && op->src[0]->ne[1] == 1 && op->src[0]->ne[2] % 128 == 0 && op->src[4]->ne[1] == 1;
}
}
case GGML_OP_SSM_CONV: {
// assumes d_inner % threads == 0
return op->src[0]->ne[1] % 128 == 0;
}
case GGML_OP_CONT:
return op->src[0]->type != GGML_TYPE_BF16;
case GGML_OP_DIAG_MASK_INF:
return true;
case GGML_OP_SOFT_MAX:
return true;
case GGML_OP_SOFT_MAX_BACK: {
@ -3271,7 +3375,6 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_GROUP_NORM:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_PAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
@ -3295,6 +3398,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (op->src[0]->ne[0] == 192) {
return false;
}
// TODO: support broadcast
// note: this was initially implemented in https://github.com/ggml-org/llama.cpp/pull/14500, but
// the interface of ggml_flash_attn_ext() changed in https://github.com/ggml-org/llama.cpp/pull/14505
if (op->src[0]->ne[3] != 1) {
return false;
}

View File

@ -3016,14 +3016,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
const int nbytes_shared = mmq_get_nbytes_shared<type>(mmq_x, mmq_y, cc);
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shared_memory_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes_shared));
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes_shared));
shared_memory_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
CUDA_SET_SHARED_MEMORY_LIMIT((mul_mat_q<type, mmq_x, MMQ_NWARPS, false>), nbytes_shared);
CUDA_SET_SHARED_MEMORY_LIMIT((mul_mat_q<type, mmq_x, MMQ_NWARPS, true>), nbytes_shared);
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
const int ntx = (args.ncols_dst + mmq_x - 1) / mmq_x;

View File

@ -50,21 +50,19 @@ static __global__ void rope_norm(
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
if (i0 >= n_dims) {
const int i = row_dst*ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return;
}
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = row_dst*ne0 + i0;
const int ix = channel_x*s2 + row_x*s1 + i0;
if (i0 >= n_dims) {
dst[idst + 0] = x[ix + 0];
dst[idst + 1] = x[ix + 1];
return;
}
const float theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
@ -94,21 +92,19 @@ static __global__ void rope_neox(
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
if (i0 >= n_dims) {
const int i = row_dst*ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return;
}
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = row_dst*ne0 + i0/2;
const int ix = channel_x*s2 + row_x*s1 + i0/2;
if (i0 >= n_dims) {
dst[idst + i0/2 + 0] = x[ix + i0/2 + 0];
dst[idst + i0/2 + 1] = x[ix + i0/2 + 1];
return;
}
const float theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
@ -138,21 +134,19 @@ static __global__ void rope_multi(
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
if (i0 >= n_dims) {
const int i = row_dst*ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return;
}
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = row_dst*ne0 + i0/2;
const int ix = channel_x*s2 + row_x*s1 + i0/2;
if (i0 >= n_dims) {
dst[idst + i0/2 + 0] = x[ix + i0/2 + 0];
dst[idst + i0/2 + 1] = x[ix + i0/2 + 1];
return;
}
const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
const int sec_w = sections.v[1] + sections.v[0];
const int sector = (i0 / 2) % sect_dims;

View File

@ -2,6 +2,7 @@
#include "ggml.h"
#include "softmax.cuh"
#include <cstdint>
#include <utility>
template <typename T>
static __device__ __forceinline__ float t2f32(T val) {
@ -13,6 +14,29 @@ __device__ float __forceinline__ t2f32<half>(half val) {
return __half2float(val);
}
struct soft_max_params {
int64_t nheads;
uint32_t n_head_log2;
int64_t ncols;
int64_t nrows_x;
int64_t nrows_y;
int64_t ne00;
int64_t ne01;
int64_t ne02;
int64_t ne03;
int64_t nb11;
int64_t nb12;
int64_t nb13;
int64_t ne12;
int64_t ne13;
float scale;
float max_bias;
float m0;
float m1;
};
// When ncols_template == 0 the bounds for the loops in this function are not known and can't be unrolled.
// As we want to keep pragma unroll for all other cases we supress the clang transformation warning here.
#ifdef __clang__
@ -21,16 +45,24 @@ __device__ float __forceinline__ t2f32<half>(half val) {
#endif // __clang__
template <bool use_shared, int ncols_template, int block_size_template, typename T>
static __global__ void soft_max_f32(
const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y,
const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
const float * x, const T * mask, float * dst, const soft_max_params p) {
const int ncols = ncols_template == 0 ? p.ncols : ncols_template;
const int tid = threadIdx.x;
const int rowx = blockIdx.x;
const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
const int64_t i03 = blockIdx.z;
const int64_t i02 = blockIdx.y;
const int64_t i01 = blockIdx.x;
//TODO: noncontigous inputs/outputs
const int rowx = blockIdx.x + blockIdx.y * gridDim.x + blockIdx.z * gridDim.x * gridDim.y;
const int64_t i11 = i01;
const int64_t i12 = i02 % p.ne12;
const int64_t i13 = i03 % p.ne13;
x += int64_t(rowx)*ncols;
mask += int64_t(rowy)*ncols * (mask != nullptr);
mask += (i11*p.nb11 + i12*p.nb12 + i13*p.nb13) / sizeof(T) * (mask != nullptr);
dst += int64_t(rowx)*ncols;
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
@ -38,7 +70,7 @@ static __global__ void soft_max_f32(
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
const float slope = get_alibi_slope(max_bias, rowx/nrows_y, n_head_log2, m0, m1);
const float slope = get_alibi_slope(p.max_bias, i02, p.n_head_log2, p.m0, p.m1);
extern __shared__ float data_soft_max_f32[];
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
@ -55,7 +87,7 @@ static __global__ void soft_max_f32(
break;
}
const float val = x[col]*scale + (mask ? slope*t2f32(mask[col]) : 0.0f);
const float val = x[col]*p.scale + (mask ? slope*t2f32(mask[col]) : 0.0f);
vals[col] = val;
max_val = max(max_val, val);
@ -150,64 +182,58 @@ static __global__ void soft_max_back_f32(
}
}
template<int... Ns, typename T>
static void launch_soft_max_kernels(const float * x, const T * mask, float * dst,
const soft_max_params & p, cudaStream_t stream, dim3 block_dims, dim3 block_nums, size_t nbytes_shared)
{
const int id = ggml_cuda_get_device();
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
auto launch_kernel = [=](auto I) -> bool {
constexpr int ncols = decltype(I)::value;
constexpr int block = (ncols > 1024 ? 1024 : ncols);
if (p.ncols == ncols) {
CUDA_SET_SHARED_MEMORY_LIMIT((soft_max_f32<true, ncols, block, T>), smpbo);
soft_max_f32<true, ncols, block><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, p);
return true;
}
return false;
};
// unary fold over launch_kernel
if ((launch_kernel(std::integral_constant<int, Ns>{}) || ...)) {
return;
}
//default case
CUDA_SET_SHARED_MEMORY_LIMIT((soft_max_f32<true, 0, 0, T>), smpbo);
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>(x, mask, dst, p);
}
template<typename T>
static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const soft_max_params & params, cudaStream_t stream) {
int nth = WARP_SIZE;
const int64_t ncols_x = params.ncols;
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1);
const dim3 block_nums(nrows_x, 1, 1);
const dim3 block_nums(params.ne01, params.ne02, params.ne03);
const size_t nbytes_shared = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
const uint32_t n_head = nrows_x/nrows_y;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
const int id = ggml_cuda_get_device();
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
if (nbytes_shared < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
switch (ncols_x) {
case 32:
soft_max_f32<true, 32, 32><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 64:
soft_max_f32<true, 64, 64><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 128:
soft_max_f32<true, 128, 128><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 256:
soft_max_f32<true, 256, 256><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 512:
soft_max_f32<true, 512, 512><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 1024:
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 2048:
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 4096:
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
default:
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
}
if (nbytes_shared <= smpbo) {
launch_soft_max_kernels<32, 64, 128, 256, 512, 1024, 2048, 4096>(x, mask, dst, params, stream, block_dims, block_nums, nbytes_shared);
} else {
const size_t nbytes_shared_low = WARP_SIZE*sizeof(float);
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, dst, params);
}
}
@ -235,10 +261,11 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
const int64_t ne00 = src0->ne[0];
const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src0->ne[1];
const int64_t ne00 = src0->ne[0];
float scale = 1.0f;
float max_bias = 0.0f;
@ -247,10 +274,44 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
const int64_t nb11 = src1 ? src1->nb[1] : 1;
const int64_t nb12 = src1 ? src1->nb[2] : 1;
const int64_t nb13 = src1 ? src1->nb[3] : 1;
const int64_t ne12 = src1 ? src1->ne[2] : 1;
const int64_t ne13 = src1 ? src1->ne[3] : 1;
const uint32_t n_head = src0->ne[2];
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
soft_max_params params = {};
params.nheads = src0->ne[2];
params.n_head_log2 = n_head_log2;
params.ncols = ne00;
params.nrows_x = nrows_x;
params.nrows_y = nrows_y;
params.ne00 = src0->ne[0];
params.ne01 = src0->ne[1];
params.ne02 = src0->ne[2];
params.ne03 = src0->ne[3];
params.nb11 = nb11;
params.nb12 = nb12;
params.nb13 = nb13;
params.ne12 = ne12;
params.ne13 = ne13;
params.scale = scale;
params.max_bias = max_bias;
params.m0 = m0;
params.m1 = m1;
if (use_f16) {
soft_max_f32_cuda(src0_d, (const half *) src1_d, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
soft_max_f32_cuda(src0_d, (const half *) src1_d, dst_d, params, stream);
} else {
soft_max_f32_cuda(src0_d, (const float *) src1_d, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
soft_max_f32_cuda(src0_d, (const float *) src1_d, dst_d, params, stream);
}
}

View File

@ -4,16 +4,15 @@ template <size_t splitD, size_t N>
__global__ void __launch_bounds__(splitD, 2)
ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
const int src0_nb1, const int src0_nb2, const int src1_nb0, const int src1_nb1, const int src1_nb2,
const int src1_nb3, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
float * __restrict__ dst, const int64_t L) {
GGML_UNUSED(src1_nb0);
GGML_UNUSED(src2_nb0);
const int32_t * __restrict__ src6, float * __restrict__ dst,
const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3,
const int src2_nb1, const int src2_nb2, const int src3_nb1,
const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3,
const int64_t s_off, const int64_t d_inner, const int64_t L) {
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
const int bidx = blockIdx.x; // split along B
const int bidy = blockIdx.y; // split along D
const int bidx = blockIdx.x; // split along B (sequences)
const int bidy = blockIdx.y; // split along D (d_inner)
const int tid = threadIdx.x;
const int wid = tid / 32;
const int wtid = tid % 32;
@ -24,23 +23,23 @@ __global__ void __launch_bounds__(splitD, 2)
float * smem_A = smem;
float * smem_s0 = smem_A + splitD * stride_sA;
const float * s0_block = (const float *) ((const char *) src0 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
const float * x_block = (const float *) ((const char *) src1 + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
const float * s0_block = (const float *) ((const char *) src0 + src6[bidx] * src0_nb3 + bidy * splitD * src0_nb2);
const float * x_block = (const float *) ((const char *) src1 + (bidx * src1_nb3) + bidy * splitD * sizeof(float));
const float * dt_block = (const float *) ((const char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float));
const float * A_block = (const float *) ((const char *) src3 + bidy * splitD * src3_nb1);
const float * B_block = (const float *) ((const char *) src4 + (bidx * src4_nb2));
const float * C_block = (const float *) ((const char *) src5 + (bidx * src5_nb2));
float * y_block = (float *) ((char *) dst + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
float * s_block = (float *) ((char *) dst + src1_nb3 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
const float * B_block = (const float *) ((const char *) src4 + (bidx * src4_nb3));
const float * C_block = (const float *) ((const char *) src5 + (bidx * src5_nb3));
float * y_block = (float *) ((char *) dst + (bidx * d_inner * L * sizeof(float)) + bidy * splitD * sizeof(float));
float * s_block = (float *) ((char *) dst + s_off + bidx * src0_nb3 + bidy * splitD * src0_nb2);
const int stride_s0 = src0_nb1 / sizeof(float);
const int stride_x = src1_nb1 / sizeof(float);
const int stride_s0 = src0_nb2 / sizeof(float);
const int stride_x = src1_nb2 / sizeof(float);
const int stride_dt = src2_nb1 / sizeof(float);
const int stride_A = src3_nb1 / sizeof(float);
const int stride_B = src4_nb1 / sizeof(float);
const int stride_C = src5_nb1 / sizeof(float);
const int stride_B = src4_nb2 / sizeof(float);
const int stride_C = src5_nb2 / sizeof(float);
const int stride_s = stride_s0;
const int stride_y = stride_x;
const int stride_y = d_inner;
// can N not be 16? for example 32?
if (N == 16) {
@ -84,24 +83,156 @@ __global__ void __launch_bounds__(splitD, 2)
}
}
// assumes as many threads as d_state
template <int splitH, int d_state>
__global__ void __launch_bounds__(d_state, 1)
ssm_scan_f32_group(
const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
const int32_t * __restrict__ src6, float * __restrict__ dst,
const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3,
const int src2_nb1, const int src2_nb2, const int src3_nb1,
const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3,
const int64_t s_off, const int64_t n_head, const int64_t d_head, const int64_t n_group, const int64_t n_tok) {
const int head_idx = (blockIdx.x * splitH) / d_head;
const int head_off = ((blockIdx.x * splitH) % d_head) * sizeof(float);
const int seq_idx = blockIdx.y;
const int group_off = (head_idx & (n_group - 1)) * d_state * sizeof(float);
const float * s0_block = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
const float * x_block = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + blockIdx.x * splitH * sizeof(float));
const float * dt_block = (const float *) ((const char *) src2 + (seq_idx * src2_nb2) + head_idx * sizeof(float));
const float * A_block = (const float *) ((const char *) src3 + head_idx * src3_nb1);
const float * B_block = (const float *) ((const char *) src4 + (seq_idx * src4_nb3) + (group_off));
const float * C_block = (const float *) ((const char *) src5 + (seq_idx * src5_nb3) + (group_off));
float * y_block = dst + (seq_idx * n_tok * n_head * d_head) + blockIdx.x * splitH;
float * s_block = (float *) ((char *) dst + s_off + seq_idx * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
// strides across n_seq_tokens
const int stride_x = src1_nb2 / sizeof(float);
const int stride_dt = src2_nb1 / sizeof(float);
const int stride_B = src4_nb2 / sizeof(float);
const int stride_C = src5_nb2 / sizeof(float);
const int stride_y = n_head * d_head;
float state[splitH];
// for the parallel accumulation
__shared__ float stateC[splitH * d_state];
#pragma unroll
for (int j = 0; j < splitH; j++) {
state[j] = s0_block[j * d_state + threadIdx.x];
}
for (int64_t i = 0; i < n_tok; i++) {
// TODO: only calculate dA and dt_soft_plus once per head instead of every splitH head elements
// TODO: only calculate B and C once per head group
// NOTE: dt_soft_plus, dA and x_dt have the same value across threads here.
float dt_soft_plus = dt_block[i * stride_dt];
if (dt_soft_plus <= 20.0f) {
dt_soft_plus = log1pf(expf(dt_soft_plus));
}
const float dA = expf(dt_soft_plus * A_block[0]);
const float B = B_block[i * stride_B + threadIdx.x];
const float C = C_block[i * stride_C + threadIdx.x];
// across d_head
#pragma unroll
for (int j = 0; j < splitH; j++) {
const float x_dt = x_block[i * stride_x + j] * dt_soft_plus;
state[j] = (state[j] * dA) + (B * x_dt);
stateC[j * d_state + threadIdx.x] = state[j] * C;
}
__syncthreads();
// parallel accumulation for stateC
// TODO: simplify
{
static_assert((d_state & -d_state) == d_state, "the state size has to be a power of 2");
static_assert((splitH & -splitH) == splitH, "splitH has to be a power of 2");
// reduce until w matches the warp size
// TODO: does this work even when the physical warp size is 64?
#pragma unroll
for (int w = d_state; w > WARP_SIZE; w >>= 1) {
// (assuming there are d_state threads)
#pragma unroll
for (int j = 0; j < ((w >> 1) * splitH + d_state - 1) / d_state; j++) {
// TODO: check for bank conflicts
const int k = (threadIdx.x % (w >> 1)) + (d_state * (threadIdx.x / (w >> 1))) + j * d_state * (d_state / (w >> 1));
stateC[k] += stateC[k + (w >> 1)];
}
__syncthreads();
}
static_assert(splitH >= d_state / WARP_SIZE);
#pragma unroll
for (int j = 0; j < splitH / (d_state / WARP_SIZE); j++) {
float y = stateC[(threadIdx.x % WARP_SIZE) + d_state * (threadIdx.x / WARP_SIZE) + j * d_state * (d_state / WARP_SIZE)];
y = warp_reduce_sum(y);
// store the above accumulations
if (threadIdx.x % WARP_SIZE == 0) {
const int k = threadIdx.x / WARP_SIZE + j * (d_state / WARP_SIZE);
y_block[i * stride_y + k] = y;
}
}
}
}
// write back the state
#pragma unroll
for (int j = 0; j < splitH; j++) {
s_block[j * d_state + threadIdx.x] = state[j];
}
}
static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3,
const float * src4, const float * src5, const int src0_nb1, const int src0_nb2,
const int src1_nb0, const int src1_nb1, const int src1_nb2, const int src1_nb3,
const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
float * dst, const int64_t N, const int64_t D, const int64_t L, const int64_t B,
const float * src4, const float * src5, const int32_t * src6, float * dst,
const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3, const int src2_nb1,
const int src2_nb2, const int src3_nb1, const int src4_nb2, const int src4_nb3, const int src5_nb2,
const int src5_nb3, const int64_t s_off, const int64_t d_state, const int64_t head_dim,
const int64_t n_head, const int64_t n_group, const int64_t n_tok, const int64_t n_seq,
cudaStream_t stream) {
const int threads = 128;
// todo: consider D cannot be divided,does this situation exist?
GGML_ASSERT(D % threads == 0);
const dim3 blocks(B, (D + threads - 1) / threads, 1);
const int smem_size = (threads * (N + 1) * 2) * sizeof(float);
if (N == 16) {
ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>(
src0, src1, src2, src3, src4, src5, src0_nb1, src0_nb2, src1_nb0, src1_nb1, src1_nb2, src1_nb3, src2_nb0,
src2_nb1, src2_nb2, src3_nb1, src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, L);
// NOTE: if you change conditions here, be sure to update the corresponding supports_op condition!
if (src3_nb1 == sizeof(float)) {
// Mamba-2
if (d_state == 128) {
GGML_ASSERT(d_state % threads == 0);
// NOTE: can be any power of two between 4 and 64
const int splitH = 16;
GGML_ASSERT(head_dim % splitH == 0);
const dim3 blocks((n_head * head_dim + (splitH - 1)) / splitH, n_seq, 1);
ssm_scan_f32_group<16, 128><<<blocks, threads, 0, stream>>>(
src0, src1, src2, src3, src4, src5, src6, dst,
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1,
src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok);
} else {
GGML_ABORT("doesn't support d_state!=128.");
}
} else {
GGML_ABORT("doesn't support N!=16.");
// Mamba-1
GGML_ASSERT(n_head % threads == 0);
GGML_ASSERT(head_dim == 1);
GGML_ASSERT(n_group == 1);
const dim3 blocks(n_seq, (n_head + threads - 1) / threads, 1);
const int smem_size = (threads * (d_state + 1) * 2) * sizeof(float);
if (d_state == 16) {
ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>(
src0, src1, src2, src3, src4, src5, src6, dst,
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
} else {
GGML_ABORT("doesn't support d_state!=16.");
}
}
}
@ -112,30 +243,25 @@ void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const struct ggml_tensor * src3 = dst->src[3]; // A
const struct ggml_tensor * src4 = dst->src[4]; // B
const struct ggml_tensor * src5 = dst->src[5]; // C
// const int64_t d_state = src0->ne[0];
// const int64_t d_inner = src0->ne[1];
// const int64_t l = src1->ne[1];
// const int64_t b = src0->ne[2];
const struct ggml_tensor * src6 = dst->src[6]; // ids
const int64_t nc = src0->ne[0]; // d_state
const int64_t nr = src0->ne[1]; // d_inner
const int64_t n_t = src1->ne[1]; // number of tokens per sequence
const int64_t n_s = src0->ne[2]; // number of sequences in the batch
const int64_t nr = src0->ne[1]; // head_dim or 1
const int64_t nh = src1->ne[1]; // n_head
const int64_t ng = src4->ne[1]; // n_group
const int64_t n_t = src1->ne[2]; // number of tokens per sequence
const int64_t n_s = src1->ne[3]; // number of sequences in the batch
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
const int64_t s_off = ggml_nelements(src1) * sizeof(float);
GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*n_s == ggml_nelements(dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(float));
GGML_ASSERT(src4->nb[0] == sizeof(float));
GGML_ASSERT(src5->nb[0] == sizeof(float));
// required for the dot product between s and C
GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float));
// required for per-sequence offsets for states
GGML_ASSERT(src0->nb[2] == src0->ne[0] * src0->ne[1] * sizeof(float));
// required to get correct offset for state destination (i.e. src1->nb[3])
GGML_ASSERT(src1->nb[3] == src1->ne[0] * src1->ne[1] * src1->ne[2] * sizeof(float));
GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
@ -143,13 +269,16 @@ void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const float * src3_d = (const float *) src3->data;
const float * src4_d = (const float *) src4->data;
const float * src5_d = (const float *) src5->data;
const int32_t * src6_d = (const int32_t *) src6->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src6->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src0->nb[1], src0->nb[2], src1->nb[0],
src1->nb[1], src1->nb[2], src1->nb[3], src2->nb[0], src2->nb[1], src2->nb[2], src3->nb[1],
src4->nb[1], src4->nb[2], src5->nb[1], src5->nb[2], dst_d, nc, nr, n_t, n_s, stream);
ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src6_d, dst_d,
src0->nb[2], src0->nb[3], src1->nb[2], src1->nb[3], src2->nb[1], src2->nb[2],
src3->nb[1], src4->nb[2], src4->nb[3], src5->nb[2], src5->nb[3],
s_off, nc, nr, nh, ng, n_t, n_s, stream);
}

View File

@ -196,6 +196,103 @@ void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_log>(ctx, dst);
}
/* gated ops */
template <float (*op)(float), typename T>
static __global__ void unary_gated_op_kernel(const T * x, const T * g, T * dst, const int64_t k, const int64_t n, const int64_t o0, const int64_t o1) {
const int64_t i = int64_t(blockDim.x)*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
// perform base op and multiply with gate (either offset in same tensor or a separate one)
const int64_t j0 = (i / n) * o0 + (i % n);
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
dst[i] = (T)(op((float)x[j0]) * (float)g[j1]);
}
template <float (*op)(float), typename T>
static void unary_gated_cuda(const T * x, const T * g, T * dst, const int64_t k, const int64_t n, const int64_t o0, const int64_t o1, cudaStream_t stream) {
const int64_t num_blocks = (k + CUDA_GLU_BLOCK_SIZE - 1) / CUDA_GLU_BLOCK_SIZE;
unary_gated_op_kernel<op><<<num_blocks, CUDA_GLU_BLOCK_SIZE, 0, stream>>>(x, g, dst, k, n, o0, o1);
}
template <float (*op)(float)>
void ggml_cuda_op_unary_gated(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
void * src0_d = src0->data;
void * src1_d = src1 ? src1->data : src0->data;
const int64_t src0_o = src0->nb[1];
const int64_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
void * dst_d = dst->data;
const int64_t nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(src0->nb[0] == ggml_element_size(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == ggml_nrows(src0));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
GGML_ASSERT(src1->ne[0] == nc);
GGML_ASSERT(src0->type == src1->type);
}
const int32_t swapped = ((const int32_t *) dst->op_params)[1];
if (src0->type == GGML_TYPE_F16) {
half * src0_p = (half *) src0_d;
half * src1_p = (half *) src1_d;
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
unary_gated_cuda<op>(src0_p, src1_p, (half *)dst_d, ggml_nelements(dst), nc, src0_o / sizeof(half), src1_o / sizeof(half), stream);
} else {
float * src0_p = (float *) src0_d;
float * src1_p = (float *) src1_d;
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
unary_gated_cuda<op>(src0_p, src1_p, (float *)dst_d, ggml_nelements(dst), nc, src0_o / sizeof(float), src1_o / sizeof(float), stream);
}
}
void ggml_cuda_op_reglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary_gated<op_relu>(ctx, dst);
}
void ggml_cuda_op_geglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary_gated<op_gelu>(ctx, dst);
}
void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary_gated<op_silu>(ctx, dst);
}
void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary_gated<op_gelu_erf>(ctx, dst);
}
void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary_gated<op_gelu_quick>(ctx, dst);
}
/* silu_back */
static __device__ __forceinline__ float op_silu_back(float grad, float x) {

View File

@ -15,6 +15,7 @@
#define CUDA_SQRT_BLOCK_SIZE 256
#define CUDA_SIN_BLOCK_SIZE 256
#define CUDA_COS_BLOCK_SIZE 256
#define CUDA_GLU_BLOCK_SIZE 256
void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
@ -57,3 +58,13 @@ void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_reglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -22,17 +22,88 @@ static __global__ void upscale_f32(const float * x, float * dst,
dst[index] = *( (const float *)((const char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00) );
}
static __global__ void upscale_f32_bilinear(const float * x, float * dst,
const int nb00, const int nb01, const int nb02, const int nb03,
const int ne00_src, const int ne01_src,
const int ne10_dst, const int ne11_dst, const int ne12_dst, const int ne13_dst,
const float sf0, const float sf1, const float sf2, const float sf3,
const float pixel_offset) {
const int64_t index = threadIdx.x + blockIdx.x * blockDim.x;
const int64_t dst_total_elements = ne10_dst * ne11_dst * ne12_dst * ne13_dst;
if (index >= dst_total_elements) {
return;
}
const int i10_dst = index % ne10_dst;
const int i11_dst = (index / ne10_dst) % ne11_dst;
const int i12_dst = (index / (ne10_dst * ne11_dst)) % ne12_dst;
const int i13_dst = index / (ne10_dst * ne11_dst * ne12_dst);
const int i02_src = (int)(i12_dst / sf2);
const int i03_src = (int)(i13_dst / sf3);
const float y_src_f = ((float)i11_dst + pixel_offset) / sf1 - pixel_offset;
int y0_src = (int)floorf(y_src_f);
int y1_src = y0_src + 1;
y0_src = max(0, min(y0_src, ne01_src - 1));
y1_src = max(0, min(y1_src, ne01_src - 1));
float dy = y_src_f - (float)y0_src;
dy = max(0.0f, min(dy, 1.0f));
float x_src_f = ((float)i10_dst + pixel_offset) / sf0 - pixel_offset;
int x0_src = (int)floorf(x_src_f);
int x1_src = x0_src + 1;
x0_src = max(0, min(x0_src, ne00_src - 1));
x1_src = max(0, min(x1_src, ne00_src - 1));
float dx = x_src_f - (float)x0_src;
dx = max(0.0f, min(dx, 1.0f));
const float * p_a = (const float *)((const char *)x + (int64_t)x0_src * nb00 + (int64_t)y0_src * nb01 + (int64_t)i02_src * nb02 + (int64_t)i03_src * nb03);
const float * p_b = (const float *)((const char *)x + (int64_t)x1_src * nb00 + (int64_t)y0_src * nb01 + (int64_t)i02_src * nb02 + (int64_t)i03_src * nb03);
const float * p_c = (const float *)((const char *)x + (int64_t)x0_src * nb00 + (int64_t)y1_src * nb01 + (int64_t)i02_src * nb02 + (int64_t)i03_src * nb03);
const float * p_d = (const float *)((const char *)x + (int64_t)x1_src * nb00 + (int64_t)y1_src * nb01 + (int64_t)i02_src * nb02 + (int64_t)i03_src * nb03);
const float val_a = *p_a;
const float val_b = *p_b;
const float val_c = *p_c;
const float val_d = *p_d;
float result = val_a * (1.0f - dx) * (1.0f - dy) +
val_b * dx * (1.0f - dy) +
val_c * (1.0f - dx) * dy +
val_d * dx * dy;
dst[index] = result;
}
static void upscale_f32_cuda(const float * x, float * dst,
const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int ne13,
const float sf0, const float sf1, const float sf2, const float sf3,
cudaStream_t stream) {
int dst_size = ne10 * ne11 * ne12 * ne13;
int num_blocks = (dst_size + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
const int64_t dst_size = ne10 * ne11 * ne12 * ne13;
const int64_t num_blocks = (dst_size + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
upscale_f32<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3);
}
static void upscale_f32_bilinear_cuda(const float * x, float * dst,
const int nb00, const int nb01, const int nb02, const int nb03,
const int ne00_src, const int ne01_src,
const int ne10_dst, const int ne11_dst, const int ne12_dst, const int ne13_dst,
const float sf0, const float sf1, const float sf2, const float sf3,
const float pixel_offset, cudaStream_t stream) {
const int64_t dst_size = ne10_dst * ne11_dst * ne12_dst * ne13_dst;
const int64_t num_blocks = (dst_size + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
upscale_f32_bilinear<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne00_src, ne01_src, ne10_dst, ne11_dst, ne12_dst, ne13_dst, sf0, sf1, sf2, sf3, pixel_offset);
}
void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
@ -42,10 +113,25 @@ void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const float sf0 = (float)dst->ne[0]/src0->ne[0];
const float sf1 = (float)dst->ne[1]/src0->ne[1];
const float sf2 = (float)dst->ne[2]/src0->ne[2];
const int mode_flags = dst->op_params[0];
const ggml_scale_mode mode = (ggml_scale_mode)(mode_flags & 0xFF);
float sf0 = (float)dst->ne[0]/src0->ne[0];
float sf1 = (float)dst->ne[1]/src0->ne[1];
float sf2 = (float)dst->ne[2]/src0->ne[2];
const float sf3 = (float)dst->ne[3]/src0->ne[3];
upscale_f32_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, stream);
if (mode == GGML_SCALE_MODE_NEAREST) {
upscale_f32_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, stream);
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
float pixel_offset = 0.5f;
if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
sf0 = (float)(dst->ne[0] - 1) / (src0->ne[0] - 1);
sf1 = (float)(dst->ne[1] - 1) / (src0->ne[1] - 1);
pixel_offset = 0.0f;
}
upscale_f32_bilinear_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
src0->ne[0], src0->ne[1], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
sf0, sf1, sf2, sf3, pixel_offset, stream);
}
}

View File

@ -301,6 +301,7 @@ struct ggml_cgraph {
struct ggml_tensor ** grads; // the outputs of these tensors are the gradients of the nodes
struct ggml_tensor ** grad_accs; // accumulators for node gradients
struct ggml_tensor ** leafs; // tensors with constant data
int32_t * use_counts;// number of uses of each tensor, indexed by hash table slot
struct ggml_hash_set visited_hash_set;
@ -467,13 +468,76 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
// return true if the node's results are only used by N other nodes
// and can be fused into their calculations.
static inline bool ggml_node_has_n_uses(const struct ggml_cgraph * cgraph, int node_idx, int32_t n_uses) {
const struct ggml_tensor * node = cgraph->nodes[node_idx];
// check the use count against how many we're replacing
size_t hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node);
if (!ggml_bitset_get(cgraph->visited_hash_set.used, hash_pos) || cgraph->use_counts[hash_pos] != n_uses) {
return false;
}
// if node is a view, some other node might be using the intermediate result
// via the view source.
if (node->view_src) {
return false;
}
// If the user requested output for the node, can't fuse
if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
return false;
}
return true;
}
// Returns true if nodes [i, i+ops.size()) are the sequence of ggml_ops in ops[]
// and are fusable. Nodes are considered fusable according to this function if:
// - all nodes except the last have only one use and are not views/outputs (see ggml_node_has_N_uses).
// - all nodes except the last are a src of the following node.
// - all nodes are the same shape.
// TODO: Consider allowing GGML_OP_NONE nodes in between
static inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, const enum ggml_op * ops, int num_ops) {
if (node_idx + num_ops > cgraph->n_nodes) {
return false;
}
for (int i = 0; i < num_ops; ++i) {
struct ggml_tensor * node = cgraph->nodes[node_idx + i];
if (node->op != ops[i]) {
return false;
}
if (i < num_ops - 1 && !ggml_node_has_n_uses(cgraph, node_idx + i, 1)) {
return false;
}
if (i > 0) {
struct ggml_tensor * prev = cgraph->nodes[node_idx + i - 1];
if (node->src[0] != prev && node->src[1] != prev) {
return false;
}
if (!ggml_are_same_shape(node, prev)) {
return false;
}
}
}
return true;
}
#ifdef __cplusplus
}
#endif
#ifdef __cplusplus
#include <initializer_list>
#include <vector>
// nicer C++ syntax for ggml_can_fuse
inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
return ggml_can_fuse(cgraph, node_idx, ops.begin(), (int)ops.size());
}
// expose GGUF internals for test code
GGML_API size_t gguf_type_size(enum gguf_type type);
GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);

View File

@ -1,166 +0,0 @@
find_package(Vulkan COMPONENTS glslc REQUIRED)
find_program(glslc_executable NAMES glslc HINTS Vulkan::glslc)
if (NOT glslc_executable)
message(FATAL_ERROR "glslc not found")
endif()
ggml_add_backend_library(ggml-kompute
ggml-kompute.cpp
../../include/ggml-kompute.h
)
target_link_libraries(ggml-kompute PRIVATE ggml-base kompute)
target_include_directories(ggml-kompute PRIVATE ${CMAKE_CURRENT_BINARY_DIR})
add_compile_definitions(VULKAN_HPP_DISPATCH_LOADER_DYNAMIC=1)
function(compile_shader)
set(options)
set(oneValueArgs)
set(multiValueArgs SOURCES)
cmake_parse_arguments(compile_shader "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
foreach(source ${compile_shader_SOURCES})
get_filename_component(filename ${source} NAME)
set(spv_file ${filename}.spv)
add_custom_command(
OUTPUT ${spv_file}
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${source}
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/common.comp
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_getrows.comp
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n_pre.comp
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n.comp
COMMAND ${glslc_executable} --target-env=vulkan1.2 -o ${spv_file} ${CMAKE_CURRENT_SOURCE_DIR}/${source}
COMMENT "Compiling ${source} to ${spv_file}"
)
get_filename_component(RAW_FILE_NAME ${spv_file} NAME)
set(FILE_NAME "shader${RAW_FILE_NAME}")
string(REPLACE ".comp.spv" ".h" HEADER_FILE ${FILE_NAME})
string(TOUPPER ${HEADER_FILE} HEADER_FILE_DEFINE)
string(REPLACE "." "_" HEADER_FILE_DEFINE "${HEADER_FILE_DEFINE}")
set(OUTPUT_HEADER_FILE "${HEADER_FILE}")
message(STATUS "${HEADER_FILE} generating ${HEADER_FILE_DEFINE}")
if(CMAKE_GENERATOR MATCHES "Visual Studio")
add_custom_command(
OUTPUT ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
DEPENDS ${spv_file} xxd
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd"
)
else()
add_custom_command(
OUTPUT ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_BINARY_DIR}/bin/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
DEPENDS ${spv_file} xxd
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/xxd"
)
endif()
endforeach()
endfunction()
if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/kompute/CMakeLists.txt")
message(STATUS "Kompute found")
set(KOMPUTE_OPT_LOG_LEVEL Error CACHE STRING "Kompute log level")
add_subdirectory(kompute)
# Compile our shaders
compile_shader(SOURCES
kompute-shaders/op_scale.comp
kompute-shaders/op_scale_8.comp
kompute-shaders/op_add.comp
kompute-shaders/op_addrow.comp
kompute-shaders/op_mul.comp
kompute-shaders/op_silu.comp
kompute-shaders/op_relu.comp
kompute-shaders/op_gelu.comp
kompute-shaders/op_softmax.comp
kompute-shaders/op_norm.comp
kompute-shaders/op_rmsnorm.comp
kompute-shaders/op_diagmask.comp
kompute-shaders/op_mul_mat_mat_f32.comp
kompute-shaders/op_mul_mat_f16.comp
kompute-shaders/op_mul_mat_q8_0.comp
kompute-shaders/op_mul_mat_q4_0.comp
kompute-shaders/op_mul_mat_q4_1.comp
kompute-shaders/op_mul_mat_q4_k.comp
kompute-shaders/op_mul_mat_q6_k.comp
kompute-shaders/op_getrows_f32.comp
kompute-shaders/op_getrows_f16.comp
kompute-shaders/op_getrows_q4_0.comp
kompute-shaders/op_getrows_q4_1.comp
kompute-shaders/op_getrows_q6_k.comp
kompute-shaders/op_rope_norm_f16.comp
kompute-shaders/op_rope_norm_f32.comp
kompute-shaders/op_rope_neox_f16.comp
kompute-shaders/op_rope_neox_f32.comp
kompute-shaders/op_cpy_f16_f16.comp
kompute-shaders/op_cpy_f16_f32.comp
kompute-shaders/op_cpy_f32_f16.comp
kompute-shaders/op_cpy_f32_f32.comp
)
# Create a custom target for our generated shaders
add_custom_target(generated_shaders DEPENDS
shaderop_scale.h
shaderop_scale_8.h
shaderop_add.h
shaderop_addrow.h
shaderop_mul.h
shaderop_silu.h
shaderop_relu.h
shaderop_gelu.h
shaderop_softmax.h
shaderop_norm.h
shaderop_rmsnorm.h
shaderop_diagmask.h
shaderop_mul_mat_mat_f32.h
shaderop_mul_mat_f16.h
shaderop_mul_mat_q8_0.h
shaderop_mul_mat_q4_0.h
shaderop_mul_mat_q4_1.h
shaderop_mul_mat_q4_k.h
shaderop_mul_mat_q6_k.h
shaderop_getrows_f32.h
shaderop_getrows_f16.h
shaderop_getrows_q4_0.h
shaderop_getrows_q4_1.h
shaderop_getrows_q6_k.h
shaderop_rope_norm_f16.h
shaderop_rope_norm_f32.h
shaderop_rope_neox_f16.h
shaderop_rope_neox_f32.h
shaderop_cpy_f16_f16.h
shaderop_cpy_f16_f32.h
shaderop_cpy_f32_f16.h
shaderop_cpy_f32_f32.h
)
# Create a custom command that depends on the generated_shaders
add_custom_command(
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
COMMAND ${CMAKE_COMMAND} -E touch ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
DEPENDS generated_shaders
COMMENT "Ensuring shaders are generated before compiling ggml-kompute.cpp"
)
# Add the stamp to the main sources to ensure dependency tracking
target_sources(ggml-kompute PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
else()
message(WARNING "Kompute not found")
endif()

File diff suppressed because it is too large Load Diff

@ -1 +0,0 @@
Subproject commit 4565194ed7c32d1d2efa32ceab4d3c6cae006306

View File

@ -1,112 +0,0 @@
#extension GL_EXT_shader_16bit_storage: require
#extension GL_EXT_shader_8bit_storage: require
#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
#extension GL_EXT_shader_explicit_arithmetic_types_int8: require
#extension GL_EXT_shader_explicit_arithmetic_types_int16: require
#extension GL_EXT_shader_explicit_arithmetic_types_int64: require
#extension GL_EXT_control_flow_attributes: enable
#extension GL_KHR_shader_subgroup_arithmetic : require
#extension GL_EXT_debug_printf : enable
#define QK4_0 32
#define QK4_1 32
#define GELU_COEF_A 0.044715
#define SQRT_2_OVER_PI 0.79788456080286535587989211986876
#define TWOPI_F 6.283185307179586f
#define QK_K 256
#define K_SCALE_SIZE 12
#define u8BufToU16(buf, idx) (((uint16_t(buf[idx + 1]) << 8)) | buf[idx])
#define u8BufToFloat16(buf, idx) uint16BitsToHalf u8BufToU16(buf, idx)
#define u8BufToU32(buf, idx) (((uint32_t u8BufToU16(buf, idx + 2) << 8 | buf[idx + 1]) << 8) | buf[idx])
#define u8BufToFloat(buf, idx) uintBitsToFloat u8BufToU32(buf, idx)
#define sizeof_block_q4_0 0x12
struct block_q4_0 {
float16_t d;
uint8_t qs[QK4_0 / 2];
};
mat4 dequantize_q4_0(const block_q4_0 xb, uint il) {
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
const float d2 = d1 / 256.f;
const float md = -8.f * xb.d;
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
const uint16_t mask1 = mask0 << 8;
mat4 reg;
for (int i=0;i<8;i++) {
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
reg[i/2][2*(i%2)+0] = d1 * (b & mask0) + md;
reg[i/2][2*(i%2)+1] = d2 * (b & mask1) + md;
}
return reg;
}
#define sizeof_block_q4_1 0x14
struct block_q4_1 {
float16_t d;
float16_t m;
uint8_t qs[QK4_1 / 2];
};
mat4 dequantize_q4_1(const block_q4_1 xb, uint il) {
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
const float d2 = d1 / 256.f;
const float m = xb.m;
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
const uint16_t mask1 = mask0 << 8;
mat4 reg;
for (int i=0;i<8;i++) {
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
reg[i/2][2*(i%2)+0] = ((b & mask0) * d1) + m;
reg[i/2][2*(i%2)+1] = ((b & mask1) * d2) + m;
}
return reg;
}
#define sizeof_block_q4_k 144
struct block_q4_k {
float16_t d;
float16_t dmin;
uint8_t scales[K_SCALE_SIZE];
uint8_t qs[QK_K/2];
};
#define sizeof_block_q6_k 210
struct block_q6_k {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
float16_t d; // super-block scale
};
mat4 dequantize_q6_k(const block_q6_k xb, uint il) {
const float16_t d_all = xb.d;
const uint qlIndex = 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
const uint qhIndex = 32*(il/8) + 16*(il&1);
float16_t sc = xb.scales[(il%2) + 2 * ((il/2))];
il = (il/2) & 3;
const uint16_t kmask1 = il>1 ? uint16_t(il>2 ? 192 : 48) : uint16_t(il>0 ? 12 : 3);
const uint16_t kmask2 = il>1 ? uint8_t(0xF0) : uint8_t(0x0F);
const float16_t coef = il>1 ? float16_t(1.f/16.f) : float16_t(1.f);
const float16_t ml = float16_t(d_all * sc * 32.f);
const float16_t dl = float16_t(d_all * sc * coef);
mat4 reg;
for (int i = 0; i < 16; ++i) {
const float16_t q = (il&1) != 0 ? ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 2))
: ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 4));
reg[i/4][i%4] = dl * q - ml;
}
return reg;
}
#define QK8_0 32
// struct block_q8_0 {
// float16_t d; // delta
// int8_t qs[QK8_0]; // quants
// };
#define sizeof_block_q8_0 34

View File

@ -1,58 +0,0 @@
#version 450
#include "common.comp"
layout(local_size_x = 1024) in;
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
layout(push_constant) uniform PushConstants {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int nb00;
int nb01;
int nb02;
int nb03;
int ne10;
int ne11;
int ne12;
int ne13;
int nb10;
int nb11;
int nb12;
int nb13;
int ne0;
int nb0;
int nb1;
int nb2;
int nb3;
//int offs; // TODO: needed for GGML_OP_ACC, see metal code
} pcs;
// general-purpose kernel for addition of two tensors
// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3
// cons: not very efficient
void main() {
const uint i03 = gl_WorkGroupID.z;
const uint i02 = gl_WorkGroupID.y;
const uint i01 = gl_WorkGroupID.x;
const uint i13 = i03 % pcs.ne13;
const uint i12 = i02 % pcs.ne12;
const uint i11 = i01 % pcs.ne11;
int offs = 0; // TMP (see above)
uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + offs) / 4);
uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11 ) / 4);
uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1 + offs) / 4);
for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
const uint i10 = i0 % pcs.ne10;
out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] + inB[pcs.inBOff + src1_off + i10];
}
}

View File

@ -1,25 +0,0 @@
#version 450
#include "common.comp"
layout(local_size_x = 1) in;
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
layout(push_constant) uniform PushConstants {
uint inAOff;
uint inBOff;
uint outOff;
uint row;
} pcs;
void main() {
const uint baseIndex = gl_WorkGroupID.x * 4;
for (uint x = 0; x < 4; x++) {
const uint i = baseIndex + x;
out_[i + pcs.outOff] = inA[i + pcs.inAOff] + inB[(i % pcs.row) + pcs.inBOff];
}
}

View File

@ -1,52 +0,0 @@
#version 450
#include "common.comp"
#define IN_TYPE float16_t
#define IN_TYPE_SIZE 2
#define OUT_TYPE float16_t
#define OUT_TYPE_SIZE 2
layout(local_size_x = 1024) in;
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
layout (push_constant) uniform parameter {
uint inOff;
uint outOff;
int ne00;
int ne01;
int ne02;
uint nb00;
uint nb01;
uint nb02;
uint nb03;
int ne0;
int ne1;
int ne2;
uint nb0;
uint nb1;
uint nb2;
uint nb3;
} pcs;
void main() {
const uint i03 = gl_WorkGroupID.z;
const uint i02 = gl_WorkGroupID.y;
const uint i01 = gl_WorkGroupID.x;
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
out_[dst_data+i00] = OUT_TYPE(in_[src]);
}
}

View File

@ -1,52 +0,0 @@
#version 450
#include "common.comp"
#define IN_TYPE float16_t
#define IN_TYPE_SIZE 2
#define OUT_TYPE float
#define OUT_TYPE_SIZE 4
layout(local_size_x = 1024) in;
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
layout (push_constant) uniform parameter {
uint inOff;
uint outOff;
int ne00;
int ne01;
int ne02;
uint nb00;
uint nb01;
uint nb02;
uint nb03;
int ne0;
int ne1;
int ne2;
uint nb0;
uint nb1;
uint nb2;
uint nb3;
} pcs;
void main() {
const uint i03 = gl_WorkGroupID.z;
const uint i02 = gl_WorkGroupID.y;
const uint i01 = gl_WorkGroupID.x;
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
out_[dst_data+i00] = OUT_TYPE(in_[src]);
}
}

View File

@ -1,52 +0,0 @@
#version 450
#include "common.comp"
#define IN_TYPE float
#define IN_TYPE_SIZE 4
#define OUT_TYPE float16_t
#define OUT_TYPE_SIZE 2
layout(local_size_x = 1024) in;
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
layout (push_constant) uniform parameter {
uint inOff;
uint outOff;
int ne00;
int ne01;
int ne02;
uint nb00;
uint nb01;
uint nb02;
uint nb03;
int ne0;
int ne1;
int ne2;
uint nb0;
uint nb1;
uint nb2;
uint nb3;
} pcs;
void main() {
const uint i03 = gl_WorkGroupID.z;
const uint i02 = gl_WorkGroupID.y;
const uint i01 = gl_WorkGroupID.x;
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
out_[dst_data+i00] = OUT_TYPE(in_[src]);
}
}

View File

@ -1,52 +0,0 @@
#version 450
#include "common.comp"
#define IN_TYPE float
#define IN_TYPE_SIZE 4
#define OUT_TYPE float
#define OUT_TYPE_SIZE 4
layout(local_size_x = 1024) in;
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
layout (push_constant) uniform parameter {
uint inOff;
uint outOff;
int ne00;
int ne01;
int ne02;
uint nb00;
uint nb01;
uint nb02;
uint nb03;
int ne0;
int ne1;
int ne2;
uint nb0;
uint nb1;
uint nb2;
uint nb3;
} pcs;
void main() {
const uint i03 = gl_WorkGroupID.z;
const uint i02 = gl_WorkGroupID.y;
const uint i01 = gl_WorkGroupID.x;
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
out_[dst_data+i00] = OUT_TYPE(in_[src]);
}
}

View File

@ -1,30 +0,0 @@
#version 450
#include "common.comp"
layout(local_size_x = 1) in;
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
layout(push_constant) uniform PushConstants {
uint inOff;
uint outOff;
uint n_past;
int ne00;
int ne01;
} pcs;
void main() {
const uint i02 = gl_WorkGroupID.z;
const uint i01 = gl_WorkGroupID.y;
const uint i00 = gl_WorkGroupID.x;
const uint index = i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00 + i00;
if (i00 > pcs.n_past + i01) {
out_[index + pcs.outOff] = uintBitsToFloat(0xFF800000);
} else {
out_[index + pcs.outOff] = in_[index + pcs.inOff];
}
}

View File

@ -1,22 +0,0 @@
#version 450
#include "common.comp"
layout(local_size_x = 1) in;
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
layout(push_constant) uniform PushConstants {
uint inOff;
uint outOff;
} pcs;
void main() {
const uint baseIndex = gl_WorkGroupID.x * 8;
for (uint x = 0; x < 8; x++) {
const uint i = baseIndex + x;
const float y = in_[i + pcs.inOff];
out_[i + pcs.outOff] = 0.5*y*(1.0 + tanh(clamp(SQRT_2_OVER_PI*y*(1.0 + GELU_COEF_A*y*y), -15.0, 15.0)));
}
}

View File

@ -1,17 +0,0 @@
void main() {
const uint i = gl_WorkGroupID.x;
const int r = inB[i + pcs.inBOff];
int z = 0;
for (uint ind = gl_LocalInvocationID.x; ind < pcs.ne00/16; ind += gl_WorkGroupSize.x) {
const uint inIndex = (r * pcs.nb01 + pcs.inAOff) + ind/NL * SIZE_OF_BLOCK;
const mat4 result = dequantize_block(inIndex, ind%NL);
for (uint j = 0; j < 4; ++j) {
for (uint k = 0; k < 4; ++k) {
const uint outIndex = i * pcs.nb1/BYTES_FOR_TYPE + pcs.outOff + z;
out_[outIndex] = result[j][k];
++z;
}
}
}
}

View File

@ -1,31 +0,0 @@
#version 450
#include "common.comp"
layout(local_size_x = 1) in;
layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int nb01;
int nb1;
} pcs;
void dequantize_row_f16(uint x /*Based from inA unaligned*/, uint y /*Based from out_*/, int k) {
for (int j = 0; j < k; j++) {
out_[y + j] = inA[x + j];
}
}
void main() {
const uint i = gl_WorkGroupID.x;
const int r = inB[i + pcs.inBOff];
dequantize_row_f16(r*pcs.nb01/2/*bytes for float16*/ + pcs.inAOff, i*pcs.nb1/4 + pcs.outOff, pcs.ne00);
}

View File

@ -1,31 +0,0 @@
#version 450
#include "common.comp"
layout(local_size_x = 1) in;
layout (binding = 0) readonly buffer tensorInA { float inA[]; };
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int nb01;
int nb1;
} pcs;
void dequantize_row_f32(uint x /*Based from inA unaligned*/, uint y /*Based from out_*/, int k) {
for (int j = 0; j < k; j++) {
out_[y + j] = inA[x + j];
}
}
void main() {
const uint i = gl_WorkGroupID.x;
const int r = inB[i + pcs.inBOff];
dequantize_row_f32(r*pcs.nb01/4 + pcs.inAOff, i*pcs.nb1/4 + pcs.outOff, pcs.ne00);
}

View File

@ -1,38 +0,0 @@
#version 450
#include "common.comp"
#define NL 2
#define BYTES_FOR_TYPE 4 /*bytes for float*/
#define SIZE_OF_BLOCK sizeof_block_q4_0
layout(local_size_x = 1) in;
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int nb01;
int nb1;
} pcs;
block_q4_0 get_unaligned_block_q4_0(uint index) {
block_q4_0 fres;
fres.d = u8BufToFloat16(inA, index);
[[unroll]] for (uint it = 0; it != QK4_0 / 2; it++) {
fres.qs[it] = inA[index+2+it];
}
return fres;
}
mat4 dequantize_block(uint index, uint il) {
const block_q4_0 block = get_unaligned_block_q4_0(index);
return dequantize_q4_0(block, il);
}
#include "op_getrows.comp"

View File

@ -1,39 +0,0 @@
#version 450
#include "common.comp"
#define NL 2
#define BYTES_FOR_TYPE 4 /*bytes for float*/
#define SIZE_OF_BLOCK sizeof_block_q4_1
layout(local_size_x = 1) in;
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int nb01;
int nb1;
} pcs;
block_q4_1 get_unaligned_block_q4_1(uint index) {
block_q4_1 fres;
fres.d = u8BufToFloat16(inA, index);
fres.m = u8BufToFloat16(inA, index+2);
[[unroll]] for (uint it = 0; it != QK4_1 / 2; it++) {
fres.qs[it] = inA[index+4+it];
}
return fres;
}
mat4 dequantize_block(uint index, uint il) {
const block_q4_1 block = get_unaligned_block_q4_1(index);
return dequantize_q4_1(block, il);
}
#include "op_getrows.comp"

View File

@ -1,44 +0,0 @@
#version 450
#include "common.comp"
#define NL 16
#define BYTES_FOR_TYPE 4 /*bytes for float*/
#define SIZE_OF_BLOCK sizeof_block_q6_k
layout(local_size_x = 1) in;
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int nb01;
int nb1;
} pcs;
block_q6_k get_unaligned_block_q6_k(uint index) {
block_q6_k fres;
[[unroll]] for (uint it = 0; it != QK_K / 2; it++) {
fres.ql[it] = inA[index + it];
}
[[unroll]] for (uint it = 0; it != QK_K / 4; it++) {
fres.qh[it] = inA[index + QK_K/2 + it];
}
[[unroll]] for (uint it = 0; it != QK_K / 16; it++) {
fres.scales[it] = int8_t(inA[index + QK_K/2 + QK_K/4 + it]);
}
fres.d = u8BufToFloat16(inA, index + QK_K/2 + QK_K/4 + QK_K/16);
return fres;
}
mat4 dequantize_block(uint index, uint il) {
const block_q6_k block = get_unaligned_block_q6_k(index);
return dequantize_q6_k(block, il);
}
#include "op_getrows.comp"

View File

@ -1,52 +0,0 @@
#version 450
#include "common.comp"
layout(local_size_x = 1024) in;
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
layout(push_constant) uniform PushConstants {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int nb00;
int nb01;
int nb02;
int nb03;
int ne10;
int ne11;
int ne12;
int ne13;
int nb10;
int nb11;
int nb12;
int nb13;
int ne0;
int nb0;
int nb1;
int nb2;
int nb3;
} pcs;
void main() {
const uint i03 = gl_WorkGroupID.z;
const uint i02 = gl_WorkGroupID.y;
const uint i01 = gl_WorkGroupID.x;
const uint i13 = i03 % pcs.ne13;
const uint i12 = i02 % pcs.ne12;
const uint i11 = i01 % pcs.ne11;
uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01) / 4);
uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11) / 4);
uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1) / 4);
for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
const uint i10 = i0 % pcs.ne10;
out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] * inB[pcs.inBOff + src1_off + i10];
}
}

View File

@ -1,69 +0,0 @@
#version 450
#include "common.comp"
#extension GL_KHR_shader_subgroup_arithmetic : require
layout(local_size_x_id = 0) in;
layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int ne01;
int ne02;
uint nb00;
uint nb01;
uint nb02;
uint nb03;
int ne10;
int ne11;
int ne12;
uint nb10;
uint nb11;
uint nb12;
uint nb13;
int ne0;
int ne1;
uint r2;
uint r3;
} pcs;
#define N_F16_F32 4
void main() {
const uint r0 = gl_WorkGroupID.x;
const uint rb = gl_WorkGroupID.y*N_F16_F32;
const uint im = gl_WorkGroupID.z;
const uint i12 = im%pcs.ne12;
const uint i13 = im/pcs.ne12;
const uint offset0 = r0*pcs.nb01 + (i12/pcs.r2)*pcs.nb02 + (i13/pcs.r3)*pcs.nb03;
const uint x = offset0 / 2 + pcs.inAOff; // Based from inA
for (uint row = 0; row < N_F16_F32; ++row) {
uint r1 = rb + row;
if (r1 >= pcs.ne11) {
break;
}
const uint y = (r1*pcs.nb11 + i12*pcs.nb12 + i13*pcs.nb13) / 4 + pcs.inBOff;
float sumf = 0;
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
sumf += float(inA[x+i]) * float(inB[y+i]);
}
const float all_sum = subgroupAdd(sumf);
if (subgroupElect()) {
out_[im*pcs.ne1*pcs.ne0 + r1*pcs.ne0 + r0 + pcs.outOff] = all_sum;
}
}
}

View File

@ -1,51 +0,0 @@
#version 450
#include "common.comp"
#extension GL_KHR_shader_subgroup_arithmetic : require
#extension GL_EXT_debug_printf : enable
// device subgroup size
layout (local_size_x_id = 0) in;
layout(binding = 0) readonly buffer tensorInA { float inA[]; };
layout(binding = 1) readonly buffer tensorInB { float inB[]; };
layout(binding = 2) writeonly buffer tensorOut { float out_[]; };
layout(push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int ne01;
int ne02;
int ne11;
int ne12;
uint nb01;
uint nb02;
uint nb11;
uint nb12;
uint nb1;
uint nb2;
}
pcs;
void main() {
uvec3 gid = gl_WorkGroupID;
uint bc_ab = pcs.ne12 > pcs.ne02 ? gid.z / (pcs.ne12 / pcs.ne02) : gid.z;
uint bc_ba = pcs.ne02 > pcs.ne12 ? gid.z / (pcs.ne02 / pcs.ne12) : gid.z;
const uint x = (gid.x*pcs.nb01 + bc_ab*pcs.nb02) / 4 + pcs.inAOff; // Based from inA
const uint y = (gid.y*pcs.nb11 + bc_ba*pcs.nb12) / 4 + pcs.inBOff; // based from inB
float sum = 0.0f;
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
sum += float(inA[x+i]) * float(inB[y+i]);
}
const float all_sum = subgroupAdd(sum);
if (subgroupElect()) {
out_[gid.z*(pcs.nb2/4) + gid.y*(pcs.nb1/4) + gid.x + pcs.outOff] = all_sum;
}
}

View File

@ -1,33 +0,0 @@
#version 450
#include "common.comp"
#define BLOCKS_IN_QUANT QK4_0
#define SIZE_OF_BLOCK sizeof_block_q4_0
#define N_ROWS 4
#include "op_mul_mv_q_n_pre.comp"
// The q4_0 version of this function
float block_q_n_dot_y(uint block_index, uint yb, uint il) {
vec2 acc = vec2(0.0, 0.0);
const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
float d = float(u8BufToFloat16(inA, index));
float sumy = 0.0f;
for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
const uint16_t b = u8BufToU16(inA, index + 2 + il + i);
const float yl0 = inB[yb + i];
const float yl1 = inB[yb + i + 1];
const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
sumy += yl0 + yl1 + yl8 + yl9;
acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
}
return d * (sumy * -8.f + acc[0] + acc[1]);
}
#include "op_mul_mv_q_n.comp"

View File

@ -1,35 +0,0 @@
#version 450
#include "common.comp"
#define BLOCKS_IN_QUANT QK4_1
#define SIZE_OF_BLOCK sizeof_block_q4_1
#define N_ROWS 4
#include "op_mul_mv_q_n_pre.comp"
// The q4_1 version of this function
float block_q_n_dot_y(uint block_index, uint yb, uint il) {
vec2 acc = vec2(0.0, 0.0);
const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
float d = float(u8BufToFloat16(inA, index));
float m = float(u8BufToFloat16(inA, index+2));
float sumy = 0.0f;
for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
const uint16_t b = u8BufToU16(inA, index + 4 + il + i);
const float yl0 = inB[yb + i];
const float yl1 = inB[yb + i + 1];
const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
sumy += yl0 + yl1 + yl8 + yl9;
acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
}
return d * (acc[0] + acc[1]) + sumy * m;
}
#include "op_mul_mv_q_n.comp"

View File

@ -1,140 +0,0 @@
#version 450
#include "common.comp"
#define N_DST 4
#define SIZE_OF_BLOCK sizeof_block_q4_k
layout(local_size_x = 4) in;
layout(local_size_y = 8) in;
layout(local_size_z = 1) in;
layout (binding = 0) readonly buffer tensorInA { block_q4_k inA[]; };
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int ne10;
int ne0;
int ne1;
int ne01;
int ne02;
int ne12;
uint nb01;
uint nb02;
uint nb03;
uint nb11;
uint nb12;
uint nb13;
uint r2;
uint r3;
} pcs;
void main() {
const uint16_t kmask1 = uint16_t(0x3f3f);
const uint16_t kmask2 = uint16_t(0x0f0f);
const uint16_t kmask3 = uint16_t(0xc0c0);
const uint ix = gl_SubgroupInvocationID/8; // 0...3
const uint it = gl_SubgroupInvocationID%8; // 0...7
const uint iq = it/4; // 0 or 1
const uint ir = it%4; // 0...3
const uint nb = pcs.ne00/QK_K;
const uint r0 = gl_WorkGroupID.x;
const uint r1 = gl_WorkGroupID.y;
const uint im = gl_WorkGroupID.z;
const uint first_row = r0 * N_DST;
const uint ib_row = first_row * nb;
const uint i12 = im%pcs.ne12;
const uint i13 = im/pcs.ne12;
const uint offset0 = first_row*(pcs.nb01/SIZE_OF_BLOCK) + (i12/pcs.r2)*(pcs.nb02/SIZE_OF_BLOCK) + (i13/pcs.r3)*(pcs.nb03/SIZE_OF_BLOCK);
const uint offset1 = r1*pcs.nb11 + (i12 )*pcs.nb12 + (i13 )*pcs.nb13;
const uint xblk = offset0 + pcs.inAOff;
const uint y = (offset1 / 4) + pcs.inBOff;
float yl[16];
float yh[16];
float sumf[N_DST] = {0.f, 0.f, 0.f, 0.f};
float all_sum = 0.f;
uint y4 = y + ix * QK_K + 64 * iq + 8 * ir;
for (uint ib = ix; ib < nb; ib += 4) {
const uint blk_idx = ib + xblk;
float sumy[4] = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i+0] = inB[y4+i+ 0]; sumy[0] += yl[i+0];
yl[i+8] = inB[y4+i+ 32]; sumy[1] += yl[i+8];
yh[i+0] = inB[y4+i+128]; sumy[2] += yh[i+0];
yh[i+8] = inB[y4+i+160]; sumy[3] += yh[i+8];
}
for (int row = 0; row < N_DST; row++) {
uint row_idx = row * (pcs.nb01 / SIZE_OF_BLOCK);
uint16_t sc_0 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 0);
uint16_t sc_1 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 2);
uint16_t sc_2 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 4);
uint16_t sc_3 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 6);
uint16_t sc_4 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 8);
uint16_t sc16[4];
sc16[0] = sc_0 & kmask1;
sc16[1] = sc_2 & kmask1;
sc16[2] = ((sc_4 >> 0) & kmask2) | ((sc_0 & kmask3) >> 2);
sc16[3] = ((sc_4 >> 4) & kmask2) | ((sc_2 & kmask3) >> 2);
float acc1[4] = {0.f, 0.f, 0.f, 0.f};
float acc2[4] = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
uint16_t q1 = u8BufToU16(inA[blk_idx + row_idx].qs, 32 * iq + 8 * ir + i);
uint16_t q2 = u8BufToU16(inA[blk_idx + row_idx].qs, 64 + 32 * iq + 8 * ir + i);
acc1[0] += yl[i+0] * (q1 & 0x000F);
acc1[1] += yl[i+1] * (q1 & 0x0F00);
acc1[2] += yl[i+8] * (q1 & 0x00F0);
acc1[3] += yl[i+9] * (q1 & 0xF000);
acc2[0] += yh[i+0] * (q2 & 0x000F);
acc2[1] += yh[i+1] * (q2 & 0x0F00);
acc2[2] += yh[i+8] * (q2 & 0x00F0);
acc2[3] += yh[i+9] * (q2 & 0xF000);
}
uint8_t sc8_0 = uint8_t(sc16[0] & 0xFF);
uint8_t sc8_1 = uint8_t(sc16[0] >> 8 );
uint8_t sc8_2 = uint8_t(sc16[1] & 0xFF);
uint8_t sc8_3 = uint8_t(sc16[1] >> 8 );
uint8_t sc8_4 = uint8_t(sc16[2] & 0xFF);
uint8_t sc8_5 = uint8_t(sc16[2] >> 8 );
uint8_t sc8_6 = uint8_t(sc16[3] & 0xFF);
uint8_t sc8_7 = uint8_t(sc16[3] >> 8 );
float dall = float(inA[blk_idx + row_idx].d);
float dmin = float(inA[blk_idx + row_idx].dmin);
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8_0 +
(acc1[2] + 1.f/256.f * acc1[3]) * sc8_1 * 1.f/16.f +
(acc2[0] + 1.f/256.f * acc2[1]) * sc8_4 +
(acc2[2] + 1.f/256.f * acc2[3]) * sc8_5 * 1.f/16.f) -
dmin * (sumy[0] * sc8_2 + sumy[1] * sc8_3 + sumy[2] * sc8_6 + sumy[3] * sc8_7);
}
y4 += 4 * QK_K;
}
for (int row = 0; row < N_DST; ++row) {
all_sum = subgroupAdd(sumf[row]);
if (subgroupElect()) {
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = all_sum;
}
}
}

View File

@ -1,106 +0,0 @@
#version 450
#include "common.comp"
#define SIZE_OF_BLOCK sizeof_block_q6_k
layout(local_size_x_id = 0) in;
layout(local_size_y_id = 1) in;
layout(local_size_z = 1) in;
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int ne10;
int ne0;
int ne1;
int ne01;
int ne02;
int ne12;
uint nb01;
uint nb02;
uint nb03;
uint nb11;
uint nb12;
uint nb13;
uint r2;
uint r3;
} pcs;
void main() {
const uint8_t kmask1 = uint8_t(0x03);
const uint8_t kmask2 = uint8_t(0x0C);
const uint8_t kmask3 = uint8_t(0x30);
const uint8_t kmask4 = uint8_t(0xC0);
const uint nb = pcs.ne00/QK_K;
const uint r0 = gl_WorkGroupID.x;
const uint r1 = gl_WorkGroupID.y;
const uint im = gl_WorkGroupID.z;
const uint row = (r0 * gl_NumSubgroups + gl_SubgroupID);
const uint i12 = im%pcs.ne12;
const uint i13 = im/pcs.ne12;
const uint x = row*(pcs.nb01/SIZE_OF_BLOCK) + (i12/pcs.r2)*(pcs.nb02/SIZE_OF_BLOCK) + (i13/pcs.r3)*(pcs.nb03/SIZE_OF_BLOCK);
const uint yy = (r1*pcs.nb11 + i12*pcs.nb12 + i13*pcs.nb13) / 4 + pcs.inBOff;
float sumf = 0;
// bits of invocation ID for gl_SubgroupSize=32:
// x x x x x
// 4 3 2 1 0
// ( tid ) ix
// ip ( il )
const uint block_stride = gl_SubgroupSize / 16; // number of blocks each subgroup processes
const uint tid = gl_SubgroupInvocationID/block_stride; // first block_stride groups have tid=0
const uint ix = gl_SubgroupInvocationID%block_stride; // first block is 0..block_stride-1
const uint ip = tid/8; // first or second half of block (0 or 1)
const uint il = tid%8; // each half has 8 parts, one per scale
const uint n = 4; // 4 scales at a time (and 4 sums)
const uint l0 = n*il; // offset into half-block, 0..28
const uint is = 8*ip + l0/16; // 0, 1, 8, 9
const uint y_offset = 128*ip + l0;
const uint q_offset_l = 64*ip + l0;
const uint q_offset_h = 32*ip + l0;
for (uint i = ix; i < nb; i += block_stride) {
const uint baseIndex = (x + i) * SIZE_OF_BLOCK + pcs.inAOff;
const uint qlIndex = q_offset_l;
const uint q2Index = qlIndex + QK_K/8;
const uint qhIndex = q_offset_h;
const uint y = yy + i * QK_K + y_offset;
float sums[4] = {0.0f, 0.0f, 0.0f, 0.0f};
for (uint l = 0; l < n; ++l) {
const uint8_t currentQ1 = inA[baseIndex + qlIndex + l];
const uint8_t currentQ2 = inA[baseIndex + q2Index + l];
const uint8_t currentQh = inA[baseIndex + QK_K/2 + qhIndex + l];
sums[0] += inB[y+l+ 0] * (int8_t((currentQ1 & 0xF) | ((currentQh & kmask1) << 4)) - 32);
sums[1] += inB[y+l+32] * (int8_t((currentQ2 & 0xF) | ((currentQh & kmask2) << 2)) - 32);
sums[2] += inB[y+l+64] * (int8_t((currentQ1 >> 4) | ((currentQh & kmask3) << 0)) - 32);
sums[3] += inB[y+l+96] * (int8_t((currentQ2 >> 4) | ((currentQh & kmask4) >> 2)) - 32);
}
float d = u8BufToFloat16(inA, baseIndex + QK_K/2 + QK_K/4 + QK_K/16);
sumf += d * (sums[0] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + is]) + sums[1] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 2 + is]) + sums[2] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 4 + is]) + sums[3] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 6 + is]));
}
const float tot = subgroupAdd(sumf);
if (subgroupElect()) {
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + row + pcs.outOff] = tot;
}
}

View File

@ -1,73 +0,0 @@
#version 450
#include "common.comp"
#include "op_mul_mv_q_n_pre.comp"
#define SIZE_OF_D 2
#define N_DST 4 // each SIMD group works on 4 rows
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
#define NB_Q8_0 8
void main() {
// NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
if (gl_SubgroupInvocationID > 31)
return;
const int nr = N_DST;
const int nsg = N_SIMDGROUP;
const int nw = N_SIMDWIDTH;
const int nb = pcs.ne00/QK8_0;
const uint r0 = gl_WorkGroupID.x;
const uint r1 = gl_WorkGroupID.y;
const uint im = gl_WorkGroupID.z;
const uint first_row = (r0 * nsg + gl_SubgroupID) * nr;
const uint i12 = im%pcs.ne12;
const uint i13 = im/pcs.ne12;
const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
const uint x = offset0*sizeof_block_q8_0 + pcs.inAOff; // Based from inA
const uint y = r1*pcs.ne10 + im*pcs.ne00*pcs.ne1 + pcs.inBOff; // based from inB
float yl[NB_Q8_0];
float sumf[N_DST]={0.f, 0.f, 0.f, 0.f};
const uint ix = gl_SubgroupInvocationID.x/4;
const uint il = gl_SubgroupInvocationID.x%4;
uint yb = y + ix * QK8_0 + NB_Q8_0*il;
// each thread in a SIMD group deals with NB_Q8_0 quants at a time
for (uint ib = ix; ib < nb; ib += nw/4) {
for (int i = 0; i < NB_Q8_0; ++i) {
yl[i] = inB[yb + i];
}
for (int row = 0; row < nr; row++) {
const uint block_offset = (ib+row*nb) * sizeof_block_q8_0;
float sumq = 0.f;
for (int iq = 0; iq < NB_Q8_0; ++iq) {
const int8_t qs_iq = int8_t(inA[x + block_offset + SIZE_OF_D + NB_Q8_0*il + iq]);
sumq += qs_iq * yl[iq];
}
const float16_t d = u8BufToFloat16(inA, x + block_offset);
sumf[row] += sumq*d;
}
yb += NB_Q8_0 * nw;
}
for (int row = 0; row < nr; ++row) {
const float tot = subgroupAdd(sumf[row]);
if (subgroupElect() && first_row + row < pcs.ne01) {
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row] = tot;
}
}
}

View File

@ -1,52 +0,0 @@
void main() {
// NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
if (gl_SubgroupInvocationID > 31)
return;
const uint nb = uint(pcs.ne00/BLOCKS_IN_QUANT);
const uint r0 = gl_WorkGroupID.x;
const uint r1 = gl_WorkGroupID.y;
const uint im = gl_WorkGroupID.z;
const uint first_row = (r0 * gl_NumSubgroups + gl_SubgroupID) * N_ROWS;
const uint i12 = im%pcs.ne12;
const uint i13 = im/pcs.ne12;
// pointers to src0 rows
uint ax[N_ROWS];
for (int row = 0; row < N_ROWS; ++row) {
const uint offset0 = (first_row + row)*(pcs.nb01/SIZE_OF_BLOCK) + (i12/pcs.r2)*(pcs.nb02/SIZE_OF_BLOCK) + (i13/pcs.r3)*(pcs.nb03/SIZE_OF_BLOCK);
ax[row] = offset0 + pcs.inAOff;
}
const uint y = (r1*pcs.nb11 + i12*pcs.nb12 + i13*pcs.nb13) / 4 + pcs.inBOff;
float sumf[N_ROWS] = {0.0f, 0.0f, 0.0f, 0.0f};
const uint ix = gl_SubgroupInvocationID/2;
const uint il = (BLOCKS_IN_QUANT/4)*(gl_SubgroupInvocationID%2);
uint yb = y + ix * BLOCKS_IN_QUANT + il;
//debugPrintfEXT("gl_NumSubgroups=%d, gl_SubgroupID=%d, gl_SubgroupInvocationID=%d, glSubgroupSize=%d, gl_WorkGroupSize.x=%d, gl_WorkGroupSize.y=%d, gl_WorkGroupSize.z=%d\n",
// gl_NumSubgroups, gl_SubgroupID, gl_SubgroupInvocationID, gl_SubgroupSize,
// gl_WorkGroupSize.x, gl_WorkGroupSize.y, gl_WorkGroupSize.z);
for (uint ib = ix; ib < nb; ib += 16) {
for (int row = 0; row < N_ROWS; row++) {
sumf[row] += block_q_n_dot_y(ax[row] + ib, yb, il);
}
yb += BLOCKS_IN_QUANT * 16;
}
for (int row = 0; row < N_ROWS; ++row) {
const float tot = subgroupAdd(sumf[row]);
if (first_row + row < pcs.ne01 && subgroupElect()) {
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = tot;
}
}
}

View File

@ -1,28 +0,0 @@
layout(local_size_x_id = 0) in;
layout(local_size_y = 8) in;
layout(local_size_z = 1) in;
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int ne01;
int ne02;
int ne10;
int ne12;
int ne0;
int ne1;
uint nb01;
uint nb02;
uint nb03;
uint nb11;
uint nb12;
uint nb13;
uint r2;
uint r3;
} pcs;

Some files were not shown because too many files have changed in this diff Show More