model: support GLM MoE DSA arch (NOTE: indexer is not yet supported) (#19460)

* model: support GLM MoE DSA arch

* working version

* pyright

* keep indexer tensors

* add indexer gguf params

* loaded now

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* update

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* minor fix and cleanup

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit is contained in:
Xuan-Son Nguyen 2026-02-13 14:56:53 +01:00 committed by GitHub
parent cc2aa81513
commit 752584d5f5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 361 additions and 41 deletions

View File

@ -1608,6 +1608,23 @@ class TextModel(ModelBase):
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_glm(self):
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
# Special tokens
# Note: Using <|endoftext|> (151329) for eot causes endless generation
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_interns1(self):
tokens: list[str] = []
toktypes: list[int] = []
@ -7710,6 +7727,9 @@ class DeepseekModel(TextModel):
class DeepseekV2Model(TextModel):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
# TODO @ngxson : remove this when we support MTP for deepseek models
skip_mtp = True
def set_vocab(self):
try:
self._set_vocab_gpt2()
@ -7841,10 +7861,11 @@ class DeepseekV2Model(TextModel):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
# skip Multi-Token Prediction (MTP) layers
block_count = self.hparams["num_hidden_layers"]
match = re.match(r"model.layers.(\d+)", name)
if match and int(match.group(1)) >= block_count:
return
if self.skip_mtp:
block_count = self.hparams["num_hidden_layers"]
match = re.match(r"model.layers.(\d+)", name)
if match and int(match.group(1)) >= block_count:
return
# process the experts separately
if name.find("mlp.experts") != -1:
@ -8684,24 +8705,7 @@ class Glm4MoeModel(TextModel):
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
def set_vocab(self):
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
# Special tokens
# Note: Using <|endoftext|> (151329) for eot causes endless generation
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
special_vocab.add_to_gguf(self.gguf_writer)
return self._set_vocab_glm()
def set_gguf_parameters(self):
super().set_gguf_parameters()
@ -8801,26 +8805,38 @@ class Glm4MoeModel(TextModel):
class Glm4MoeLiteModel(DeepseekV2Model):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
# copied from Glm4MoeModel
def set_vocab(self):
from transformers import AutoTokenizer
return self._set_vocab_glm()
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
# Special tokens
# Note: Using <|endoftext|> (151329) for eot causes endless generation
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
@ModelBase.register("GlmMoeDsaForCausalLM")
class GlmMoeDsaModel(DeepseekV2Model):
model_arch = gguf.MODEL_ARCH.GLM_DSA
skip_mtp = False
special_vocab.add_to_gguf(self.gguf_writer)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
def set_vocab(self):
return self._set_vocab_glm()
def set_gguf_parameters(self):
super().set_gguf_parameters()
rope_dim = self.hparams["qk_rope_head_dim"]
partial_rotary_factor = self.hparams.get("partial_rotary_factor", 1.0)
self.gguf_writer.add_rope_dimension_count(int(rope_dim * partial_rotary_factor))
# NextN/MTP prediction layers
if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
# DSA indexer parameters
self.gguf_writer.add_indexer_head_count(self.hparams["index_n_heads"])
self.gguf_writer.add_indexer_key_length(self.hparams["index_head_dim"])
self.gguf_writer.add_indexer_top_k(self.hparams["index_topk"])
@ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")

View File

@ -181,6 +181,11 @@ class Keys:
SLIDING_WINDOW_PATTERN = "{arch}.attention.sliding_window_pattern"
TEMPERATURE_SCALE = "{arch}.attention.temperature_scale"
class Indexer:
HEAD_COUNT = "{arch}.attention.indexer.head_count"
KEY_LENGTH = "{arch}.attention.indexer.key_length"
TOP_K = "{arch}.attention.indexer.top_k"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
DIMENSION_SECTIONS = "{arch}.rope.dimension_sections"
@ -425,6 +430,7 @@ class MODEL_ARCH(IntEnum):
CHATGLM = auto()
GLM4 = auto()
GLM4_MOE = auto()
GLM_DSA = auto()
BITNET = auto()
T5 = auto()
T5ENCODER = auto()
@ -670,6 +676,10 @@ class MODEL_TENSOR(IntEnum):
VISEXP_GATE = auto()
VISEXP_DOWN = auto()
VISEXP_UP = auto()
INDEXER_K_NORM = auto()
INDEXER_PROJ = auto()
INDEXER_ATTN_K = auto()
INDEXER_ATTN_Q_B = auto()
# vision
V_MMPROJ = auto()
V_MMPROJ_FC = auto()
@ -858,6 +868,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.CHATGLM: "chatglm",
MODEL_ARCH.GLM4: "glm4",
MODEL_ARCH.GLM4_MOE: "glm4moe",
MODEL_ARCH.GLM_DSA: "glm-dsa",
MODEL_ARCH.BITNET: "bitnet",
MODEL_ARCH.T5: "t5",
MODEL_ARCH.T5ENCODER: "t5encoder",
@ -1101,6 +1112,10 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.VISEXP_GATE: "blk.{bid}.vis_gate",
MODEL_TENSOR.VISEXP_DOWN: "blk.{bid}.vis_down",
MODEL_TENSOR.VISEXP_UP: "blk.{bid}.vis_up",
MODEL_TENSOR.INDEXER_K_NORM: "blk.{bid}.indexer.k_norm",
MODEL_TENSOR.INDEXER_PROJ: "blk.{bid}.indexer.proj",
MODEL_TENSOR.INDEXER_ATTN_K: "blk.{bid}.indexer.attn_k",
MODEL_TENSOR.INDEXER_ATTN_Q_B: "blk.{bid}.indexer.attn_q_b",
# vision
MODEL_TENSOR.V_MMPROJ: "mm.{bid}",
MODEL_TENSOR.V_MMPROJ_FC: "mm.model.fc",
@ -2677,6 +2692,47 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD,
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM,
],
MODEL_ARCH.GLM_DSA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_A,
MODEL_TENSOR.ATTN_Q_B,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_K_B,
MODEL_TENSOR.ATTN_V_B,
MODEL_TENSOR.ATTN_Q_A_NORM,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
MODEL_TENSOR.INDEXER_K_NORM,
MODEL_TENSOR.INDEXER_PROJ,
MODEL_TENSOR.INDEXER_ATTN_K,
MODEL_TENSOR.INDEXER_ATTN_Q_B,
# NextN/MTP tensors - preserved but unused
MODEL_TENSOR.NEXTN_EH_PROJ,
MODEL_TENSOR.NEXTN_EMBED_TOKENS,
MODEL_TENSOR.NEXTN_ENORM,
MODEL_TENSOR.NEXTN_HNORM,
MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD,
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM,
],
MODEL_ARCH.BITNET: [
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,

View File

@ -771,6 +771,15 @@ class GGUFWriter:
def add_value_length_mla(self, length: int) -> None:
self.add_uint32(Keys.Attention.VALUE_LENGTH_MLA.format(arch=self.arch), length)
def add_indexer_head_count(self, count: int) -> None:
self.add_uint32(Keys.Attention.Indexer.HEAD_COUNT.format(arch=self.arch), count)
def add_indexer_key_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.Indexer.KEY_LENGTH.format(arch=self.arch), length)
def add_indexer_top_k(self, top_k: int) -> None:
self.add_uint32(Keys.Attention.Indexer.TOP_K.format(arch=self.arch), top_k)
def add_max_alibi_bias(self, bias: float) -> None:
self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)

View File

@ -1206,6 +1206,22 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
),
MODEL_TENSOR.INDEXER_K_NORM: (
"model.layers.{bid}.self_attn.indexer.k_norm", # DSA
),
MODEL_TENSOR.INDEXER_PROJ: (
"model.layers.{bid}.self_attn.indexer.weights_proj", # DSA
),
MODEL_TENSOR.INDEXER_ATTN_K: (
"model.layers.{bid}.self_attn.indexer.wk", # DSA
),
MODEL_TENSOR.INDEXER_ATTN_Q_B: (
"model.layers.{bid}.self_attn.indexer.wq_b", # DSA
),
############################################################################
# TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
MODEL_TENSOR.ENC_OUTPUT_NORM: (

View File

@ -74,6 +74,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_CHATGLM, "chatglm" },
{ LLM_ARCH_GLM4, "glm4" },
{ LLM_ARCH_GLM4_MOE, "glm4moe" },
{ LLM_ARCH_GLM_DSA, "glm-dsa" },
{ LLM_ARCH_BITNET, "bitnet" },
{ LLM_ARCH_T5, "t5" },
{ LLM_ARCH_T5ENCODER, "t5encoder" },
@ -225,6 +226,9 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_TEMPERATURE_SCALE, "%s.attention.temperature_scale" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
{ LLM_KV_ATTENTION_INDEXER_HEAD_COUNT, "%s.attention.indexer.head_count" },
{ LLM_KV_ATTENTION_INDEXER_KEY_LENGTH, "%s.attention.indexer.key_length" },
{ LLM_KV_ATTENTION_INDEXER_TOP_K, "%s.attention.indexer.top_k" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
@ -516,6 +520,10 @@ static const std::map<llm_tensor, const char *> LLM_TENSOR_NAMES = {
{ LLM_TENSOR_VISEXP_FFN_GATE, "blk.%d.vis_gate" },
{ LLM_TENSOR_VISEXP_FFN_DOWN, "blk.%d.vis_down" },
{ LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" },
{ LLM_TENSOR_INDEXER_K_NORM, "blk.%d.indexer.k_norm" },
{ LLM_TENSOR_INDEXER_PROJ, "blk.%d.indexer.proj" },
{ LLM_TENSOR_INDEXER_ATTN_K, "blk.%d.indexer.attn_k" },
{ LLM_TENSOR_INDEXER_ATTN_Q_B, "blk.%d.indexer.attn_q_b" },
};
static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
@ -1657,6 +1665,46 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD,
LLM_TENSOR_NEXTN_SHARED_HEAD_NORM,
};
case LLM_ARCH_GLM_DSA:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_NORM,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_Q_A,
LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_KV_A_MQA,
LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_K_B,
LLM_TENSOR_ATTN_V_B,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_FFN_EXP_PROBS_B,
LLM_TENSOR_INDEXER_K_NORM,
LLM_TENSOR_INDEXER_PROJ,
LLM_TENSOR_INDEXER_ATTN_K,
LLM_TENSOR_INDEXER_ATTN_Q_B,
LLM_TENSOR_NEXTN_EH_PROJ,
LLM_TENSOR_NEXTN_EMBED_TOKENS,
LLM_TENSOR_NEXTN_ENORM,
LLM_TENSOR_NEXTN_HNORM,
LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD,
LLM_TENSOR_NEXTN_SHARED_HEAD_NORM,
};
case LLM_ARCH_BITNET:
return {
LLM_TENSOR_TOKEN_EMBD,
@ -2643,6 +2691,10 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_VISEXP_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_INDEXER_K_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_INDEXER_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_INDEXER_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_INDEXER_ATTN_Q_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
// NextN/MTP tensors are currently ignored (reserved for future MTP support)
// These tensors only exist in the last layer(s) and are treated as output tensors
{LLM_TENSOR_NEXTN_EH_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},

View File

@ -78,6 +78,7 @@ enum llm_arch {
LLM_ARCH_CHATGLM,
LLM_ARCH_GLM4,
LLM_ARCH_GLM4_MOE,
LLM_ARCH_GLM_DSA,
LLM_ARCH_BITNET,
LLM_ARCH_T5,
LLM_ARCH_T5ENCODER,
@ -229,6 +230,9 @@ enum llm_kv {
LLM_KV_ATTENTION_TEMPERATURE_SCALE,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
LLM_KV_ATTENTION_INDEXER_HEAD_COUNT,
LLM_KV_ATTENTION_INDEXER_KEY_LENGTH,
LLM_KV_ATTENTION_INDEXER_TOP_K,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
@ -517,6 +521,10 @@ enum llm_tensor {
LLM_TENSOR_VISEXP_FFN_GATE,
LLM_TENSOR_VISEXP_FFN_DOWN,
LLM_TENSOR_VISEXP_FFN_UP,
LLM_TENSOR_INDEXER_K_NORM,
LLM_TENSOR_INDEXER_PROJ,
LLM_TENSOR_INDEXER_ATTN_K,
LLM_TENSOR_INDEXER_ATTN_Q_B,
LLM_TENSOR_NEXTN_EH_PROJ,
LLM_TENSOR_NEXTN_EMBED_TOKENS,
LLM_TENSOR_NEXTN_ENORM,

View File

@ -193,6 +193,11 @@ struct llama_hparams {
std::array<float, LLAMA_MAX_LAYERS> xielu_beta;
std::array<float, LLAMA_MAX_LAYERS> xielu_eps;
// DSA (deepseek sparse attention)
uint32_t indexer_n_head = 0;
uint32_t indexer_head_size = 0;
uint32_t indexer_top_k = 0;
// qwen3vl deepstack
uint32_t n_deepstack_layers = 0;

View File

@ -137,6 +137,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_300B_A47B: return "300B.A47B";
case LLM_TYPE_310B_A15B: return "310B.A15B";
case LLM_TYPE_355B_A32B: return "355B.A32B";
case LLM_TYPE_744B_A40B: return "744B.A40B";
case LLM_TYPE_E2B: return "E2B";
case LLM_TYPE_E4B: return "E4B";
default: return "?B";
@ -1822,6 +1823,50 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_GLM_DSA:
{
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, false);
// MoE parameters
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
// deepseek MLA parameters
ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla_impl, false);
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla_impl, false);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
// DSA parameters
ml.get_key(LLM_KV_ATTENTION_INDEXER_HEAD_COUNT, hparams.indexer_n_head);
ml.get_key(LLM_KV_ATTENTION_INDEXER_KEY_LENGTH, hparams.indexer_head_size);
ml.get_key(LLM_KV_ATTENTION_INDEXER_TOP_K, hparams.indexer_top_k);
// Expert gating function (GLM-4.5 uses sigmoid)
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
}
// NextN/MTP parameters
ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
// TODO: when MTP is implemented, this should probably be updated if needed
hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
switch (hparams.n_layer) {
case 79: type = LLM_TYPE_744B_A40B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_BITNET:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -5492,6 +5537,108 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
break;
case LLM_ARCH_GLM_DSA:
{
const bool is_mla = hparams.is_mla();
if (!is_mla) {
throw std::runtime_error("GLM_DSA architecture requires MLA");
}
// note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla();
const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla();
const int64_t n_embd_head_qk_rope = hparams.n_rot;
const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
const int64_t q_lora_rank = hparams.n_lora_q;
const int64_t kv_lora_rank = hparams.n_lora_kv;
const int64_t n_ff_exp = hparams.n_ff_exp;
const int64_t n_expert_shared = hparams.n_expert_shared;
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
// try to load output.weight, if not found, use token_embd (tied embeddings)
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
if (!output) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
int flags = 0;
if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
// skip all tensors in the NextN layers
// TODO @ngxson : TENSOR_NOT_REQUIRED was a hack, need to remove it later
flags |= TENSOR_SKIP | TENSOR_NOT_REQUIRED;
}
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);
layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, flags);
layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, flags);
layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, flags);
layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, flags);
layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, flags);
// note: only old legacy GGUF files will have the unsplit wkv_b tensor in
layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, flags);
layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, flags);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, flags);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);
// DSA indexer
layer.indexer_k_norm = create_tensor(tn(LLM_TENSOR_INDEXER_K_NORM, "weight", i), {hparams.indexer_head_size}, flags);
layer.indexer_k_norm_b = create_tensor(tn(LLM_TENSOR_INDEXER_K_NORM, "bias", i), {hparams.indexer_head_size}, flags);
layer.indexer_proj = create_tensor(tn(LLM_TENSOR_INDEXER_PROJ, "weight", i), {n_embd, hparams.indexer_n_head}, flags);
layer.indexer_attn_k = create_tensor(tn(LLM_TENSOR_INDEXER_ATTN_K, "weight", i), {n_embd, hparams.indexer_head_size}, flags);
layer.indexer_attn_q_b = create_tensor(tn(LLM_TENSOR_INDEXER_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.indexer_n_head * hparams.indexer_head_size}, flags);
if (i < (int) hparams.n_layer_dense_lead) {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, flags);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, flags);
} else {
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
if (n_expert == 0) {
throw std::runtime_error("n_expert must be > 0");
}
if (n_expert_used == 0) {
throw std::runtime_error("n_expert_used must be > 0");
}
// MoE branch
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
// Shared expert branch
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, flags);
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, flags);
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, flags);
}
// NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
// Optional tensors
layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags | TENSOR_NOT_REQUIRED);
}
}
} break;
case LLM_ARCH_NEMOTRON:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -7765,7 +7912,7 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
}
if (arch == LLM_ARCH_DEEPSEEK2) {
if (arch == LLM_ARCH_DEEPSEEK2 || arch == LLM_ARCH_GLM_DSA) {
LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
@ -8337,6 +8484,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
llm = std::make_unique<llm_build_deepseek>(*this, params);
} break;
case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_GLM_DSA:
{
llm = std::make_unique<llm_build_deepseek2>(*this, params);
} break;
@ -8738,6 +8886,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_MISTRAL3:
case LLM_ARCH_LLAMA_EMBED:
case LLM_ARCH_MAINCODER:
case LLM_ARCH_GLM_DSA:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2

View File

@ -130,6 +130,7 @@ enum llm_type {
LLM_TYPE_300B_A47B, // Ernie MoE big
LLM_TYPE_310B_A15B, // /MiMo-V2-Flash
LLM_TYPE_355B_A32B, // GLM-4.5
LLM_TYPE_744B_A40B, // GLM-5
LLM_TYPE_E2B,
LLM_TYPE_E4B,
};
@ -429,6 +430,13 @@ struct llama_layer {
struct ggml_tensor * ssm_g_b = nullptr;
struct ggml_tensor * ssm_o_norm = nullptr;
// DSA (deepseek sparse attention)
struct ggml_tensor * indexer_k_norm = nullptr;
struct ggml_tensor * indexer_k_norm_b = nullptr;
struct ggml_tensor * indexer_proj = nullptr;
struct ggml_tensor * indexer_attn_k = nullptr;
struct ggml_tensor * indexer_attn_q_b = nullptr; // note: for lora a/b, not bias
struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext;

View File

@ -45,7 +45,8 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
int effective_n_layers = hparams.n_layer - hparams.nextn_predict_layers;
for (int il = 0; il < effective_n_layers; ++il) {
ggml_tensor * inpSA = inpL;
// norm
@ -188,7 +189,7 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
}
}
if (il == n_layer - 1 && inp_out_ids) {
if (il == effective_n_layers - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}