llama-quant : fix the verification of attention layers for encoder-decoder models (#16023)
Signed-off-by: Jie Fu <jiefu@tencent.com>
This commit is contained in:
parent
1cbd80f8cf
commit
745cbcf2fe
|
|
@ -725,7 +725,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|||
// attention layers have a non-zero number of kv heads
|
||||
int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
|
||||
if (llama_model_has_encoder(&model)) {
|
||||
n_attn_layer *= 3;
|
||||
// now n_attn_layer is the number of attention layers in the encoder
|
||||
// for each decoder block, there are 2 attention layers
|
||||
n_attn_layer += 2 * model.hparams.dec_n_layer;
|
||||
}
|
||||
GGML_ASSERT((qs.n_attention_wv == n_attn_layer - pruned_attention_w) && "n_attention_wv is unexpected");
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue