diff --git a/.clang-format b/.clang-format index 47d96b6b40..117e6986f6 100644 --- a/.clang-format +++ b/.clang-format @@ -22,7 +22,7 @@ AllowShortIfStatementsOnASingleLine: Never AllowShortLambdasOnASingleLine: Inline AllowShortLoopsOnASingleLine: false AlwaysBreakBeforeMultilineStrings: true -BinPackArguments: false +BinPackArguments: true BinPackParameters: false # OnePerLine BitFieldColonSpacing: Both BreakBeforeBraces: Custom # Attach diff --git a/.github/workflows/close-issue.yml b/.github/workflows/close-issue.yml index 19e7854745..cbfc4990db 100644 --- a/.github/workflows/close-issue.yml +++ b/.github/workflows/close-issue.yml @@ -17,7 +17,7 @@ jobs: steps: - uses: actions/stale@v5 with: - exempt-issue-labels: "refactoring,help wanted,good first issue,research,bug,roadmap" + exempt-issue-labels: "refactoring,help wanted,good first issue,research 🔬,bug,roadmap" days-before-issue-stale: 30 days-before-issue-close: 14 stale-issue-label: "stale" diff --git a/README.md b/README.md index a01ef6d503..17f59e988e 100644 --- a/README.md +++ b/README.md @@ -137,6 +137,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo - [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview) - [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32) - [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38) +- [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7) #### Multimodal diff --git a/ci/run.sh b/ci/run.sh index d51ba44385..a250393ee9 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -386,10 +386,10 @@ function gg_run_open_llama_7b_v2 { (time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log function check_ppl { qnt="$1" @@ -520,8 +520,8 @@ function gg_run_pythia_1_4b { (time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log function check_ppl { qnt="$1" @@ -651,10 +651,10 @@ function gg_run_pythia_2_8b { (time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log function check_ppl { qnt="$1" diff --git a/common/arg.cpp b/common/arg.cpp index 873e16190e..a5507bef0d 100644 --- a/common/arg.cpp +++ b/common/arg.cpp @@ -1263,6 +1263,18 @@ static std::string list_builtin_chat_templates() { return msg.str(); } +static bool is_truthy(const std::string & value) { + return value == "on" || value == "enabled" || value == "1"; +} + +static bool is_falsey(const std::string & value) { + return value == "off" || value == "disabled" || value == "0"; +} + +static bool is_autoy(const std::string & value) { + return value == "auto" || value == "-1"; +} + common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) { // load dynamic backends ggml_backend_load_all(); @@ -1544,13 +1556,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.n_chunks = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL})); - add_opt(common_arg( - {"-fa", "--flash-attn"}, - string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"), - [](common_params & params) { - params.flash_attn = true; - } - ).set_env("LLAMA_ARG_FLASH_ATTN")); + add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]", + string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')", + llama_flash_attn_type_name(params.flash_attn_type)), + [](common_params & params, const std::string & value) { + if (is_truthy(value)) { + params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED; + } else if (is_falsey(value)) { + params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED; + } else if (is_autoy(value)) { + params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; + } else { + throw std::runtime_error( + string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str())); + } + }).set_env("LLAMA_ARG_FLASH_ATTN")); add_opt(common_arg( {"-p", "--prompt"}, "PROMPT", "prompt to start generation with; for system message, use -sys", @@ -2458,7 +2478,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT")); add_opt(common_arg( {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N", - "number of layers to store in VRAM", + string_format("max. number of layers to store in VRAM (default: %d)", params.n_gpu_layers), [](common_params & params, int value) { params.n_gpu_layers = value; if (!llama_supports_gpu_offload()) { @@ -2954,13 +2974,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.endpoint_metrics = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS")); - add_opt(common_arg( - {"--slots"}, - string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"), - [](common_params & params) { - params.endpoint_slots = true; - } - ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS")); add_opt(common_arg( {"--props"}, string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"), @@ -2968,6 +2981,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.endpoint_props = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS")); + add_opt(common_arg( + {"--slots"}, + string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"), + [](common_params & params) { + params.endpoint_slots = true; + } + ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS")); add_opt(common_arg( {"--no-slots"}, "disables slots monitoring endpoint", @@ -3126,13 +3146,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex common_log_set_file(common_log_main(), value.c_str()); } )); - add_opt(common_arg( - {"--log-colors"}, - "Enable colored logging", - [](common_params &) { - common_log_set_colors(common_log_main(), true); - } - ).set_env("LLAMA_LOG_COLORS")); + add_opt(common_arg({ "--log-colors" }, "[on|off|auto]", + "Set colored logging ('on', 'off', or 'auto', default: 'auto')\n" + "'auto' enables colors when output is to a terminal", + [](common_params &, const std::string & value) { + if (is_truthy(value)) { + common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED); + } else if (is_falsey(value)) { + common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED); + } else if (is_autoy(value)) { + common_log_set_colors(common_log_main(), LOG_COLORS_AUTO); + } else { + throw std::invalid_argument( + string_format("error: unkown value for --log-colors: '%s'\n", value.c_str())); + } + }).set_env("LLAMA_LOG_COLORS")); add_opt(common_arg( {"-v", "--verbose", "--log-verbose"}, "Set verbosity level to infinity (i.e. log all messages, useful for debugging)", @@ -3459,8 +3487,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF"; params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf"; params.port = 8012; - params.n_gpu_layers = 99; - params.flash_attn = true; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; @@ -3475,8 +3501,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF"; params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf"; params.port = 8012; - params.n_gpu_layers = 99; - params.flash_attn = true; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; @@ -3491,8 +3515,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF"; params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf"; params.port = 8012; - params.n_gpu_layers = 99; - params.flash_attn = true; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; @@ -3508,10 +3530,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf"; params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF"; params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf"; - params.speculative.n_gpu_layers = 99; params.port = 8012; - params.n_gpu_layers = 99; - params.flash_attn = true; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; @@ -3527,10 +3546,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf"; params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF"; params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf"; - params.speculative.n_gpu_layers = 99; params.port = 8012; - params.n_gpu_layers = 99; - params.flash_attn = true; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; @@ -3545,8 +3561,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF"; params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf"; params.port = 8012; - params.n_gpu_layers = 99; - params.flash_attn = true; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; diff --git a/common/chat.cpp b/common/chat.cpp index 955c42852a..a8a4c3e3c1 100644 --- a/common/chat.cpp +++ b/common/chat.cpp @@ -163,6 +163,19 @@ common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::strin throw std::runtime_error("Invalid tool_choice: " + tool_choice); } +bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates) { + common_chat_templates_inputs dummy_inputs; + common_chat_msg msg; + msg.role = "user"; + msg.content = "test"; + dummy_inputs.messages = {msg}; + dummy_inputs.enable_thinking = false; + const auto rendered_no_thinking = common_chat_templates_apply(chat_templates, dummy_inputs); + dummy_inputs.enable_thinking = true; + const auto rendered_with_thinking = common_chat_templates_apply(chat_templates, dummy_inputs); + return rendered_no_thinking.prompt != rendered_with_thinking.prompt; +} + template <> std::vector common_chat_msgs_parse_oaicompat(const json & messages) { std::vector msgs; @@ -623,6 +636,7 @@ const char * common_chat_format_name(common_chat_format format) { case COMMON_CHAT_FORMAT_GRANITE: return "Granite"; case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS"; case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS"; + case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2"; default: throw std::runtime_error("Unknown chat format"); } @@ -1184,6 +1198,67 @@ static common_chat_params common_chat_params_init_llama_3_x(const common_chat_te }); return data; } + +static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_template & tmpl, const struct templates_params & inputs) { + common_chat_params data; + + // Generate the prompt using the apply() function with the template + data.prompt = apply(tmpl, inputs); + data.format = COMMON_CHAT_FORMAT_NEMOTRON_V2; + + // Handle thinking tags appropriately based on inputs.enable_thinking + if (string_ends_with(data.prompt, "\n")) { + if (!inputs.enable_thinking) { + data.prompt += ""; + } else { + data.thinking_forced_open = true; + } + } + + // When tools are present, build grammar for the format, similar to CommandR, but without tool call ID + if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) { + data.grammar_lazy = true; + data.grammar = build_grammar([&](const common_grammar_builder & builder) { + auto schemas = json::array(); + foreach_function(inputs.tools, [&](const json & tool) { + const auto & function = tool.at("function"); + schemas.push_back({ + { "type", "object" }, + { "properties", + { + { "name", + { + { "type", "string" }, + { "const", function.at("name") }, + } }, + { "arguments", function.at("parameters") }, + } }, + { "required", json::array({ "name", "arguments" }) }, + }); + }); + auto schema = json{ + { "type", "array" }, + { "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } }, + { "minItems", 1 }, + }; + if (!inputs.parallel_tool_calls) { + schema["maxItems"] = 1; + } + builder.add_rule("root", + std::string(data.thinking_forced_open ? "( \"\" space )? " : "") + + "\"\" " + builder.add_schema("tool_calls", schema) + + " \"\""); + }); + data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL, + // If thinking_forced_open, then we capture the tag in the grammar, + // (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar) + std::string(data.thinking_forced_open ? + "[\\s\\S]*?(\\s*)" : + "(?:[\\s\\S]*?\\s*)?") + + "()[\\s\\S]*" }); + } + return data; +} static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool with_builtin_tools = false) { if (!builder.syntax().parse_tool_calls) { builder.add_content(builder.consume_rest()); @@ -1830,7 +1905,7 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat // If thinking_forced_open, then we capture the tag in the grammar, // (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar) std::string(data.thinking_forced_open ? "[\\s\\S]*?(\\s*)" : "(?:[\\s\\S]*?\\s*)?") + ( - "(\\s*" + "\\s*(" "(?:" "||||)?" @@ -2060,6 +2135,33 @@ static void common_chat_parse_granite(common_chat_msg_parser & builder) { } } +static void common_chat_parse_nemotron_v2(common_chat_msg_parser & builder) { + // Parse thinking tags + builder.try_parse_reasoning("", ""); + if (!builder.syntax().parse_tool_calls) { + builder.add_content(builder.consume_rest()); + return; + } + + // Look for tool calls + static const common_regex tool_call_regex(regex_escape("")); + if (auto res = builder.try_find_regex(tool_call_regex)) { + builder.move_to(res->groups[0].end); + + // Expect JSON array of tool calls + auto tool_calls_data = builder.consume_json(); + if (tool_calls_data.json.is_array()) { + if (!builder.try_consume_literal("")) { + throw common_chat_msg_partial_exception("Incomplete tool call"); + } + builder.add_tool_calls(tool_calls_data.json); + } else { + throw common_chat_msg_partial_exception("Incomplete tool call"); + } + } + builder.add_content(builder.consume_rest()); +} + static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) { // Parse thinking tags first - this handles the main reasoning content builder.try_parse_reasoning("", ""); @@ -2293,6 +2395,11 @@ static common_chat_params common_chat_templates_apply_jinja( return common_chat_params_init_seed_oss(tmpl, params, inputs); } + // Nemotron v2 + if (src.find("") != std::string::npos) { + return common_chat_params_init_nemotron_v2(tmpl, params); + } + // Use generic handler when mixing tools + JSON schema. // TODO: support that mix in handlers below. if ((params.tools.is_array() && params.json_schema.is_object())) { @@ -2454,6 +2561,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) { case COMMON_CHAT_FORMAT_SEED_OSS: common_chat_parse_seed_oss(builder); break; + case COMMON_CHAT_FORMAT_NEMOTRON_V2: + common_chat_parse_nemotron_v2(builder); + break; default: throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format)); } diff --git a/common/chat.h b/common/chat.h index b09ff3b126..41851022d9 100644 --- a/common/chat.h +++ b/common/chat.h @@ -112,6 +112,7 @@ enum common_chat_format { COMMON_CHAT_FORMAT_GRANITE, COMMON_CHAT_FORMAT_GPT_OSS, COMMON_CHAT_FORMAT_SEED_OSS, + COMMON_CHAT_FORMAT_NEMOTRON_V2, COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats }; @@ -198,6 +199,8 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_p common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice); +bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates); + // Parses a JSON array of messages in OpenAI's chat completion API format. // T can be std::string containing JSON or nlohmann::ordered_json template std::vector common_chat_msgs_parse_oaicompat(const T & messages); diff --git a/common/common.cpp b/common/common.cpp index 054b43be77..0c92d4d57d 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -901,7 +901,8 @@ struct common_init_result common_init_from_params(common_params & params) { llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams); if (model == NULL) { - LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str()); + LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n", + __func__, params.model.path.c_str()); return iparams; } @@ -911,7 +912,8 @@ struct common_init_result common_init_from_params(common_params & params) { llama_context * lctx = llama_init_from_model(model, cparams); if (lctx == NULL) { - LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str()); + LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n", + __func__, params.model.path.c_str()); llama_model_free(model); return iparams; } @@ -1157,10 +1159,10 @@ struct llama_context_params common_context_params_to_llama(const common_params & cparams.yarn_orig_ctx = params.yarn_orig_ctx; cparams.pooling_type = params.pooling_type; cparams.attention_type = params.attention_type; + cparams.flash_attn_type = params.flash_attn_type; cparams.cb_eval = params.cb_eval; cparams.cb_eval_user_data = params.cb_eval_user_data; cparams.offload_kqv = !params.no_kv_offload; - cparams.flash_attn = params.flash_attn; cparams.no_perf = params.no_perf; cparams.op_offload = !params.no_op_offload; cparams.swa_full = params.swa_full; diff --git a/common/common.h b/common/common.h index 3071e7b4ce..96f048949d 100644 --- a/common/common.h +++ b/common/common.h @@ -312,6 +312,7 @@ struct common_params { enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings + enum llama_flash_attn_type flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention struct common_params_sampling sampling; struct common_params_speculative speculative; @@ -375,7 +376,6 @@ struct common_params { bool multiline_input = false; // reverse the usage of `\` bool simple_io = false; // improves compatibility with subprocesses and limited consoles bool cont_batching = true; // insert new sequences for decoding on-the-fly - bool flash_attn = false; // flash attention bool no_perf = false; // disable performance metrics bool ctx_shift = false; // context shift on infinite text generation bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055) @@ -444,7 +444,7 @@ struct common_params { // "advanced" endpoints are disabled by default for better security bool webui = true; - bool endpoint_slots = false; + bool endpoint_slots = true; bool endpoint_props = false; // only control POST requests, not GET bool endpoint_metrics = false; diff --git a/common/log.cpp b/common/log.cpp index 52b31470c4..4ccdbd17cd 100644 --- a/common/log.cpp +++ b/common/log.cpp @@ -4,17 +4,52 @@ #include #include #include +#include +#include #include #include #include #include +#if defined(_WIN32) +# include +# include +# define isatty _isatty +# define fileno _fileno +#else +# include +#endif // defined(_WIN32) + int common_log_verbosity_thold = LOG_DEFAULT_LLAMA; void common_log_set_verbosity_thold(int verbosity) { common_log_verbosity_thold = verbosity; } +// Auto-detect if colors should be enabled based on terminal and environment +static bool common_log_should_use_colors_auto() { + // Check NO_COLOR environment variable (https://no-color.org/) + if (const char * no_color = std::getenv("NO_COLOR")) { + if (no_color[0] != '\0') { + return false; + } + } + + // Check TERM environment variable + if (const char * term = std::getenv("TERM")) { + if (std::strcmp(term, "dumb") == 0) { + return false; + } + } + + // Check if stdout and stderr are connected to a terminal + // We check both because log messages can go to either + bool stdout_is_tty = isatty(fileno(stdout)); + bool stderr_is_tty = isatty(fileno(stderr)); + + return stdout_is_tty || stderr_is_tty; +} + static int64_t t_us() { return std::chrono::duration_cast(std::chrono::system_clock::now().time_since_epoch()).count(); } @@ -353,6 +388,11 @@ struct common_log * common_log_init() { struct common_log * common_log_main() { static struct common_log log; + static std::once_flag init_flag; + std::call_once(init_flag, [&]() { + // Set default to auto-detect colors + log.set_colors(common_log_should_use_colors_auto()); + }); return &log; } @@ -380,8 +420,19 @@ void common_log_set_file(struct common_log * log, const char * file) { log->set_file(file); } -void common_log_set_colors(struct common_log * log, bool colors) { - log->set_colors(colors); +void common_log_set_colors(struct common_log * log, log_colors colors) { + if (colors == LOG_COLORS_AUTO) { + log->set_colors(common_log_should_use_colors_auto()); + return; + } + + if (colors == LOG_COLORS_DISABLED) { + log->set_colors(false); + return; + } + + GGML_ASSERT(colors == LOG_COLORS_ENABLED); + log->set_colors(true); } void common_log_set_prefix(struct common_log * log, bool prefix) { diff --git a/common/log.h b/common/log.h index c56bb50d95..f329b434c9 100644 --- a/common/log.h +++ b/common/log.h @@ -24,6 +24,12 @@ #define LOG_DEFAULT_DEBUG 1 #define LOG_DEFAULT_LLAMA 0 +enum log_colors { + LOG_COLORS_AUTO = -1, + LOG_COLORS_DISABLED = 0, + LOG_COLORS_ENABLED = 1, +}; + // needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower // set via common_log_set_verbosity() extern int common_log_verbosity_thold; @@ -65,10 +71,10 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch // D - debug (stderr, V = LOG_DEFAULT_DEBUG) // -void common_log_set_file (struct common_log * log, const char * file); // not thread-safe -void common_log_set_colors (struct common_log * log, bool colors); // not thread-safe -void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log -void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix +void common_log_set_file (struct common_log * log, const char * file); // not thread-safe +void common_log_set_colors (struct common_log * log, log_colors colors); // not thread-safe +void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log +void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix // helper macros for logging // use these to avoid computing log arguments if the verbosity of the log is higher than the threshold diff --git a/common/sampling.cpp b/common/sampling.cpp index 9c04d35fd0..c710ee173c 100644 --- a/common/sampling.cpp +++ b/common/sampling.cpp @@ -426,8 +426,29 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) { // helpers -llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) { - return &gsmpl->cur_p; +llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) { + auto * res = &gsmpl->cur_p; + + if (do_sort && !res->sorted) { + // remember the selected token before sorting + const llama_token id = res->data[res->selected].id; + + std::sort(res->data, res->data + res->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.p > b.p; + }); + + // restore the selected token after sorting + for (size_t i = 0; i < res->size; ++i) { + if (res->data[i].id == id) { + res->selected = i; + break; + } + } + + res->sorted = true; + } + + return res; } llama_token common_sampler_last(const struct common_sampler * gsmpl) { diff --git a/common/sampling.h b/common/sampling.h index 2064421db4..e198eecda3 100644 --- a/common/sampling.h +++ b/common/sampling.h @@ -86,7 +86,9 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl); // helpers // access the internal list of current candidate tokens -llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl); +// if do_sort == true, the candidates are guaranteed to be sorted afterwards (in descending order of probability) +// the .sorted flag of the result indicates whether the returned candidates are sorted +llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort); // get the last accepted token llama_token common_sampler_last(const struct common_sampler * gsmpl); diff --git a/common/speculative.cpp b/common/speculative.cpp index 262b2c23e7..3e83b0964c 100644 --- a/common/speculative.cpp +++ b/common/speculative.cpp @@ -317,7 +317,7 @@ llama_tokens common_speculative_gen_draft( common_sampler_sample(smpl, ctx_dft, 0, true); - const auto * cur_p = common_sampler_get_candidates(smpl); + const auto * cur_p = common_sampler_get_candidates(smpl, true); for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) { LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n", diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index df37c4a6e4..717b8a6595 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -302,10 +302,6 @@ class ModelBase: # data = data_torch.squeeze().numpy() data = data_torch.numpy() - # if data ends up empty, it means data_torch was a scalar tensor -> restore - if len(data.shape) == 0: - data = data_torch.numpy() - n_dims = len(data.shape) data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims) @@ -5126,6 +5122,15 @@ class Gemma3Model(TextModel): return [(self.map_tensor_name(name), data_torch)] +@ModelBase.register("Gemma3TextModel") +class EmbeddingGemma(Gemma3Model): + model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self._try_set_pooling_type() + + @ModelBase.register("Gemma3ForConditionalGeneration") class Gemma3VisionModel(MmprojModel): def set_gguf_parameters(self): diff --git a/convert_lora_to_gguf.py b/convert_lora_to_gguf.py index a67c0536a4..befe8ab9cc 100755 --- a/convert_lora_to_gguf.py +++ b/convert_lora_to_gguf.py @@ -12,7 +12,7 @@ import json from math import prod from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast -from transformers import AutoConfig +from transformers import AutoConfig, AutoTokenizer import torch @@ -26,6 +26,8 @@ import gguf # reuse model definitions from convert_hf_to_gguf.py from convert_hf_to_gguf import LazyTorchTensor, ModelBase +from gguf.constants import GGUFValueType + logger = logging.getLogger("lora-to-gguf") @@ -369,7 +371,31 @@ if __name__ == '__main__': self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora") def set_gguf_parameters(self): + logger.debug("GGUF KV: %s = %d", gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha) self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha) + alora_invocation_tokens = lparams.get("alora_invocation_tokens") + invocation_string = lparams.get("invocation_string") + if invocation_string and not alora_invocation_tokens: + logger.debug("Tokenizing invocation_string -> alora_invocation_tokens") + base_model_path_or_id = hparams.get("_name_or_path") + try: + tokenizer = AutoTokenizer.from_pretrained(base_model_path_or_id) + except ValueError: + logger.error("Unable to load tokenizer from %s", base_model_path_or_id) + raise + # NOTE: There's an off-by-one with the older aLoRAs where + # the invocation string includes the "<|start_of_turn|>" + # token, but the adapters themselves were trained to + # activate _after_ that first token, so we drop it here. + alora_invocation_tokens = tokenizer(invocation_string)["input_ids"][1:] + if alora_invocation_tokens: + logger.debug("GGUF KV: %s = %s", gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS, alora_invocation_tokens) + self.gguf_writer.add_key_value( + gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS, + alora_invocation_tokens, + GGUFValueType.ARRAY, + GGUFValueType.UINT32, + ) def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: # Never add extra tensors (e.g. rope_freqs) for LoRA adapters diff --git a/docs/backend/CANN.md b/docs/backend/CANN.md index 325e09bd38..357253f43a 100755 --- a/docs/backend/CANN.md +++ b/docs/backend/CANN.md @@ -293,17 +293,14 @@ We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers fr ## Environment variable setup -### GGML_CANN_ASYNC_MODE - -Enables asynchronous operator submission. Disabled by default. - ### GGML_CANN_MEM_POOL -Specifies the memory pool management strategy: +Specifies the memory pool management strategy, Default is vmm. - vmm: Utilizes a virtual memory manager pool. If hardware support for VMM is unavailable, falls back to the legacy (leg) memory pool. - prio: Employs a priority queue-based memory pool management. + - leg: Uses a fixed-size buffer pool. ### GGML_CANN_DISABLE_BUF_POOL_CLEAN @@ -312,5 +309,8 @@ Controls automatic cleanup of the memory pool. This option is only effective whe ### GGML_CANN_WEIGHT_NZ -Converting the matmul weight format from ND to NZ can significantly improve performance on the 310I DUO NPU. +Converting the matmul weight format from ND to NZ to improve performance. Enabled by default. +### GGML_CANN_ACL_GRAPH + +Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default. diff --git a/docs/build-s390x.md b/docs/build-s390x.md index f3cdd63be3..94f8ffdb74 100644 --- a/docs/build-s390x.md +++ b/docs/build-s390x.md @@ -42,18 +42,6 @@ cmake --build build --config Release -j $(nproc) cmake --build build --config Release -j $(nproc) ``` -- By default, NNPA is disabled by default. To enable it: - - ```bash - cmake -S . -B build \ - -DCMAKE_BUILD_TYPE=Release \ - -DGGML_BLAS=ON \ - -DGGML_BLAS_VENDOR=OpenBLAS \ - -DGGML_NNPA=ON - - cmake --build build --config Release -j $(nproc) - ``` - - For debug builds: ```bash @@ -164,15 +152,11 @@ All models need to be converted to Big-Endian. You can achieve this in three cas Only available in IBM z15/LinuxONE 3 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation. -### 2. NNPA Vector Intrinsics Acceleration - -Only available in IBM z16/LinuxONE 4 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation. - -### 3. zDNN Accelerator (WIP) +### 2. zDNN Accelerator (WIP) Only available in IBM z17/LinuxONE 5 or later system with the `-DGGML_ZDNN=ON` compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs will default back to CPU routines. -### 4. Spyre Accelerator +### 3. Spyre Accelerator _Only available with IBM z17 / LinuxONE 5 or later system. No support currently available._ @@ -230,10 +214,6 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl CXXFLAGS="-include cstdint" pip3 install -r requirements.txt ``` -5. `-DGGML_NNPA=ON` generates gibberish output - - Answer: We are aware of this as detailed in [this issue](https://github.com/ggml-org/llama.cpp/issues/14877). Please either try reducing the number of threads, or disable the compile option using `-DGGML_NNPA=OFF`. - ## Getting Help on IBM Z & LinuxONE 1. **Bugs, Feature Requests** @@ -258,38 +238,38 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl ## Appendix B: SIMD Support Matrix -| | VX/VXE/VXE2 | NNPA | zDNN | Spyre | -| ---------- | ----------- | ---- | ---- | ----- | -| FP32 | ✅ | ✅ | ✅ | ❓ | -| FP16 | ✅ | ✅ | ❓ | ❓ | -| BF16 | 🚫 | 🚫 | ❓ | ❓ | -| Q4_0 | ✅ | ✅ | ❓ | ❓ | -| Q4_1 | ✅ | ✅ | ❓ | ❓ | -| MXFP4 | 🚫 | 🚫 | ❓ | ❓ | -| Q5_0 | ✅ | ✅ | ❓ | ❓ | -| Q5_1 | ✅ | ✅ | ❓ | ❓ | -| Q8_0 | ✅ | ✅ | ❓ | ❓ | -| Q2_K | 🚫 | 🚫 | ❓ | ❓ | -| Q3_K | ✅ | ✅ | ❓ | ❓ | -| Q4_K | ✅ | ✅ | ❓ | ❓ | -| Q5_K | ✅ | ✅ | ❓ | ❓ | -| Q6_K | ✅ | ✅ | ❓ | ❓ | -| TQ1_0 | 🚫 | 🚫 | ❓ | ❓ | -| TQ2_0 | 🚫 | 🚫 | ❓ | ❓ | -| IQ2_XXS | 🚫 | 🚫 | ❓ | ❓ | -| IQ2_XS | 🚫 | 🚫 | ❓ | ❓ | -| IQ2_S | 🚫 | 🚫 | ❓ | ❓ | -| IQ3_XXS | 🚫 | 🚫 | ❓ | ❓ | -| IQ3_S | 🚫 | 🚫 | ❓ | ❓ | -| IQ1_S | 🚫 | 🚫 | ❓ | ❓ | -| IQ1_M | 🚫 | 🚫 | ❓ | ❓ | -| IQ4_NL | ✅ | ✅ | ❓ | ❓ | -| IQ4_XS | ✅ | ✅ | ❓ | ❓ | -| FP32->FP16 | 🚫 | ✅ | ❓ | ❓ | -| FP16->FP32 | 🚫 | ✅ | ❓ | ❓ | +| | VX/VXE/VXE2 | zDNN | Spyre | +|------------|-------------|------|-------| +| FP32 | ✅ | ✅ | ❓ | +| FP16 | ✅ | ❓ | ❓ | +| BF16 | 🚫 | ❓ | ❓ | +| Q4_0 | ✅ | ❓ | ❓ | +| Q4_1 | ✅ | ❓ | ❓ | +| MXFP4 | 🚫 | ❓ | ❓ | +| Q5_0 | ✅ | ❓ | ❓ | +| Q5_1 | ✅ | ❓ | ❓ | +| Q8_0 | ✅ | ❓ | ❓ | +| Q2_K | 🚫 | ❓ | ❓ | +| Q3_K | ✅ | ❓ | ❓ | +| Q4_K | ✅ | ❓ | ❓ | +| Q5_K | ✅ | ❓ | ❓ | +| Q6_K | ✅ | ❓ | ❓ | +| TQ1_0 | 🚫 | ❓ | ❓ | +| TQ2_0 | 🚫 | ❓ | ❓ | +| IQ2_XXS | 🚫 | ❓ | ❓ | +| IQ2_XS | 🚫 | ❓ | ❓ | +| IQ2_S | 🚫 | ❓ | ❓ | +| IQ3_XXS | 🚫 | ❓ | ❓ | +| IQ3_S | 🚫 | ❓ | ❓ | +| IQ1_S | 🚫 | ❓ | ❓ | +| IQ1_M | 🚫 | ❓ | ❓ | +| IQ4_NL | ✅ | ❓ | ❓ | +| IQ4_XS | ✅ | ❓ | ❓ | +| FP32->FP16 | 🚫 | ❓ | ❓ | +| FP16->FP32 | 🚫 | ❓ | ❓ | - ✅ - acceleration available - 🚫 - acceleration unavailable, will still run using scalar implementation - ❓ - acceleration unknown, please contribute if you can test it yourself -Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Aug 22, 2025. +Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Sep 6, 2025. diff --git a/docs/build.md b/docs/build.md index b35a898ba9..dcbcce7549 100644 --- a/docs/build.md +++ b/docs/build.md @@ -59,8 +59,6 @@ cmake --build build --config Release cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF cmake --build build-arm64-windows-llvm-release ``` - Building for arm64 can also be done with the MSVC compiler with the build-arm64-windows-MSVC preset, or the standard CMake build instructions. However, note that the MSVC compiler does not support inline ARM assembly code, used e.g. for the accelerated Q4_0_N_M CPU kernels. - For building with ninja generator and clang compiler as default: -set path:set LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.41.34120\lib\x64\uwp;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64 ```bash diff --git a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp index bdf0eed2a9..767198aafa 100644 --- a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp +++ b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp @@ -333,17 +333,17 @@ static void print_params(struct my_llama_hparams * params) { } static void print_tensor_info(const struct ggml_context * ctx) { - for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + for (auto * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { LOG_INF("%s: Allocating ", __func__); int64_t total = 1; int i = 0; for (; i < ggml_n_dims(t); ++i) { - if (i > 0) LOG("x "); - LOG("[%" PRId64 "] ", t->ne[i]); + if (i > 0) { LOG_INF("x "); } + LOG_INF("[%" PRId64 "] ", t->ne[i]); total *= t->ne[i]; } - if (i > 1) LOG("= [%" PRId64 "] ", total); - LOG("float space for %s\n", ggml_get_name(t)); + if (i > 1) { LOG_INF("= [%" PRId64 "] ", total); } + LOG_INF("float space for %s\n", ggml_get_name(t)); } } diff --git a/examples/diffusion/diffusion-cli.cpp b/examples/diffusion/diffusion-cli.cpp index 8431dcea8f..abf7fb3573 100644 --- a/examples/diffusion/diffusion-cli.cpp +++ b/examples/diffusion/diffusion-cli.cpp @@ -564,7 +564,7 @@ int main(int argc, char ** argv) { ctx_params.n_ctx = params.n_ctx; ctx_params.n_batch = params.n_batch; ctx_params.n_ubatch = params.n_ubatch; - ctx_params.flash_attn = params.flash_attn; + ctx_params.flash_attn_type = params.flash_attn_type; ctx_params.no_perf = params.no_perf; ctx_params.type_k = params.cache_type_k; ctx_params.type_v = params.cache_type_v; diff --git a/examples/model-conversion/Makefile b/examples/model-conversion/Makefile index 03b928afda..ac7a414729 100644 --- a/examples/model-conversion/Makefile +++ b/examples/model-conversion/Makefile @@ -63,7 +63,7 @@ causal-verify-logits: causal-run-original-model causal-run-converted-model @MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH} causal-run-original-embeddings: - @./scripts/causal/run-casual-gen-embeddings-org.sh + @./scripts/causal/run-casual-gen-embeddings-org.py causal-run-converted-embeddings: @./scripts/causal/run-converted-model-embeddings-logits.sh diff --git a/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh b/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh index 287158f638..c53c89d48a 100755 --- a/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh +++ b/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh @@ -1,4 +1,4 @@ -#/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/causal/convert-model.sh b/examples/model-conversion/scripts/causal/convert-model.sh index 9d95025950..32ffe132e7 100755 --- a/examples/model-conversion/scripts/causal/convert-model.sh +++ b/examples/model-conversion/scripts/causal/convert-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.sh b/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.py similarity index 95% rename from examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.sh rename to examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.py index 2fb54ab990..55ad821385 100755 --- a/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.sh +++ b/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.py @@ -3,11 +3,10 @@ import argparse import os import importlib -import sys import torch import numpy as np -from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM +from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM from pathlib import Path unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME') @@ -43,6 +42,8 @@ if unreleased_model_name: model = model_class.from_pretrained(model_path) except (ImportError, AttributeError) as e: print(f"Failed to import or load model: {e}") + print("Falling back to AutoModelForCausalLM") + model = AutoModelForCausalLM.from_pretrained(model_path) else: model = AutoModelForCausalLM.from_pretrained(model_path) print(f"Model class: {type(model)}") diff --git a/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh b/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh index 64709f1798..fa16a02c65 100755 --- a/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh +++ b/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/causal/run-converted-model.sh b/examples/model-conversion/scripts/causal/run-converted-model.sh index e2762729e7..f5f567d4ff 100755 --- a/examples/model-conversion/scripts/causal/run-converted-model.sh +++ b/examples/model-conversion/scripts/causal/run-converted-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh b/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh index 35b5d71984..1401dcb43e 100755 --- a/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh +++ b/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh @@ -1,4 +1,4 @@ -#/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/embedding/convert-model.sh b/examples/model-conversion/scripts/embedding/convert-model.sh index 0609e35357..0929e42413 100755 --- a/examples/model-conversion/scripts/embedding/convert-model.sh +++ b/examples/model-conversion/scripts/embedding/convert-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/embedding/modelcard.template b/examples/model-conversion/scripts/embedding/modelcard.template index 75c580524f..9e63042b7b 100644 --- a/examples/model-conversion/scripts/embedding/modelcard.template +++ b/examples/model-conversion/scripts/embedding/modelcard.template @@ -7,7 +7,7 @@ base_model: Recommended way to run this model: ```sh -llama-server -hf {namespace}/{model_name}-GGUF +llama-server -hf {namespace}/{model_name}-GGUF --embeddings ``` Then the endpoint can be accessed at http://localhost:8080/embedding, for diff --git a/examples/model-conversion/scripts/embedding/run-converted-model.sh b/examples/model-conversion/scripts/embedding/run-converted-model.sh index 5896090411..24b2810627 100755 --- a/examples/model-conversion/scripts/embedding/run-converted-model.sh +++ b/examples/model-conversion/scripts/embedding/run-converted-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/create-collection-add-model.sh b/examples/model-conversion/scripts/utils/create-collection-add-model.sh index 4809da6cb6..485001b5fe 100644 --- a/examples/model-conversion/scripts/utils/create-collection-add-model.sh +++ b/examples/model-conversion/scripts/utils/create-collection-add-model.sh @@ -1,4 +1,6 @@ +#!/usr/bin/env bash + COLLECTION_SLUG=$(python ./create_collection.py --return-slug) echo "Created collection: $COLLECTION_SLUG" diff --git a/examples/model-conversion/scripts/utils/curl-embedding-server.sh b/examples/model-conversion/scripts/utils/curl-embedding-server.sh new file mode 100755 index 0000000000..7ed69e1ea5 --- /dev/null +++ b/examples/model-conversion/scripts/utils/curl-embedding-server.sh @@ -0,0 +1,6 @@ +#!/usr/bin/env bash +curl --request POST \ + --url http://localhost:8080/embedding \ + --header "Content-Type: application/json" \ + --data '{"input": "Hello world today"}' \ + --silent diff --git a/examples/model-conversion/scripts/utils/inspect-converted-model.sh b/examples/model-conversion/scripts/utils/inspect-converted-model.sh index e5b9324542..32d84826fa 100755 --- a/examples/model-conversion/scripts/utils/inspect-converted-model.sh +++ b/examples/model-conversion/scripts/utils/inspect-converted-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash # First try command line argument, then environment variable, then file CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}" diff --git a/examples/model-conversion/scripts/utils/inspect-org-model.py b/examples/model-conversion/scripts/utils/inspect-org-model.py index bc6f45a5fb..ea14947fd2 100755 --- a/examples/model-conversion/scripts/utils/inspect-org-model.py +++ b/examples/model-conversion/scripts/utils/inspect-org-model.py @@ -40,7 +40,7 @@ if os.path.exists(index_path): file_path = os.path.join(model_path, file_name) print(f"\n--- From {file_name} ---") - with safe_open(file_path, framework="pt") as f: + with safe_open(file_path, framework="pt") as f: # type: ignore for tensor_name in sorted(tensor_names): tensor = f.get_tensor(tensor_name) print(f"- {tensor_name} : shape = {tensor.shape}, dtype = {tensor.dtype}") @@ -49,7 +49,7 @@ elif os.path.exists(single_file_path): # Single file model (original behavior) print("Single-file model detected") - with safe_open(single_file_path, framework="pt") as f: + with safe_open(single_file_path, framework="pt") as f: # type: ignore keys = f.keys() print("Tensors in model:") for key in sorted(keys): diff --git a/examples/model-conversion/scripts/utils/perplexity-gen.sh b/examples/model-conversion/scripts/utils/perplexity-gen.sh index 3db0b3fd27..4885acbae2 100755 --- a/examples/model-conversion/scripts/utils/perplexity-gen.sh +++ b/examples/model-conversion/scripts/utils/perplexity-gen.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/perplexity-run-simple.sh b/examples/model-conversion/scripts/utils/perplexity-run-simple.sh index 69b3438f59..a2545436a5 100755 --- a/examples/model-conversion/scripts/utils/perplexity-run-simple.sh +++ b/examples/model-conversion/scripts/utils/perplexity-run-simple.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/perplexity-run.sh b/examples/model-conversion/scripts/utils/perplexity-run.sh index 3bce7c8472..68b38e6628 100755 --- a/examples/model-conversion/scripts/utils/perplexity-run.sh +++ b/examples/model-conversion/scripts/utils/perplexity-run.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/quantize.sh b/examples/model-conversion/scripts/utils/quantize.sh index 90460aa6b0..c25c5c21f3 100755 --- a/examples/model-conversion/scripts/utils/quantize.sh +++ b/examples/model-conversion/scripts/utils/quantize.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/run-embedding-server.sh b/examples/model-conversion/scripts/utils/run-embedding-server.sh index 828fc47069..d30b765964 100755 --- a/examples/model-conversion/scripts/utils/run-embedding-server.sh +++ b/examples/model-conversion/scripts/utils/run-embedding-server.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e # diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index 8449406a6d..5f5ac5eb64 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -244,7 +244,7 @@ int main(int argc, char ** argv) { // stochastic verification common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true); - auto & dist_tgt = *common_sampler_get_candidates(smpl); + auto & dist_tgt = *common_sampler_get_candidates(smpl, true); float p_tgt = 0.0f; float p_dft = 0.0f; @@ -493,7 +493,7 @@ int main(int argc, char ** argv) { common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true); - const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl); + const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl, true); for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) { LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n", diff --git a/ggml/CMakeLists.txt b/ggml/CMakeLists.txt index 2ead001e2c..d06464f5eb 100644 --- a/ggml/CMakeLists.txt +++ b/ggml/CMakeLists.txt @@ -1,5 +1,5 @@ cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories. -project("ggml" C CXX) +project("ggml" C CXX ASM) include(CheckIncludeFileCXX) set(CMAKE_EXPORT_COMPILE_COMMANDS ON) @@ -129,10 +129,11 @@ endif() option(GGML_LASX "ggml: enable lasx" ON) option(GGML_LSX "ggml: enable lsx" ON) option(GGML_RVV "ggml: enable rvv" ON) -option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF) +option(GGML_RV_ZFH "ggml: enable riscv zfh" ON) +option(GGML_RV_ZVFH "ggml: enable riscv zvfh" ON) +option(GGML_RV_ZICBOP "ggml: enable riscv zicbop" ON) option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF) option(GGML_VXE "ggml: enable vxe" ON) -option(GGML_NNPA "ggml: enable nnpa" OFF) # temp disabled by default, see: https://github.com/ggml-org/llama.cpp/issues/14877 option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF) set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM") diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h index a2977ea2e5..4f246f6ccd 100644 --- a/ggml/include/ggml-backend.h +++ b/ggml/include/ggml-backend.h @@ -307,6 +307,9 @@ extern "C" { GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend); GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node); + // Split graph without allocating it + GGML_API void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); + // Allocate and compute graph on the backend scheduler GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); // returns success GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph); diff --git a/ggml/include/ggml-cpu.h b/ggml/include/ggml-cpu.h index be40b10097..1a78935aa0 100644 --- a/ggml/include/ggml-cpu.h +++ b/ggml/include/ggml-cpu.h @@ -101,7 +101,6 @@ extern "C" { GGML_BACKEND_API int ggml_cpu_has_riscv_v (void); GGML_BACKEND_API int ggml_cpu_has_vsx (void); GGML_BACKEND_API int ggml_cpu_has_vxe (void); - GGML_BACKEND_API int ggml_cpu_has_nnpa (void); GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void); GGML_BACKEND_API int ggml_cpu_has_llamafile (void); diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 7e9c3c8c7a..c01b98ac78 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -511,6 +511,7 @@ extern "C" { GGML_OP_CONV_TRANSPOSE_1D, GGML_OP_IM2COL, GGML_OP_IM2COL_BACK, + GGML_OP_IM2COL_3D, GGML_OP_CONV_2D, GGML_OP_CONV_3D, GGML_OP_CONV_2D_DW, @@ -1870,6 +1871,41 @@ extern "C" { int d0, // dilation dimension 0 int d1); // dilation dimension 1 + GGML_API struct ggml_tensor * ggml_im2col_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int64_t IC, + int s0, // stride width + int s1, // stride height + int s2, // stride depth + int p0, // padding width + int p1, // padding height + int p2, // padding depth + int d0, // dilation width + int d1, // dilation height + int d2, // dilation depth + enum ggml_type dst_type); + + // a: [OC*IC, KD, KH, KW] + // b: [N*IC, ID, IH, IW] + // result: [N*OC, OD, OH, OW] + GGML_API struct ggml_tensor * ggml_conv_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int64_t IC, + int s0, // stride width + int s1, // stride height + int s2, // stride depth + int p0, // padding width + int p1, // padding height + int p2, // padding depth + int d0, // dilation width + int d1, // dilation height + int d2 // dilation depth + ); + // kernel size is a->ne[0] x a->ne[1] // stride is equal to kernel size // padding is zero @@ -1941,7 +1977,7 @@ extern "C" { int d0, // dilation dimension 0 int d1); // dilation dimension 1 - GGML_API struct ggml_tensor * ggml_conv_3d( + GGML_API struct ggml_tensor * ggml_conv_3d_direct( struct ggml_context * ctx, struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC] struct ggml_tensor * b, // input [W, H, D, C * N] @@ -2048,6 +2084,19 @@ extern "C" { int p2, int p3); + GGML_API struct ggml_tensor * ggml_pad_ext( + struct ggml_context * ctx, + struct ggml_tensor * a, + int lp0, + int rp0, + int lp1, + int rp1, + int lp2, + int rp2, + int lp3, + int rp3 + ); + // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c] GGML_API struct ggml_tensor * ggml_pad_reflect_1d( struct ggml_context * ctx, diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp index e34feccc98..f615ab4bee 100644 --- a/ggml/src/ggml-backend.cpp +++ b/ggml/src/ggml-backend.cpp @@ -31,6 +31,7 @@ // backend buffer type const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) { + GGML_ASSERT(buft); return buft->iface.get_name(buft); } @@ -40,14 +41,17 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t return ggml_backend_buffer_init(buft, {}, NULL, 0); } + GGML_ASSERT(buft); return buft->iface.alloc_buffer(buft, size); } size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) { + GGML_ASSERT(buft); return buft->iface.get_alignment(buft); } size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) { + GGML_ASSERT(buft); // get_max_size is optional, defaults to SIZE_MAX if (buft->iface.get_max_size) { return buft->iface.get_max_size(buft); @@ -56,6 +60,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) { } size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) { + GGML_ASSERT(buft); // get_alloc_size is optional, defaults to ggml_nbytes if (buft->iface.get_alloc_size) { size_t size = buft->iface.get_alloc_size(buft, tensor); @@ -66,6 +71,7 @@ size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const s } bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) { + GGML_ASSERT(buft); if (buft->iface.is_host) { return buft->iface.is_host(buft); } @@ -73,6 +79,7 @@ bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) { } ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) { + GGML_ASSERT(buft); return buft->device; } @@ -110,10 +117,12 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { } size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); return buffer->size; } void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); // get_base is optional if the buffer is zero-sized if (buffer->size == 0) { return NULL; @@ -127,6 +136,7 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { } enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + GGML_ASSERT(buffer); // init_tensor is optional if (buffer->iface.init_tensor) { return buffer->iface.init_tensor(buffer, tensor); @@ -135,6 +145,7 @@ enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, s } void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + GGML_ASSERT(buffer); // clear is optional if the buffer is zero-sized if (buffer->size == 0) { return; @@ -160,6 +171,7 @@ bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) { } void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { + GGML_ASSERT(buffer); buffer->usage = usage; // FIXME: add a generic callback to the buffer interface @@ -169,14 +181,17 @@ void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backe } enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); return buffer->usage; } ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); return buffer->buft; } void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); if (buffer->iface.reset) { buffer->iface.reset(buffer); } @@ -215,6 +230,7 @@ void ggml_backend_free(ggml_backend_t backend) { } ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) { + GGML_ASSERT(backend); return ggml_backend_dev_buffer_type(backend->device); } @@ -231,6 +247,8 @@ size_t ggml_backend_get_max_size(ggml_backend_t backend) { } void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(backend); + GGML_ASSERT(tensor); GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); @@ -242,6 +260,8 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * } void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(backend); + GGML_ASSERT(tensor); GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); @@ -283,6 +303,7 @@ void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, siz } void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { + GGML_ASSERT(tensor); ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; if (size == 0) { @@ -298,6 +319,7 @@ void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size } void ggml_backend_synchronize(ggml_backend_t backend) { + GGML_ASSERT(backend); if (backend->iface.synchronize == NULL) { return; } @@ -306,18 +328,21 @@ void ggml_backend_synchronize(ggml_backend_t backend) { } ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + GGML_ASSERT(backend); GGML_ASSERT(backend->iface.graph_plan_create != NULL); return backend->iface.graph_plan_create(backend, cgraph); } void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + GGML_ASSERT(backend); GGML_ASSERT(backend->iface.graph_plan_free != NULL); backend->iface.graph_plan_free(backend, plan); } enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + GGML_ASSERT(backend); GGML_ASSERT(backend->iface.graph_plan_compute != NULL); return backend->iface.graph_plan_compute(backend, plan); @@ -330,22 +355,27 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_ } enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + GGML_ASSERT(backend); return backend->iface.graph_compute(backend, cgraph); } bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + GGML_ASSERT(backend); return ggml_backend_dev_supports_op(backend->device, op); } bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { + GGML_ASSERT(backend); return ggml_backend_dev_supports_buft(backend->device, buft); } bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) { + GGML_ASSERT(backend); return ggml_backend_dev_offload_op(backend->device, op); } ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) { + GGML_ASSERT(backend); return backend->device; } @@ -381,6 +411,7 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b return; } + GGML_ASSERT(backend_dst); if (backend_dst->iface.cpy_tensor_async != NULL) { if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) { return; @@ -412,18 +443,21 @@ void ggml_backend_event_free(ggml_backend_event_t event) { } void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) { + GGML_ASSERT(backend); GGML_ASSERT(backend->iface.event_record != NULL); backend->iface.event_record(backend, event); } void ggml_backend_event_synchronize(ggml_backend_event_t event) { + GGML_ASSERT(event); GGML_ASSERT(event->device->iface.event_synchronize); event->device->iface.event_synchronize(event->device, event); } void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { + GGML_ASSERT(backend); GGML_ASSERT(backend->iface.event_wait != NULL); backend->iface.event_wait(backend, event); @@ -432,18 +466,22 @@ void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) // Backend device const char * ggml_backend_dev_name(ggml_backend_dev_t device) { + GGML_ASSERT(device); return device->iface.get_name(device); } const char * ggml_backend_dev_description(ggml_backend_dev_t device) { + GGML_ASSERT(device); return device->iface.get_description(device); } void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) { + GGML_ASSERT(device); device->iface.get_memory(device, free, total); } enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) { + GGML_ASSERT(device); return device->iface.get_type(device); } @@ -453,18 +491,22 @@ void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_d } ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) { + GGML_ASSERT(device); return device->reg; } ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) { + GGML_ASSERT(device); return device->iface.init_backend(device, params); } ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) { + GGML_ASSERT(device); return device->iface.get_buffer_type(device); } ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) { + GGML_ASSERT(device); if (device->iface.get_host_buffer_type == NULL) { return NULL; } @@ -473,18 +515,22 @@ ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t } ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) { + GGML_ASSERT(device); return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size); } bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) { + GGML_ASSERT(device); return device->iface.supports_op(device, op); } bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) { + GGML_ASSERT(device); return device->iface.supports_buft(device, buft); } bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) { + GGML_ASSERT(device); if (device->iface.offload_op != NULL) { return device->iface.offload_op(device, op); } @@ -495,18 +541,22 @@ bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_te // Backend (reg) const char * ggml_backend_reg_name(ggml_backend_reg_t reg) { + GGML_ASSERT(reg); return reg->iface.get_name(reg); } size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) { + GGML_ASSERT(reg); return reg->iface.get_device_count(reg); } ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) { + GGML_ASSERT(reg); return reg->iface.get_device(reg, index); } void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) { + GGML_ASSERT(reg); if (!reg->iface.get_proc_address) { return NULL; } @@ -521,6 +571,7 @@ struct ggml_backend_multi_buffer_context { }; static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { ggml_backend_buffer_free(ctx->buffers[i]); @@ -531,6 +582,7 @@ static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) } static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + GGML_ASSERT(buffer); ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { ggml_backend_buffer_clear(ctx->buffers[i], value); @@ -566,10 +618,12 @@ ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer } bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer; } void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { + GGML_ASSERT(buffer); GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer)); ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { @@ -597,7 +651,7 @@ static bool ggml_is_view_op(enum ggml_op op) { #endif #ifndef GGML_SCHED_MAX_SPLIT_INPUTS -#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC +#define GGML_SCHED_MAX_SPLIT_INPUTS 30 #endif #ifndef GGML_SCHED_MAX_COPIES @@ -848,7 +902,7 @@ static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, stru } // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend -static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { +void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { // reset splits sched->n_splits = 0; sched->n_graph_inputs = 0; @@ -1349,6 +1403,7 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) { } static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); struct ggml_backend_sched_split * splits = sched->splits; ggml_tensor * prev_ids_tensor = nullptr; @@ -1617,6 +1672,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) { } void ggml_backend_sched_reset(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); // reset state for the next run if (!sched->is_reset) { ggml_hash_set_reset(&sched->hash_set); @@ -1628,8 +1684,11 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) { } bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { + GGML_ASSERT(sched); GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs); + ggml_backend_sched_reset(sched); + ggml_backend_sched_synchronize(sched); ggml_backend_sched_split_graph(sched, measure_graph); @@ -1644,6 +1703,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * } bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { + GGML_ASSERT(sched); GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs); GGML_ASSERT(!sched->is_alloc); @@ -1668,6 +1728,7 @@ enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, st } enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { + GGML_ASSERT(sched); if (!sched->is_reset && !sched->is_alloc) { ggml_backend_sched_reset(sched); } @@ -1682,6 +1743,7 @@ enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sch } void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); for (int i = 0; i < sched->n_backends; i++) { ggml_backend_synchronize(sched->backends[i]); } @@ -1694,28 +1756,34 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) { } void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) { + GGML_ASSERT(sched); sched->callback_eval = callback; sched->callback_eval_user_data = user_data; } int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); return sched->n_splits; } int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); return sched->n_copies; } int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); return sched->n_backends; } ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) { + GGML_ASSERT(sched); GGML_ASSERT(i >= 0 && i < sched->n_backends); return sched->backends[i]; } size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) { + GGML_ASSERT(sched); int backend_index = ggml_backend_sched_backend_id(sched, backend); GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); @@ -1723,6 +1791,7 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe } void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) { + GGML_ASSERT(sched); int backend_index = ggml_backend_sched_backend_id(sched, backend); GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); tensor_backend_id(node) = backend_index; @@ -1731,6 +1800,7 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg } ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) { + GGML_ASSERT(sched); int backend_index = tensor_backend_id(node); if (backend_index == -1) { return NULL; @@ -1741,6 +1811,7 @@ ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, // utils enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) { + GGML_ASSERT(tensor); GGML_ASSERT(tensor->buffer == NULL); GGML_ASSERT(tensor->view_src != NULL); GGML_ASSERT(tensor->view_src->buffer != NULL); @@ -1752,6 +1823,7 @@ enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) { } enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) { + GGML_ASSERT(tensor); GGML_ASSERT(tensor->buffer == NULL); GGML_ASSERT(tensor->data == NULL); GGML_ASSERT(tensor->view_src == NULL); @@ -1825,6 +1897,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_ } struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) { + GGML_ASSERT(graph); struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size); struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0])); @@ -1969,6 +2042,7 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t // CPU backend - buffer static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); uintptr_t data = (uintptr_t)buffer->context; // align the buffer @@ -1980,28 +2054,33 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { } static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); ggml_aligned_free(buffer->context, buffer->size); } static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { + GGML_ASSERT(tensor); memset((char *)tensor->data + offset, value, size); GGML_UNUSED(buffer); } static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(tensor); memcpy((char *)tensor->data + offset, data, size); GGML_UNUSED(buffer); } static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(tensor); memcpy(data, (const char *)tensor->data + offset, size); GGML_UNUSED(buffer); } static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { + GGML_ASSERT(src); if (ggml_backend_buffer_is_host(src->buffer)) { memcpy(dst->data, src->data, ggml_nbytes(src)); return true; @@ -2012,6 +2091,7 @@ static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con } static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + GGML_ASSERT(buffer); memset(buffer->context, value, buffer->size); } diff --git a/ggml/src/ggml-cann/aclnn_ops.cpp b/ggml/src/ggml-cann/aclnn_ops.cpp index c42871c575..ac2e2e1adf 100755 --- a/ggml/src/ggml-cann/aclnn_ops.cpp +++ b/ggml/src/ggml-cann/aclnn_ops.cpp @@ -70,6 +70,8 @@ #include #include #include +#include +#include #include #include @@ -587,9 +589,16 @@ void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // the position of elements in the array means which dirction to padding, // each position means: [dim0.front, dim0.behind, dim1.front, dim1.behind, // dim2.front, dim2.behind, dim3.front, dim3.behind] - int64_t paddings[] = { - 0, dst->ne[0] - src->ne[0], 0, dst->ne[1] - src->ne[1], - 0, dst->ne[2] - src->ne[2], 0, dst->ne[3] - src->ne[3]}; + const int32_t lp0 = ggml_get_op_params_i32(dst, 0); + const int32_t rp0 = ggml_get_op_params_i32(dst, 1); + const int32_t lp1 = ggml_get_op_params_i32(dst, 2); + const int32_t rp1 = ggml_get_op_params_i32(dst, 3); + const int32_t lp2 = ggml_get_op_params_i32(dst, 4); + const int32_t rp2 = ggml_get_op_params_i32(dst, 5); + const int32_t lp3 = ggml_get_op_params_i32(dst, 6); + const int32_t rp3 = ggml_get_op_params_i32(dst, 7); + + int64_t paddings[] = {lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3}; aclnn_pad(ctx, acl_src, acl_dst, paddings); ggml_cann_release_resources(ctx, acl_src, acl_dst); } @@ -964,8 +973,8 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { } aclTensor* acl_gamma = get_f32_cache_acl_tensor( ctx, - &ctx.f32_one_cache, - ctx.f32_one_cache_element, + &ctx.rms_norm_one_tensor_cache.cache, + ctx.rms_norm_one_tensor_cache.size, src->ne, acl_gamma_nb, 1, // dims @@ -973,18 +982,19 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ); // build rstd, zero... - size_t acl_rstd_nb[GGML_MAX_DIMS]; + int64_t acl_rstd_ne[] = {src->ne[1], src->ne[2], src->ne[3]}; + size_t acl_rstd_nb[GGML_MAX_DIMS - 1]; acl_rstd_nb[0] = sizeof(float); - for (int i = 1; i < GGML_MAX_DIMS; i++) { - acl_rstd_nb[i] = acl_rstd_nb[i - 1] * src->ne[i - 1]; + for (int i = 1; i < GGML_MAX_DIMS - 1; i++) { + acl_rstd_nb[i] = acl_rstd_nb[i - 1] * acl_rstd_ne[i - 1]; } aclTensor* acl_rstd = get_f32_cache_acl_tensor( ctx, - &ctx.f32_zero_cache, - ctx.f32_zero_cache_element, - src->ne, + &ctx.rms_norm_zero_tensor_cache.cache, + ctx.rms_norm_zero_tensor_cache.size, + acl_rstd_ne, acl_rstd_nb, - GGML_MAX_DIMS, + GGML_MAX_DIMS - 1, 0.0f // value ); @@ -1423,21 +1433,25 @@ static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx, * @param start Starting exponent offset. * @param stop Stopping exponent offset (exclusive). * @param step Step size for the exponent increment. + * @param dtype Data type for slope tensor. */ static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_buffer, - float m, int64_t size, float start, float stop, float step){ - int64_t ne[] = {size}; - size_t nb[] = {sizeof(uint16_t)}; + float m, int64_t size, float start, float stop, float step, ggml_type dtype){ + aclDataType acl_type = ggml_cann_type_mapping(dtype); + size_t type_size = ggml_type_size(dtype); - ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * sizeof(uint16_t)); + int64_t ne[] = {size}; + size_t nb[] = {type_size}; + + ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * type_size); void* arange_buffer = arange_allocator.get(); aclTensor* arange_tensor = ggml_cann_create_tensor( - arange_buffer, ACL_FLOAT16, sizeof(uint16_t), ne, nb, 1); + arange_buffer, acl_type, type_size, ne, nb, 1); aclnn_arange(ctx, arange_tensor, start, stop, step, size); aclTensor* slope_tensor = ggml_cann_create_tensor( - slope_buffer, ACL_FLOAT16, sizeof(uint16_t), ne, nb, 1); + slope_buffer, acl_type, type_size, ne, nb, 1); aclScalar* sc = aclCreateScalar(&m, aclDataType::ACL_FLOAT); @@ -1468,10 +1482,11 @@ static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_bu * @param n_head Total number of attention heads. * @param slope_buffer Pointer to the output buffer (float array) for storing slopes. * @param max_bias Maximum bias value for slope computation. + * @param dtype Data type for slope tensor. * */ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head, - void* slope_buffer, float max_bias) { + void* slope_buffer, float max_bias, ggml_type dtype) { const int n_head_log2 = 1u << (uint32_t) floor(log2(n_head)); float m0 = powf(2.0f, -(max_bias) / n_head_log2); @@ -1488,7 +1503,7 @@ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head, float step = 1; float count = n_head_log2; // end needs to be +1 because aclnn uses a left-closed, right-open interval. - aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step); + aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step, dtype); if (n_head_log2 < n_head) { // arange2 start = 2 * (n_head_log2 - n_head_log2) + 1; @@ -1497,7 +1512,7 @@ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head, count = n_head - n_head_log2; aclnn_get_slope_inner( ctx, (char *) slope_buffer + n_head_log2 * sizeof(float), - m1, count, start, end + 1, step); + m1, count, start, end + 1, step, dtype); } } @@ -1534,7 +1549,7 @@ static void aclnn_add_alibi(ggml_backend_cann_context& ctx, ggml_tensor* mask, ggml_cann_pool_alloc bias_allocator( ctx.pool(), ggml_nelements(dst) * ggml_element_size(dst)); bias_buffer = bias_allocator.get(); - aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias); + aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias, GGML_TYPE_F32); } // broadcast for mask, slop and dst; @@ -1760,10 +1775,10 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { case GGML_TYPE_F16: { aclTensor* acl_src0 = ggml_cann_create_tensor(src0); ggml_cann_pool_alloc src_buffer_allocator( - ctx.pool(), ggml_nelements(src0) * sizeof(float_t)); + ctx.pool(), ggml_nelements(src0) * sizeof(float)); void* src_trans_buffer = src_buffer_allocator.get(); size_t src_trans_nb[GGML_MAX_DIMS]; - src_trans_nb[0] = sizeof(float_t); + src_trans_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1]; } @@ -1807,14 +1822,14 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // [3,4,5,64] -> [3,4,5,2,32] dequant_ne = weight_ne; - dequant_nb[0] = sizeof(float_t); + dequant_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS + 1; i++) { dequant_nb[i] = dequant_nb[i - 1] * dequant_ne[i - 1]; } scale_offset = ggml_nelements(src0) * sizeof(int8_t); ggml_cann_pool_alloc dequant_buffer_allocator( - ctx.pool(), ggml_nelements(src0) * sizeof(float_t)); + ctx.pool(), ggml_nelements(src0) * sizeof(float)); aclTensor* acl_weight_tensor = ggml_cann_create_tensor( src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb, @@ -1823,11 +1838,11 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { src0->data, ACL_FLOAT16, sizeof(uint16_t), scale_ne, scale_nb, GGML_MAX_DIMS + 1, ACL_FORMAT_ND, scale_offset); aclTensor* dequant_tensor = ggml_cann_create_tensor( - dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float_t), + dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float), dequant_ne, dequant_nb, GGML_MAX_DIMS + 1); aclnn_mul(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor); - dequant_nb[0] = sizeof(float_t); + dequant_nb[0] = sizeof(float); dequant_ne = src0->ne; for (int i = 1; i < GGML_MAX_DIMS; i++) { dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1]; @@ -1948,7 +1963,7 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx, aclTensor* acl_weight_tensor; // Only check env once. - static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("")); + static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on")); if (weight_to_nz && is_matmul_weight(weight)) { int64_t acl_stride[2] = {1, transpose_ne[1]}; @@ -2248,46 +2263,35 @@ static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx, * 5. Compute sin(θ), cos(θ) and optionally scale by attn_factor. * 6. Expand sin/cos values by repeat or repeat_interleave depending * on whether @param is_neox is enabled. - * 7. Store the computed values into persistent buffers - * (ctx.rope_sin_ptr / ctx.rope_cos_ptr). * - * @param ctx The CANN backend context, holding memory pool, - * stream, and persistent buffers for rope init/cache. - * @param dst The destination ggml_tensor whose computation - * depends on the cached RoPE values (usually Qcur/Kcur). - * @param theta_scale Scalar exponent base for computing theta scale values. - * @param freq_scale Frequency scaling factor, applied to theta scale. - * @param attn_factor Attention scaling factor, applied to sin/cos. - * @param is_neox Whether to use Neox-style repeat strategy - * (dim expansion vs repeat_interleave). + * @param ctx The CANN backend context, holding memory pool, + * stream, and persistent buffers for rope init/cache. + * @param dst The destination ggml_tensor whose computation + * depends on the RoPE values (usually Qcur/Kcur). + * @param sin_tensor_buffer Pre-allocated buffer for storing repeated sin values. + * @param cos_tensor_buffer Pre-allocated buffer for storing repeated cos values. + * @param theta_scale Scalar exponent base for computing theta scale values. + * @param freq_scale Frequency scaling factor, applied to theta scale. + * @param attn_factor Attention scaling factor, applied to sin/cos. + * @param is_neox Whether to use Neox-style repeat strategy + * (dim expansion vs repeat_interleave). */ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, + void* sin_tensor_buffer, void* cos_tensor_buffer, + float* corr_dims, float ext_factor, float theta_scale, float freq_scale, float attn_factor, bool is_neox) { // int sin/cos cache, cache has different repeat method depond on // @param.is_neox - bool is_q = (std::strncmp(dst->name, "Qcur-", 5) == 0); - bool is_k = (std::strncmp(dst->name, "Kcur-", 5) == 0); - - // used for accuracy testing - bool is_attention = is_q || is_k; - - // just compute in first layer in attention - bool is_fisrt_layer = (std::strncmp(dst->name, "Qcur-0", GGML_MAX_NAME) == 0); - if(is_attention && !is_fisrt_layer) { - return; - } ggml_tensor* src0 = dst->src[0]; // input ggml_tensor* src1 = dst->src[1]; // position ggml_tensor* src2 = dst->src[2]; // freq_factors - GGML_TENSOR_BINARY_OP_LOCALS - - int64_t theta_scale_length = ne00 / 2; + int64_t theta_scale_length = src0->ne[0] / 2; int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1}; - size_t theta_scale_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t), - theta_scale_length * sizeof(float_t)}; + size_t theta_scale_nb[] = {sizeof(float), sizeof(float), sizeof(float), + theta_scale_length * sizeof(float)}; GGML_ASSERT(src1->type == GGML_TYPE_I32); int64_t position_length = src1->ne[0]; @@ -2297,65 +2301,115 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, int64_t theta_ne[] = {theta_scale_length, 1, position_length, 1}; size_t theta_nb[GGML_MAX_DIMS]; - theta_nb[0] = sizeof(float_t); + theta_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1]; } - // init theta scale, just one time - if(ctx.rope_init_ptr == nullptr || !is_attention) { - // theta_scale arange, [0,1,...,ne00/2 - 1] - if(ctx.rope_init_ptr != nullptr){ - ACL_CHECK(aclrtFree(ctx.rope_init_ptr)); - } - ACL_CHECK(aclrtMalloc(&ctx.rope_init_ptr, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); + // theta_scale arange, [0,1,...,ne00/2 - 1] + aclTensor* acl_theta_scale_tensor = nullptr; + // cache theta scale + if (ctx.rope_cache.theta_scale_length != theta_scale_length || + // theta_scale and freq_scale should not change during the current token inference process, + // so we can directly use == here instead of comparing the absolute difference. + ctx.rope_cache.theta_scale != theta_scale || + ctx.rope_cache.freq_scale != freq_scale) { - aclTensor* acl_theta_scale_tensor = - ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t), + ctx.rope_cache.theta_scale_length = theta_scale_length; + ctx.rope_cache.theta_scale = theta_scale; + ctx.rope_cache.freq_scale = freq_scale; + + if (ctx.rope_cache.theta_scale_cache != nullptr) { + ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache)); + } + ACL_CHECK(aclrtMalloc(&ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float), ACL_MEM_MALLOC_HUGE_FIRST)); + + acl_theta_scale_tensor = + ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + float start = 0; float step = 1; - float stop = ne00 / 2; - float n_elements = ne00 / 2; + float stop = theta_scale_length; + float n_elements = theta_scale_length; aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements); + ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool()); + aclTensor* acl_yarn_ramp_tensor = nullptr; + if (ext_factor != 0) { + // -rope_yarn_ramp + // const float y = (i0 / 2 - low) / MAX(0.001f, high - low); + // return MIN(1, MAX(0, y)) - 1; + yarn_ramp_allocator.alloc(theta_scale_length * sizeof(float)); + void* yarn_ramp_buffer = yarn_ramp_allocator.get(); + acl_yarn_ramp_tensor = ggml_cann_create_tensor(yarn_ramp_buffer, ACL_FLOAT, sizeof(float_t), + theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + float zero_value = 0, one_value = 1; + float denom_safe_value = MAX(0.001f, corr_dims[1] - corr_dims[0]); + aclScalar* low = aclCreateScalar(&corr_dims[0], aclDataType::ACL_FLOAT); + aclScalar* zero = aclCreateScalar(&zero_value, aclDataType::ACL_FLOAT); + aclScalar* one = aclCreateScalar(&one_value, aclDataType::ACL_FLOAT); + aclScalar* denom_safe = aclCreateScalar(&denom_safe_value, aclDataType::ACL_FLOAT); + aclScalar* ext_factor_sc = aclCreateScalar(&ext_factor, aclDataType::ACL_FLOAT); + + GGML_CANN_CALL_ACLNN_OP(ctx, Subs, acl_theta_scale_tensor, low, one, acl_yarn_ramp_tensor); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceDivs, acl_yarn_ramp_tensor, denom_safe); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceThreshold, acl_yarn_ramp_tensor, zero, zero); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceClampMax, acl_yarn_ramp_tensor, one); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSubs, acl_yarn_ramp_tensor, one, one); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor, ext_factor_sc); + + // theta_interp = freq_scale * theta_extrap; + // theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; + // theta = freq_scale * theta_extrap * (1 - ramp_mix) + theta_extrap * ramp_mix; + // theta = freq_scale * theta_extrap - freq_scale * theta_extrap * ramp_mix + theta_extrap * ramp_mix; + // theta = theta_extrap * (freq_scale - freq_scale * ramp_mix + ramp_mix); + // + // we cache (freq_scale - freq_scale * ramp_mix + ramp_mix), Considering that the rope_yarn_ramp here is the inverse + // cache freq_scale + (freq_scale - 1) * ramp_mix + float freq_scale_1 = freq_scale - 1; + aclScalar* freq_scale_sc = aclCreateScalar(&freq_scale, aclDataType::ACL_FLOAT); + aclScalar* freq_scale_1_sc = aclCreateScalar(&freq_scale_1, aclDataType::ACL_FLOAT); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor, freq_scale_1_sc); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdds, acl_yarn_ramp_tensor, freq_scale_sc, one); + + ggml_cann_release_resources(ctx, low, zero, one, denom_safe, ext_factor_sc, freq_scale_sc, freq_scale_1_sc); + } + // power aclScalar* acl_theta_scale = aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale, acl_theta_scale_tensor, acl_theta_scale_tensor); - // freq_scale - if (freq_scale != 1) { + if (ext_factor != 0) { + aclnn_mul(ctx, acl_theta_scale_tensor, acl_yarn_ramp_tensor); + } else if (freq_scale != 1) { aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true); } - // freq_factors - if (src2) { - aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor( - src2->data, ggml_cann_type_mapping(src2->type), - ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); - aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor); - ggml_cann_release_resources(ctx, acl_freq_factors_tensor); - } - // release - ggml_cann_release_resources(ctx, acl_theta_scale_tensor,acl_theta_scale); - } - - // init sin_repeat && cos_repeat, one token just init in 0 layer - if(position_length > ctx.max_prompt_length) { - ctx.max_prompt_length = position_length; - int64_t repeat_theta_length = theta_scale_length * ctx.max_prompt_length * 2; - if(ctx.rope_sin_ptr != nullptr) { - ACL_CHECK(aclrtFree(ctx.rope_sin_ptr)); - ACL_CHECK(aclrtFree(ctx.rope_cos_ptr)); - } - ACL_CHECK(aclrtMalloc(&ctx.rope_sin_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); - ACL_CHECK(aclrtMalloc(&ctx.rope_cos_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); - } - - aclTensor* acl_theta_scale_tensor = - ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t), + ggml_cann_release_resources(ctx, acl_yarn_ramp_tensor, acl_theta_scale); + } else { + // use cache + acl_theta_scale_tensor = + ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + } + + ggml_cann_pool_alloc freq_fac_res_allocator(ctx.pool()); + // freq_factors + if (src2) { + freq_fac_res_allocator.alloc(theta_scale_length * sizeof(float)); + void* freq_fac_res_ptr = freq_fac_res_allocator.get(); + aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor( + src2->data, ggml_cann_type_mapping(src2->type), + ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + aclTensor* acl_freq_fac_res_tensor = ggml_cann_create_tensor( + freq_fac_res_ptr, ACL_FLOAT, sizeof(float), + theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor, acl_freq_fac_res_tensor); + std::swap(acl_theta_scale_tensor, acl_freq_fac_res_tensor); + ggml_cann_release_resources(ctx, acl_freq_factors_tensor, acl_freq_fac_res_tensor); + } // position aclTensor* acl_position_tensor = ggml_cann_create_tensor( @@ -2365,49 +2419,53 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, // power * position int64_t theta_length = theta_scale_length * position_length; ggml_cann_pool_alloc theta_allocator(ctx.pool(), - theta_length * sizeof(float_t)); + theta_length * sizeof(float)); void* theta_buffer = theta_allocator.get(); aclTensor* acl_theta_tensor = - ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t), + ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS); aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor, acl_theta_tensor); // sin/cos ggml_cann_pool_alloc sin_allocator(ctx.pool(), - theta_length * sizeof(float_t)); + theta_length * sizeof(float)); void* sin_buffer = sin_allocator.get(); aclTensor* acl_sin_tensor = ggml_cann_create_tensor( - sin_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb, + sin_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor); ggml_cann_pool_alloc cos_allocator(ctx.pool(), - theta_length * sizeof(float_t)); + theta_length * sizeof(float)); void* cos_buffer = cos_allocator.get(); aclTensor* acl_cos_tensor = ggml_cann_create_tensor( - cos_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb, + cos_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor); + if (ext_factor != 0) { + attn_factor *= 1.0f + 0.1f * logf(1.0f / freq_scale); + } + // attn_factor if (attn_factor != 1) { aclnn_muls(ctx, acl_sin_tensor, attn_factor, nullptr, true); aclnn_muls(ctx, acl_cos_tensor, attn_factor, nullptr, true); } - int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1}; + int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1}; size_t sin_reshape_nb[GGML_MAX_DIMS]; - sin_reshape_nb[0] = sizeof(float_t); + sin_reshape_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; } aclTensor* acl_sin_repeat_tensor = - ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t), + ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclTensor* acl_cos_repeat_tensor = - ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t), + ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); // repeat @@ -2449,6 +2507,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // TODO: use ascendc // Only test with LLAMA model. ggml_tensor* src0 = dst->src[0]; // input + ggml_tensor* src1 = dst->src[1]; // param float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; @@ -2470,8 +2529,6 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // TODO: n_dims <= ne0 GGML_ASSERT(n_dims == ne0); GGML_ASSERT(n_dims % 2 == 0); - // TODO: ext_factor != 0 - GGML_ASSERT(ext_factor == 0); const float theta_scale = powf(freq_base, -2.0f / n_dims); @@ -2481,20 +2538,28 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; + // sin/cos tensor length. + int64_t repeat_theta_length = src0->ne[0] * src1->ne[0]; + ggml_cann_pool_alloc sin_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float)); + ggml_cann_pool_alloc cos_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float)); + void *sin_tensor_buffer = sin_tensor_allocator.get(); + void *cos_tensor_buffer = cos_tensor_allocator.get(); + // init ctx.rope_cos/rope_sin cache - aclnn_cache_init(ctx, dst, theta_scale, freq_scale, attn_factor, is_neox); + aclnn_cache_init(ctx, dst, sin_tensor_buffer, cos_tensor_buffer, corr_dims, ext_factor, + theta_scale, freq_scale, attn_factor, is_neox); int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1}; size_t sin_reshape_nb[GGML_MAX_DIMS]; - sin_reshape_nb[0] = sizeof(float_t); + sin_reshape_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; } aclTensor* acl_sin_reshape_tensor = - ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t), + ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclTensor* acl_cos_reshape_tensor = - ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t), + ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclTensor* acl_src = ggml_cann_create_tensor(src0); @@ -2509,7 +2574,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { void* minus_one_scale_buffer = nullptr; ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0)); ggml_cann_pool_alloc minus_one_scale_allocator( - ctx.pool(), sizeof(float_t) * src0->ne[0]); + ctx.pool(), sizeof(float) * src0->ne[0]); if (!is_neox) { // roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...] input_roll_buffer = roll_allocator.get(); @@ -2539,13 +2604,13 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1}; size_t minus_one_nb[GGML_MAX_DIMS]; - minus_one_nb[0] = sizeof(float_t); + minus_one_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1]; } acl_minus_one_tensor = aclnn_values( - ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0], - minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1); + ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0], + minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1); int64_t dim = 3; int64_t* index = new int64_t[src0->ne[0]]; for (int i = 0; i < src0->ne[0]; i++) { @@ -2573,22 +2638,22 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { minus_one_scale_buffer = minus_one_scale_allocator.get(); int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1}; size_t minus_one_nb[GGML_MAX_DIMS]; - minus_one_nb[0] = sizeof(float_t); + minus_one_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1]; } acl_minus_one_tensor = aclnn_values( - ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0], - minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1); + ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0], + minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1); // -1 * first half int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1}; size_t first_half_nb[GGML_MAX_DIMS]; - first_half_nb[0] = sizeof(float_t); + first_half_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1]; } aclTensor* acl_first_half_tensor = ggml_cann_create_tensor( - minus_one_scale_buffer, ACL_FLOAT, sizeof(float_t), first_half_ne, + minus_one_scale_buffer, ACL_FLOAT, sizeof(float), first_half_ne, first_half_nb, GGML_MAX_DIMS); bool inplace = true; float scale = -1; @@ -2628,28 +2693,28 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // TODO: ne0 != n_dims in mode2 } else if (src0->type == GGML_TYPE_F16) { size_t input_fp32_nb[GGML_MAX_DIMS]; - input_fp32_nb[0] = sizeof(float_t); + input_fp32_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1]; } ggml_cann_pool_alloc fp32_allocator1( - ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); + ctx.pool(), ggml_nelements(dst) * sizeof(float)); void* input_fp32_buffer1 = fp32_allocator1.get(); aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor( - input_fp32_buffer1, ACL_FLOAT, sizeof(float_t), dst->ne, + input_fp32_buffer1, ACL_FLOAT, sizeof(float), dst->ne, input_fp32_nb, GGML_MAX_DIMS); ggml_cann_pool_alloc fp32_allocator2( - ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); + ctx.pool(), ggml_nelements(dst) * sizeof(float)); void* input_fp32_buffer2 = fp32_allocator2.get(); aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor( - input_fp32_buffer2, ACL_FLOAT, sizeof(float_t), dst->ne, + input_fp32_buffer2, ACL_FLOAT, sizeof(float), dst->ne, input_fp32_nb, GGML_MAX_DIMS); ggml_cann_pool_alloc fp32_allocator( - ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); + ctx.pool(), ggml_nelements(dst) * sizeof(float)); output_fp32_buffer = fp32_allocator.get(); aclTensor* output_fp32_tensor = ggml_cann_create_tensor( - output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne, + output_fp32_buffer, ACL_FLOAT, sizeof(float), dst->ne, input_fp32_nb, GGML_MAX_DIMS); aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor, input_fp32_tensor1); aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor, @@ -2746,8 +2811,6 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds aclIntArray *padding = aclCreateIntArray(paddingVal, 1); int64_t dilationVal[] = {1}; aclIntArray *dilation = aclCreateIntArray(dilationVal, 1); - bool transposed = true; - int64_t groups = 1; int8_t cubeMathType = 0; #ifdef ASCEND_310P @@ -2755,7 +2818,7 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds #endif GGML_CANN_CALL_ACLNN_OP(ctx, Convolution, acl_input, acl_weight, nullptr, stride, - padding, dilation, transposed, padding, groups, acl_dst, cubeMathType); + padding, dilation, true, padding, 1, acl_dst, cubeMathType); ggml_cann_release_resources(ctx, acl_weight, acl_dst, stride, padding, dilation); } @@ -2864,174 +2927,49 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst){ */ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) { //dst [M, K, N, 1] - ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] - ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 + ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] -> [D, M, K, 1] + ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 -> [D, 1, K, 1] ggml_tensor * ids = dst->src[2]; //ids [K, N] - GGML_TENSOR_BINARY_OP_LOCALS + GGML_ASSERT(src0->ne[3] == 1); + GGML_ASSERT(src1->ne[3] == 1); + GGML_ASSERT(dst->ne[3] == 1); - // copy index from npu to cpu - int64_t n_as = ne02; // A - int64_t n_ids = ids->ne[0]; // K + int64_t batch = src1->ne[2]; + GGML_ASSERT(batch == ids->ne[1]); - std::vector ids_host(ggml_nbytes(ids)); - ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids), - ACL_MEMCPY_DEVICE_TO_HOST); - ACL_CHECK(aclrtSynchronizeStream(ctx.stream())); + ggml_cann_pool_alloc export_allocator(ctx.pool(), src0->ne[0] * src0->ne[1] * ids->ne[0] * ggml_element_size(src0)); + void* export_ptr = export_allocator.get(); + for (int64_t i = 0; i < batch; i++) { + aclTensor *select_index = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, i * ids->nb[1]); + aclTensor *export_weight = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3); - char * src0_original = (char *) src0->data; - char * src1_original = (char *) src1->data; - char * dst_original = (char *) dst->data; - size_t ori_src0_nb[4] = {nb00, nb01, nb02, nb03}; - - // src0 is F16, src1 is F32, dst is F32 - ggml_cann_pool_alloc src0_cast_allocator; - if (src0->type == GGML_TYPE_F16) { - src0_cast_allocator.alloc(ctx.pool(), sizeof(float) * ggml_nelements(src0)); - void* src0_cast_buf = src0_cast_allocator.get(); - - size_t cast_nb[GGML_MAX_DIMS]; - cast_nb[0] = sizeof(float_t); - for (int i = 1; i < GGML_MAX_DIMS; i++) { - cast_nb[i] = cast_nb[i - 1] * src0->ne[i - 1]; + int64_t select_export_ne[] = {src0->ne[0], src0->ne[1], ids->ne[0]}; + size_t select_export_nb[3]; + select_export_nb[0] = src0->nb[0]; + for (int k = 1;k < 3; k++) { + select_export_nb[k] = select_export_nb[k-1] * select_export_ne[k-1]; } - aclTensor* acl_src0_f16 = ggml_cann_create_tensor(src0); - aclTensor* acl_cast = ggml_cann_create_tensor(src0_cast_buf, - ACL_FLOAT, sizeof(float), src0->ne, cast_nb, 4); - GGML_CANN_CALL_ACLNN_OP(ctx, Cast, acl_src0_f16, ACL_FLOAT, acl_cast); - ggml_cann_release_resources(ctx, acl_cast, acl_src0_f16); + aclTensor *select_export = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_export_ne, select_export_nb, 3); + GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, export_weight, 0, select_index, select_export); - src0_original = (char *) src0_cast_buf; - memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb)); + int64_t select_transpose_ne[] = {select_export_ne[1], select_export_ne[0], select_export_ne[2]}; + size_t select_transpose_nb[] = {select_export_nb[1], select_export_nb[0], select_export_nb[2]}; + aclTensor *select_export_transpose = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_transpose_ne, select_transpose_nb, 3); + + int64_t active_tensor_ne[] = {src1->ne[0], 1, src1->ne[1]}; + size_t active_tensor_nb[] = {src1->nb[0], src1->nb[1], src1->nb[1]}; + aclTensor *active_tensor = ggml_cann_create_tensor(src1, active_tensor_ne, active_tensor_nb, 3, ACL_FORMAT_ND, i * src1->nb[2]); + + int64_t dst_ne[] = {dst->ne[0], 1, dst->ne[1]}; + size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[1]}; + aclTensor *acl_dst = ggml_cann_create_tensor(dst, dst_ne,dst_nb, 3, ACL_FORMAT_ND, i * dst->nb[2]); + + GGML_CANN_CALL_ACLNN_OP(ctx, BatchMatMul, active_tensor, select_export_transpose, acl_dst, 2); + + ggml_cann_release_resources(ctx, select_index, export_weight, select_export, active_tensor, acl_dst, select_export_transpose); } - -#ifdef ASCEND_310P - ggml_tensor src0_row = *src0; - ggml_tensor src1_row = *src1; - ggml_tensor dst_row = *dst; - - if (src0->type == GGML_TYPE_F16) { - src0_row.type = GGML_TYPE_F32; - } - - // src0_row [D, M, 1, 1] weight without permute - src0_row.ne[2] = 1; - src0_row.ne[3] = 1; - src0_row.nb[0] = ori_src0_nb[0]; - src0_row.nb[1] = ori_src0_nb[1]; - src0_row.nb[2] = ori_src0_nb[1]; - src0_row.nb[3] = ori_src0_nb[1]; - - // src1_row [D, 1, 1, 1] -> input - src1_row.ne[1] = 1; - src1_row.ne[2] = 1; - src1_row.ne[3] = 1; - src1_row.nb[2] = nb11; - src1_row.nb[3] = nb11; - - // dst_row [M, 1, 1, 1] -> out - dst_row.ne[1] = 1; - dst_row.ne[2] = 1; - dst_row.ne[3] = 1; - dst_row.nb[2] = nb1; - dst_row.nb[3] = nb1; - - //create weight for one row - for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { - for (int64_t id = 0; id < n_ids; id++) { - // expert index - int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); - GGML_ASSERT(i02 >= 0 && i02 < n_as); - - // If B = 1 (broadcast), always use 0; otherwise, use id. - int64_t i11 = (ne11 == 1 ? 0 : id); - int64_t i12 = iid1; - - int64_t i1 = id; - int64_t i2 = i12; - - void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2]; - void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12; - void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2; - - src0_row.data = src0_tmp_ptr; - src1_row.data = src1_tmp_ptr; - dst_row.data = dst_tmp_ptr; - dst_row.src[0] = &src0_row; - dst_row.src[1] = &src1_row; - - ggml_cann_mul_mat(ctx, &dst_row); - } - } - return; -#endif - - std::vector src0_tensor_vec; - std::vector src1_tensor_vec; - std::vector dst_tensor_vec; - for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { - for (int64_t id = 0; id < n_ids; id++) { - // src0_row [M, D] -> weight && permute - int64_t src0_ne[2] = {ne01, ne00}; - size_t src0_nb[2] = {ori_src0_nb[1], ori_src0_nb[0]}; - // src1_row [D, 1] -> input - int64_t src1_ne[2] = {ne10, 1}; - size_t src1_nb[2] = {nb10, nb11}; - // dst_row [M, 1] -> out - int64_t dst_ne[2] = {ne0, 1}; - size_t dst_nb[2] = {nb0, nb1}; - - // expert index - int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); - GGML_ASSERT(i02 >= 0 && i02 < n_as); - - // If B = 1 (broadcast), always use 0; otherwise, use id. - int64_t i11 = (ne11 == 1 ? 0 : id); - int64_t i12 = iid1; - - int64_t i1 = id; - int64_t i2 = i12; - - void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2]; - void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12; - void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2; - - aclTensor* acl_src0 = ggml_cann_create_tensor(src0_tmp_ptr, - ACL_FLOAT, sizeof(float), - src0_ne, src0_nb, 2); - aclTensor* acl_src1 = ggml_cann_create_tensor(src1_tmp_ptr, - ACL_FLOAT, sizeof(float), - src1_ne, src1_nb, 2); - aclTensor* acl_dst = ggml_cann_create_tensor(dst_tmp_ptr, - ACL_FLOAT, sizeof(float), - dst_ne, dst_nb, 2); - - src0_tensor_vec.push_back(acl_src0); - src1_tensor_vec.push_back(acl_src1); - dst_tensor_vec.push_back(acl_dst); - } - } - - size_t GROUP_SIZE = 128; - // GroupedMatmulV3 required tensor_list.size < 128 - for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) { - // split and call GroupedMatmulV3 - size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size()); - std::vector src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end); - std::vector src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end); - std::vector dst_tensor_vec_split(dst_tensor_vec.begin() + i, dst_tensor_vec.begin() + end); - - aclTensorList* src0_tensor_list = aclCreateTensorList(src0_tensor_vec_split.data(), src0_tensor_vec_split.size()); - aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size()); - aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size()); - - GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV3, src1_tensor_list, src0_tensor_list, - nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list); - - ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list); - } - return; } /** @@ -3342,7 +3280,7 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){ const int64_t n_heads = src0->ne[2]; ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(uint16_t)); void* slope_buffer = slope_allocator.get(); - aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias); + aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias, GGML_TYPE_F16); int64_t slope_ne[] = {1, 1, n_heads, 1}; size_t slope_nb[GGML_MAX_DIMS]; diff --git a/ggml/src/ggml-cann/common.h b/ggml/src/ggml-cann/common.h index 88cc3f481e..e295f4ab47 100755 --- a/ggml/src/ggml-cann/common.h +++ b/ggml/src/ggml-cann/common.h @@ -360,6 +360,30 @@ struct ggml_cann_graph { }; #endif // USE_ACL_GRAPH +struct ggml_cann_rope_cache { + ~ggml_cann_rope_cache() { + if(theta_scale_cache != nullptr) { + ACL_CHECK(aclrtFree(theta_scale_cache)); + } + } + + void* theta_scale_cache = nullptr; + int64_t theta_scale_length = 0; + float theta_scale = 0.0f; + float freq_scale = 0.0f; +}; + +struct ggml_cann_tensor_cache { + ~ggml_cann_tensor_cache() { + if(cache != nullptr) { + ACL_CHECK(aclrtFree(cache)); + } + } + + void* cache = nullptr; + int64_t size = 0; +}; + /** * @brief Context for managing CANN backend operations. */ @@ -371,19 +395,15 @@ struct ggml_backend_cann_context { #ifdef USE_ACL_GRAPH /// Cached CANN ACL graph used for executing the current ggml computation graph. std::unique_ptr cann_graph; + bool acl_graph_mode = true; #endif cann_task_queue task_queue; bool async_mode; // Rope Cache - void* rope_init_ptr = nullptr; - void* rope_sin_ptr = nullptr; - void* rope_cos_ptr = nullptr; - int64_t max_prompt_length = 0; + ggml_cann_rope_cache rope_cache; // Constant Pool - void* f32_zero_cache = nullptr; - void* f32_one_cache = nullptr; - int64_t f32_zero_cache_element = 0; - int64_t f32_one_cache_element = 0; + ggml_cann_tensor_cache rms_norm_one_tensor_cache; + ggml_cann_tensor_cache rms_norm_zero_tensor_cache; aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */ @@ -399,6 +419,13 @@ struct ggml_backend_cann_context { async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or("")); GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__, device, async_mode ? "ON" : "OFF"); +#ifdef USE_ACL_GRAPH + acl_graph_mode = parse_bool(get_env("GGML_CANN_ACL_GRAPH").value_or("on")); + GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n", + __func__, device, + acl_graph_mode ? "GRAPH" : "EAGER", + acl_graph_mode ? "acl graph enabled" : "acl graph disabled"); +#endif } /** @@ -415,21 +442,6 @@ struct ggml_backend_cann_context { ACL_CHECK(aclrtDestroyStream(streams[i])); } } - if(rope_init_ptr != nullptr) { - ACL_CHECK(aclrtFree(rope_init_ptr)); - } - if(rope_sin_ptr != nullptr) { - ACL_CHECK(aclrtFree(rope_sin_ptr)); - } - if(rope_cos_ptr != nullptr) { - ACL_CHECK(aclrtFree(rope_cos_ptr)); - } - if(f32_zero_cache != nullptr) { - ACL_CHECK(aclrtFree(f32_zero_cache)); - } - if(f32_one_cache != nullptr) { - ACL_CHECK(aclrtFree(f32_one_cache)); - } } /** diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp index 7b3aca9db9..756ad8dfad 100755 --- a/ggml/src/ggml-cann/ggml-cann.cpp +++ b/ggml/src/ggml-cann/ggml-cann.cpp @@ -1116,30 +1116,65 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor( return GGML_STATUS_SUCCESS; } -// ND to NZ Workspace Cache Management. Thread-safety: Not guaranteed -namespace { - void* g_nz_workspace = nullptr; - size_t g_nz_workspace_allocated = 0; +/** + * @brief Workspace for caching NZ buffers per device. + * + * This struct manages a device buffer used in NZ computations. It supports + * allocation, reallocation, and clearing of cached memory. The struct is + * designed to be used with a global array, one per device. + */ +struct ggml_cann_nz_workspace { + void* ptr; // Pointer to allocated device buffer + size_t allocated; // Size of currently allocated buffer in bytes - void release_nz_workspace() { - if (g_nz_workspace) { - aclrtFree(g_nz_workspace); - g_nz_workspace = nullptr; - g_nz_workspace_allocated = 0; + /** + * @brief Constructor. Initializes the workspace with no allocated memory. + */ + ggml_cann_nz_workspace() : ptr(nullptr), allocated(0) {} + + /** + * @brief Free cached memory and reset the workspace. + * + * If a buffer has been allocated, this function releases it using + * aclrtFree and resets internal state. + */ + void clear() { + if (ptr) { + ACL_CHECK(aclrtFree(ptr)); + ptr = nullptr; + allocated = 0; } } - void relloc_nz_workspace(size_t new_size) { - if (new_size > g_nz_workspace_allocated) { - if (g_nz_workspace) { - aclrtFree(g_nz_workspace); - g_nz_workspace = nullptr; + /** + * @brief Allocate or reallocate the workspace buffer. + * + * If the requested size is larger than the currently allocated size, + * the old buffer will be freed and a new buffer of the requested size + * will be allocated on the device. + * + * @param new_size Size in bytes to allocate for the workspace. + */ + void realloc(size_t new_size) { + if (new_size > allocated) { + clear(); + ACL_CHECK(aclrtMalloc(&ptr, new_size, ACL_MEM_MALLOC_HUGE_FIRST)); + allocated = new_size; } - ACL_CHECK(aclrtMalloc(&g_nz_workspace, new_size, ACL_MEM_MALLOC_HUGE_FIRST)); - g_nz_workspace_allocated = new_size; } - } -} + + /** + * @brief Get the device buffer pointer. + * + * @return Pointer to the allocated buffer, or nullptr if not allocated. + */ + void* get() const { return ptr; } +}; + +/** + * @brief Global array of NZ workspaces, one per device. + */ +static ggml_cann_nz_workspace g_nz_workspaces[GGML_CANN_MAX_DEVICES]; /** * @brief Convert tensor weights to NZ format using Ascend CANN API. @@ -1149,13 +1184,13 @@ namespace { * improve performance on certain hardware. * * @param tensor Pointer to the input ggml_tensor containing the weights. - * @param data Pointer to the raw data buffer for the tensor weights. * @param offset Byte offset within the tensor data buffer where weights start. + * @param device device id. * * @note The workspace buffer used in this function is managed globally and reused * across calls. This reduces overhead from repeated memory allocation and deallocation. */ -static void weight_format_to_nz(ggml_tensor *tensor, size_t offset) { +static void weight_format_to_nz(ggml_tensor *tensor, size_t offset, int device) { aclTensor* weightTransposed = ggml_cann_create_tensor(tensor, tensor->ne, tensor->nb, 2, ACL_FORMAT_ND, offset); uint64_t workspaceSize = 0; @@ -1165,7 +1200,9 @@ static void weight_format_to_nz(ggml_tensor *tensor, size_t offset) { ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed, &workspaceSize, &executor)); // Avoid frequent malloc/free of the workspace. - relloc_nz_workspace(workspaceSize); + g_nz_workspaces[device].realloc(workspaceSize); + + void* g_nz_workspace = g_nz_workspaces[device].get(); ACL_CHECK(aclnnTransMatmulWeight(g_nz_workspace, workspaceSize, executor, nullptr)); ACL_CHECK(aclDestroyTensor(weightTransposed)); @@ -1196,14 +1233,14 @@ static void ggml_backend_cann_buffer_set_tensor( // Why aclrtSynchronizeDevice? // Only check env once. - static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("")); + static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on")); if (!need_transform(tensor->type)) { ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size, ACL_MEMCPY_HOST_TO_DEVICE)); if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) { GGML_ASSERT(tensor->ne[2] == 1); GGML_ASSERT(tensor->ne[3] == 1); - weight_format_to_nz(tensor, offset); + weight_format_to_nz(tensor, offset, ctx->device); } } else { void *transform_buffer = malloc(size); @@ -1279,6 +1316,10 @@ static bool ggml_backend_cann_buffer_cpy_tensor( ACL_MEMCPY_DEVICE_TO_DEVICE)); return true; } else { +#ifdef ASCEND_310P + // TODO: Support 310p P2P copy + return false; +#endif // Different device but can access by peer. int32_t canAccessPeer = 0; ACL_CHECK(aclrtDeviceCanAccessPeer(&canAccessPeer, src_ctx->device, @@ -1439,7 +1480,7 @@ static size_t ggml_backend_cann_buffer_type_get_alloc_size( int64_t ne0 = tensor->ne[0]; // Only check env once. - static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("")); + static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on")); // last line must bigger than 32, because every single op deal at // least 32 bytes. @@ -2000,6 +2041,8 @@ static bool ggml_backend_cann_cpy_tensor_async( GGML_ASSERT(ggml_backend_is_cann(backend_src) || ggml_backend_is_cann(backend_dst)); + GGML_ASSERT(!is_matmul_weight((const ggml_tensor*)src)); + if (!ggml_backend_buffer_is_cann(src->buffer) || !ggml_backend_buffer_is_cann(dst->buffer)) { return false; @@ -2020,6 +2063,10 @@ static bool ggml_backend_cann_cpy_tensor_async( return true; } if (backend_src != backend_dst) { +#ifdef ASCEND_310P + // TODO: Support 310p P2P copy + return false; +#endif ggml_backend_cann_buffer_context* buf_ctx_src = (ggml_backend_cann_buffer_context*)buf_src->context; ggml_backend_cann_buffer_context* buf_ctx_dst = @@ -2036,7 +2083,6 @@ static bool ggml_backend_cann_cpy_tensor_async( } // need open both directions for memcpyasync between devices. - ggml_cann_set_device(cann_ctx_dst->device); ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_src->device, 0)); ggml_cann_set_device(cann_ctx_src->device); ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_dst->device, 0)); @@ -2047,8 +2093,15 @@ static bool ggml_backend_cann_cpy_tensor_async( ACL_MEMCPY_DEVICE_TO_DEVICE, cann_ctx_src->stream())); - //TODO: workaround for Event didn`t work here. - aclrtSynchronizeStream(cann_ctx_src->stream()); + // record event on src stream after the copy + if (!cann_ctx_src->copy_event) { + ACL_CHECK(aclrtCreateEventWithFlag(&cann_ctx_src->copy_event, ACL_EVENT_SYNC)); + } + ACL_CHECK(aclrtRecordEvent(cann_ctx_src->copy_event, cann_ctx_src->stream())); + + // wait on dst stream for the copy to complete + ggml_cann_set_device(cann_ctx_dst->device); + ACL_CHECK(aclrtStreamWaitEvent(cann_ctx_dst->stream(), cann_ctx_src->copy_event)); } else { // src and dst are on the same backend ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size, @@ -2246,11 +2299,16 @@ static enum ggml_status ggml_backend_cann_graph_compute( ggml_backend_cann_context* cann_ctx = (ggml_backend_cann_context*)backend->context; ggml_cann_set_device(cann_ctx->device); - release_nz_workspace(); + g_nz_workspaces[cann_ctx->device].clear(); + #ifdef USE_ACL_GRAPH bool use_cann_graph = true; bool cann_graph_update_required = false; + if (!cann_ctx->acl_graph_mode) { + use_cann_graph = false; + } + if (use_cann_graph) { if (cann_ctx->cann_graph == nullptr) { cann_ctx->cann_graph.reset(new ggml_cann_graph()); @@ -2400,16 +2458,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, } case GGML_OP_ROPE: { // TODO: with ops-test v == 1 - float ext_factor = 0.0f; - memcpy(&ext_factor, (const float *) op->op_params + 7, sizeof(float)); // TODO: n_dims <= ne0 if (op->src[0]->ne[0] != op->op_params[1]) { return false; } - // TODO: ext_factor != 0 - if (ext_factor != 0) { - return false; - } const int mode = ((const int32_t *) op->op_params)[2]; if (mode & GGML_ROPE_TYPE_MROPE) { @@ -2418,10 +2470,11 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, if (mode & GGML_ROPE_TYPE_VISION) { return false; } - +#ifdef ASCEND_310P if(!ggml_is_contiguous(op->src[0])){ return false; } +#endif return true; } case GGML_OP_UPSCALE: { @@ -2483,12 +2536,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, case GGML_OP_ARGMAX: case GGML_OP_COS: case GGML_OP_SIN: - case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_LOG: case GGML_OP_MEAN: case GGML_OP_PAD_REFLECT_1D: case GGML_OP_COUNT_EQUAL: return true; + case GGML_OP_CONV_TRANSPOSE_1D: + // TODO: ((weightL - 1) * dilationW - padLeft)=1336 should not be larger than 255. + return (op->src[0]->ne[0] - 1) <= 255; case GGML_OP_SCALE: float bias; memcpy(&bias, (const float *)(op->op_params) + 1, sizeof(float)); @@ -2522,13 +2577,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, // different head sizes of K and V are not supported yet return false; } - if (op->src[0]->ne[0] == 192) { - return false; - } - if (op->src[0]->ne[0] == 576) { - // DeepSeek MLA - return false; - } if (op->src[0]->ne[0] % 16 != 0) { // TODO: padding to support return false; diff --git a/ggml/src/ggml-cpu/CMakeLists.txt b/ggml/src/ggml-cpu/CMakeLists.txt index b70302ec8c..388675f5f0 100644 --- a/ggml/src/ggml-cpu/CMakeLists.txt +++ b/ggml/src/ggml-cpu/CMakeLists.txt @@ -433,15 +433,22 @@ function(ggml_add_cpu_backend_variant_impl tag_name) ggml-cpu/arch/riscv/quants.c ggml-cpu/arch/riscv/repack.cpp ) - if (GGML_RVV) - if (GGML_XTHEADVECTOR) - list(APPEND ARCH_FLAGS -march=rv64gc_zfhmin_xtheadvector -mabi=lp64d) - elseif (GGML_RV_ZFH) - list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d) - else() - list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d) + set(MARCH_STR "rv64gc") + if (GGML_RV_ZFH) + string(APPEND MARCH_STR "_zfh") + endif() + if (GGML_XTHEADVECTOR) + string(APPEND MARCH_STR "_xtheadvector") + elseif (GGML_RVV) + string(APPEND MARCH_STR "_v") + if (GGML_RV_ZVFH) + string(APPEND MARCH_STR "_zvfh") endif() endif() + if (GGML_RV_ZICBOP) + string(APPEND MARCH_STR "_zicbop") + endif() + list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d) elseif (GGML_SYSTEM_ARCH STREQUAL "s390x") message(STATUS "s390x detected") list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c) @@ -450,7 +457,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name) # TODO: Separation to determine activation of VX/VXE/VXE2 if (${S390X_M} MATCHES "8561|8562") - set(GGML_NNPA OFF) message(STATUS "z15 target") list(APPEND ARCH_FLAGS -march=z15) elseif (${S390X_M} MATCHES "3931") @@ -472,11 +478,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name) list(APPEND ARCH_FLAGS -mvx -mzvector) list(APPEND ARCH_DEFINITIONS GGML_VXE) endif() - - if (GGML_NNPA) - message(STATUS "NNPA enabled") - list(APPEND ARCH_DEFINITIONS GGML_NNPA) - endif() elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm") message(STATUS "Wasm detected") list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c) @@ -497,9 +498,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name) # Fetch KleidiAI sources: include(FetchContent) - set(KLEIDIAI_COMMIT_TAG "v1.11.0") + set(KLEIDIAI_COMMIT_TAG "v1.13.0") set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz") - set(KLEIDIAI_ARCHIVE_MD5 "3fe9e5ab964c375c53839296eb71eaa2") + set(KLEIDIAI_ARCHIVE_MD5 "d82a8de939d9814621a5ba23907bdac1") if (POLICY CMP0135) cmake_policy(SET CMP0135 NEW) @@ -555,6 +556,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name) list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c + ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.c ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c) @@ -576,7 +578,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name) ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c - ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c) + ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c + ${KLEIDIAI_SRC}/kai/kai_common_sme_asm.S) set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2") endif() diff --git a/ggml/src/ggml-cpu/arch/riscv/quants.c b/ggml/src/ggml-cpu/arch/riscv/quants.c index 6c74417c90..ee41a3502e 100644 --- a/ggml/src/ggml-cpu/arch/riscv/quants.c +++ b/ggml/src/ggml-cpu/arch/riscv/quants.c @@ -1270,29 +1270,40 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); - int tmp, tmp2, sumi; + float ftmp, ft2; + const uint8_t * restrict q40; + const uint8_t * restrict q41; + const uint8_t * restrict q42; + const uint8_t * restrict q43; + const int8_t * restrict q80; + const int8_t * restrict q81; + const int8_t * restrict q82; + const int8_t * restrict q83; + int s0, s1, s2, s3; + __asm__ __volatile__( - "vsetivli zero, 12, e8, m1\n\t" - "vle8.v v1, (%[s6b])\n\t" // {aux[0], aux[1], aux[2]} - "vsetivli zero, 4, e32, m1\n\t" + "li %[s1], 8\n\t" + "vsetivli zero, 4, e32, m1, ta, ma\n\t" + "vle32.v v1, (%[s6b])\n\t" + "vslide1down.vx v1, v1, zero\n\t" + "vmv.v.x v16, zero\n\t" "vslidedown.vi v2, v1, 2\n\t" "vmv1r.v v3, v2\n\t" "vslideup.vi v2, v3, 1\n\t" // {aux[2], aux[2]} - "vsetivli zero, 2, e32, m1\n\t" + "vsetivli zero, 2, e32, m1, ta, ma\n\t" "vmv.v.i v4, 4\n\t" "vand.vx v8, v1, %[kmask1]\n\t" "vslide1up.vx v5, v4, zero\n\t" // {0, 4} "vsrl.vi v6, v1, 6\n\t" "vsrl.vv v7, v2, v5\n\t" + "vsse32.v v8, (%[utmp]), %[s1]\n\t" "vand.vx v0, v6, %[kmask3]\n\t" "vand.vx v2, v7, %[kmask2]\n\t" "vsll.vi v6, v0, 4\n\t" - "li %[t2], 8\n\t" - "addi %[t1], %[utmp], 4\n\t" + "addi %[s0], %[utmp], 4\n\t" "vor.vv v1, v6, v2\n\t" - "vsse32.v v8, (%[utmp]), %[t2]\n\t" - "vsse32.v v1, (%[t1]), %[t2]\n\t" - "vsetivli zero, 8, e16, m1\n\t" + "vsse32.v v1, (%[s0]), %[s1]\n\t" + "vsetivli zero, 8, e16, m1, ta, ma\n\t" "vle32.v v2, (%[bsums])\n\t" "vnsrl.wi v0, v2, 0\n\t" "vnsrl.wi v1, v2, 16\n\t" @@ -1300,13 +1311,131 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi "vle8.v v3, (%[mins])\n\t" "vzext.vf2 v4, v3\n\t" "vwmul.vv v6, v4, v2\n\t" + "vsetivli zero, 4, e32, m1, ta, ma\n\t" + "vredsum.vs v0, v6, v16\n\t" + "vredsum.vs v0, v7, v0\n\t" + "vfcvt.f.x.v v0, v0\n\t" + "vfmv.f.s %[ftmp], v0\n\t" + "vsetivli zero, 16, e8, m1, ta, ma\n\t" + "vle8.v v0, (%[xs])\n\t" + "fnmsub.s %[sumf], %[dmin], %[ftmp], %[sumf]\n\t" + "addi %[q40], %[xs], 64\n\t" + "addi %[q41], %[xs], 16\n\t" + "addi %[q42], %[xs], 32\n\t" + "addi %[q43], %[xs], 48\n\t" + "addi %[q80], %[ys], 64\n\t" + "vle8.v v1, (%[q41])\n\t" + "vle8.v v2, (%[q42])\n\t" + "addi %[q81], %[ys], 16\n\t" + "addi %[q41], %[q41], 64\n\t" + "addi %[q82], %[ys], 32\n\t" + "vle8.v v3, (%[q43])\n\t" + "vle8.v v8, (%[ys])\n\t" + "addi %[q42], %[q42], 64\n\t" + "addi %[q83], %[ys], 48\n\t" + "addi %[q43], %[q43], 64\n\t" + "vsrl.vi v4, v0, 4\n\t" + "vle8.v v9, (%[q81])\n\t" + "vle8.v v10, (%[q82])\n\t" + "vand.vi v0, v0, 0xF\n\t" + "addi %[q81], %[q81], 64\n\t" + "vsrl.vi v5, v1, 4\n\t" + "addi %[q82], %[q82], 64\n\t" + "vle8.v v11, (%[q83])\n\t" + "vle8.v v12, (%[q80])\n\t" + "vand.vi v1, v1, 0xF\n\t" + "addi %[q83], %[q83], 64\n\t" + "vsrl.vi v6, v2, 4\n\t" + "addi %[q80], %[q80], 64\n\t" + "vle8.v v13, (%[q81])\n\t" + "vle8.v v14, (%[q82])\n\t" + "vand.vi v2, v2, 0xF\n\t" + "addi %[q81], %[q81], 64\n\t" + "vsrl.vi v7, v3, 4\n\t" + "addi %[q82], %[q82], 64\n\t" + "vwmul.vv v16, v0, v8\n\t" + "vle8.v v15, (%[q83])\n\t" + "vle8.v v0, (%[q40])\n\t" + "vand.vi v3, v3, 0xF\n\t" + "addi %[q83], %[q83], 64\n\t" + "vwmul.vv v24, v2, v12\n\t" + "vwmul.vv v20, v4, v10\n\t" + "vwmul.vv v28, v6, v14\n\t" + "vwmacc.vv v16, v1, v9\n\t" + "vle8.v v1, (%[q41])\n\t" + "vle8.v v2, (%[q42])\n\t" + "vwmacc.vv v24, v3, v13\n\t" + "vwmacc.vv v20, v5, v11\n\t" + "vwmacc.vv v28, v7, v15\n\t" + "addi %[q40], %[q80], 64\n\t" + "addi %[q41], %[q81], 64\n\t" + "vle8.v v3, (%[q43])\n\t" + "vle8.v v8, (%[q80])\n\t" + "addi %[q42], %[q82], 64\n\t" + "addi %[q43], %[q83], 64\n\t" + "vsrl.vi v4, v0, 4\n\t" + "vle8.v v9, (%[q81])\n\t" + "vle8.v v10, (%[q82])\n\t" + "vand.vi v0, v0, 0xF\n\t" + "vsrl.vi v5, v1, 4\n\t" + "vsrl.vi v7, v3, 4\n\t" + "vand.vi v3, v3, 0xF\n\t" + "vle8.v v11, (%[q83])\n\t" + "vle8.v v12, (%[q40])\n\t" + "vand.vi v1, v1, 0xF\n\t" + "vsrl.vi v6, v2, 4\n\t" + "vand.vi v2, v2, 0xF\n\t" + "vwmul.vv v18, v0, v8\n\t" + "vle8.v v13, (%[q41])\n\t" + "vle8.v v14, (%[q42])\n\t" + "vwmul.vv v26, v2, v12\n\t" + "vwmul.vv v22, v4, v10\n\t" + "vwmul.vv v30, v6, v14\n\t" + "vwmacc.vv v18, v1, v9\n\t" + "vle8.v v15, (%[q43])\n\t" + "vwmacc.vv v26, v3, v13\n\t" + "vwmacc.vv v22, v5, v11\n\t" + "vwmacc.vv v30, v7, v15\n\t" "vmv.v.x v0, zero\n\t" - "vsetivli zero, 8, e32, m2\n\t" - "vredsum.vs v0, v6, v0\n\t" - "vmv.x.s %[sumi], v0" - : [t1] "=&r" (tmp), [t2] "=&r" (tmp2), [sumi] "=&r" (sumi) - : [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp) - , [s6b] "r" (x[i].scales), [kmask1] "r" (kmask1) + "vsetivli zero, 16, e16, m2, ta, ma\n\t" + "vwredsum.vs v4, v16, v0\n\t" + "lbu %[s0], 0(%[scale])\n\t" + "vwredsum.vs v5, v20, v0\n\t" + "lbu %[s1], 1(%[scale])\n\t" + "vwredsum.vs v6, v24, v0\n\t" + "lbu %[s2], 2(%[scale])\n\t" + "vwredsum.vs v7, v28, v0\n\t" + "lbu %[s3], 3(%[scale])\n\t" + "vwredsum.vs v8, v18, v0\n\t" + "lbu %[q40], 4(%[scale])\n\t" + "vwredsum.vs v9, v22, v0\n\t" + "lbu %[q41], 5(%[scale])\n\t" + "vwredsum.vs v10, v26, v0\n\t" + "lbu %[q42], 6(%[scale])\n\t" + "vwredsum.vs v11, v30, v0\n\t" + "lbu %[q43], 7(%[scale])\n\t" + "vsetivli zero, 4, e32, m1, ta, ma\n\t" + "vmul.vx v0, v4, %[s0]\n\t" + "vmul.vx v1, v8, %[q40]\n\t" + "vmacc.vx v0, %[s1], v5\n\t" + "vmacc.vx v1, %[q41], v9\n\t" + "vmacc.vx v0, %[s2], v6\n\t" + "vmacc.vx v1, %[q42], v10\n\t" + "vmacc.vx v0, %[s3], v7\n\t" + "vmacc.vx v1, %[q43], v11\n\t" + "vfcvt.f.x.v v0, v0\n\t" + "vfcvt.f.x.v v1, v1\n\t" + "vfmv.f.s %[ft2], v0\n\t" + "vfmv.f.s %[ftmp], v1\n\t" + "fadd.s %[ft2], %[ft2], %[ftmp]\n\t" + "fmadd.s %[sumf], %[d], %[ft2], %[sumf]" + : [ftmp] "=&f" (ftmp), [sumf] "+&f" (sumf), [ft2] "=&f" (ft2) + , [s0] "=&r" (s0), [s1] "=&r" (s1), [s2] "=&r" (s2), [s3] "=&r" (s3) + , [q40] "=&r" (q40), [q41] "=&r" (q41), [q42] "=&r" (q42), [q43] "=&r" (q43) + , [q80] "=&r" (q80), [q81] "=&r" (q81), [q82] "=&r" (q82), [q83] "=&r" (q83) + : [d] "f" (d), [ys] "r" (y[i].qs), [xs] "r" (x[i].qs), [scale] "r" (scales) + , [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp) + , [s6b] "r" (&x[i]), [kmask1] "r" (kmask1), [dmin] "f" (dmin) , [kmask2] "r" (kmask2), [kmask3] "r" (kmask3) : "memory" , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" @@ -1314,59 +1443,6 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" ); - sumf -= dmin * sumi; - - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - sumi = 0; - const uint8_t * scale = scales; - - for (int j = 0; j < QK_K/128; ++j) { - int vl128 = 128, vl64 = 64, vl32 = 32; - __asm__ __volatile__( - "vsetvli zero, %[vl128], e8, m8\n\t" - "vle8.v v8, (%[q8])\n\t" - "vsetvli zero, %[vl64], e8, m4\n\t" - "vle8.v v0, (%[q4])\n\t" - "vsrl.vi v4, v0, 4\n\t" - "vand.vi v0, v0, 0xF\n\t" - "vsetvli zero, %[vl32], e8, m2\n\t" - "vwmul.vv v28, v6, v14\n\t" - "vwmul.vv v20, v4, v10\n\t" - "vwmul.vv v24, v2, v12\n\t" - "vwmul.vv v16, v0, v8\n\t" - "vsetivli zero, 4, e32, m1\n\t" - "vle8.v v2, (%[scale])\n\t" - "vmv.v.x v0, zero\n\t" - "vzext.vf4 v1, v2\n\t" - "vsetvli zero, %[vl32], e16, m4\n\t" - "vwredsum.vs v6, v24, v0\n\t" - "vwredsum.vs v7, v28, v0\n\t" - "vwredsum.vs v4, v16, v0\n\t" - "vwredsum.vs v5, v20, v0\n\t" - "vsetivli zero, 4, e32, m1\n\t" - "vslideup.vi v6, v7, 1\n\t" - "vslideup.vi v4, v5, 1\n\t" - "vslideup.vi v4, v6, 2\n\t" - "vmul.vv v8, v4, v1\n\t" - "vredsum.vs v0, v8, v0\n\t" - "vmv.x.s %[tmp], v0\n\t" - "add %[sumi], %[sumi], %[tmp]" - : [tmp] "=&r" (tmp), [sumi] "+&r" (sumi) - : [vl128] "r" (vl128), [vl64] "r" (vl64), [vl32] "r" (vl32) - , [q4] "r" (q4), [q8] "r" (q8), [scale] "r" (scale) - : "memory" - , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" - , "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" - , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" - , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" - ); - - q4 += 64; q8 += 128; scale += 4; - } - - sumf += d * sumi; } break; default: @@ -1693,6 +1769,8 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi case 128: for (int i = 0; i < nb; ++i) { + __builtin_prefetch(&x[i + 1].d, 0, 1); + const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; const uint8_t * restrict q6 = x[i].ql; @@ -1701,23 +1779,59 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi const int8_t * restrict scale = x[i].scales; - int sum_t = 0; - int t0; + int q6h; + float ftmp; for (int j = 0; j < QK_K/128; ++j) { __asm__ __volatile__( + "addi %[q6h], %[q6], 32\n\t" + "ld t0, 0(%[scale])\n\t" + "addi %[scale], %[scale], 8\n\t" + "slli t6, t0, 1 * 8\n\t" + "lb zero, 0(%[q6])\n\t" + "slli t5, t0, 2 * 8\n\t" + "slli t4, t0, 3 * 8\n\t" + "lb zero, 0(%[q6h])\n\t" + "slli t3, t0, 4 * 8\n\t" + "slli t2, t0, 5 * 8\n\t" + "lb zero, 0(%[qh])\n\t" + "lb zero, 31(%[q6h])\n\t" + "slli t1, t0, 6 * 8\n\t" + "srai a7, t0, 56\n\t" "vsetvli zero, %[vl32], e8, m2\n\t" + "vle8.v v8, (%[q6])\n\t" + "srai t6, t6, 56\n\t" + "srai t5, t5, 56\n\t" + "srai t4, t4, 56\n\t" + "srai t3, t3, 56\n\t" + "vle8.v v10, (%[q6h])\n\t" + "addi %[q6], %[q6], 64\n\t" + "slli t0, t0, 7 * 8\n\t" + "srai t2, t2, 56\n\t" + "srai t1, t1, 56\n\t" + "srai t0, t0, 56\n\t" "vle8.v v4, (%[qh])\n\t" + "vsrl.vi v12, v8, 4\n\t" + "vsrl.vi v14, v10, 4\n\t" + "lb zero, 0(%[q8])\n\t" + "vand.vi v8, v8, 0xF\n\t" + "vand.vi v10, v10, 0xF\n\t" + "lb zero, 32(%[q8])\n\t" "vsll.vi v0, v4, 4\n\t" "vsll.vi v2, v4, 2\n\t" + "lb zero, 64(%[q8])\n\t" "vsrl.vi v6, v4, 2\n\t" - "vsetvli zero, %[vl64], e8, m4\n\t" - "vle8.v v8, (%[q6])\n\t" - "vsrl.vi v12, v8, 4\n\t" - "vand.vi v8, v8, 0xF\n\t" - "vsetvli zero, %[vl128], e8, m8\n\t" "vand.vx v0, v0, %[mask]\n\t" + "lb zero, 96(%[q8])\n\t" + "vand.vx v2, v2, %[mask]\n\t" + "vand.vx v4, v4, %[mask]\n\t" + "vand.vx v6, v6, %[mask]\n\t" "vor.vv v8, v8, v0\n\t" + "lb zero, 127(%[q8])\n\t" + "vor.vv v10, v10, v2\n\t" + "vor.vv v12, v12, v4\n\t" + "vor.vv v14, v14, v6\n\t" + "vsetvli zero, %[vl128], e8, m8\n\t" "vle8.v v0, (%[q8])\n\t" "vsub.vx v8, v8, %[vl32]\n\t" "vsetvli zero, %[vl64], e8, m4\n\t" @@ -1734,34 +1848,34 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi "vwredsum.vs v13, v28, v0\n\t" "vwredsum.vs v14, v30, v0\n\t" "vsetivli zero, 4, e32, m1\n\t" - "vslideup.vi v10, v9, 1\n\t" - "vslideup.vi v8, v7, 1\n\t" - "vslideup.vi v11, v12, 1\n\t" - "vslideup.vi v13, v14, 1\n\t" - "vslideup.vi v10, v8, 2\n\t" - "vslideup.vi v11, v13, 2\n\t" - "vsetivli zero, 8, e32, m2\n\t" - "vle8.v v2, (%[scale])\n\t" - "vsext.vf4 v4, v2\n\t" - "vmul.vv v2, v4, v10\n\t" - "vredsum.vs v0, v2, v0\n\t" - "vmv.x.s %[t0], v0\n\t" - "add %[sumi], %[sumi], %[t0]" - : [sumi] "+&r" (sum_t), [t0] "=&r" (t0) - : [qh] "r" (qh), [q6] "r" (q6), [q8] "r" (q8), [scale] "r" (scale) + "vmul.vx v0, v10, t0\n\t" + "vmul.vx v1, v9, t1\n\t" + "vmacc.vx v0, t2, v8\n\t" + "vmacc.vx v1, t3, v7\n\t" + "vmacc.vx v0, t4, v11\n\t" + "vmacc.vx v1, t5, v12\n\t" + "vmacc.vx v0, t6, v13\n\t" + "vmacc.vx v1, a7, v14\n\t" + "vadd.vv v0, v0, v1\n\t" + "vfcvt.f.x.v v0, v0\n\t" + "vfmv.f.s %[ftmp], v0\n\t" + "fmadd.s %[sumf], %[d], %[ftmp], %[sumf]" + : [q6] "+&r" (q6), [q6h] "=&r" (q6h) + , [scale] "+&r" (scale) + , [sumf] "+&f" (sumf), [ftmp] "=&f" (ftmp) + : [qh] "r" (qh), [q8] "r" (q8) , [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128) - , [mask] "r" (0x30) + , [mask] "r" (0x30), [d] "f" (d) : "memory" , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" , "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" + , "t0", "t1", "t2", "t3", "t4", "t5", "t6", "a7" + , "a6", "a5", "a4", "a3" ); - q6 += 64; qh += 32; q8 += 128; scale += 8; + qh += 32; q8 += 128; } - - sumf += d * sum_t; - } break; default: diff --git a/ggml/src/ggml-cpu/ggml-cpu-impl.h b/ggml/src/ggml-cpu/ggml-cpu-impl.h index e08c30a348..cd055e75cb 100644 --- a/ggml/src/ggml-cpu/ggml-cpu-impl.h +++ b/ggml/src/ggml-cpu/ggml-cpu-impl.h @@ -68,12 +68,6 @@ struct ggml_compute_params { #endif // __VXE2__ #endif // __s390x__ && __VEC__ -#if defined(__s390x__) && defined(GGML_NNPA) -#ifndef __NNPA__ -#define __NNPA__ -#endif // __NNPA__ -#endif // __s390x__ && GGML_NNPA - #if defined(__ARM_FEATURE_SVE) #include #endif diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c index 0d5d3a3440..09772e8061 100644 --- a/ggml/src/ggml-cpu/ggml-cpu.c +++ b/ggml/src/ggml-cpu/ggml-cpu.c @@ -1876,6 +1876,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_im2col_back_f32(params, tensor); } break; + case GGML_OP_IM2COL_3D: + { + ggml_compute_forward_im2col_3d(params, tensor); + } break; case GGML_OP_CONV_2D: { ggml_compute_forward_conv_2d(params, tensor); @@ -2255,6 +2259,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { } break; case GGML_OP_IM2COL: case GGML_OP_IM2COL_BACK: + case GGML_OP_IM2COL_3D: case GGML_OP_CONV_2D: case GGML_OP_CONV_3D: case GGML_OP_CONV_2D_DW: @@ -3206,20 +3211,12 @@ void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) { __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); _mm_storel_epi64((__m128i *)(y + i), y_vec); } -#elif defined(__NNPA__) - for (; i + 7 < n; i += 8) { - float32x4_t v_xh = vec_xl(0, (const float *)(x + i + 0)); - float32x4_t v_xl = vec_xl(0, (const float *)(x + i + 4)); - uint16x8_t v_yd = vec_round_from_fp32(v_xh, v_xl, 0); - uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0); - vec_xst(v_y, 0, (ggml_fp16_t *)(y + i)); - } - for (; i + 3 < n; i += 4) { - float32x4_t v_x = vec_xl(0, (const float *)(x + i)); - float32x4_t v_zero = vec_splats(0.0f); - uint16x8_t v_yd = vec_round_from_fp32(v_x, v_zero, 0); - uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0); - vec_xst(v_y, 0, (ggml_fp16_t *)(y + i)); +#elif defined(__riscv_zvfh) + for (int vl; i < n; i += vl) { + vl = __riscv_vsetvl_e32m2(n - i); + vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl); + vfloat16m1_t vy = __riscv_vfncvt_f_f_w_f16m1(vx, vl); + __riscv_vse16_v_f16m1((_Float16 *)&y[i], vy, vl); } #endif for (; i < n; ++i) { @@ -3247,21 +3244,6 @@ void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) { __m128 y_vec = _mm_cvtph_ps(x_vec); _mm_storeu_ps(y + i, y_vec); } -#elif defined(__NNPA__) - for (; i + 7 < n; i += 8) { - uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i)); - uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0); - float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0); - float32x4_t v_yl = vec_extend_to_fp32_lo(v_yd, 0); - vec_xst(v_yh, 0, (float *)(y + i + 0)); - vec_xst(v_yl, 0, (float *)(y + i + 4)); - } - for (; i + 3 < n; i += 4) { - uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i)); - uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0); - float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0); - vec_xst(v_yh, 0, (float *)(y + i)); - } #endif for (; i < n; ++i) { @@ -3465,14 +3447,6 @@ int ggml_cpu_has_vxe(void) { #endif } -int ggml_cpu_has_nnpa(void) { -#if defined(GGML_NNPA) - return 1; -#else - return 0; -#endif -} - int ggml_cpu_has_neon(void) { #if defined(__ARM_ARCH) && defined(__ARM_NEON) return 1; diff --git a/ggml/src/ggml-cpu/ggml-cpu.cpp b/ggml/src/ggml-cpu/ggml-cpu.cpp index 8dacd36714..0c15165f1b 100644 --- a/ggml/src/ggml-cpu/ggml-cpu.cpp +++ b/ggml/src/ggml-cpu/ggml-cpu.cpp @@ -348,8 +348,10 @@ static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * long pages = sysconf(_SC_PHYS_PAGES); long page_size = sysconf(_SC_PAGE_SIZE); *total = pages * page_size; + + // "free" system memory is ill-defined, for practical purposes assume that all of it is free: *free = *total; -#endif +#endif // _WIN32 GGML_UNUSED(dev); } @@ -576,9 +578,6 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r if (ggml_cpu_has_vxe()) { features.push_back({ "VXE", "1" }); } - if (ggml_cpu_has_nnpa()) { - features.push_back({ "NNPA", "1" }); - } if (ggml_cpu_has_wasm_simd()) { features.push_back({ "WASM_SIMD", "1" }); } diff --git a/ggml/src/ggml-cpu/kleidiai/kernels.cpp b/ggml/src/ggml-cpu/kleidiai/kernels.cpp index ddd29d002d..7ba659124c 100644 --- a/ggml/src/ggml-cpu/kleidiai/kernels.cpp +++ b/ggml/src/ggml-cpu/kleidiai/kernels.cpp @@ -14,6 +14,7 @@ #include "kai_lhs_pack_bf16p2vlx2_f32_sme.h" #include "kai_lhs_quant_pack_qsi8d32p_f32.h" +#include "kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.h" #include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h" #include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h" @@ -127,6 +128,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon, + /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon, + }, /* SME GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot, @@ -141,7 +148,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon, /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon, @@ -173,6 +180,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, /* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme, + /* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme, + }, /* SME GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, @@ -187,7 +200,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, /* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme, /* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme, @@ -222,6 +235,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, + /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32, + }, /* DOTPROD GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, @@ -236,7 +255,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, @@ -270,6 +289,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + }, /* i8mm GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, @@ -284,7 +309,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, @@ -319,6 +344,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + }, /* i8mm GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, @@ -333,7 +364,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, @@ -367,6 +398,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, + /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32, + }, /* DOTPROD GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, @@ -381,7 +418,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, diff --git a/ggml/src/ggml-cpu/kleidiai/kernels.h b/ggml/src/ggml-cpu/kleidiai/kernels.h index bc8f33405d..2ad6ad6fd0 100644 --- a/ggml/src/ggml-cpu/kleidiai/kernels.h +++ b/ggml/src/ggml-cpu/kleidiai/kernels.h @@ -84,8 +84,11 @@ struct rhs_packing_info { struct ggml_kleidiai_kernels { kernel_info gemm; + lhs_packing_info gemm_lhs_info; + kernel_info gemv; - lhs_packing_info lhs_info; + lhs_packing_info gemv_lhs_info; + rhs_packing_info rhs_info; cpu_feature required_cpu; diff --git a/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp b/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp index dff8fa244a..7a830448eb 100644 --- a/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +++ b/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp @@ -123,7 +123,9 @@ class tensor_traits : public ggml::cpu::tensor_traits { } ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op); GGML_ASSERT(kernels); - kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; + bool is_gemv = op->src[1]->ne[1] == 1; + kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm; + lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info; size_t k = op->src[0]->ne[0]; size_t n = op->src[0]->ne[1]; @@ -134,9 +136,9 @@ class tensor_traits : public ggml::cpu::tensor_traits { size_t sr = kernel->get_sr(); if (kernels->rhs_type == GGML_TYPE_Q4_0) { - size = variant_call(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr); + size = variant_call(lhs_info->packed_size, m, k, QK4_0, mr, kr, sr); } else if (kernels->rhs_type == GGML_TYPE_F16) { - size = variant_call(kernels->lhs_info.packed_size, m, k, mr, kr, sr) + + size = variant_call(lhs_info->packed_size, m, k, mr, kr, sr) + variant_call(kernels->rhs_info.packed_size, n, k) + k * n * sizeof(float) + n * sizeof(float); } else { @@ -173,7 +175,9 @@ class tensor_traits : public ggml::cpu::tensor_traits { ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst); GGML_ASSERT(kernels); - kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; + bool is_gemv = src1->ne[1] == 1; + kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm; + lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info; GGML_ASSERT(kernel); const int nth = params->nth; @@ -198,7 +202,7 @@ class tensor_traits : public ggml::cpu::tensor_traits { const int64_t kr = static_cast(kernel->get_kr()); const int64_t sr = static_cast(kernel->get_sr()); - const size_t lhs_packed_size = variant_call(kernels->lhs_info.packed_size, m, k, mr, kr, sr); + const size_t lhs_packed_size = variant_call(lhs_info->packed_size, m, k, mr, kr, sr); const size_t rhs_packed_size = variant_call(kernels->rhs_info.packed_size, n, k); const size_t kxn_size = k * n * sizeof(float); const size_t bias_size = n * sizeof(float); @@ -229,12 +233,12 @@ class tensor_traits : public ggml::cpu::tensor_traits { const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0; const size_t lhs_offset = variant_call(kernels->gemm.get_lhs_offset, m_start, lhs_stride); - const size_t lhs_packed_offset = variant_call(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr); + const size_t lhs_packed_offset = variant_call(lhs_info->get_packed_offset, m_start, k, mr, kr, sr); const void * src_ptr = static_cast(lhs_batch) + lhs_offset; void * dst_ptr = static_cast(lhs_packed) + lhs_packed_offset; - variant_call(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr); + variant_call(lhs_info->pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr); } } @@ -306,8 +310,9 @@ class tensor_traits : public ggml::cpu::tensor_traits { ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst); GGML_ASSERT(kernels); - kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; - lhs_packing_info * lhs_info = &kernels->lhs_info; + bool is_gemv = src1->ne[1] == 1; + kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm; + lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info; GGML_ASSERT(kernel); diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp index 8c1f794885..0bb767e01a 100644 --- a/ggml/src/ggml-cpu/ops.cpp +++ b/ggml/src/ggml-cpu/ops.cpp @@ -7027,6 +7027,209 @@ void ggml_compute_forward_im2col_back_f32( } } + +// ggml_compute_forward_im2col_3d_f16 +// src0: kernel [OC*IC, KD, KH, KW] +// src1: image [N*IC, ID, IH, IW] +// dst: result [N*OD, OH, OW, IC * KD * KH * KW] +static void ggml_compute_forward_im2col_3d_f16( + const ggml_compute_params * params, + ggml_tensor * dst) { + + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F16); + + GGML_TENSOR_BINARY_OP_LOCALS; + + const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; + const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; + const int32_t s2 = ((const int32_t *)(dst->op_params))[2]; + const int32_t p0 = ((const int32_t *)(dst->op_params))[3]; + const int32_t p1 = ((const int32_t *)(dst->op_params))[4]; + const int32_t p2 = ((const int32_t *)(dst->op_params))[5]; + const int32_t d0 = ((const int32_t *)(dst->op_params))[6]; + const int32_t d1 = ((const int32_t *)(dst->op_params))[7]; + const int32_t d2 = ((const int32_t *)(dst->op_params))[8]; + const int32_t IC = ((const int32_t *)(dst->op_params))[9]; + + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t N = ne13 / IC; + const int64_t ID = ne12; + const int64_t IH = ne11; + const int64_t IW = ne10; + + const int64_t OC = ne03 / IC; + GGML_UNUSED(OC); + const int64_t KD = ne02; + const int64_t KH = ne01; + const int64_t KW = ne00; + + const int64_t OD = ne3 / N; + const int64_t OH = ne2; + const int64_t OW = ne1; + const int64_t OH_OW = OH*OW; + const int64_t KD_KH_KW = KD*KH*KW; + const int64_t KH_KW = KH*KW; + const int64_t IC_KD_KH_KW = IC*KD*KH*KW; + + GGML_ASSERT(nb10 == sizeof(float)); + + // im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW] + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data; + + for (int64_t in = 0; in < N; in++) { + for (int64_t iod = 0; iod < OD; iod++) { + for (int64_t ioh = 0; ioh < OH; ioh++) { + for (int64_t iow = 0; iow < OW; iow++) { + for (int64_t iic = ith; iic < IC; iic += nth) { + + // micro kernel + ggml_fp16_t * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW] + const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW] + + for (int64_t ikd = 0; ikd < KD; ikd++) { + for (int64_t ikh = 0; ikh < KH; ikh++) { + for (int64_t ikw = 0; ikw < KW; ikw++) { + const int64_t iiw = iow*s0 + ikw*d0 - p0; + const int64_t iih = ioh*s1 + ikh*d1 - p1; + const int64_t iid = iod*s2 + ikd*d2 - p2; + + if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) { + dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0; + } else { + const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW] + dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(*s); + } + } + } + } + } + } + } + } + } + } +} + +// ggml_compute_forward_im2col_3d_f32 +// src0: kernel [OC*IC, KD, KH, KW] +// src1: image [N*IC, ID, IH, IW] +// dst: result [N*OD, OH, OW, IC * KD * KH * KW] +static void ggml_compute_forward_im2col_3d_f32( + const ggml_compute_params * params, + ggml_tensor * dst) { + + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + GGML_TENSOR_BINARY_OP_LOCALS; + + const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; + const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; + const int32_t s2 = ((const int32_t *)(dst->op_params))[2]; + const int32_t p0 = ((const int32_t *)(dst->op_params))[3]; + const int32_t p1 = ((const int32_t *)(dst->op_params))[4]; + const int32_t p2 = ((const int32_t *)(dst->op_params))[5]; + const int32_t d0 = ((const int32_t *)(dst->op_params))[6]; + const int32_t d1 = ((const int32_t *)(dst->op_params))[7]; + const int32_t d2 = ((const int32_t *)(dst->op_params))[8]; + const int32_t IC = ((const int32_t *)(dst->op_params))[9]; + + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t N = ne13 / IC; + const int64_t ID = ne12; + const int64_t IH = ne11; + const int64_t IW = ne10; + + const int64_t OC = ne03 / IC; + GGML_UNUSED(OC); + const int64_t KD = ne02; + const int64_t KH = ne01; + const int64_t KW = ne00; + + const int64_t OD = ne3 / N; + const int64_t OH = ne2; + const int64_t OW = ne1; + + const int64_t OH_OW = OH*OW; + const int64_t KD_KH_KW = KD*KH*KW; + const int64_t KH_KW = KH*KW; + const int64_t IC_KD_KH_KW = IC*KD*KH*KW; + + GGML_ASSERT(nb10 == sizeof(float)); + + // im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW] + { + float * const wdata = (float *) dst->data; + + for (int64_t in = 0; in < N; in++) { + for (int64_t iod = 0; iod < OD; iod++) { + for (int64_t ioh = 0; ioh < OH; ioh++) { + for (int64_t iow = 0; iow < OW; iow++) { + for (int64_t iic = ith; iic < IC; iic += nth) { + + // micro kernel + float * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW] + const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW] + + for (int64_t ikd = 0; ikd < KD; ikd++) { + for (int64_t ikh = 0; ikh < KH; ikh++) { + for (int64_t ikw = 0; ikw < KW; ikw++) { + const int64_t iiw = iow*s0 + ikw*d0 - p0; + const int64_t iih = ioh*s1 + ikh*d1 - p1; + const int64_t iid = iod*s2 + ikd*d2 - p2; + + if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) { + dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0; + } else { + const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW] + dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = *s; + } + } + } + } + } + } + } + } + } + } +} + + +void ggml_compute_forward_im2col_3d( + const ggml_compute_params * params, + ggml_tensor * dst) { + switch (dst->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_im2col_3d_f16(params, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_im2col_3d_f32(params, dst); + } break; + default: + { + GGML_ABORT("fatal error"); + } + } +} + static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k, void * a, void * b, float * c) { const ggml_type_traits * traits = ggml_get_type_traits(type); @@ -8014,6 +8217,15 @@ static void ggml_compute_forward_pad_f32( GGML_TENSOR_UNARY_OP_LOCALS float * dst_ptr = (float *) dst->data; + const int32_t lp0 = ggml_get_op_params_i32(dst, 0); + const int32_t rp0 = ggml_get_op_params_i32(dst, 1); + const int32_t lp1 = ggml_get_op_params_i32(dst, 2); + const int32_t rp1 = ggml_get_op_params_i32(dst, 3); + const int32_t lp2 = ggml_get_op_params_i32(dst, 4); + const int32_t rp2 = ggml_get_op_params_i32(dst, 5); + const int32_t lp3 = ggml_get_op_params_i32(dst, 6); + const int32_t rp3 = ggml_get_op_params_i32(dst, 7); + // TODO: optimize @@ -8022,10 +8234,12 @@ static void ggml_compute_forward_pad_f32( for (int64_t i0 = 0; i0 < ne0; ++i0) { for (int64_t i3 = 0; i3 < ne3; ++i3) { const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0; - - const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); - - if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { + if ((i0 >= lp0 && i0 < ne0 - rp0) \ + && (i1 >= lp1 && i1 < ne1 - rp1) \ + && (i2 >= lp2 && i2 < ne2 - rp2) \ + && (i3 >= lp3 && i3 < ne3 - rp3)) { + const int64_t src_idx = (i3 - lp3)*nb03 + (i2 - lp2)*nb02 + (i1 - lp1)*nb01 + (i0 - lp0)*nb00; + const float * src_ptr = (const float *)((char *) src0->data + src_idx); dst_ptr[dst_idx] = *src_ptr; } else { dst_ptr[dst_idx] = 0; diff --git a/ggml/src/ggml-cpu/ops.h b/ggml/src/ggml-cpu/ops.h index d0ea83843b..9824a03b45 100644 --- a/ggml/src/ggml-cpu/ops.h +++ b/ggml/src/ggml-cpu/ops.h @@ -69,6 +69,7 @@ void ggml_compute_forward_clamp(const struct ggml_compute_params * params, struc void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst); void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst); void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst); +void ggml_compute_forward_im2col_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst); void ggml_compute_forward_conv_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst); void ggml_compute_forward_conv_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst); void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst); diff --git a/ggml/src/ggml-cpu/simd-mappings.h b/ggml/src/ggml-cpu/simd-mappings.h index f71ce58079..a84ba75c20 100644 --- a/ggml/src/ggml-cpu/simd-mappings.h +++ b/ggml/src/ggml-cpu/simd-mappings.h @@ -114,26 +114,6 @@ extern "C" { #define GGML_CPU_COMPUTE_FP32_TO_FP16(x) riscv_compute_fp32_to_fp16(x) #define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x) #define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x) -#elif defined(__NNPA__) - #define GGML_CPU_COMPUTE_FP16_TO_FP32(x) nnpa_compute_fp16_to_fp32(x) - #define GGML_CPU_COMPUTE_FP32_TO_FP16(x) nnpa_compute_fp32_to_fp16(x) - - #define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x) - #define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x) - - static inline float nnpa_compute_fp16_to_fp32(ggml_fp16_t h) { - uint16x8_t v_h = vec_splats(h); - uint16x8_t v_hd = vec_convert_from_fp16(v_h, 0); - return vec_extend_to_fp32_hi(v_hd, 0)[0]; - } - - static inline ggml_fp16_t nnpa_compute_fp32_to_fp16(float f) { - float32x4_t v_f = vec_splats(f); - float32x4_t v_zero = vec_splats(0.0f); - uint16x8_t v_hd = vec_round_from_fp32(v_f, v_zero, 0); - uint16x8_t v_h = vec_convert_to_fp16(v_hd, 0); - return vec_extract(v_h, 0); - } #endif // precomputed f32 table for f16 (256 KB) @@ -215,6 +195,47 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) { #define GGML_F32_VEC_MUL GGML_F32xt_MUL #define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE +// F16 SVE +#define DEFAULT_PG32 svptrue_b32() +#define DEFAULT_PG16 svptrue_b16() + +#define GGML_F32Cxt svfloat16_t +#define GGML_F32Cxt_ZERO svdup_n_f16(0.0f) +#define GGML_F32Cxt_SET1(x) svdup_n_f16(x) +#define GGML_F32Cxt_LOAD(p) svld1_f16(DEFAULT_PG16, (const __fp16 *)(p)) +#define GGML_F32Cxt_STORE(dst_ptr, src_vec) svst1_f16(DEFAULT_PG16, (__fp16 *)(dst_ptr), (src_vec)) + +#define GGML_F32Cxt_FMA_IMPL(pg, a, b, c) svmad_f16_x(pg, b, c, a) +#define GGML_F32Cxt_FMA(...) GGML_F32Cxt_FMA_IMPL(DEFAULT_PG16, __VA_ARGS__) +#define GGML_F32Cxt_ADD_IMPL(pg, a, b) svadd_f16_x(pg, a, b) +#define GGML_F32Cxt_ADD(...) GGML_F32Cxt_ADD_IMPL(DEFAULT_PG16, __VA_ARGS__) +#define GGML_F32Cxt_MUL_IMPL(pg, a, b) svmul_f16_x(pg, a, b) +#define GGML_F32Cxt_MUL(...) GGML_F32Cxt_MUL_IMPL(DEFAULT_PG16, __VA_ARGS__) +#define GGML_F32Cxt_REDUCE GGML_F16xt_REDUCE_MIXED + +#define GGML_F16x_VEC GGML_F32Cxt +#define GGML_F16x_VEC_ZERO GGML_F32Cxt_ZERO +#define GGML_F16x_VEC_SET1 GGML_F32Cxt_SET1 +#define GGML_F16x_VEC_LOAD(p, i) GGML_F32Cxt_LOAD(p) +#define GGML_F16x_VEC_STORE(p, r, i) GGML_F32Cxt_STORE((__fp16 *)(p), r) +#define GGML_F16x_VEC_FMA GGML_F32Cxt_FMA +#define GGML_F16x_VEC_ADD GGML_F32Cxt_ADD +#define GGML_F16x_VEC_MUL GGML_F32Cxt_MUL +#define GGML_F16x_VEC_REDUCE GGML_F32Cxt_REDUCE + +#define GGML_F16xt_REDUCE_ONE_IMPL(pg, a) svaddv_f16(pg, a) +#define GGML_F16xt_REDUCE_ONE(...) GGML_F16xt_REDUCE_ONE_IMPL(DEFAULT_PG16, __VA_ARGS__) + +#define GGML_F16xt_REDUCE_MIXED_IMPL(pg16, res, sum1, sum2, sum3, sum4) \ +{ \ + sum1 = svadd_f16_x(pg16, sum1, sum2); \ + sum3 = svadd_f16_x(pg16, sum3, sum4); \ + sum1 = svadd_f16_x(pg16, sum1, sum3); \ + __fp16 sum_f16 = svaddv_f16(pg16, sum1); \ + (res) = (ggml_float) sum_f16; \ +} +#define GGML_F16xt_REDUCE_MIXED(...) GGML_F16xt_REDUCE_MIXED_IMPL(DEFAULT_PG16, __VA_ARGS__) + // F16 NEON #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) @@ -1115,11 +1136,6 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) { #define GGML_F16_EPR GGML_F32_EPR static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) { -#if defined(__NNPA__) - uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)x); - uint16x8_t v_xd = vec_convert_from_fp16(v_x, 0); - return vec_extend_to_fp32_hi(v_xd, 0); -#else float tmp[4]; for (int i = 0; i < 4; i++) { @@ -1129,20 +1145,9 @@ static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) { // note: keep type-cast here to prevent compiler bugs // see: https://github.com/ggml-org/llama.cpp/issues/12846 return vec_xl(0, (const float *)(tmp)); -#endif } static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) { -#if defined(__NNPA__) - float32x4_t v_zero = vec_splats(0.0f); - uint16x8_t v_xd = vec_round_from_fp32(v_y, v_zero, 0); - uint16x8_t v_x = vec_convert_to_fp16(v_xd, 0); - - x[0] = vec_extract(v_x, 0); - x[1] = vec_extract(v_x, 1); - x[2] = vec_extract(v_x, 2); - x[3] = vec_extract(v_x, 3); -#else float arr[4]; // note: keep type-cast here to prevent compiler bugs @@ -1152,7 +1157,6 @@ static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) { for (int i = 0; i < 4; i++) { x[i] = GGML_CPU_FP32_TO_FP16(arr[i]); } -#endif } #define GGML_F16_VEC GGML_F32x4 diff --git a/ggml/src/ggml-cpu/vec.cpp b/ggml/src/ggml-cpu/vec.cpp index d8ec3b81d2..437192d525 100644 --- a/ggml/src/ggml-cpu/vec.cpp +++ b/ggml/src/ggml-cpu/vec.cpp @@ -85,15 +85,21 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G // reduce sum1,sum2 to sum1 GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8); #elif defined(__riscv_v_intrinsic) - vfloat32m1_t vsum = __riscv_vfmv_v_f_f32m1(0.0f, 1); - for (int i = 0, avl; i < n; i += avl) { - avl = __riscv_vsetvl_e32m8(n - i); - vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl); - vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl); - vfloat32m8_t prod = __riscv_vfmul_vv_f32m8(ax, ay, avl); - vsum = __riscv_vfredusum_vs_f32m8_f32m1(prod, vsum, avl); + int vl = __riscv_vsetvlmax_e32m8(); + vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1); + vfloat32m8_t vsum; + vfloat32m8_t ax; + vfloat32m8_t ay; + vsum = __riscv_vfmv_v_f_f32m8_tu(vsum, 0.0f, vl); + for (int i = 0; i < n; i += vl) { + vl = __riscv_vsetvl_e32m8(n - i); + ax = __riscv_vle32_v_f32m8_tu(ax, &x[i], vl); + ay = __riscv_vle32_v_f32m8_tu(ay, &y[i], vl); + vsum = __riscv_vfmacc_vv_f32m8_tu(vsum, ax, ay, vl); } - sumf += __riscv_vfmv_f_s_f32m1_f32(vsum); + vl = __riscv_vsetvlmax_e32m8(); + vs = __riscv_vfredusum_vs_f32m8_f32m1(vsum, vs, vl); + sumf += __riscv_vfmv_f_s_f32m1_f32(vs); #else const int np = (n & ~(GGML_F32_STEP - 1)); @@ -207,38 +213,125 @@ void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * G ggml_float sumf = 0.0; -#if defined(GGML_SIMD) && !defined(__riscv_v_intrinsic) - const int np = (n & ~(GGML_F16_STEP - 1)); - GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO }; +#if defined(GGML_SIMD) + #if defined(__ARM_FEATURE_SVE) + const int sve_register_length = svcntb() * 8; //get vector length + const int ggml_f16_epr = sve_register_length / 16; // running when 16 + const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers - GGML_F16_VEC ax[GGML_F16_ARR]; - GGML_F16_VEC ay[GGML_F16_ARR]; + const int np= (n & ~(ggml_f16_step - 1)); + svfloat16_t sum1 = svdup_n_f16(0.0f); + svfloat16_t sum2 = svdup_n_f16(0.0f); + svfloat16_t sum3 = svdup_n_f16(0.0f); + svfloat16_t sum4 = svdup_n_f16(0.0f); - for (int i = 0; i < np; i += GGML_F16_STEP) { - for (int j = 0; j < GGML_F16_ARR; j++) { - ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); - ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8; + svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8; + for (int i = 0; i < np; i += ggml_f16_step) { + ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0); + ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); + sum1 = GGML_F16x_VEC_FMA(sum1, ax1, ay1); - sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]); + ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1); + ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); + sum2 = GGML_F16x_VEC_FMA(sum2, ax2, ay2); + + ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2); + ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2); + sum3 = GGML_F16x_VEC_FMA(sum3, ax3, ay3); + + ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3); + ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3); + sum4 = GGML_F16x_VEC_FMA(sum4, ax4, ay4); + + ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4); + ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4); + sum1 = GGML_F16x_VEC_FMA(sum1, ax5, ay5); + + ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5); + ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5); + sum2 = GGML_F16x_VEC_FMA(sum2, ax6, ay6); + + ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6); + ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6); + sum3 = GGML_F16x_VEC_FMA(sum3, ax7, ay7); + + ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7); + ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7); + sum4 = GGML_F16x_VEC_FMA(sum4, ax8, ay8); } - } - // reduce sum0..sum3 to sum0 - GGML_F16_VEC_REDUCE(sumf, sum); + const int np2 = (n & ~(ggml_f16_epr - 1)); // round down to multiple of 8 + for (int k = np; k < np2; k += ggml_f16_epr) { + svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0); + svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0); + sum1 = GGML_F16x_VEC_FMA(sum1, rx, ry); + } - // leftovers - for (int i = np; i < n; ++i) { - sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i])); - } + if (np2 < n) { + svbool_t pg = svwhilelt_b16(np2, n); + svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2)); + svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2)); - // if you hit this, you are likely running outside the FP range - assert(!isnan(sumf) && !isinf(sumf)); + sum1 = svmad_f16_x(pg, hx, hy, sum1); + } + GGML_F16x_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4); + #elif defined(__riscv_v_intrinsic) + #if defined(__riscv_zvfh) + int vl = __riscv_vsetvlmax_e32m2(); + vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1); + vfloat32m2_t vsum; + vfloat16m1_t ax; + vfloat16m1_t ay; + vsum = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vmv_v_x_u32m2(0, vl)); + for (int i = 0; i < n; i += vl) { + vl = __riscv_vsetvl_e16m1(n - i); + ax = __riscv_vle16_v_f16m1_tu(ax, (const _Float16 *)&x[i], vl); + ay = __riscv_vle16_v_f16m1_tu(ay, (const _Float16 *)&y[i], vl); + vsum = __riscv_vfwmacc_vv_f32m2_tu(vsum, ax, ay, vl); + } + vl = __riscv_vsetvlmax_e32m1(); + vfloat32m1_t ac0 = __riscv_vfadd_vv_f32m1(__riscv_vget_v_f32m2_f32m1(vsum, 0), __riscv_vget_v_f32m2_f32m1(vsum, 1), vl); + vs = __riscv_vfredusum_vs_f32m1_f32m1(ac0, vs, vl); + sumf += __riscv_vfmv_f_s_f32m1_f32(vs); + #else + for (int i = 0; i < n; ++i) { + sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i])); + } + #endif // __riscv_zvfh + #else + const int np = (n & ~(GGML_F16_STEP - 1)); + + GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO }; + + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + + sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]); + } + } + + // reduce sum0..sum3 to sum0 + GGML_F16_VEC_REDUCE(sumf, sum); + + // leftovers + for (int i = np; i < n; ++i) { + sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i])); + } + // if you hit this, you are likely running outside the FP range + assert(!isnan(sumf) && !isinf(sumf)); + #endif #else for (int i = 0; i < n; ++i) { sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i])); } -#endif +#endif // GGML_SIMD *s = sumf; } @@ -257,6 +350,12 @@ void ggml_vec_silu_f32(const int n, float * y, const float * x) { for (; i + 3 < n; i += 4) { _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i))); } +#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) + const int vlen = svcntw(); + for (; i < n; i += vlen) { + const svbool_t pg = svwhilelt_b32_s32(i, n); + svst1_f32(pg, y + i, ggml_v_silu(pg, svld1_f32(pg, x + i))); + } #elif defined(__ARM_NEON) && defined(__aarch64__) for (; i + 3 < n; i += 4) { vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i))); @@ -281,10 +380,24 @@ void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float * for (; i + 3 < n; i += 4) { _mm_storeu_ps(y + i, _mm_mul_ps(ggml_v_silu(_mm_loadu_ps(x + i)), _mm_loadu_ps(g + i))); } +#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) + const int vlen = svcntw(); + for (; i < n; i += vlen) { + const svbool_t pg = svwhilelt_b32_s32(i, n); + svst1_f32(pg, y + i, svmul_f32_x(pg, ggml_v_silu(pg, svld1_f32(pg, x + i)), svld1_f32(pg, g + i))); + } #elif defined(__ARM_NEON) && defined(__aarch64__) for (; i + 3 < n; i += 4) { vst1q_f32(y + i, vmulq_f32(ggml_v_silu(vld1q_f32(x + i)), vld1q_f32(g + i))); } +#elif defined(__riscv_v_intrinsic) + for (int vl; i < n; i += vl) { + vl = __riscv_vsetvl_e32m2(n - i); + vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl); + vfloat32m2_t vg = __riscv_vle32_v_f32m2(&g[i], vl); + vfloat32m2_t vy = __riscv_vfmul_vv_f32m2(ggml_v_silu_m2(vx, vl), vg, vl); + __riscv_vse32_v_f32m2(&y[i], vy, vl); + } #endif for (; i < n; ++i) { y[i] = ggml_silu_f32(x[i]) * g[i]; @@ -328,6 +441,15 @@ ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float #endif sum += (ggml_float)_mm_cvtss_f32(val); } +#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) + const int vlen = svcntw(); + for (; i < n; i += vlen) { + const svbool_t pg = svwhilelt_b32_s32(i, n); + svfloat32_t val = ggml_v_expf(pg, svsub_f32_x(pg, svld1_f32(pg, x + i), + svdup_n_f32_x(pg, max))); + svst1_f32(pg, y + i, val); + sum += (ggml_float)svaddv_f32(pg, val); + } #elif defined(__ARM_NEON) && defined(__aarch64__) for (; i + 3 < n; i += 4) { float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i), diff --git a/ggml/src/ggml-cpu/vec.h b/ggml/src/ggml-cpu/vec.h index 8ccf340d47..ef334d089d 100644 --- a/ggml/src/ggml-cpu/vec.h +++ b/ggml/src/ggml-cpu/vec.h @@ -119,45 +119,149 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG } #if defined(GGML_SIMD) -#if defined(__riscv_v_intrinsic) - // todo: RVV impl - for (int i = 0; i < n; ++i) { - for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { - sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i])); + #if defined(__ARM_FEATURE_SVE) + + const int sve_register_length = svcntb() * 8; + const int ggml_f16_epr = sve_register_length / 16; // running when 16 + const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers + + const int np = (n & ~(ggml_f16_step - 1)); + + svfloat16_t sum_00 = svdup_n_f16(0.0f); + svfloat16_t sum_01 = svdup_n_f16(0.0f); + svfloat16_t sum_02 = svdup_n_f16(0.0f); + svfloat16_t sum_03 = svdup_n_f16(0.0f); + + svfloat16_t sum_10 = svdup_n_f16(0.0f); + svfloat16_t sum_11 = svdup_n_f16(0.0f); + svfloat16_t sum_12 = svdup_n_f16(0.0f); + svfloat16_t sum_13 = svdup_n_f16(0.0f); + + svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8; + svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8; + + for (int i = 0; i < np; i += ggml_f16_step) { + ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); // 8 elements + + ax1 = GGML_F16x_VEC_LOAD(x[0] + i + 0*ggml_f16_epr, 0); // 8 elemnst + sum_00 = GGML_F16x_VEC_FMA(sum_00, ax1, ay1); // sum_00 = sum_00+ax1*ay1 + ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 0*ggml_f16_epr, 0); // 8 elements + sum_10 = GGML_F16x_VEC_FMA(sum_10, ax1, ay1); + + ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); // next 8 elements + + ax2 = GGML_F16x_VEC_LOAD(x[0] + i + 1*ggml_f16_epr, 1); // next 8 ekements + sum_01 = GGML_F16x_VEC_FMA(sum_01, ax2, ay2); + ax2 = GGML_F16x_VEC_LOAD(x[1] + i + 1*ggml_f16_epr, 1); + sum_11 = GGML_F16x_VEC_FMA(sum_11, ax2, ay2); + + ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2); + + ax3 = GGML_F16x_VEC_LOAD(x[0] + i + 2*ggml_f16_epr, 2); + sum_02 = GGML_F16x_VEC_FMA(sum_02, ax3, ay3); + ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 2*ggml_f16_epr, 2); + sum_12 = GGML_F16x_VEC_FMA(sum_12, ax3, ay3); + + ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3); + + ax4 = GGML_F16x_VEC_LOAD(x[0] + i + 3*ggml_f16_epr, 3); + sum_03 = GGML_F16x_VEC_FMA(sum_03, ax4, ay4); + ax4 = GGML_F16x_VEC_LOAD(x[1] + i + 3*ggml_f16_epr, 3); + sum_13 = GGML_F16x_VEC_FMA(sum_13, ax4, ay4); + + ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4); + + ax5 = GGML_F16x_VEC_LOAD(x[0] + i + 4*ggml_f16_epr, 4); + + sum_00 = GGML_F16x_VEC_FMA(sum_00, ax5, ay5); + ax5 = GGML_F16x_VEC_LOAD(x[1] + i + 4*ggml_f16_epr, 4); + sum_10 = GGML_F16x_VEC_FMA(sum_10, ax5, ay5); + + ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5); + + ax6 = GGML_F16x_VEC_LOAD(x[0] + i + 5*ggml_f16_epr, 5); + + sum_01 = GGML_F16x_VEC_FMA(sum_01, ax6, ay6); + ax6 = GGML_F16x_VEC_LOAD(x[1] + i + 5*ggml_f16_epr, 5); + sum_11 = GGML_F16x_VEC_FMA(sum_11, ax6, ay6); + + ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6); + + ax7 = GGML_F16x_VEC_LOAD(x[0] + i + 6*ggml_f16_epr, 6); + + sum_02 = GGML_F16x_VEC_FMA(sum_02, ax7, ay7); + ax7 = GGML_F16x_VEC_LOAD(x[1] + i + 6*ggml_f16_epr, 6); + sum_12 = GGML_F16x_VEC_FMA(sum_12, ax7, ay7); + + ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7); + + ax8 = GGML_F16x_VEC_LOAD(x[0] + i + 7*ggml_f16_epr, 7); + + sum_03 = GGML_F16x_VEC_FMA(sum_03, ax8, ay8); + ax8 = GGML_F16x_VEC_LOAD(x[1] + i + 7*ggml_f16_epr, 7); + sum_13 = GGML_F16x_VEC_FMA(sum_13, ax8, ay8); } - } -#else - const int np = (n & ~(GGML_F16_STEP - 1)); - GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } }; + const int np2 = (n & ~(ggml_f16_epr - 1)); + for (int k = np; k < np2; k += ggml_f16_epr) { + svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0); - GGML_F16_VEC ax[GGML_F16_ARR]; - GGML_F16_VEC ay[GGML_F16_ARR]; + svfloat16_t rx = GGML_F16x_VEC_LOAD(x[0] + k, 0); + sum_00 = GGML_F16x_VEC_FMA(sum_00, rx, ry); + rx = GGML_F16x_VEC_LOAD(x[1] + k, 0); + sum_10 = GGML_F16x_VEC_FMA(sum_10, rx, ry); + } - for (int i = 0; i < np; i += GGML_F16_STEP) { - for (int j = 0; j < GGML_F16_ARR; j++) { - ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + if (np2 < n) { + svbool_t pg = svwhilelt_b16(np2, n); + svfloat16_t hx_0 = svld1_f16(pg, (const __fp16 *)(x[0] + np2)); + svfloat16_t hx_1 = svld1_f16(pg, (const __fp16 *)(x[1] + np2)); + svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2)); - for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { - ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j); + sum_00 = svmad_f16_x(pg, hx_0, hy, sum_00); + sum_10 = svmad_f16_x(pg, hx_1, hy, sum_10); + } + GGML_F16x_VEC_REDUCE(sumf[0], sum_00, sum_01, sum_02, sum_03); + GGML_F16x_VEC_REDUCE(sumf[1], sum_10, sum_11, sum_12, sum_13); + #elif defined(__riscv_v_intrinsic) + // todo: RVV impl + for (int i = 0; i < n; ++i) { + for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { + sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i])); + } + } + #else + const int np = (n & ~(GGML_F16_STEP - 1)); - sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]); + GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } }; + + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + + for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { + ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j); + + sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]); + } } } - } - // reduce sum0..sum3 to sum0 - for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { - GGML_F16_VEC_REDUCE(sumf[k], sum[k]); - } - - // leftovers - for (int i = np; i < n; ++i) { - for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { - sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i])); + // reduce sum0..sum3 to sum0 + for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { + GGML_F16_VEC_REDUCE(sumf[k], sum[k]); } - } -#endif + + // leftovers + for (int i = np; i < n; ++i) { + for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { + sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i])); + } + } + #endif #else for (int i = 0; i < n; ++i) { for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { @@ -293,35 +397,112 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) { #if defined(GGML_SIMD) -#if defined(__riscv_v_intrinsic) - // todo: RVV impl - // scalar - for (int i = 0; i < n; ++i) { - y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v); - } -#else - const int np = (n & ~(GGML_F16_STEP - 1)); + #if defined(__ARM_FEATURE_SVE) + const int sve_register_length = svcntb() * 8; + const int ggml_f16_epr = sve_register_length / 16; + const int ggml_f16_step = 8 * ggml_f16_epr; - GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); + GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v); - GGML_F16_VEC ax[GGML_F16_ARR]; - GGML_F16_VEC ay[GGML_F16_ARR]; + const int np= (n & ~(ggml_f16_step - 1)); - for (int i = 0; i < np; i += GGML_F16_STEP) { - for (int j = 0; j < GGML_F16_ARR; j++) { - ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); - ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); - ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx); + svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8; + svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8; + for (int i = 0; i < np; i += ggml_f16_step) { + ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0); + ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); + ay1 = GGML_F16x_VEC_FMA(ay1, ax1, vx); - GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + GGML_F16x_VEC_STORE(y + i + 0 * ggml_f16_epr, ay1, 0); + + ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1); + ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); + ay2 = GGML_F16x_VEC_FMA(ay2, ax2, vx); + + GGML_F16x_VEC_STORE(y + i + 1 * ggml_f16_epr, ay2, 1); + + ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2); + ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2); + ay3 = GGML_F16x_VEC_FMA(ay3, ax3, vx); + + GGML_F16x_VEC_STORE(y + i + 2 * ggml_f16_epr, ay3, 2); + + ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3); + ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3); + ay4 = GGML_F16x_VEC_FMA(ay4, ax4, vx); + + GGML_F16x_VEC_STORE(y + i + 3 * ggml_f16_epr, ay4, 3); + + ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4); + ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4); + ay5 = GGML_F16x_VEC_FMA(ay5, ax5, vx); + + GGML_F16x_VEC_STORE(y + i + 4 * ggml_f16_epr, ay5, 4); + + ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5); + ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5); + ay6 = GGML_F16x_VEC_FMA(ay6, ax6, vx); + + GGML_F16x_VEC_STORE(y + i + 5 * ggml_f16_epr, ay6, 5); + + ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6); + ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6); + ay7 = GGML_F16x_VEC_FMA(ay7, ax7, vx); + + GGML_F16x_VEC_STORE(y + i + 6 * ggml_f16_epr, ay7, 6); + + ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7); + ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7); + ay8 = GGML_F16x_VEC_FMA(ay8, ax8, vx); + + GGML_F16x_VEC_STORE(y + i + 7 * ggml_f16_epr, ay8, 7); } - } + const int np2 = (n & ~(ggml_f16_epr - 1)); + for (int k = np; k < np2; k += ggml_f16_epr) { + svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0); + svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0); + ry = GGML_F16x_VEC_FMA(ry, rx, vx); - // leftovers - for (int i = np; i < n; ++i) { - y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v); - } -#endif + GGML_F16x_VEC_STORE(y + k, ry, 0); + } + + if (np2 < n) { + svbool_t pg = svwhilelt_b16(np2, n); + svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2)); + svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2)); + hy = svmad_f16_x(pg, hx, vx, hy); + svst1_f16(pg, (__fp16 *)(y + np2), hy); + } + + #elif defined(__riscv_v_intrinsic) + // todo: RVV impl + // scalar + for (int i = 0; i < n; ++i) { + y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v); + } + #else + const int np = (n & ~(GGML_F16_STEP - 1)); + + GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); + + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx); + + GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v); + } + #endif #else // scalar for (int i = 0; i < n; ++i) { @@ -517,33 +698,59 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) { #if defined(GGML_SIMD) -#if defined(__riscv_v_intrinsic) - // todo: RVV impl - // scalar - for (int i = 0; i < n; ++i) { - y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v); - } -#else - const int np = (n & ~(GGML_F16_STEP - 1)); + #if defined(__ARM_FEATURE_SVE) + const int sve_register_length = svcntb() * 8; + const int ggml_f16_epr = sve_register_length / 16; + const int ggml_f16_step = 2 * ggml_f16_epr; - GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); + GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v); + const int np = (n & ~(ggml_f16_step - 1)); + svfloat16_t ay1, ay2; - GGML_F16_VEC ay[GGML_F16_ARR]; + for (int i = 0; i < np; i += ggml_f16_step) { + ay1 = GGML_F16x_VEC_LOAD(y + i + 0*ggml_f16_epr, 0); + ay1 = GGML_F16x_VEC_MUL(ay1, vx); + GGML_F16x_VEC_STORE(y + i + 0*ggml_f16_epr, ay1, 0); - for (int i = 0; i < np; i += GGML_F16_STEP) { - for (int j = 0; j < GGML_F16_ARR; j++) { - ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); - ay[j] = GGML_F16_VEC_MUL(ay[j], vx); - - GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + ay2 = GGML_F16x_VEC_LOAD(y + i + 1*ggml_f16_epr, 1); + ay2 = GGML_F16x_VEC_MUL(ay2, vx); + GGML_F16x_VEC_STORE(y + i + 1*ggml_f16_epr, ay2, 1); } - } + // leftovers + // maximum number of leftover elements will be less that ggmlF_16x_epr. Apply predicated svmad on available elements only + if (np < n) { + svbool_t pg = svwhilelt_b16(np, n); + svfloat16_t hy = svld1_f16(pg, (__fp16 *)(y + np)); + svfloat16_t out = svmul_f16_m(pg, hy, vx); + svst1_f16(pg, (__fp16 *)(y + np), out); + } + #elif defined(__riscv_v_intrinsic) + // todo: RVV impl + // scalar + for (int i = 0; i < n; ++i) { + y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v); + } + #else + const int np = (n & ~(GGML_F16_STEP - 1)); - // leftovers - for (int i = np; i < n; ++i) { - y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v); - } -#endif + GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); + + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_MUL(ay[j], vx); + + GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v); + } + #endif #else // scalar for (int i = 0; i < n; ++i) { @@ -795,7 +1002,39 @@ https://github.com/openvinotoolkit/openvino/blob/master/src/plugins/intel_cpu/sr } #endif -#if defined(__ARM_NEON) && defined(__aarch64__) +#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__) + +inline static svfloat32_t ggml_v_expf(svbool_t pg, svfloat32_t x) { + const svfloat32_t r = svdup_n_f32_x(pg, 0x1.8p23f); + const svfloat32_t z = svmla_n_f32_x(pg, r, x, 0x1.715476p+0f); + const svfloat32_t n = svsub_f32_x(pg, z, r); + const svfloat32_t b = svmls_n_f32_x(pg, svmls_n_f32_x(pg, x, n, 0x1.62e4p-1f), n, 0x1.7f7d1cp-20f); + const svuint32_t e = svlsl_n_u32_x(pg, svreinterpret_u32_f32(z), 23); + const svfloat32_t k = svreinterpret_f32_u32(svadd_u32_x(pg, e, svreinterpret_u32_f32(svdup_n_f32_x(pg, 1)))); + const svbool_t c = svacgt_n_f32(pg, n, 126); + const svfloat32_t u = svmul_f32_x(pg, b, b); + const svfloat32_t j = svmla_f32_x(pg, + svmul_n_f32_x(pg, b, 0x1.ffffecp-1f), + svmla_f32_x(pg, svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.fffdb6p-2f), svdup_n_f32_x(pg, 0x1.555e66p-3f), b), + svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.573e2ep-5f), svdup_n_f32_x(pg, 0x1.0e4020p-7f), b), u), u); + const svuint32_t d = svdup_n_u32_z(svcmple_n_f32(pg, n, 0.0), 0x82000000); + const svfloat32_t s1 = svreinterpret_f32_u32(svadd_n_u32_x(pg, d, 0x7f000000)); + const svfloat32_t s2 = svreinterpret_f32_u32(svsub_u32_x(pg, e, d)); + return svsel_f32(svacgt_f32(pg, n, svdup_n_f32_x(pg, 192)), svmul_f32_x(pg, s1, s1), + svsel_f32(c, svmul_f32_x(pg, svmla_f32_x(pg, s2, s2, j), s1), svmla_f32_x(pg, k, k, j))); +} + +// computes silu x/(1+exp(-x)) in single precision vector +inline static svfloat32_t ggml_v_silu(svbool_t pg, svfloat32_t x) { + const svfloat32_t one = svdup_n_f32_x(pg, 1.0f); + const svfloat32_t zero = svdup_n_f32_x(pg, 0.0f); + const svfloat32_t neg_x = svsub_f32_x(pg, zero, x); + const svfloat32_t exp_neg_x = ggml_v_expf(pg, neg_x); + const svfloat32_t one_plus_exp_neg_x = svadd_f32_x(pg, one, exp_neg_x); + return svdiv_f32_x(pg, x, one_plus_exp_neg_x); +} + +#elif defined(__ARM_NEON) && defined(__aarch64__) // adapted from arm limited optimized routine // the maximum error is 1.45358 plus 0.5 ulps @@ -1030,6 +1269,14 @@ inline static vfloat32m2_t ggml_v_expf_m2(vfloat32m2_t x, int vl) { vl); } +// computes silu x/(1+exp(-x)) in single precision vector +inline static vfloat32m2_t ggml_v_silu_m2(vfloat32m2_t x, int vl) { + const vfloat32m2_t neg_x = __riscv_vfneg_v_f32m2(x, vl); + const vfloat32m2_t exp_neg_x = ggml_v_expf_m2(neg_x, vl); + const vfloat32m2_t one_plus_exp_neg_x = __riscv_vfadd_vf_f32m2(exp_neg_x, 1.0f, vl); + return __riscv_vfdiv_vv_f32m2(x, one_plus_exp_neg_x, vl); +} + #endif // __ARM_NEON / __AVX2__ / __SSE2__ / __riscv_v_intrinsic inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index 85bc9e933b..931524a200 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -563,6 +563,40 @@ static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) { #endif // CUDART_VERSION >= 12050 } +// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1. +// Precompute mp (m' in the paper) and L such that division +// can be computed using a multiply (high 32b of 64b result) +// and a shift: +// +// n/d = (mulhi(n, mp) + n) >> L; +static const uint3 init_fastdiv_values(uint32_t d) { + GGML_ASSERT(d != 0); + + // compute L = ceil(log2(d)); + uint32_t L = 0; + while (L < 32 && (uint32_t{ 1 } << L) < d) { + L++; + } + + uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1); + // pack divisor as well to reduce error surface + return make_uint3(mp, L, d); +} + +static __device__ __forceinline__ uint32_t fastdiv(uint32_t n, const uint3 fastdiv_values) { + // expects fastdiv_values to contain in + // fastdiv_values.z is unused and optimized away by the compiler. + // Compute high 32 bits of n * mp + const uint32_t hi = __umulhi(n, fastdiv_values.x); + // add n, apply bit shift + return (hi + n) >> fastdiv_values.y; +} + +static __device__ __forceinline__ uint32_t fastmodulo(uint32_t n, const uint3 fastdiv_values) { + // expects fastdiv_values to contain in (see init_fastdiv_values) + return n - fastdiv(n, fastdiv_values) * fastdiv_values.z; +} + typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, float2 & v); static __device__ __forceinline__ float get_alibi_slope( diff --git a/ggml/src/ggml-cuda/conv2d.cu b/ggml/src/ggml-cuda/conv2d.cu index cf878d1fd1..142dd66903 100644 --- a/ggml/src/ggml-cuda/conv2d.cu +++ b/ggml/src/ggml-cuda/conv2d.cu @@ -1,4 +1,5 @@ #include "conv2d.cuh" +#include "convert.cuh" struct conv_params { const int64_t IW, IH; @@ -82,7 +83,7 @@ static __global__ void conv2d_kernel(const float * __restrict__ input, int64_t n, c_out, out_y, out_x; Layout::unpack_indices(global_idx, P, n, c_out, out_y, out_x); - T acc = 0; + float acc = 0.0f; for (int64_t c_in = 0; c_in < P.IC; ++c_in) { kernel_bounds bounds = calculate_kernel_bounds(out_x, out_y, P); @@ -93,21 +94,15 @@ static __global__ void conv2d_kernel(const float * __restrict__ input, for (int64_t kx = bounds.x_min; kx < bounds.x_max; ++kx) { const int64_t in_x = calculate_input_coord(out_x, kx, P.ST_X, P.DL_X, P.PD_X); - T input_val; - if (std::is_same::value) { - input_val = __float2half(input[Layout::input_index(n, c_in, in_y, in_x, P)]); - } else { - input_val = input[Layout::input_index(n, c_in, in_y, in_x, P)]; - } - - T kernel_val = kernel[Layout::kernel_index(c_out, c_in, ky, kx, P)]; - acc += (input_val * kernel_val); + const float input_val = input[Layout::input_index(n, c_in, in_y, in_x, P)]; + const T kernel_val = kernel[Layout::kernel_index(c_out, c_in, ky, kx, P)]; + acc += (input_val * ggml_cuda_cast(kernel_val)); } } } // [N, OC, OH, OW] - output[Layout::output_index(n, c_out, out_y, out_x, P)] = (float) acc; + output[Layout::output_index(n, c_out, out_y, out_x, P)] = acc; } template diff --git a/ggml/src/ggml-cuda/getrows.cu b/ggml/src/ggml-cuda/getrows.cu index 3ec0e957ab..83d02474f5 100644 --- a/ggml/src/ggml-cuda/getrows.cu +++ b/ggml/src/ggml-cuda/getrows.cu @@ -2,6 +2,8 @@ #include "dequantize.cuh" #include "convert.cuh" +#define MAX_GRIDDIM_Y 65535 + template static __global__ void k_get_rows( const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst, @@ -11,32 +13,29 @@ static __global__ void k_get_rows( /*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03, const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) { - // The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher. - const int i00 = (blockIdx.y * blockDim.x + threadIdx.x)*2; - const int i10 = blockIdx.x; - const int i11 = blockIdx.z / ne12; - const int i12 = blockIdx.z % ne12; + for (int64_t i00 = 2*(blockIdx.y*blockDim.x + threadIdx.x); i00 < ne00; i00 += gridDim.y*blockDim.x) { + // The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher. + const int i10 = blockIdx.x; + const int i11 = blockIdx.z / ne12; + const int i12 = blockIdx.z % ne12; - if (i00 >= ne00) { - return; + const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; + + dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; + const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03; + + const int ib = i00/qk; // block index + const int iqs = (i00%qk)/qr; // quant index + const int iybs = i00 - i00%qk; // dst block start index + const int y_offset = qr == 1 ? 1 : qk/2; + + // dequantize + float2 v; + dequantize_kernel(src0_row, ib, iqs, v); + + dst_row[iybs + iqs + 0] = ggml_cuda_cast(v.x); + dst_row[iybs + iqs + y_offset] = ggml_cuda_cast(v.y); } - - const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; - - dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; - const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03; - - const int ib = i00/qk; // block index - const int iqs = (i00%qk)/qr; // quant index - const int iybs = i00 - i00%qk; // dst block start index - const int y_offset = qr == 1 ? 1 : qk/2; - - // dequantize - float2 v; - dequantize_kernel(src0_row, ib, iqs, v); - - dst_row[iybs + iqs + 0] = ggml_cuda_cast(v.x); - dst_row[iybs + iqs + y_offset] = ggml_cuda_cast(v.y); } template @@ -48,22 +47,23 @@ static __global__ void k_get_rows_float( /*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03, const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) { - // The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher. - const int i00 = blockIdx.y * blockDim.x + threadIdx.x; - const int i10 = blockIdx.x; - const int i11 = blockIdx.z / ne12; - const int i12 = blockIdx.z % ne12; + for (int64_t i00 = blockIdx.y*blockDim.x + threadIdx.x; i00 < ne00; i00 += gridDim.y*blockDim.x) { + // The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher. + const int i10 = blockIdx.x; + const int i11 = blockIdx.z / ne12; + const int i12 = blockIdx.z % ne12; - if (i00 >= ne00) { - return; + if (i00 >= ne00) { + return; + } + + const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; + + dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; + const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03); + + dst_row[i00] = ggml_cuda_cast(src0_row[i00]); } - - const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; - - dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; - const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03); - - dst_row[i00] = ggml_cuda_cast(src0_row[i00]); } template @@ -98,7 +98,7 @@ static void get_rows_cuda_q( cudaStream_t stream) { const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); const int block_num_y = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE); - const dim3 block_nums(ne10, block_num_y, ne11*ne12); + const dim3 block_nums(ne10, MIN(block_num_y, MAX_GRIDDIM_Y), ne11*ne12); // strides in elements // const size_t s0 = nb0 / sizeof(dst_t); @@ -131,7 +131,7 @@ static void get_rows_cuda_float( cudaStream_t stream) { const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); const int block_num_y = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE; - const dim3 block_nums(ne10, block_num_y, ne11*ne12); + const dim3 block_nums(ne10, MIN(block_num_y, MAX_GRIDDIM_Y), ne11*ne12); // strides in elements // const size_t s0 = nb0 / sizeof(dst_t); diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index e06f95f081..0c01eb6fa8 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -2452,6 +2452,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg case GGML_OP_IM2COL: ggml_cuda_op_im2col(ctx, dst); break; + case GGML_OP_IM2COL_3D: + ggml_cuda_op_im2col_3d(ctx, dst); + break; case GGML_OP_CONV_2D: ggml_cuda_op_conv2d(ctx, dst); break; @@ -3559,6 +3562,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]); } case GGML_OP_IM2COL: + case GGML_OP_IM2COL_3D: case GGML_OP_CONV_2D: case GGML_OP_CONV_2D_DW: case GGML_OP_CONV_TRANSPOSE_2D: diff --git a/ggml/src/ggml-cuda/im2col.cu b/ggml/src/ggml-cuda/im2col.cu index 16bb9bec97..7737d6a5d5 100644 --- a/ggml/src/ggml-cuda/im2col.cu +++ b/ggml/src/ggml-cuda/im2col.cu @@ -112,3 +112,132 @@ void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, N, IC_IH_IW, IH_IW, s0, s1, p0, p1, d0, d1, stream); } } + +// [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW] +template +static __global__ void im2col_3d_kernel( + const float * src, T * dst, + int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC, + int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW, + int64_t OH_OW, int64_t KD_KH_KW, int64_t ID_IH_IW, int64_t KH_KW, int64_t IH_IW, int64_t IC_ID_IH_IW, + int64_t IC_KD_KH_KW, int64_t OW_KD_KH_KW, int64_t OD_OH_OW_IC_KD_KH_KW, int64_t OH_OW_IC_KD_KH_KW, + int64_t OW_IC_KD_KH_KW, int64_t N_OD_OH, int64_t OD_OH, + int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2) { + const int64_t i = threadIdx.x + blockIdx.x * blockDim.x; + if (i >= IC_KD_KH_KW) { + return; + } + + const int64_t iic = i / KD_KH_KW; + const int64_t ikd = (i - iic * KD_KH_KW) / KH_KW; + const int64_t ikh = (i - iic * KD_KH_KW - ikd * KH_KW) / KW; + const int64_t ikw = i % KW; + + const int64_t iow = blockIdx.y; + for (int64_t iz = blockIdx.z; iz < N_OD_OH; iz+=MAX_GRIDDIM_Z) { + const int64_t in = iz / OD_OH; + const int64_t iod = (iz - in*OD_OH) / OH; + const int64_t ioh = iz % OH; + + const int64_t iiw = iow * s0 + ikw * d0 - p0; + const int64_t iih = ioh * s1 + ikh * d1 - p1; + const int64_t iid = iod * s2 + ikd * d2 - p2; + + const int64_t offset_dst = in*OD_OH_OW_IC_KD_KH_KW + iod*OH_OW_IC_KD_KH_KW + ioh*OW_IC_KD_KH_KW + iow*IC_KD_KH_KW + iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw; + + if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) { + dst[offset_dst] = 0.0f; + } else { + const int64_t offset_src = in*IC_ID_IH_IW + iic*ID_IH_IW + iid*IH_IW + iih*IW + iiw; + dst[offset_dst] = src[offset_src]; + } + } +} + +// [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW] +template +static void im2col_3d_cuda(const float * src, T* dst, + int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC, + int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW, + int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) { + const int64_t OH_OW = OH*OW; + const int64_t KD_KH_KW = KD*KH*KW; + const int64_t ID_IH_IW = ID*IH*IW; + const int64_t KH_KW = KH*KW; + const int64_t IH_IW = IH*IW; + const int64_t IC_KD_KH_KW = IC*KD*KH*KW; + const int64_t OW_KD_KH_KW = OW*KD*KH*KW; + const int64_t N_OD_OH = N*OD*OH; + const int64_t OD_OH = OD*OH; + const int64_t IC_ID_IH_IW = IC*ID*IH*IW; + const int64_t OD_OH_OW_IC_KD_KH_KW = OD*OH*OW*IC*KD*KH*KW; + const int64_t OH_OW_IC_KD_KH_KW = OH*OW*IC*KD*KH*KW; + const int64_t OW_IC_KD_KH_KW = OW*IC*KD*KH*KW; + const int64_t num_blocks = (IC_KD_KH_KW + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE; + dim3 block_nums(num_blocks, OW, MIN(N_OD_OH, MAX_GRIDDIM_Z)); + im2col_3d_kernel<<>>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, + OH_OW, KD_KH_KW, ID_IH_IW, KH_KW, IH_IW, IC_ID_IH_IW, + IC_KD_KH_KW, OW_KD_KH_KW, OD_OH_OW_IC_KD_KH_KW, + OH_OW_IC_KD_KH_KW, OW_IC_KD_KH_KW, N_OD_OH, OD_OH, + s0, s1, s2, p0, p1, p2, d0, d1, d2); +} + +static void im2col_3d_cuda_f16(const float * src, half * dst, + int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC, + int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW, + int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) { + + im2col_3d_cuda(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream); +} + +static void im2col_3d_cuda_f32(const float * src, float * dst, + int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC, + int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW, + int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) { + + im2col_3d_cuda(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream); +} + +void ggml_cuda_op_im2col_3d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + const float * src1_d = (const float *)src1->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32); + + GGML_TENSOR_BINARY_OP_LOCALS + + const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; + const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; + const int32_t s2 = ((const int32_t *)(dst->op_params))[2]; + const int32_t p0 = ((const int32_t *)(dst->op_params))[3]; + const int32_t p1 = ((const int32_t *)(dst->op_params))[4]; + const int32_t p2 = ((const int32_t *)(dst->op_params))[5]; + const int32_t d0 = ((const int32_t *)(dst->op_params))[6]; + const int32_t d1 = ((const int32_t *)(dst->op_params))[7]; + const int32_t d2 = ((const int32_t *)(dst->op_params))[8]; + const int32_t IC = ((const int32_t *)(dst->op_params))[9]; + + const int64_t N = ne13 / IC; + const int64_t ID = ne12; + const int64_t IH = ne11; + const int64_t IW = ne10; + + const int64_t OC = ne03 / IC; + const int64_t KD = ne02; + const int64_t KH = ne01; + const int64_t KW = ne00; + + const int64_t OD = ne3 / N; + const int64_t OH = ne2; + const int64_t OW = ne1; + + if(dst->type == GGML_TYPE_F16) { + im2col_3d_cuda_f16(src1_d, (half *) dst_d, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream); + } else { + im2col_3d_cuda_f32(src1_d, (float *) dst_d, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream); + } +} diff --git a/ggml/src/ggml-cuda/im2col.cuh b/ggml/src/ggml-cuda/im2col.cuh index 1ce8fae4d9..2da1223d63 100644 --- a/ggml/src/ggml-cuda/im2col.cuh +++ b/ggml/src/ggml-cuda/im2col.cuh @@ -3,3 +3,4 @@ #define CUDA_IM2COL_BLOCK_SIZE 256 void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +void ggml_cuda_op_im2col_3d(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu index b7c3079308..52de4e78d1 100644 --- a/ggml/src/ggml-cuda/mmvq.cu +++ b/ggml/src/ggml-cuda/mmvq.cu @@ -141,9 +141,10 @@ template __launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1) static __global__ void mul_mat_vec_q( const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, float * __restrict__ dst, - const int ncols_x, const int nchannels_y, const int stride_row_x, const int stride_col_y, const int stride_col_dst, - const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst, - const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) { + const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y, + const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x, + const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio, + const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst) { constexpr int qk = ggml_cuda_type_traits::qk; constexpr int qi = ggml_cuda_type_traits::qi; @@ -161,12 +162,12 @@ static __global__ void mul_mat_vec_q( constexpr int blocks_per_iter = vdr * nwarps*warp_size / qi; // The MUL_MAT_ID code path with ids != nullptr is only implemented for ncols_dst == 1. - const int channel_dst = blockIdx.y; - const int channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : channel_dst / channel_ratio; - const int channel_y = ncols_dst == 1 && ids ? channel_dst % nchannels_y : channel_dst; - const int sample_dst = blockIdx.z; - const int sample_x = sample_dst / sample_ratio; - const int sample_y = sample_dst; + const uint32_t channel_dst = blockIdx.y; + const uint32_t channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio); + const uint32_t channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst; + const uint32_t sample_dst = blockIdx.z; + const uint32_t sample_x = fastdiv(sample_dst, sample_ratio); + const uint32_t sample_y = sample_dst; // partial sum for each thread float tmp[ncols_dst][rows_per_cuda_block] = {{0.0f}}; @@ -247,8 +248,9 @@ static void mul_mat_vec_q_switch_ncols_dst( GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0); GGML_ASSERT(ncols_dst <= MMVQ_MAX_BATCH_SIZE); - const int channel_ratio = nchannels_dst / nchannels_x; - const int sample_ratio = nsamples_dst / nsamples_x; + const uint3 nchannels_y_fd = ids ? init_fastdiv_values(nchannels_y) : make_uint3(0, 0, 0); + const uint3 channel_ratio_fd = ids ? make_uint3(0, 0, 0) : init_fastdiv_values(nchannels_dst / nchannels_x); + const uint3 sample_ratio_fd = init_fastdiv_values(nsamples_dst / nsamples_x); const int device = ggml_cuda_get_device(); const int warp_size = ggml_cuda_info().devices[device].warp_size; @@ -256,86 +258,70 @@ static void mul_mat_vec_q_switch_ncols_dst( GGML_ASSERT(!ids || ncols_dst == 1); switch (ncols_dst) { - case 1: - { + case 1: { constexpr int c_ncols_dst = 1; std::pair dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id); mul_mat_vec_q<<>> - (vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst, - channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); - break; - } - case 2: - { + (vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, + channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst); + } break; + case 2: { constexpr int c_ncols_dst = 2; std::pair dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id); mul_mat_vec_q<<>> - (vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst, - channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); - break; - } - case 3: - { + (vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, + channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst); + } break; + case 3: { constexpr int c_ncols_dst = 3; std::pair dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id); mul_mat_vec_q<<>> - (vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst, - channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); - break; - } - case 4: - { + (vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, + channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst); + } break; + case 4: { constexpr int c_ncols_dst = 4; std::pair dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id); mul_mat_vec_q<<>> - (vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst, - channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); - break; - } - case 5: - { + (vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, + channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst); + } break; + case 5: { constexpr int c_ncols_dst = 5; std::pair dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id); mul_mat_vec_q<<>> - (vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst, - channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); - break; - } - case 6: - { + (vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, + channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst); + } break; + case 6: { constexpr int c_ncols_dst = 6; std::pair dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id); mul_mat_vec_q<<>> - (vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst, - channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); - break; - } - case 7: - { + (vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, + channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst); + } break; + case 7: { constexpr int c_ncols_dst = 7; std::pair dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id); mul_mat_vec_q<<>> - (vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst, - channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); - break; - } - case 8: - { + (vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, + channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst); + } break; + case 8: { constexpr int c_ncols_dst = 8; std::pair dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id); mul_mat_vec_q<<>> - (vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst, - channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); - break; - } + (vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, + channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst); + } break; default: GGML_ABORT("fatal error"); break; diff --git a/ggml/src/ggml-cuda/norm.cu b/ggml/src/ggml-cuda/norm.cu index d5157d958b..4f153c5718 100644 --- a/ggml/src/ggml-cuda/norm.cu +++ b/ggml/src/ggml-cuda/norm.cu @@ -105,29 +105,29 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr } template -static __global__ void rms_norm_f32(const float * x, float * dst, +static __global__ void rms_norm_f32(const float * x, + float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, - const float * mul = nullptr, - const int64_t mul_stride_row = 0, - const int64_t mul_stride_channel = 0, - const int64_t mul_stride_sample = 0, - const int mul_ncols = 0, - const int mul_nrows = 0, - const int mul_nchannels = 0, - const int mul_nsamples = 0, - const float * add = nullptr, - const int64_t add_stride_row = 0, - const int64_t add_stride_channel = 0, - const int64_t add_stride_sample = 0, - const int add_ncols = 0, - const int add_nrows = 0, - const int add_nchannels = 0, - const int add_nsamples = 0) { - + const float * mul = nullptr, + const int64_t mul_stride_row = 0, + const int64_t mul_stride_channel = 0, + const int64_t mul_stride_sample = 0, + const uint3 mul_ncols_packed = make_uint3(0, 0, 0), + const uint3 mul_nrows_packed = make_uint3(0, 0, 0), + const uint3 mul_nchannels_packed = make_uint3(0, 0, 0), + const uint3 mul_nsamples_packed = make_uint3(0, 0, 0), + const float * add = nullptr, + const int64_t add_stride_row = 0, + const int64_t add_stride_channel = 0, + const int64_t add_stride_sample = 0, + const uint3 add_ncols_packed = make_uint3(0, 0, 0), + const uint3 add_nrows_packed = make_uint3(0, 0, 0), + const uint3 add_nchannels_packed = make_uint3(0, 0, 0), + const uint3 add_nsamples_packed = make_uint3(0, 0, 0)) { const int nrows = gridDim.x; const int nchannels = gridDim.y; @@ -142,16 +142,16 @@ static __global__ void rms_norm_f32(const float * x, float * dst, dst += ((sample*nchannels + channel)*nrows + row)*ncols; if constexpr (do_multiply) { - const int mul_row = row % mul_nrows; - const int mul_channel = channel % mul_nchannels; - const int mul_sample = sample % mul_nsamples; - mul += mul_sample*mul_stride_sample + mul_channel*mul_stride_channel + mul_row*mul_stride_row; + const uint32_t mul_row = fastmodulo(row, mul_nrows_packed); + const uint32_t mul_channel = fastmodulo(channel, mul_nchannels_packed); + const uint32_t mul_sample = fastmodulo(sample, mul_nsamples_packed); + mul += mul_sample * mul_stride_sample + mul_channel * mul_stride_channel + mul_row * mul_stride_row; } if constexpr (do_add) { - const int add_row = row % add_nrows; - const int add_channel = channel % add_nchannels; - const int add_sample = sample % add_nsamples; + const int add_row = fastmodulo(row, add_nrows_packed); + const int add_channel = fastmodulo(channel, add_nchannels_packed); + const int add_sample = fastmodulo(sample, add_nsamples_packed); add += add_sample * add_stride_sample + add_channel * add_stride_channel + add_row * add_stride_row; } @@ -165,15 +165,18 @@ static __global__ void rms_norm_f32(const float * x, float * dst, // sum up partial sums tmp = warp_reduce_sum(tmp); if constexpr (block_size > WARP_SIZE) { - static_assert(block_size == 1024, "unexpected block_size"); + static_assert((block_size <= 1024) && (block_size % 32 == 0), "unexpected block_size"); __shared__ float s_sum[32]; - const int warp_id = threadIdx.x / WARP_SIZE; - const int lane_id = threadIdx.x % WARP_SIZE; + const int warp_id = tid / WARP_SIZE; + const int lane_id = tid % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = tmp; } __syncthreads(); - tmp = s_sum[lane_id]; + tmp = 0.0f; + if (lane_id < (block_size / WARP_SIZE)) { + tmp = s_sum[lane_id]; + } tmp = warp_reduce_sum(tmp); } @@ -182,12 +185,12 @@ static __global__ void rms_norm_f32(const float * x, float * dst, for (int col = tid; col < ncols; col += block_size) { if constexpr (do_multiply && do_add) { - const int mul_col = col % mul_ncols; - const int add_col = col % add_ncols; - dst[col] = scale * x[col] * mul[mul_col] + add[add_col]; + const int mul_col = fastmodulo(col, mul_ncols_packed); + const int add_col = fastmodulo(col, add_ncols_packed); + dst[col] = scale * x[col] * mul[mul_col] + add[add_col]; } else if constexpr (do_multiply) { - const int mul_col = col % mul_ncols; - dst[col] = scale * x[col] * mul[mul_col]; + const int mul_col = fastmodulo(col, mul_ncols_packed); + dst[col] = scale * x[col] * mul[mul_col]; } else { dst[col] = scale * x[col]; } @@ -354,77 +357,86 @@ static void rms_norm_f32_cuda( const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) { const dim3 blocks_num(nrows, nchannels, nsamples); if (ncols < 1024) { - const dim3 block_dims(WARP_SIZE, 1, 1); - rms_norm_f32<<>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps); + const dim3 block_dims(256, 1, 1); + rms_norm_f32<256, false><<>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps); } else { const dim3 block_dims(1024, 1, 1); rms_norm_f32<1024, false><<>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps); } } -static void rms_norm_mul_f32_cuda(const float * x, - const float * mul, - const float * add, - float * dst, - const int ncols, - const int nrows, - const int nchannels, - const int nsamples, - const int64_t stride_row, - const int64_t stride_channel, - const int64_t stride_sample, - const int64_t mul_stride_row, - const int64_t mul_stride_channel, - const int64_t mul_stride_sample, - const int mul_ncols, - const int mul_nrows, - const int mul_nchannels, - const int mul_nsamples, - const int64_t add_stride_row, - const int64_t add_stride_channel, - const int64_t add_stride_sample, - const int add_ncols, - const int add_nrows, - const int add_nchannels, - const int add_nsamples, - const float eps, - cudaStream_t stream) { +static void rms_norm_mul_f32_cuda(const float * x, + const float * mul, + const float * add, + float * dst, + const int ncols, + const int nrows, + const int nchannels, + const int nsamples, + const int64_t stride_row, + const int64_t stride_channel, + const int64_t stride_sample, + const int64_t mul_stride_row, + const int64_t mul_stride_channel, + const int64_t mul_stride_sample, + const uint32_t mul_ncols, + const uint32_t mul_nrows, + const uint32_t mul_nchannels, + const uint32_t mul_nsamples, + const int64_t add_stride_row, + const int64_t add_stride_channel, + const int64_t add_stride_sample, + const uint32_t add_ncols, + const uint32_t add_nrows, + const uint32_t add_nchannels, + const uint32_t add_nsamples, + const float eps, + cudaStream_t stream) { const dim3 blocks_num(nrows, nchannels, nsamples); if (mul == nullptr) { rms_norm_f32_cuda(x, dst, ncols, nrows, nchannels, nsamples, stride_row, stride_channel, stride_sample, eps, stream); return; } if (add == nullptr) { + const uint3 mul_ncols_packed = init_fastdiv_values(mul_ncols); + const uint3 mul_nrows_packed = init_fastdiv_values(mul_nrows); + const uint3 mul_nchannels_packed = init_fastdiv_values(mul_nchannels); + const uint3 mul_nsamples_packed = init_fastdiv_values(mul_nsamples); if (ncols < 1024) { - const dim3 block_dims(WARP_SIZE, 1, 1); - rms_norm_f32<<>>(x, dst, - ncols, stride_row, stride_channel, stride_sample, eps, - mul, mul_stride_row, mul_stride_channel, mul_stride_sample, - mul_ncols, mul_nrows, mul_nchannels, mul_nsamples); + const dim3 block_dims(256, 1, 1); + rms_norm_f32<256, true><<>>( + x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, + mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed); } else { const dim3 block_dims(1024, 1, 1); - rms_norm_f32<1024, true><<>>(x, dst, - ncols, stride_row, stride_channel, stride_sample, eps, - mul, mul_stride_row, mul_stride_channel, mul_stride_sample, - mul_ncols, mul_nrows, mul_nchannels, mul_nsamples); + rms_norm_f32<1024, true><<>>( + x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, + mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed); } } else { + const uint3 mul_ncols_packed = init_fastdiv_values(mul_ncols); + const uint3 mul_nrows_packed = init_fastdiv_values(mul_nrows); + const uint3 mul_nchannels_packed = init_fastdiv_values(mul_nchannels); + const uint3 mul_nsamples_packed = init_fastdiv_values(mul_nsamples); + + const uint3 add_ncols_packed = init_fastdiv_values(add_ncols); + const uint3 add_nrows_packed = init_fastdiv_values(add_nrows); + const uint3 add_nchannels_packed = init_fastdiv_values(add_nchannels); + const uint3 add_nsamples_packed = init_fastdiv_values(add_nsamples); if (ncols < 1024) { - const dim3 block_dims(WARP_SIZE, 1, 1); - rms_norm_f32<<>>(x, dst, - ncols, stride_row, stride_channel, stride_sample, eps, - mul, mul_stride_row, mul_stride_channel, mul_stride_sample, - mul_ncols, mul_nrows, mul_nchannels, mul_nsamples, - add, add_stride_row, add_stride_channel, add_stride_sample, - add_ncols, add_nrows, add_nchannels, add_nsamples); + const dim3 block_dims(256, 1, 1); + rms_norm_f32<256, true, true><<>>( + x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, + mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed, add, + add_stride_row, add_stride_channel, add_stride_sample, add_ncols_packed, add_nrows_packed, + add_nchannels_packed, add_nsamples_packed); } else { const dim3 block_dims(1024, 1, 1); - rms_norm_f32<1024, true, true><<>>(x, dst, - ncols, stride_row, stride_channel, stride_sample, eps, - mul, mul_stride_row, mul_stride_channel, mul_stride_sample, - mul_ncols, mul_nrows, mul_nchannels, mul_nsamples, - add, add_stride_row, add_stride_channel, add_stride_sample, - add_ncols, add_nrows, add_nchannels, add_nsamples); + rms_norm_f32<1024, true, true><<>>( + x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, + mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed, add, + add_stride_row, add_stride_channel, add_stride_sample, add_ncols_packed, add_nrows_packed, + add_nchannels_packed, add_nsamples_packed); } } } diff --git a/ggml/src/ggml-cuda/pad.cu b/ggml/src/ggml-cuda/pad.cu index 77432b0468..29aef33c1a 100644 --- a/ggml/src/ggml-cuda/pad.cu +++ b/ggml/src/ggml-cuda/pad.cu @@ -1,36 +1,50 @@ #include "pad.cuh" -static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) { - // blockIdx.z: idx of ne2*ne3, aka ne02*ne03 - // blockIdx.y: idx of ne1 - // blockIDx.x: idx of ne0 / BLOCK_SIZE - int nidx = threadIdx.x + blockIdx.x * blockDim.x; - if (nidx >= ne0) { +static __global__ void pad_f32(const float * src, float * dst, + const int lp0, const int rp0, const int lp1, const int rp1, + const int lp2, const int rp2, const int lp3, const int rp3, + const int ne0, const int ne1, const int ne2, const int ne3) { + // blockIdx.z: i3*ne2+i2 + // blockIdx.y: i1 + // blockIDx.x: i0 / CUDA_PAD_BLOCK_SIZE + // gridDim.y: ne1 + int i0 = threadIdx.x + blockIdx.x * blockDim.x; + int i1 = blockIdx.y; + int i2 = blockIdx.z % ne2; + int i3 = blockIdx.z / ne2; + if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) { return; } // operation - int offset_dst = - nidx + - blockIdx.y * ne0 + - blockIdx.z * ne0 * gridDim.y; - if (nidx < ne00 && blockIdx.y < (unsigned)ne01 && blockIdx.z < (unsigned)(ne02*ne03)) { - int offset_src = - nidx + - blockIdx.y * ne00 + - blockIdx.z * ne00 * ne01; - dst[offset_dst] = x[offset_src]; + const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0; + if ((i0 >= lp0 && i0 < ne0 - rp0) && + (i1 >= lp1 && i1 < ne1 - rp1) && + (i2 >= lp2 && i2 < ne2 - rp2) && + (i3 >= lp3 && i3 < ne3 - rp3)) { + const int64_t i00 = i0 - lp0; + const int64_t i01 = i1 - lp1; + const int64_t i02 = i2 - lp2; + const int64_t i03 = i3 - lp3; + const int64_t ne02 = ne2 - lp2 - rp2; + const int64_t ne01 = ne1 - lp1 - rp1; + const int64_t ne00 = ne0 - lp0 - rp0; + + const int64_t src_idx = i03*(ne00*ne01*ne02) + i02*(ne00*ne01) + i01*ne00 + i00; + + dst[dst_idx] = src[src_idx]; } else { - dst[offset_dst] = 0.0f; + dst[dst_idx] = 0.0f; } } -static void pad_f32_cuda(const float * x, float * dst, - const int ne00, const int ne01, const int ne02, const int ne03, +static void pad_f32_cuda(const float * src, float * dst, + const int lp0, const int rp0, const int lp1, const int rp1, + const int lp2, const int rp2, const int lp3, const int rp3, const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) { int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE; dim3 gridDim(num_blocks, ne1, ne2*ne3); - pad_f32<<>>(x, dst, ne0, ne00, ne01, ne02, ne03); + pad_f32<<>>(src, dst, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, ne0, ne1, ne2, ne3); } void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { @@ -41,9 +55,18 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); - GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors + GGML_ASSERT(ggml_is_contiguous(src0)); + + const int32_t lp0 = ((const int32_t*)(dst->op_params))[0]; + const int32_t rp0 = ((const int32_t*)(dst->op_params))[1]; + const int32_t lp1 = ((const int32_t*)(dst->op_params))[2]; + const int32_t rp1 = ((const int32_t*)(dst->op_params))[3]; + const int32_t lp2 = ((const int32_t*)(dst->op_params))[4]; + const int32_t rp2 = ((const int32_t*)(dst->op_params))[5]; + const int32_t lp3 = ((const int32_t*)(dst->op_params))[6]; + const int32_t rp3 = ((const int32_t*)(dst->op_params))[7]; pad_f32_cuda(src0_d, dst_d, - src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], - dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream); + lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, + dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream); } diff --git a/ggml/src/ggml-cuda/quantize.cu b/ggml/src/ggml-cuda/quantize.cu index a0b03a740d..5117f9ffc0 100644 --- a/ggml/src/ggml-cuda/quantize.cu +++ b/ggml/src/ggml-cuda/quantize.cu @@ -1,26 +1,27 @@ #include "quantize.cuh" #include +__launch_bounds__(CUDA_QUANTIZE_BLOCK_SIZE, 1) static __global__ void quantize_q8_1( const float * __restrict__ x, void * __restrict__ vy, const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03, - const int64_t ne0, const int ne1, const int ne2) { + const int64_t ne0, const uint32_t ne1, const uint3 ne2) { const int64_t i0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x; if (i0 >= ne0) { return; } + const int64_t i3 = fastdiv(blockIdx.z, ne2); + const int64_t i2 = blockIdx.z - i3*ne2.z; const int64_t i1 = blockIdx.y; - const int64_t i2 = blockIdx.z % ne2; - const int64_t i3 = blockIdx.z / ne2; const int64_t & i00 = i0; const int64_t & i01 = i1; const int64_t & i02 = i2; const int64_t & i03 = i3; - const int64_t i_cont = ((i3*ne2 + i2) * ne1 + i1) * ne0 + i0; + const int64_t i_cont = ((i3*ne2.z + i2) * ne1 + i1) * ne0 + i0; block_q8_1 * y = (block_q8_1 *) vy; @@ -31,10 +32,10 @@ static __global__ void quantize_q8_1( float amax = fabsf(xi); float sum = xi; - amax = warp_reduce_max(amax); - sum = warp_reduce_sum(sum); + amax = warp_reduce_max(amax); + sum = warp_reduce_sum(sum); - const float d = amax / 127; + const float d = amax / 127.0f; const int8_t q = amax == 0.0f ? 0 : roundf(xi / d); y[ib].qs[iqs] = q; @@ -43,8 +44,7 @@ static __global__ void quantize_q8_1( return; } - reinterpret_cast(y[ib].ds.x) = d; - reinterpret_cast(y[ib].ds.y) = sum; + y[ib].ds = make_half2(d, sum); } template @@ -152,10 +152,12 @@ void quantize_row_q8_1_cuda( GGML_ASSERT(!ids); GGML_ASSERT(ne0 % QK8_1 == 0); + const uint3 ne2_fastdiv = init_fastdiv_values(ne2); + const int64_t block_num_x = (ne0 + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE; const dim3 num_blocks(block_num_x, ne1, ne2*ne3); const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1); - quantize_q8_1<<>>(x, vy, ne00, s01, s02, s03, ne0, ne1, ne2); + quantize_q8_1<<>>(x, vy, ne00, s01, s02, s03, ne0, ne1, ne2_fastdiv); GGML_UNUSED(type_src0); } diff --git a/ggml/src/ggml-cuda/scale.cu b/ggml/src/ggml-cuda/scale.cu index 2ee9e58899..0ddeff6a17 100644 --- a/ggml/src/ggml-cuda/scale.cu +++ b/ggml/src/ggml-cuda/scale.cu @@ -1,18 +1,19 @@ #include "scale.cuh" -static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int k) { - const int i = blockDim.x*blockIdx.x + threadIdx.x; +#define MAX_GRIDDIM_X 0x7FFFFFFF - if (i >= k) { - return; +static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int64_t nelements) { + int64_t tid = (int64_t)blockIdx.x * (int64_t)blockDim.x + (int64_t)threadIdx.x; + int64_t stride = (int64_t)blockDim.x * (int64_t)gridDim.x; + + for (int64_t i = tid; i < nelements; i += stride) { + dst[i] = scale * x[i] + bias; } - - dst[i] = scale * x[i] + bias; } -static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int k, cudaStream_t stream) { - const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE; - scale_f32<<>>(x, dst, scale, bias, k); +static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int64_t nelements, cudaStream_t stream) { + const int64_t num_blocks = (nelements + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE; + scale_f32<<>>(x, dst, scale, bias, nelements); } void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m index 1f93633d91..c1a0a2bef1 100644 --- a/ggml/src/ggml-metal/ggml-metal.m +++ b/ggml/src/ggml-metal/ggml-metal.m @@ -407,6 +407,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_10, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16, @@ -523,13 +524,6 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512, - GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H40, - GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H40, - GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H40, - GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H40, - GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H40, - GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H40, - GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H40, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H64, @@ -1446,6 +1440,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4, mul_mm_id_map0_f16_ne20_4, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6, mul_mm_id_map0_f16_ne20_6, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8, mul_mm_id_map0_f16_ne20_8, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_10, mul_mm_id_map0_f16_ne20_10, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16, mul_mm_id_map0_f16_ne20_16, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16, mul_mm_id_f32_f16, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16, mul_mm_id_f16_f16, has_simdgroup_mm); @@ -1562,13 +1557,6 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128, flash_attn_ext_q8_0_hk192_hv128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, flash_attn_ext_q8_0_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512, flash_attn_ext_q8_0_hk576_hv512, has_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H40, flash_attn_ext_vec_f16_h40, has_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H40, flash_attn_ext_vec_bf16_h40, has_simdgroup_reduction && use_bfloat); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H40, flash_attn_ext_vec_q4_0_h40, has_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H40, flash_attn_ext_vec_q4_1_h40, has_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H40, flash_attn_ext_vec_q5_0_h40, has_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H40, flash_attn_ext_vec_q5_1_h40, has_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H40, flash_attn_ext_vec_q8_0_h40, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64, flash_attn_ext_vec_f16_h64, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H64, flash_attn_ext_vec_bf16_h64, has_simdgroup_reduction && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H64, flash_attn_ext_vec_q4_0_h64, has_simdgroup_reduction); @@ -1900,7 +1888,10 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex case GGML_OP_UPSCALE: return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST; case GGML_OP_POOL_2D: + return op->src[0]->type == GGML_TYPE_F32; case GGML_OP_PAD: + return (ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) && + (ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0); case GGML_OP_PAD_REFLECT_1D: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_ARGSORT: @@ -1909,9 +1900,15 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex case GGML_OP_ARANGE: return true; case GGML_OP_FLASH_ATTN_EXT: - if (op->src[0]->ne[0] == 32) { - // head size == 32 (e.g. bert-bge-small) - // TODO: not sure if it is worth adding kernels for this size + // for new head sizes, add checks here + if (op->src[0]->ne[0] != 40 && + op->src[0]->ne[0] != 64 && + op->src[0]->ne[0] != 80 && + op->src[0]->ne[0] != 96 && + op->src[0]->ne[0] != 112 && + op->src[0]->ne[0] != 128 && + op->src[0]->ne[0] != 192 && + op->src[0]->ne[0] != 256) { return false; } if (op->src[0]->ne[0] == 576) { @@ -3984,6 +3981,7 @@ static int ggml_metal_encode_node( case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4 ].pipeline; break; case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6 ].pipeline; break; case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8 ].pipeline; break; + case 10: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_10].pipeline; break; case 16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16].pipeline; break; default: GGML_ABORT("missing specialization for ne20 = %d", (int) ne20); } @@ -5138,10 +5136,8 @@ static int ggml_metal_encode_node( bool use_vec_kernel = false; - // TODO: add vec kernels for (ne00%64 == 0) and maybe also for (ne00%32 == 0) - // for now avoiding mainly to keep the number of templates/kernels a bit lower - // these are now trivial to add after: https://github.com/ggml-org/llama.cpp/pull/12612 - if (ne01 >= 20 || (ne00%128 != 0 && ne00 != 64 && ne00 != 96 && ne00 != 192 && ne00 != 576)) { + // use non-vec kernel if the batch size is large or if the vec-kernel is not supported for this head size + if (ne01 >= 20 || (ne00 == 40 || ne00 == 80 || ne00 == 112)) { switch (src1->type) { case GGML_TYPE_F16: { @@ -5329,24 +5325,6 @@ static int ggml_metal_encode_node( use_vec_kernel = true; switch (ne00) { - case 40: - { - switch (src1->type) { - case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H40].pipeline; break; - case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H40].pipeline; break; - case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H40].pipeline; break; - case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H40].pipeline; break; - case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H40].pipeline; break; - case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H40].pipeline; break; - case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H40].pipeline; break; - default: - { - GGML_LOG_ERROR("unsupported type: %d\n", src1->type); - GGML_LOG_ERROR("add template specialization for this type\n"); - GGML_ABORT("add template specialization for this type"); - } - } - } break; case 64: { switch (src1->type) { diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal index 4fa16c4a55..2d56c62674 100644 --- a/ggml/src/ggml-metal/ggml-metal.metal +++ b/ggml/src/ggml-metal/ggml-metal.metal @@ -4803,6 +4803,9 @@ kernel void kernel_flash_attn_ext_vec( ushort3 ntg[[threads_per_threadgroup]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { + static_assert(DK % 32 == 0, "DK must be divisible by 32"); + static_assert(DV % 32 == 0, "DV must be divisible by 32"); + const short nsg = ntg.y; // number of simdgroups const short iwg = tgpig[2]%nwg; @@ -5160,16 +5163,6 @@ kernel void kernel_flash_attn_ext_vec( typedef decltype(kernel_flash_attn_ext_vec) flash_attn_ext_vec_t; -template [[host_name("kernel_flash_attn_ext_vec_f16_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; -#if defined(GGML_METAL_USE_BF16) -template [[host_name("kernel_flash_attn_ext_vec_bf16_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; -#endif -template [[host_name("kernel_flash_attn_ext_vec_q4_0_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; -template [[host_name("kernel_flash_attn_ext_vec_q4_1_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; -template [[host_name("kernel_flash_attn_ext_vec_q5_0_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; -template [[host_name("kernel_flash_attn_ext_vec_q5_1_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; -template [[host_name("kernel_flash_attn_ext_vec_q8_0_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; - template [[host_name("kernel_flash_attn_ext_vec_f16_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_flash_attn_ext_vec_bf16_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; @@ -7625,6 +7618,7 @@ template [[host_name("kernel_mul_mm_id_map0_f16_ne20_2" )]] kernel kernel_mul_mm template [[host_name("kernel_mul_mm_id_map0_f16_ne20_4" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<4>; template [[host_name("kernel_mul_mm_id_map0_f16_ne20_6" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<6>; template [[host_name("kernel_mul_mm_id_map0_f16_ne20_8" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<8>; +template [[host_name("kernel_mul_mm_id_map0_f16_ne20_10")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<10>; template [[host_name("kernel_mul_mm_id_map0_f16_ne20_16")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<16>; template diff --git a/ggml/src/ggml-opencl/ggml-opencl.cpp b/ggml/src/ggml-opencl/ggml-opencl.cpp index c25c2daaf6..727163b7fd 100644 --- a/ggml/src/ggml-opencl/ggml-opencl.cpp +++ b/ggml/src/ggml-opencl/ggml-opencl.cpp @@ -1339,7 +1339,7 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve if (!kernel_src_f16.empty() && !kernel_src_f32.empty() && !kernel_src_f32_f16.empty()) { const struct { int dk; int dv; int bm; int bn; } fa_dims[] = { - { 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32}, + { 40, 40, 32, 32}, { 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32}, {112, 112, 32, 32}, {128, 128, 32, 32}, {192, 128, 16, 16}, {192, 192, 16, 16}, {256, 256, 16, 16}, }; @@ -2701,7 +2701,9 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded case GGML_OP_PAD: return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 && - op->src[0]->ne[3] == 1 && op->ne[3] == 1; + op->src[0]->ne[3] == 1 && op->ne[3] == 1 && + (ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) && + (ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0); case GGML_OP_UPSCALE: return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; case GGML_OP_CONV_2D: @@ -2776,10 +2778,6 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]); case GGML_OP_FLASH_ATTN_EXT: { - if (op->src[4]) { - return false; - } - const ggml_tensor * q = op->src[0]; const ggml_tensor * k = op->src[1]; const ggml_tensor * v = op->src[2]; @@ -2788,7 +2786,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te const int dv = v->ne[0]; const struct { int dk; int dv; } supported_dims[] = { - { 64, 64}, { 80, 80}, { 96, 96}, + { 40, 40}, { 64, 64}, { 80, 80}, { 96, 96}, {112, 112}, {128, 128}, {192, 128}, {192, 192}, {256, 256}, }; @@ -5765,6 +5763,7 @@ static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, const ggml_tensor * k, ggml_tensor * dst) { const ggml_tensor * v = dst->src[2]; const ggml_tensor * mask = dst->src[3]; + const ggml_tensor * sinks = dst->src[4]; GGML_ASSERT(q->extra); GGML_ASSERT(k->extra); GGML_ASSERT(v->extra); @@ -5772,6 +5771,9 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co if (mask) { GGML_ASSERT(mask->extra); } + if (sinks) { + GGML_ASSERT(sinks->extra); + } ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; @@ -5813,6 +5815,7 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co ggml_tensor_extra_cl * extra_v = (ggml_tensor_extra_cl *)v->extra; ggml_tensor_extra_cl * extra_o = (ggml_tensor_extra_cl *)dst->extra; ggml_tensor_extra_cl * extra_mask = mask ? (ggml_tensor_extra_cl *)mask->extra : NULL; + ggml_tensor_extra_cl * extra_sinks = sinks ? (ggml_tensor_extra_cl *)sinks->extra : NULL; cl_ulong offset_q = extra_q->offset + q->view_offs; cl_ulong offset_k = extra_k->offset + k->view_offs; @@ -5820,6 +5823,8 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co cl_ulong offset_o = extra_o->offset + dst->view_offs; cl_mem mask_buffer = extra_mask ? extra_mask->data_device : NULL; cl_ulong offset_mask = extra_mask ? extra_mask->offset + mask->view_offs : 0; + cl_mem sinks_buffer = extra_sinks ? extra_sinks->data_device : NULL; + cl_ulong offset_sinks = extra_sinks ? extra_sinks->offset + sinks->view_offs : 0; const cl_ulong q_nb1 = q->nb[1], q_nb2 = q->nb[2], q_nb3 = q->nb[3]; const cl_ulong k_nb1 = k->nb[1], k_nb2 = k->nb[2], k_nb3 = k->nb[3]; @@ -5874,6 +5879,8 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co CL_CHECK(clSetKernelArg(kernel, 35, sizeof(cl_ulong), &mask_nb3)); CL_CHECK(clSetKernelArg(kernel, 36, sizeof(int), &mask_ne2)); CL_CHECK(clSetKernelArg(kernel, 37, sizeof(int), &mask_ne3)); + CL_CHECK(clSetKernelArg(kernel, 38, sizeof(cl_mem), &sinks_buffer)); + CL_CHECK(clSetKernelArg(kernel, 39, sizeof(cl_ulong), &offset_sinks)); if (n_q == 1) { const size_t wg_size = 64; diff --git a/ggml/src/ggml-opencl/kernels/flash_attn_f16.cl b/ggml/src/ggml-opencl/kernels/flash_attn_f16.cl index fea06867e1..8f43c4f27d 100644 --- a/ggml/src/ggml-opencl/kernels/flash_attn_f16.cl +++ b/ggml/src/ggml-opencl/kernels/flash_attn_f16.cl @@ -49,7 +49,9 @@ __kernel void flash_attn_f16( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int block_q_idx = get_group_id(0); @@ -171,6 +173,20 @@ __kernel void flash_attn_f16( } if (my_query_row < n_q) { + if (sinks_void != NULL) { + const global ACC_TYPE* sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + const ACC_TYPE m_sink = sinks_ptr[head_idx]; + const ACC_TYPE m_final = max(m_i, m_sink); + + const ACC_TYPE scale_o = exp(m_i - m_final); + #pragma unroll + for (int i = 0; i < DV_VEC; ++i) { + o_acc[i] *= scale_o; + } + + l_i = l_i * exp(m_i - m_final) + exp(m_sink - m_final); + } + const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1; global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset); if (l_i > 0.0f) { @@ -214,7 +230,9 @@ __kernel void flash_attn_f16_q1( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int head_batch_idx = get_global_id(1); @@ -247,7 +265,12 @@ __kernel void flash_attn_f16_q1( float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1); - ACC_TYPE m_i = -INFINITY; + const global ACC_TYPE* sinks_ptr = NULL; + if (sinks_void != NULL) { + sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + } + + ACC_TYPE m_i = (sinks_ptr != NULL) ? sinks_ptr[head_idx] : -INFINITY; for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) { const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1; const global DATA_TYPE4* k_ptr = (const global DATA_TYPE4*)(k_base + k_row_offset); @@ -320,7 +343,11 @@ __kernel void flash_attn_f16_q1( const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1; global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset); - const ACC_TYPE l_final = local_l[0]; + ACC_TYPE l_final = local_l[0]; + + if (sinks_ptr != NULL) { + l_final += exp(sinks_ptr[head_idx] - m_final); + } if (l_final > 0.0f) { const ACC_TYPE l_inv = 1.0f / l_final; diff --git a/ggml/src/ggml-opencl/kernels/flash_attn_f32.cl b/ggml/src/ggml-opencl/kernels/flash_attn_f32.cl index 2d657327d6..9c0bab135a 100644 --- a/ggml/src/ggml-opencl/kernels/flash_attn_f32.cl +++ b/ggml/src/ggml-opencl/kernels/flash_attn_f32.cl @@ -49,7 +49,9 @@ __kernel void flash_attn_f32( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int block_q_idx = get_group_id(0); @@ -171,6 +173,20 @@ __kernel void flash_attn_f32( } if (my_query_row < n_q) { + if (sinks_void != NULL) { + const global ACC_TYPE* sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + const ACC_TYPE m_sink = sinks_ptr[head_idx]; + const ACC_TYPE m_final = max(m_i, m_sink); + + const ACC_TYPE scale_o = exp(m_i - m_final); + #pragma unroll + for (int i = 0; i < DV_VEC; ++i) { + o_acc[i] *= scale_o; + } + + l_i = l_i * exp(m_i - m_final) + exp(m_sink - m_final); + } + const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1; global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset); if (l_i > 0.0f) { @@ -214,7 +230,9 @@ __kernel void flash_attn_f32_q1( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int head_batch_idx = get_global_id(1); @@ -247,7 +265,12 @@ __kernel void flash_attn_f32_q1( float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1); - ACC_TYPE m_i = -INFINITY; + const global ACC_TYPE* sinks_ptr = NULL; + if (sinks_void != NULL) { + sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + } + + ACC_TYPE m_i = (sinks_ptr != NULL) ? sinks_ptr[head_idx] : -INFINITY; for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) { const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1; const global DATA_TYPE4* k_ptr = (const global DATA_TYPE4*)(k_base + k_row_offset); @@ -320,7 +343,11 @@ __kernel void flash_attn_f32_q1( const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1; global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset); - const ACC_TYPE l_final = local_l[0]; + ACC_TYPE l_final = local_l[0]; + + if (sinks_ptr != NULL) { + l_final += exp(sinks_ptr[head_idx] - m_final); + } if (l_final > 0.0f) { const ACC_TYPE l_inv = 1.0f / l_final; diff --git a/ggml/src/ggml-opencl/kernels/flash_attn_f32_f16.cl b/ggml/src/ggml-opencl/kernels/flash_attn_f32_f16.cl index 7067bd2591..ec7361b9e3 100644 --- a/ggml/src/ggml-opencl/kernels/flash_attn_f32_f16.cl +++ b/ggml/src/ggml-opencl/kernels/flash_attn_f32_f16.cl @@ -52,7 +52,9 @@ __kernel void flash_attn_f32_f16( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int block_q_idx = get_group_id(0); @@ -174,6 +176,20 @@ __kernel void flash_attn_f32_f16( } if (my_query_row < n_q) { + if (sinks_void != NULL) { + const global ACC_TYPE* sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + const ACC_TYPE m_sink = sinks_ptr[head_idx]; + const ACC_TYPE m_final = max(m_i, m_sink); + + const ACC_TYPE scale_o = exp(m_i - m_final); + #pragma unroll + for (int i = 0; i < DV_VEC; ++i) { + o_acc[i] *= scale_o; + } + + l_i = l_i * exp(m_i - m_final) + exp(m_sink - m_final); + } + const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1; global O_DATA_TYPE4 *o_row = (global O_DATA_TYPE4 *)(o_base + o_row_offset); if (l_i > 0.0f) { @@ -217,7 +233,9 @@ __kernel void flash_attn_f32_f16_q1( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int head_batch_idx = get_global_id(1); @@ -250,7 +268,12 @@ __kernel void flash_attn_f32_f16_q1( float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1); - ACC_TYPE m_i = -INFINITY; + const global ACC_TYPE* sinks_ptr = NULL; + if (sinks_void != NULL) { + sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + } + + ACC_TYPE m_i = (sinks_ptr != NULL) ? sinks_ptr[head_idx] : -INFINITY; for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) { const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1; const global KV_DATA_TYPE4* k_ptr = (const global KV_DATA_TYPE4*)(k_base + k_row_offset); @@ -323,7 +346,11 @@ __kernel void flash_attn_f32_f16_q1( const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1; global O_DATA_TYPE4 *o_row = (global O_DATA_TYPE4 *)(o_base + o_row_offset); - const ACC_TYPE l_final = local_l[0]; + ACC_TYPE l_final = local_l[0]; + + if (sinks_ptr != NULL) { + l_final += exp(sinks_ptr[head_idx] - m_final); + } if (l_final > 0.0f) { const ACC_TYPE l_inv = 1.0f / l_final; diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp index 18ff4e0b0c..877fbf7e86 100644 --- a/ggml/src/ggml-sycl/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl/ggml-sycl.cpp @@ -4398,7 +4398,10 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g return ggml_is_contiguous(op->src[0]); case GGML_OP_POOL_2D: case GGML_OP_ACC: + return true; case GGML_OP_PAD: + return (ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) && + (ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0); case GGML_OP_LEAKY_RELU: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_RWKV_WKV6: diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index 40962de508..cd1c66ba7b 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -360,6 +360,13 @@ struct vk_fa_pipeline_state { } }; +enum shader_reduction_mode { + SHADER_REDUCTION_MODE_SHMEM, + SHADER_REDUCTION_MODE_HYBRID, + SHADER_REDUCTION_MODE_SUBGROUP, + SHADER_REDUCTION_MODE_COUNT, +}; + static constexpr uint32_t num_argsort_pipelines = 11; static constexpr uint32_t max_argsort_cols = 1 << (num_argsort_pipelines-1); @@ -386,15 +393,18 @@ struct vk_device_struct { bool uma; bool prefer_host_memory; bool float_controls_rte_fp16; - bool subgroup_add; + bool subgroup_arithmetic; bool subgroup_shuffle; bool subgroup_ballot; + bool subgroup_clustered; bool multi_add; bool add_rms_fusion; uint32_t partials_binding_alignment; bool integer_dot_product; + // 0: default, 1: force mmvq, -1: disable mmvq + int32_t mmvq_mode; bool subgroup_size_control; uint32_t subgroup_min_size; @@ -452,12 +462,15 @@ struct vk_device_struct { vk_pipeline pipeline_matmul_split_k_reduce; vk_pipeline pipeline_quantize_q8_1; + vk_pipeline pipeline_quantize_q8_1_x4; vk_pipeline pipeline_dequant[GGML_TYPE_COUNT]; vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols]; vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols]; vk_pipeline pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_COUNT]; + vk_pipeline pipeline_dequant_mul_mat_vec_q8_1_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols]; + vk_pipeline pipeline_mul_mat_vec_p021_f16_f32[p021_max_gqa_ratio]; vk_pipeline pipeline_mul_mat_vec_nc_f16_f32; vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT]; @@ -516,6 +529,8 @@ struct vk_device_struct { vk_pipeline pipeline_relu[2]; vk_pipeline pipeline_tanh[2]; vk_pipeline pipeline_sigmoid[2]; + vk_pipeline pipeline_hardsigmoid[2]; + vk_pipeline pipeline_hardswish[2]; vk_pipeline pipeline_geglu[2]; vk_pipeline pipeline_reglu[2]; @@ -566,6 +581,7 @@ struct vk_device_struct { bool disable_fusion; bool disable_host_visible_vidmem; + bool allow_sysmem_fallback; #ifdef GGML_VULKAN_MEMORY_DEBUG std::unique_ptr memory_logger; @@ -1356,6 +1372,7 @@ struct vk_instance_t { PFN_vkCmdInsertDebugUtilsLabelEXT pfn_vkCmdInsertDebugUtilsLabelEXT = {}; std::vector device_indices; + std::vector device_supports_membudget; vk_device devices[GGML_VK_MAX_DEVICES]; }; @@ -1808,8 +1825,8 @@ static uint32_t find_properties(const vk::PhysicalDeviceMemoryProperties* mem_pr return UINT32_MAX; } -static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) { - VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags) << ", " << to_string(fallback_flags) << ")"); +static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std::initializer_list & req_flags_list) { + VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags_list.begin()[0]) << ", " << to_string(req_flags_list.begin()[req_flags_list.size()-1]) << ")"); if (size > device->max_memory_allocation_size) { throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device memory allocation limit"); } @@ -1836,42 +1853,27 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor vk::PhysicalDeviceMemoryProperties mem_props = device->physical_device.getMemoryProperties(); - uint32_t memory_type_index = UINT32_MAX; + for (auto &req_flags : req_flags_list) { + uint32_t memory_type_index = find_properties(&mem_props, &mem_req, req_flags); - memory_type_index = find_properties(&mem_props, &mem_req, req_flags); - buf->memory_property_flags = req_flags; + if (memory_type_index == UINT32_MAX) { + continue; + } + buf->memory_property_flags = req_flags; - if (memory_type_index == UINT32_MAX && fallback_flags) { - memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags); - buf->memory_property_flags = fallback_flags; + try { + buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index }); + break; + } catch (const vk::SystemError& e) { + // loop and retry + } } - if (memory_type_index == UINT32_MAX) { + if (buf->device_memory == VK_NULL_HANDLE) { device->device.destroyBuffer(buf->buffer); throw vk::OutOfDeviceMemoryError("No suitable memory type found"); } - try { - buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index }); - } catch (const vk::SystemError& e) { - if (buf->memory_property_flags != fallback_flags) { - // Try again with fallback flags - memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags); - buf->memory_property_flags = fallback_flags; - - try { - buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index }); - } - catch (const vk::SystemError& e) { - device->device.destroyBuffer(buf->buffer); - throw e; - } - } else { - // Out of Host/Device memory, clean up buffer - device->device.destroyBuffer(buf->buffer); - throw e; - } - } buf->ptr = nullptr; if (buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { @@ -1892,7 +1894,7 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor static vk_buffer ggml_vk_create_buffer_check(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) { try { - return ggml_vk_create_buffer(device, size, req_flags, fallback_flags); + return ggml_vk_create_buffer(device, size, {req_flags, fallback_flags}); } catch (const vk::SystemError& e) { std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl; std::cerr << "ggml_vulkan: " << e.what() << std::endl; @@ -1904,15 +1906,29 @@ static vk_buffer ggml_vk_create_buffer_device(vk_device& device, size_t size) { vk_buffer buf; try { if (device->prefer_host_memory) { - buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, vk::MemoryPropertyFlagBits::eDeviceLocal); + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, + vk::MemoryPropertyFlagBits::eDeviceLocal}); } else if (device->uma) { // Fall back to host memory type - buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal, + vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent}); } else if (device->disable_host_visible_vidmem) { - buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::MemoryPropertyFlagBits::eDeviceLocal); + if (device->allow_sysmem_fallback) { + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal, + vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent}); + } else { + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + } } else { // use rebar if available, otherwise fallback to device only visible memory - buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, vk::MemoryPropertyFlagBits::eDeviceLocal); + if (device->allow_sysmem_fallback) { + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, + vk::MemoryPropertyFlagBits::eDeviceLocal, + vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent}); + } else { + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, + vk::MemoryPropertyFlagBits::eDeviceLocal}); + } } } catch (const vk::SystemError& e) { std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl; @@ -2225,7 +2241,7 @@ static void ggml_vk_load_shaders(vk_device& device) { s_mmq_wg_denoms_k = { 32, 64, 1 }; // spec constants and tile sizes for quant matmul_id - l_warptile_mmqid = { 256, 128, 128, 16, 0, device->subgroup_size }; + l_warptile_mmqid = { 256, 128, 128, 16, 1, device->subgroup_size }; m_warptile_mmqid = { 256, 128, 64, 16, 0, device->subgroup_size }; s_warptile_mmqid = { 256, 128, 64, 16, 0, device->subgroup_size }; l_mmqid_wg_denoms = { 128, 128, 1 }; @@ -2326,7 +2342,7 @@ static void ggml_vk_load_shaders(vk_device& device) { } std::vector> compiles; - auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint, + auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const char *name, size_t spv_size, const void* spv_data, const char *entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array wg_denoms, const std::vector& specialization_constants, uint32_t align, bool disable_robustness = false, bool require_full_subgroups = false, uint32_t required_subgroup_size = 0) { @@ -2363,6 +2379,14 @@ static void ggml_vk_load_shaders(vk_device& device) { parameter_count, wg_denoms, specialization_constants, disable_robustness, require_full_subgroups, required_subgroup_size)); }; + auto const &ggml_vk_create_pipeline2 = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const char *entrypoint, + uint32_t parameter_count, uint32_t push_constant_size, std::array wg_denoms, const std::vector& specialization_constants, + uint32_t align, bool disable_robustness = false, bool require_full_subgroups = false, uint32_t required_subgroup_size = 0) { + return ggml_vk_create_pipeline(device, pipeline, name.c_str(), spv_size, spv_data, entrypoint, + parameter_count, push_constant_size, wg_denoms, specialization_constants, + align, disable_robustness, require_full_subgroups, required_subgroup_size); + }; + auto const &fa_wg_denoms = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows) -> std::array { return {fa_rows_cols(path, hsk, hsv, clamp, type, small_rows)[0], 1, 1}; }; @@ -2764,11 +2788,11 @@ static void ggml_vk_load_shaders(vk_device& device) { // Create 6 variants, {s,m,l}x{unaligned,aligned} #define CREATE_MM(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \ if (device->mul_mat ## ID ## _l[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1, REQSUBGROUPSIZE > 0, false, REQSUBGROUPSIZE); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _m[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1, REQSUBGROUPSIZE > 0, false, REQSUBGROUPSIZE); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _s[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1, REQSUBGROUPSIZE > 0, false, REQSUBGROUPSIZE); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _l[TYPE]) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _m[TYPE]) \ @@ -2911,60 +2935,89 @@ static void ggml_vk_load_shaders(vk_device& device) { rm_stdq = 2; uint32_t rm_iq = 2 * rm_kq; - for (uint32_t w = 0; w < DMMV_WG_SIZE_COUNT; ++w) { - uint32_t wg_size_subgroup16 = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size_16 : (subgroup_size_16 * 4); - uint32_t wg_size_subgroup = (w == DMMV_WG_SIZE_SUBGROUP) ? device->subgroup_size : (device->subgroup_size * 4); + const bool use_subgroups = device->subgroup_arithmetic && device->architecture != vk_device_architecture::AMD_GCN; + // Ensure a subgroup size >= 16 is available + const bool use_subgroups16 = use_subgroups && subgroup_min_size_16; - const bool s = device->subgroup_add && device->architecture != vk_device_architecture::AMD_GCN; + const uint32_t subgroup_size = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control && device->subgroup_min_size <= 16 && device->subgroup_max_size >= 16) ? 16 : device->subgroup_size; + const uint32_t subgroup_size16 = std::max(subgroup_size, 16u); + + const uint32_t force_subgroup_size = use_subgroups ? subgroup_size : 0; + const uint32_t force_subgroup_size16 = use_subgroups16 ? subgroup_size16 : 0; + + for (uint32_t w = 0; w < DMMV_WG_SIZE_COUNT; ++w) { + const uint32_t wg_size_subgroup = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size : (subgroup_size * 4); + const uint32_t wg_size_subgroup16 = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size16 : (subgroup_size16 * 4); + + const shader_reduction_mode reduc = (use_subgroups && w == DMMV_WG_SIZE_SUBGROUP) ? SHADER_REDUCTION_MODE_SUBGROUP : + (use_subgroups && w == DMMV_WG_SIZE_LARGE) ? SHADER_REDUCTION_MODE_HYBRID : + SHADER_REDUCTION_MODE_SHMEM; + + const shader_reduction_mode reduc16 = (use_subgroups16 && w == DMMV_WG_SIZE_SUBGROUP) ? SHADER_REDUCTION_MODE_SUBGROUP : + (use_subgroups16 && w == DMMV_WG_SIZE_LARGE) ? SHADER_REDUCTION_MODE_HYBRID : + SHADER_REDUCTION_MODE_SHMEM; for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) { - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32", arr_dmmv_f32_f32_f32_len[s], arr_dmmv_f32_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32", arr_dmmv_f16_f32_f32_len[s], arr_dmmv_f16_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f32_f32", arr_dmmv_bf16_f32_f32_len[s], arr_dmmv_bf16_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32", arr_dmmv_q4_0_f32_f32_len[s], arr_dmmv_q4_0_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32", arr_dmmv_q4_1_f32_f32_len[s], arr_dmmv_q4_1_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32", arr_dmmv_q5_0_f32_f32_len[s], arr_dmmv_q5_0_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f32_f32", arr_dmmv_q5_1_f32_f32_len[s], arr_dmmv_q5_1_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f32_f32", arr_dmmv_q8_0_f32_f32_len[s], arr_dmmv_q8_0_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup, 1*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f32_f32", arr_dmmv_q2_k_f32_f32_len[s], arr_dmmv_q2_k_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f32_f32", arr_dmmv_q3_k_f32_f32_len[s], arr_dmmv_q3_k_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f32_f32", arr_dmmv_q4_k_f32_f32_len[s], arr_dmmv_q4_k_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f32_f32", arr_dmmv_q5_k_f32_f32_len[s], arr_dmmv_q5_k_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f32_f32", arr_dmmv_q6_k_f32_f32_len[s], arr_dmmv_q6_k_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f32_f32", arr_dmmv_iq1_s_f32_f32_len[s], arr_dmmv_iq1_s_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f32_f32", arr_dmmv_iq1_m_f32_f32_len[s], arr_dmmv_iq1_m_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f32_f32", arr_dmmv_iq2_xxs_f32_f32_len[s], arr_dmmv_iq2_xxs_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f32_f32", arr_dmmv_iq2_xs_f32_f32_len[s], arr_dmmv_iq2_xs_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f32_f32", arr_dmmv_iq2_s_f32_f32_len[s], arr_dmmv_iq2_s_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f32_f32", arr_dmmv_iq3_xxs_f32_f32_len[s], arr_dmmv_iq3_xxs_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f32_f32", arr_dmmv_iq3_s_f32_f32_len[s], arr_dmmv_iq3_s_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f32_f32", arr_dmmv_iq4_xs_f32_f32_len[s], arr_dmmv_iq4_xs_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f32_f32", arr_dmmv_iq4_nl_f32_f32_len[s], arr_dmmv_iq4_nl_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f32_f32", arr_dmmv_mxfp4_f32_f32_len[s], arr_dmmv_mxfp4_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32", arr_dmmv_f32_f32_f32_len[reduc], arr_dmmv_f32_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32", arr_dmmv_f16_f32_f32_len[reduc], arr_dmmv_f16_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f32_f32", arr_dmmv_bf16_f32_f32_len[reduc], arr_dmmv_bf16_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32", arr_dmmv_q4_0_f32_f32_len[reduc], arr_dmmv_q4_0_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32", arr_dmmv_q4_1_f32_f32_len[reduc], arr_dmmv_q4_1_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32", arr_dmmv_q5_0_f32_f32_len[reduc], arr_dmmv_q5_0_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f32_f32", arr_dmmv_q5_1_f32_f32_len[reduc], arr_dmmv_q5_1_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f32_f32", arr_dmmv_q8_0_f32_f32_len[reduc], arr_dmmv_q8_0_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup, 1*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f32_f32", arr_dmmv_q2_k_f32_f32_len[reduc16], arr_dmmv_q2_k_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f32_f32", arr_dmmv_q3_k_f32_f32_len[reduc16], arr_dmmv_q3_k_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f32_f32", arr_dmmv_q4_k_f32_f32_len[reduc16], arr_dmmv_q4_k_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f32_f32", arr_dmmv_q5_k_f32_f32_len[reduc16], arr_dmmv_q5_k_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f32_f32", arr_dmmv_q6_k_f32_f32_len[reduc16], arr_dmmv_q6_k_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f32_f32", arr_dmmv_iq1_s_f32_f32_len[reduc16], arr_dmmv_iq1_s_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f32_f32", arr_dmmv_iq1_m_f32_f32_len[reduc16], arr_dmmv_iq1_m_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f32_f32", arr_dmmv_iq2_xxs_f32_f32_len[reduc16], arr_dmmv_iq2_xxs_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f32_f32", arr_dmmv_iq2_xs_f32_f32_len[reduc16], arr_dmmv_iq2_xs_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f32_f32", arr_dmmv_iq2_s_f32_f32_len[reduc16], arr_dmmv_iq2_s_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f32_f32", arr_dmmv_iq3_xxs_f32_f32_len[reduc16], arr_dmmv_iq3_xxs_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f32_f32", arr_dmmv_iq3_s_f32_f32_len[reduc16], arr_dmmv_iq3_s_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f32_f32", arr_dmmv_iq4_xs_f32_f32_len[reduc16], arr_dmmv_iq4_xs_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f32_f32", arr_dmmv_iq4_nl_f32_f32_len[reduc16], arr_dmmv_iq4_nl_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f32_f32", arr_dmmv_mxfp4_f32_f32_len[reduc16], arr_dmmv_mxfp4_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32", arr_dmmv_f32_f16_f32_len[s], arr_dmmv_f32_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32", arr_dmmv_f16_f16_f32_len[s], arr_dmmv_f16_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f16_f32", arr_dmmv_bf16_f16_f32_len[s], arr_dmmv_bf16_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32", arr_dmmv_q4_0_f16_f32_len[s], arr_dmmv_q4_0_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32", arr_dmmv_q4_1_f16_f32_len[s], arr_dmmv_q4_1_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32", arr_dmmv_q5_0_f16_f32_len[s], arr_dmmv_q5_0_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f16_f32", arr_dmmv_q5_1_f16_f32_len[s], arr_dmmv_q5_1_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f16_f32", arr_dmmv_q8_0_f16_f32_len[s], arr_dmmv_q8_0_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup, 1*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f16_f32", arr_dmmv_q2_k_f16_f32_len[s], arr_dmmv_q2_k_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f16_f32", arr_dmmv_q3_k_f16_f32_len[s], arr_dmmv_q3_k_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f16_f32", arr_dmmv_q4_k_f16_f32_len[s], arr_dmmv_q4_k_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f16_f32", arr_dmmv_q5_k_f16_f32_len[s], arr_dmmv_q5_k_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f16_f32", arr_dmmv_q6_k_f16_f32_len[s], arr_dmmv_q6_k_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f16_f32", arr_dmmv_iq1_s_f16_f32_len[s], arr_dmmv_iq1_s_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f16_f32", arr_dmmv_iq1_m_f16_f32_len[s], arr_dmmv_iq1_m_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f16_f32", arr_dmmv_iq2_xxs_f16_f32_len[s], arr_dmmv_iq2_xxs_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f16_f32", arr_dmmv_iq2_xs_f16_f32_len[s], arr_dmmv_iq2_xs_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f16_f32", arr_dmmv_iq2_s_f16_f32_len[s], arr_dmmv_iq2_s_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f16_f32", arr_dmmv_iq3_xxs_f16_f32_len[s], arr_dmmv_iq3_xxs_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f16_f32", arr_dmmv_iq3_s_f16_f32_len[s], arr_dmmv_iq3_s_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f16_f32", arr_dmmv_iq4_xs_f16_f32_len[s], arr_dmmv_iq4_xs_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f16_f32", arr_dmmv_iq4_nl_f16_f32_len[s], arr_dmmv_iq4_nl_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f16_f32", arr_dmmv_mxfp4_f16_f32_len[s], arr_dmmv_mxfp4_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32", arr_dmmv_f32_f16_f32_len[reduc], arr_dmmv_f32_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32", arr_dmmv_f16_f16_f32_len[reduc], arr_dmmv_f16_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f16_f32", arr_dmmv_bf16_f16_f32_len[reduc], arr_dmmv_bf16_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32", arr_dmmv_q4_0_f16_f32_len[reduc], arr_dmmv_q4_0_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32", arr_dmmv_q4_1_f16_f32_len[reduc], arr_dmmv_q4_1_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32", arr_dmmv_q5_0_f16_f32_len[reduc], arr_dmmv_q5_0_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f16_f32", arr_dmmv_q5_1_f16_f32_len[reduc], arr_dmmv_q5_1_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f16_f32", arr_dmmv_q8_0_f16_f32_len[reduc], arr_dmmv_q8_0_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup, 1*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f16_f32", arr_dmmv_q2_k_f16_f32_len[reduc16], arr_dmmv_q2_k_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f16_f32", arr_dmmv_q3_k_f16_f32_len[reduc16], arr_dmmv_q3_k_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f16_f32", arr_dmmv_q4_k_f16_f32_len[reduc16], arr_dmmv_q4_k_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f16_f32", arr_dmmv_q5_k_f16_f32_len[reduc16], arr_dmmv_q5_k_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f16_f32", arr_dmmv_q6_k_f16_f32_len[reduc16], arr_dmmv_q6_k_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f16_f32", arr_dmmv_iq1_s_f16_f32_len[reduc16], arr_dmmv_iq1_s_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f16_f32", arr_dmmv_iq1_m_f16_f32_len[reduc16], arr_dmmv_iq1_m_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f16_f32", arr_dmmv_iq2_xxs_f16_f32_len[reduc16], arr_dmmv_iq2_xxs_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f16_f32", arr_dmmv_iq2_xs_f16_f32_len[reduc16], arr_dmmv_iq2_xs_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f16_f32", arr_dmmv_iq2_s_f16_f32_len[reduc16], arr_dmmv_iq2_s_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f16_f32", arr_dmmv_iq3_xxs_f16_f32_len[reduc16], arr_dmmv_iq3_xxs_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f16_f32", arr_dmmv_iq3_s_f16_f32_len[reduc16], arr_dmmv_iq3_s_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f16_f32", arr_dmmv_iq4_xs_f16_f32_len[reduc16], arr_dmmv_iq4_xs_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f16_f32", arr_dmmv_iq4_nl_f16_f32_len[reduc16], arr_dmmv_iq4_nl_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f16_f32", arr_dmmv_mxfp4_f16_f32_len[reduc16], arr_dmmv_mxfp4_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + +#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) + if (device->integer_dot_product) { + const uint32_t subgroup_size_int = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control) ? device->subgroup_min_size : device->subgroup_size; + const uint32_t wg_size_subgroup_int = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size_int : (subgroup_size_int * 4); + + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_q8_1_f32", arr_dmmv_q4_0_q8_1_f32_len[reduc], arr_dmmv_q4_0_q8_1_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_q8_1_f32", arr_dmmv_q4_1_q8_1_f32_len[reduc], arr_dmmv_q4_1_q8_1_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_q8_1_f32", arr_dmmv_q5_0_q8_1_f32_len[reduc], arr_dmmv_q5_0_q8_1_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_q8_1_f32", arr_dmmv_q5_1_q8_1_f32_len[reduc], arr_dmmv_q5_1_q8_1_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_q8_1_f32", arr_dmmv_q8_0_q8_1_f32_len[reduc], arr_dmmv_q8_0_q8_1_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); + } +#endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT } } @@ -3056,13 +3109,20 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256 * 4, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_flash_attn_split_k_reduce, "fa_split_k_reduce", fa_split_k_reduce_len, fa_split_k_reduce_data, "main", 3, 5 * sizeof(uint32_t), {1, device->subgroup_size, 1}, {device->subgroup_size}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1, "quantize_q8_1", quantize_q8_1_len, quantize_q8_1_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1); + + if (device->subgroup_clustered && device->subgroup_require_full_support) { + ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1, "quantize_q8_1", quantize_q8_1_subgroup_len, quantize_q8_1_subgroup_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1, true, true); + ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_subgroup_len, quantize_q8_1_x4_subgroup_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1, true, true); + } else { + ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1, "quantize_q8_1", quantize_q8_1_len, quantize_q8_1_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1); + ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_len, quantize_q8_1_x4_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1); + } for (uint32_t i = 0; i < p021_max_gqa_ratio; ++i) { - if (device->subgroup_add && device->subgroup_require_full_support) { - ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_subgroup_add_len, mul_mat_vec_p021_f16_f32_subgroup_add_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true, true); + if (device->subgroup_arithmetic && device->subgroup_require_full_support) { + ggml_vk_create_pipeline2(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_subgroup_add_len, mul_mat_vec_p021_f16_f32_subgroup_add_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true, true); } else { - ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true); + ggml_vk_create_pipeline2(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true); } } ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 12 * sizeof(uint32_t), {1, 1, 1}, {}, 1); @@ -3146,7 +3206,7 @@ static void ggml_vk_load_shaders(vk_device& device) { bool rte = device->float_controls_rte_fp16; #define CREATE_BINARY(name, namemod, spec, bindings) \ for (int s0 : {0,1}) for (int s1 : {0,1}) for (int d : {0,1}) \ - ggml_vk_create_pipeline(device, device->pipeline_ ## name ## namemod[s0][s1][d], \ + ggml_vk_create_pipeline2(device, device->pipeline_ ## name ## namemod[s0][s1][d], \ #name + get_suffix(s0, s1, d) + #namemod, name ## _len[s0][s1][d][rte], name ## _data[s0][s1][d][rte], \ "main", (bindings), sizeof(vk_op_binary_push_constants), {512, 1, 1}, spec, 1); @@ -3164,8 +3224,8 @@ static void ggml_vk_load_shaders(vk_device& device) { if (device->multi_add) { for (uint32_t i = 0; i < MAX_FUSED_ADDS; ++i) { - ggml_vk_create_pipeline(device, device->pipeline_multi_add[i], "multi_add_f32_" + std::to_string(i+1), multi_add_f32_len, multi_add_f32_data, "main", MAX_PARAMETER_COUNT, sizeof(vk_op_multi_add_push_constants), {512, 1, 1}, {i+2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_multi_add_rms[i], "multi_add_rms_f32_" + std::to_string(i+1), multi_add_rms_f32_len, multi_add_rms_f32_data, "main", MAX_PARAMETER_COUNT, sizeof(vk_op_multi_add_push_constants), {512, 1, 1}, {i+2}, 1); + ggml_vk_create_pipeline2(device, device->pipeline_multi_add[i], "multi_add_f32_" + std::to_string(i+1), multi_add_f32_len, multi_add_f32_data, "main", MAX_PARAMETER_COUNT, sizeof(vk_op_multi_add_push_constants), {512, 1, 1}, {i+2}, 1); + ggml_vk_create_pipeline2(device, device->pipeline_multi_add_rms[i], "multi_add_rms_f32_" + std::to_string(i+1), multi_add_rms_f32_len, multi_add_rms_f32_data, "main", MAX_PARAMETER_COUNT, sizeof(vk_op_multi_add_push_constants), {512, 1, 1}, {i+2}, 1); } } @@ -3209,6 +3269,8 @@ static void ggml_vk_load_shaders(vk_device& device) { CREATE_UNARY(relu) CREATE_UNARY(tanh) CREATE_UNARY(sigmoid) + CREATE_UNARY(hardsigmoid) + CREATE_UNARY(hardswish) #undef CREATE_UNARY #define CREATE_GLU(name) \ @@ -3257,7 +3319,7 @@ static void ggml_vk_load_shaders(vk_device& device) { } for (uint32_t i = 0; i < num_argsort_pipelines; ++i) { - ggml_vk_create_pipeline(device, device->pipeline_argsort_f32[i], "argsort_f32_"+std::to_string(i), argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1u<pipeline_argsort_f32[i], "argsort_f32_"+std::to_string(i), argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1u<pipeline_argmax_f32, "argmax_f32", argmax_f32_len, argmax_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1); @@ -3437,6 +3499,9 @@ static vk_device ggml_vk_get_device(size_t idx) { const char* GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM = getenv("GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM"); device->disable_host_visible_vidmem = GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM != nullptr; + const char* GGML_VK_ALLOW_SYSMEM_FALLBACK = getenv("GGML_VK_ALLOW_SYSMEM_FALLBACK"); + device->allow_sysmem_fallback = GGML_VK_ALLOW_SYSMEM_FALLBACK != nullptr; + bool fp16_storage = false; bool fp16_compute = false; bool maintenance4_support = false; @@ -3575,11 +3640,12 @@ static vk_device ggml_vk_get_device(size_t idx) { } device->float_controls_rte_fp16 = vk12_props.shaderRoundingModeRTEFloat16; - device->subgroup_add = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) && - (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eArithmetic); - + device->subgroup_arithmetic = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) && + (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eArithmetic); device->subgroup_shuffle = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) && (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eShuffle); + device->subgroup_clustered = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) && + (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eClustered); device->subgroup_ballot = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) && (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eBallot); @@ -4035,11 +4101,18 @@ static vk_device ggml_vk_get_device(size_t idx) { device->disable_fusion = getenv("GGML_VK_DISABLE_FUSION") != nullptr; device->add_rms_fusion = !device->disable_fusion && - device->subgroup_add && + device->subgroup_arithmetic && device->vendor_id != VK_VENDOR_ID_INTEL; device->partials_binding_alignment = std::max(4u, (uint32_t)device->properties.limits.minStorageBufferOffsetAlignment); + device->mmvq_mode = 0; + if (getenv("GGML_VK_DISABLE_MMVQ")) { + device->mmvq_mode = -1; + } else if (getenv("GGML_VK_FORCE_MMVQ")) { + device->mmvq_mode = 1; + } + return device; } @@ -4204,7 +4277,7 @@ static void ggml_vk_print_gpu_info(size_t idx) { } } -static bool ggml_vk_instance_validation_ext_available(const std::vector& instance_extensions); +static bool ggml_vk_instance_validation_ext_available(); static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector& instance_extensions); static bool ggml_vk_instance_debug_utils_ext_available(const std::vector & instance_extensions); @@ -4225,7 +4298,7 @@ static void ggml_vk_instance_init() { vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, api_version }; const std::vector instance_extensions = vk::enumerateInstanceExtensionProperties(); - const bool validation_ext = ggml_vk_instance_validation_ext_available(instance_extensions); + const bool validation_ext = ggml_vk_instance_validation_ext_available(); #ifdef __APPLE__ const bool portability_enumeration_ext = ggml_vk_instance_portability_enumeration_ext_available(instance_extensions); #endif @@ -4278,15 +4351,16 @@ static void ggml_vk_instance_init() { vk_instance.pfn_vkCmdBeginDebugUtilsLabelEXT = (PFN_vkCmdBeginDebugUtilsLabelEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkCmdBeginDebugUtilsLabelEXT"); vk_instance.pfn_vkCmdEndDebugUtilsLabelEXT = (PFN_vkCmdEndDebugUtilsLabelEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkCmdEndDebugUtilsLabelEXT"); vk_instance.pfn_vkCmdInsertDebugUtilsLabelEXT = (PFN_vkCmdInsertDebugUtilsLabelEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkCmdInsertDebugUtilsLabelEXT"); - } vk_perf_logger_enabled = getenv("GGML_VK_PERF_LOGGER") != nullptr; + std::vector devices = vk_instance.instance.enumeratePhysicalDevices(); + // Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan char * devices_env = getenv("GGML_VK_VISIBLE_DEVICES"); if (devices_env != nullptr) { - size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size(); + size_t num_available_devices = devices.size(); std::string devices(devices_env); std::replace(devices.begin(), devices.end(), ',', ' '); @@ -4301,8 +4375,6 @@ static void ggml_vk_instance_init() { vk_instance.device_indices.push_back(tmp); } } else { - std::vector devices = vk_instance.instance.enumeratePhysicalDevices(); - // If no vulkan devices are found, return early if (devices.empty()) { GGML_LOG_INFO("ggml_vulkan: No devices found.\n"); @@ -4407,6 +4479,19 @@ static void ggml_vk_instance_init() { GGML_LOG_DEBUG("ggml_vulkan: Found %zu Vulkan devices:\n", vk_instance.device_indices.size()); for (size_t i = 0; i < vk_instance.device_indices.size(); i++) { + vk::PhysicalDevice vkdev = devices[vk_instance.device_indices[i]]; + std::vector extensionprops = vkdev.enumerateDeviceExtensionProperties(); + + bool membudget_supported = false; + for (const auto & ext : extensionprops) { + if (strcmp(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME, ext.extensionName) == 0) { + membudget_supported = true; + break; + } + } + + vk_instance.device_supports_membudget.push_back(membudget_supported); + ggml_vk_print_gpu_info(i); } } @@ -4553,9 +4638,22 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type, uint32_t num_cols, uint32_t m, uint32_t k) { VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()"); - GGML_ASSERT(b_type == GGML_TYPE_F32 || b_type == GGML_TYPE_F16); + GGML_ASSERT(b_type == GGML_TYPE_F32 || b_type == GGML_TYPE_F16 || b_type == GGML_TYPE_Q8_1); GGML_ASSERT(num_cols >= 1 && num_cols <= mul_mat_vec_max_cols); + if (b_type == GGML_TYPE_Q8_1) { + switch (a_type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + break; + default: + return nullptr; + } + } + switch (a_type) { case GGML_TYPE_F32: case GGML_TYPE_F16: @@ -4587,7 +4685,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * // heuristic to choose workgroup size uint32_t dmmv_wg = DMMV_WG_SIZE_SUBGROUP; - if (ctx->device->vendor_id == VK_VENDOR_ID_NVIDIA || ctx->device->vendor_id == VK_VENDOR_ID_INTEL) { + if ((ctx->device->vendor_id == VK_VENDOR_ID_NVIDIA && ctx->device->architecture != vk_device_architecture::NVIDIA_PRE_TURING) || ctx->device->vendor_id == VK_VENDOR_ID_INTEL) { // Prefer larger workgroups when M is small, to spread the work out more // and keep more SMs busy. // q6_k seems to prefer small workgroup size even for "medium" values of M. @@ -4602,6 +4700,13 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * } } + if (b_type == GGML_TYPE_Q8_1) { + if (ctx->device->vendor_id == VK_VENDOR_ID_INTEL) { + dmmv_wg = DMMV_WG_SIZE_SUBGROUP; + } + return ctx->device->pipeline_dequant_mul_mat_vec_q8_1_f32[dmmv_wg][a_type][num_cols-1]; + } + return b_type == GGML_TYPE_F32 ? ctx->device->pipeline_dequant_mul_mat_vec_f32_f32[dmmv_wg][a_type][num_cols-1] : ctx->device->pipeline_dequant_mul_mat_vec_f16_f32[dmmv_wg][a_type][num_cols-1]; } @@ -4671,7 +4776,7 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co } static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type) { - VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()"); + VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec_id()"); GGML_ASSERT(b_type == GGML_TYPE_F32); switch (a_type) { @@ -4774,8 +4879,8 @@ static vk_buffer ggml_vk_create_buffer_temp(ggml_backend_vk_context * ctx, size_ static void * ggml_vk_host_malloc(vk_device& device, size_t size) { VK_LOG_MEMORY("ggml_vk_host_malloc(" << size << ")"); vk_buffer buf = ggml_vk_create_buffer(device, size, - vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached, - vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); + {vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached, + vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent}); if(!(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) { fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory\n", @@ -5584,20 +5689,20 @@ static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context& ggml_vk_sync_buffers(ctx, subctx); } -static vk_pipeline ggml_vk_get_quantize_pipeline(ggml_backend_vk_context * ctx, ggml_type type) { +static vk_pipeline ggml_vk_get_quantize_pipeline(ggml_backend_vk_context * ctx, ggml_type type, bool use_x4_blocks) { switch(type) { case GGML_TYPE_Q8_1: - return ctx->device->pipeline_quantize_q8_1; + return use_x4_blocks ? ctx->device->pipeline_quantize_q8_1_x4 : ctx->device->pipeline_quantize_q8_1; default: std::cerr << "Missing quantize pipeline for type: " << ggml_type_name(type) << std::endl; GGML_ABORT("fatal error"); } } -static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& subctx, vk_subbuffer&& in, vk_subbuffer&& out, uint32_t ne) { +static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& subctx, vk_subbuffer&& in, vk_subbuffer&& out, uint32_t ne, bool use_x4_blocks = false) { VK_LOG_DEBUG("ggml_vk_quantize_q8_1(" << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ", " << ne << ")"); - vk_pipeline pipeline = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1); + vk_pipeline pipeline = use_x4_blocks ? ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1, true) : ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1, false); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, std::array{ne}, { ne, 1, 1 }); ggml_vk_sync_buffers(ctx, subctx); @@ -5717,12 +5822,15 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT if (quantize_y) { - to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1); + to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1, true); } if (dryrun) { const uint64_t x_sz_upd = x_sz * ne02 * ne03; - const uint64_t y_sz_upd = y_sz * ne12 * ne13; + uint64_t y_sz_upd = y_sz * ne12 * ne13; + if (quantize_y) { + y_sz_upd = CEIL_DIV(y_sz_upd, 144) * 144; + } const uint64_t split_k_size = split_k > 1 ? d_sz * ne12 * ne13 * split_k : 0; if ( (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || @@ -5788,7 +5896,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub GGML_ASSERT(d_Y->size >= y_sz * ne12 * ne13); } else if (quantize_y) { d_Y = ctx->prealloc_y; - GGML_ASSERT(d_Y->size >= y_ne * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1)); + GGML_ASSERT(d_Y->size >= CEIL_DIV(y_sz * ne12 * ne13, 144) * 144); } else { d_Y = d_Qy; y_buf_offset = qy_buf_offset; @@ -5825,7 +5933,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub if (ctx->prealloc_y_need_sync) { ggml_vk_sync_buffers(ctx, subctx); } - ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13); + ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13, true); ctx->prealloc_y_last_pipeline_used = to_q8_1.get(); ctx->prealloc_y_last_tensor_used = src1; } @@ -5842,10 +5950,15 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub stride_batch_y = src1->nb[0] / ggml_type_size(src1->type); } + uint32_t y_sz_total = y_sz * ne12 * ne13; + if (quantize_y) { + y_sz_total = CEIL_DIV(y_sz_total, 144) * 144; + } + // compute ggml_vk_matmul( ctx, subctx, pipeline, - { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, + { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz_total }, { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, stride_batch_x, stride_batch_y, ne20*ne21, @@ -5860,6 +5973,51 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub } } +// Device tuning +static bool ggml_vk_should_use_mmvq(const vk_device& device, uint32_t m, uint32_t n, uint32_t k, ggml_type src0_type) { + if (device->mmvq_mode == 1) { + return true; + } else if (device->mmvq_mode == -1) { + return false; + } + + // MMVQ is generally good for batches + if (n > 1) { + return true; + } + + switch (device->vendor_id) { + case VK_VENDOR_ID_NVIDIA: + switch (src0_type) { + case GGML_TYPE_Q8_0: + return device->architecture == vk_device_architecture::NVIDIA_PRE_TURING; + default: + return true; + } + case VK_VENDOR_ID_AMD: + switch (src0_type) { + case GGML_TYPE_Q8_0: + return device->architecture == vk_device_architecture::AMD_GCN; + default: + return true; + } + case VK_VENDOR_ID_INTEL: + switch (src0_type) { + // From tests on A770 Linux, may need more tuning + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q5_1: + return false; + default: + return true; + } + default: + return true; + } + + GGML_UNUSED(m); + GGML_UNUSED(k); +} + static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; @@ -5914,22 +6072,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& const bool y_non_contig = !ggml_vk_dim01_contiguous(src1); const bool f16_f32_kernel = src1->type == GGML_TYPE_F32; - - const bool qx_needs_dequant = x_non_contig; - const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig; - - // Not implemented - GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT - - const uint64_t x_ne = ne01 * ne00; - const uint64_t y_ne = ne11 * ne10; - const uint64_t d_ne = ne11 * ne01; - - const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment); - const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); - const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz; - const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne; - const uint64_t d_sz = sizeof(float) * d_ne; + bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && (ne11 * ne10) % 4 == 0 && ggml_vk_should_use_mmvq(ctx->device, ne01, ne11, ne10, src0->type); vk_pipeline to_fp16_vk_0 = nullptr; vk_pipeline to_fp16_vk_1 = nullptr; @@ -5941,14 +6084,47 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& } else { to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); } - vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type, ne11, ne20, ne00); + + // Check for mmq first + vk_pipeline dmmv = quantize_y ? ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, GGML_TYPE_Q8_1, ne11, ne20, ne00) : nullptr; + vk_pipeline to_q8_1 = nullptr; + + if (dmmv == nullptr) { + // Fall back to f16 dequant mul mat + dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type, ne11, ne20, ne00); + quantize_y = false; + } + + if (quantize_y) { + to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1, true); + } + + const bool qx_needs_dequant = x_non_contig; + const bool qy_needs_dequant = !quantize_y && ((src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig); + + // Not implemented + GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT + GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT GGML_ASSERT(dmmv != nullptr); + const uint64_t x_ne = ne01 * ne00; + const uint64_t y_ne = ne11 * ne10; + const uint64_t d_ne = ne11 * ne01; + + const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment); + const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); + const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz; + const uint64_t y_sz = quantize_y ? (y_ne * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1)) : (f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne); + const uint64_t d_sz = sizeof(float) * d_ne; + if (dryrun) { const uint64_t x_sz_upd = x_sz * ne02 * ne03; - const uint64_t y_sz_upd = y_sz * ne12 * ne13; + uint64_t y_sz_upd = y_sz * ne12 * ne13; + if (quantize_y) { + y_sz_upd = CEIL_DIV(y_sz_upd, 144) * 144; + } if ( (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || (qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) { @@ -5957,7 +6133,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) { ctx->prealloc_size_x = x_sz_upd; } - if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) { + if ((qy_needs_dequant || quantize_y) && ctx->prealloc_size_y < y_sz_upd) { ctx->prealloc_size_y = y_sz_upd; } @@ -5968,6 +6144,9 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& if (qy_needs_dequant) { ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1); } + if (quantize_y) { + ggml_pipeline_request_descriptor_sets(ctx, to_q8_1, 1); + } ggml_pipeline_request_descriptor_sets(ctx, dmmv, 1); return; } @@ -5998,6 +6177,9 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& } if (qy_needs_dequant) { d_Y = ctx->prealloc_y; + } else if (quantize_y) { + d_Y = ctx->prealloc_y; + GGML_ASSERT(d_Y->size >= CEIL_DIV(y_sz * ne12 * ne13, 144) * 144); } else { d_Y = d_Qy; y_buf_offset = qy_buf_offset; @@ -6008,9 +6190,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& if (ctx->prealloc_x_need_sync) { ggml_vk_sync_buffers(ctx, subctx); } - } - if (x_non_contig) { GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment)); ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); } @@ -6026,6 +6206,17 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& ctx->prealloc_y_last_tensor_used = src1; } } + if (quantize_y) { + if (ctx->prealloc_y_last_pipeline_used != to_q8_1.get() || + ctx->prealloc_y_last_tensor_used != src1) { + if (ctx->prealloc_y_need_sync) { + ggml_vk_sync_buffers(ctx, subctx); + } + ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13, true); + ctx->prealloc_y_last_pipeline_used = to_q8_1.get(); + ctx->prealloc_y_last_tensor_used = src1; + } + } // For batch_n, the A matrix is the same for each batch, and B/D use the row stride as the batch stride uint32_t stride_batch_x = batch_n ? 0 : ne00*ne01; @@ -6050,6 +6241,12 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& groups_x = CEIL_DIV(groups_x, groups_z); } + // TODO: Clean up this whole sz * ne_2 * ne_3 thing, it hasn't been necessary for a long time + uint32_t y_sz_total = y_sz * ne12 * ne13; + if (quantize_y) { + y_sz_total = CEIL_DIV(y_sz_total, 144) * 144; + } + // compute const vk_mat_vec_push_constants pc = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01, @@ -6057,13 +6254,13 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& (uint32_t)ne02, (uint32_t)ne12, (uint32_t)r2, (uint32_t)r3, }; ggml_vk_dispatch_pipeline(ctx, subctx, dmmv, - { vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23} }, + { vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz_total }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23} }, pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z }); if (x_non_contig) { ctx->prealloc_x_need_sync = true; } - if (y_non_contig) { + if (y_non_contig || quantize_y) { ctx->prealloc_y_need_sync = true; } } @@ -7346,6 +7543,10 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_tanh[dst->type == GGML_TYPE_F16]; case GGML_UNARY_OP_SIGMOID: return ctx->device->pipeline_sigmoid[dst->type == GGML_TYPE_F16]; + case GGML_UNARY_OP_HARDSIGMOID: + return ctx->device->pipeline_hardsigmoid[dst->type == GGML_TYPE_F16]; + case GGML_UNARY_OP_HARDSWISH: + return ctx->device->pipeline_hardswish[dst->type == GGML_TYPE_F16]; default: break; } @@ -7846,6 +8047,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co break; case GGML_OP_GET_ROWS: elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) }; + elements[1] = std::min(elements[1], ctx->device->properties.limits.maxComputeWorkGroupCount[1]); + elements[2] = std::min(elements[2], ctx->device->properties.limits.maxComputeWorkGroupCount[2]); break; case GGML_OP_ARGSORT: elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 }; @@ -9182,7 +9385,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t if (ctx->prealloc_split_k != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_split_k); } - ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal); + ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, {vk::MemoryPropertyFlagBits::eDeviceLocal}); } } @@ -9192,9 +9395,9 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t ggml_pipeline_allocate_descriptor_sets(ctx); - vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer d_Y = ggml_vk_create_buffer_check(ctx->device, sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer d_D = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); + vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer d_Y = ggml_vk_create_buffer_check(ctx->device, sizeof(Y_TYPE) * y_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer d_D = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal}); X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne); Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne); @@ -9420,8 +9623,8 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_ const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant); float * x = (float *) malloc(x_sz); void * qx = malloc(qx_sz); - vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz_f16, vk::MemoryPropertyFlagBits::eDeviceLocal); + vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz_f16, {vk::MemoryPropertyFlagBits::eDeviceLocal}); float * x_ref = (float *) malloc(x_sz); ggml_fp16_t * x_chk = (ggml_fp16_t *) malloc(x_sz_f16); @@ -9526,8 +9729,8 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_ // float * x = (float *) malloc(x_sz); // block_q8_1 * qx = (block_q8_1 *)malloc(qx_sz); // block_q8_1 * qx_res = (block_q8_1 *)malloc(qx_sz); -// vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); -// vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); +// vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); +// vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); // // for (size_t i = 0; i < ne; i++) { // x[i] = rand() / (float)RAND_MAX; @@ -9674,10 +9877,10 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, float * x = (float *) malloc(x_sz); float * y = (float *) malloc(y_sz); void * qx = malloc(qx_sz); - vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer y_buf = ggml_vk_create_buffer_check(ctx->device, y_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer qy_buf = ggml_vk_create_buffer_check(ctx->device, qy_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer d_buf = ggml_vk_create_buffer_check(ctx->device, d_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); + vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer y_buf = ggml_vk_create_buffer_check(ctx->device, y_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer qy_buf = ggml_vk_create_buffer_check(ctx->device, qy_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer d_buf = ggml_vk_create_buffer_check(ctx->device, d_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); float * d = (float *) malloc(d_sz); float * d_chk = (float *) malloc(d_sz); @@ -9704,7 +9907,7 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, if (ctx->prealloc_split_k != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_split_k); } - ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal); + ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, {vk::MemoryPropertyFlagBits::eDeviceLocal}); } } if (mmq) { @@ -10012,6 +10215,8 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_SIGMOID: + case GGML_UNARY_OP_HARDSIGMOID: + case GGML_UNARY_OP_HARDSWISH: break; default: return false; @@ -10382,6 +10587,8 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_SIGMOID: + case GGML_UNARY_OP_HARDSIGMOID: + case GGML_UNARY_OP_HARDSWISH: ggml_vk_unary(ctx, compute_ctx, src0, node, dryrun); break; default: @@ -10624,6 +10831,8 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph * case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_SIGMOID: + case GGML_UNARY_OP_HARDSIGMOID: + case GGML_UNARY_OP_HARDSWISH: buf = tensor->buffer; break; default: @@ -11478,15 +11687,29 @@ void ggml_backend_vk_get_device_description(int device, char * description, size void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) { GGML_ASSERT(device < (int) vk_instance.device_indices.size()); + GGML_ASSERT(device < (int) vk_instance.device_supports_membudget.size()); vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]]; + vk::PhysicalDeviceMemoryBudgetPropertiesEXT budgetprops; + vk::PhysicalDeviceMemoryProperties2 memprops = {}; + bool membudget_supported = vk_instance.device_supports_membudget[device]; - vk::PhysicalDeviceMemoryProperties memprops = vkdev.getMemoryProperties(); + if (membudget_supported) { + memprops.pNext = &budgetprops; + } + vkdev.getMemoryProperties2(&memprops); + + for (uint32_t i = 0; i < memprops.memoryProperties.memoryHeapCount; ++i) { + const vk::MemoryHeap & heap = memprops.memoryProperties.memoryHeaps[i]; - for (const vk::MemoryHeap& heap : memprops.memoryHeaps) { if (heap.flags & vk::MemoryHeapFlagBits::eDeviceLocal) { *total = heap.size; - *free = heap.size; + + if (membudget_supported && i < budgetprops.heapUsage.size()) { + *free = budgetprops.heapBudget[i] - budgetprops.heapUsage[i]; + } else { + *free = heap.size; + } break; } } @@ -11561,6 +11784,8 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_SIGMOID: + case GGML_UNARY_OP_HARDSIGMOID: + case GGML_UNARY_OP_HARDSWISH: return ggml_is_contiguous(op->src[0]) && (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) && @@ -11851,7 +12076,10 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm case GGML_OP_ACC: case GGML_OP_CONCAT: case GGML_OP_SCALE: + return true; case GGML_OP_PAD: + return (ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) && + (ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0); case GGML_OP_ROLL: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: @@ -11993,35 +12221,33 @@ ggml_backend_reg_t ggml_backend_vk_reg() { } // Extension availability -static bool ggml_vk_instance_validation_ext_available(const std::vector& instance_extensions) { +static bool ggml_vk_instance_validation_ext_available() { #ifdef GGML_VULKAN_VALIDATE - bool portability_enumeration_ext = false; - // Check for portability enumeration extension for MoltenVK support - for (const auto& properties : instance_extensions) { - if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) { - return true; + // Check if validation layer provides the extension + const std::string layer_name = "VK_LAYER_KHRONOS_validation"; + for (const auto& layer : vk::enumerateInstanceLayerProperties()) { + if (layer_name == layer.layerName.data()) { + for (const auto& ext : vk::enumerateInstanceExtensionProperties(layer_name)) { + if (strcmp("VK_EXT_validation_features", ext.extensionName.data()) == 0) { + return true; + } + } } } - if (!portability_enumeration_ext) { - std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl; - } + + std::cerr << "ggml_vulkan: WARNING: Validation layer or layer extension VK_EXT_validation_features not found." << std::endl; #endif return false; - - UNUSED(instance_extensions); } static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector& instance_extensions) { #ifdef __APPLE__ - bool portability_enumeration_ext = false; // Check for portability enumeration extension for MoltenVK support for (const auto& properties : instance_extensions) { if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) { return true; } } - if (!portability_enumeration_ext) { - std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl; - } + std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl; #endif return false; @@ -12380,6 +12606,12 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * case GGML_UNARY_OP_SIGMOID: tensor_clone = ggml_sigmoid(ggml_ctx, src_clone[0]); break; + case GGML_UNARY_OP_HARDSIGMOID: + tensor_clone = ggml_hardsigmoid(ggml_ctx, src_clone[0]); + break; + case GGML_UNARY_OP_HARDSWISH: + tensor_clone = ggml_hardswish(ggml_ctx, src_clone[0]); + break; default: std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; GGML_ABORT("fatal error"); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp index d40848e15f..482445c6fe 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp @@ -334,6 +334,9 @@ void main() { [[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) { [[unroll]] for (uint32_t r = 0; r < Br; ++r) { Of[r][d] *= Lfrcp[r]; +#if defined(ACC_TYPE_MAX) + Of[r][d] = clamp(Of[r][d], -vec4(ACC_TYPE_MAX), vec4(ACC_TYPE_MAX)); +#endif } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp index 97c2a54129..63b32171b0 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp @@ -373,6 +373,9 @@ void main() { [[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) { [[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) { Of[r][d] *= ACC_TYPE(Lfrcp[r]); +#if defined(ACC_TYPE_MAX) + Of[r][d] = clamp(Of[r][d], -ACC_TYPE_MAX, ACC_TYPE_MAX); +#endif } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp index 77ae5ff01d..ab647e9bc8 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp @@ -283,6 +283,10 @@ void main() { O = Ldiag*O; +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < O.length(); ++i) { O[i] = clamp(O[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + uint32_t o_offset = iq3*p.ne2*p.ne1*HSV; coopmat O_D = coopmat(O); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_split_k_reduce.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_split_k_reduce.comp index 76ef4b6dfb..06e83822fe 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_split_k_reduce.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_split_k_reduce.comp @@ -111,6 +111,10 @@ void main() { } } O *= L; + + const float FLT_MAX = uintBitsToFloat(0x7F7FFFFF); + O = clamp(O, -FLT_MAX, FLT_MAX); + data_d[iq3 * D * N + D * n + d] = O; } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp index ee6b86a18d..7ef75cd7a4 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp @@ -7,27 +7,36 @@ layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; void main() { const uint i00 = gl_GlobalInvocationID.x; - const uint i10 = gl_GlobalInvocationID.y; - const uint i11 = (gl_GlobalInvocationID.z)/p.ne12; - const uint i12 = (gl_GlobalInvocationID.z)%p.ne12; if (i00 >= p.ne00) { return; } - const uint i01 = data_b[get_boffset() + i10*p.nb10 + i11*p.nb11 + i12*p.nb12]; + uint gid_z = gl_GlobalInvocationID.z; + while (gid_z < p.ne11 * p.ne12) { + uint gid_y = gl_GlobalInvocationID.y; + while (gid_y < p.ne10) { + const uint i10 = gid_y; + const uint i11 = gid_z / p.ne12; + const uint i12 = gid_z % p.ne12; - const uint a_offset = get_aoffset() + i01*p.nb01 + i11*p.nb02 + i12*p.nb03; - const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23; + const uint i01 = data_b[get_boffset() + i10*p.nb10 + i11*p.nb11 + i12*p.nb12]; + + const uint a_offset = get_aoffset() + i01*p.nb01 + i11*p.nb02 + i12*p.nb03; + const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23; #if defined(DATA_A_BF16) - FLOAT_TYPE v = FLOAT_TYPE(bf16_to_fp32(data_a[a_offset + i00])); + FLOAT_TYPE v = FLOAT_TYPE(bf16_to_fp32(data_a[a_offset + i00])); #else - FLOAT_TYPE v = FLOAT_TYPE(data_a[a_offset + i00]); + FLOAT_TYPE v = FLOAT_TYPE(data_a[a_offset + i00]); #endif #ifndef OPTIMIZATION_ERROR_WORKAROUND - data_d[d_offset + i00] = D_TYPE(v); + data_d[d_offset + i00] = D_TYPE(v); #else - data_d[d_offset + i00] = D_TYPE(v); + data_d[d_offset + i00] = D_TYPE(v); #endif + gid_y += gl_WorkGroupSize.y * gl_NumWorkGroups.y; + } + gid_z += gl_WorkGroupSize.z * gl_NumWorkGroups.z; + } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp index cfd645a38a..339f905fc7 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp @@ -10,9 +10,6 @@ layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; void main() { const uint i00 = (gl_GlobalInvocationID.x)*2; - const uint i10 = gl_GlobalInvocationID.y; - const uint i11 = (gl_GlobalInvocationID.z)/p.ne12; - const uint i12 = (gl_GlobalInvocationID.z)%p.ne12; #ifdef NEEDS_INIT_IQ_SHMEM init_iq_shmem(gl_WorkGroupSize); @@ -22,20 +19,33 @@ void main() { return; } - const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12]; + uint gid_z = gl_GlobalInvocationID.z; + while (gid_z < p.ne11 * p.ne12) { + uint gid_y = gl_GlobalInvocationID.y; + while (gid_y < p.ne10) { + const uint i10 = gid_y; + const uint i11 = gid_z / p.ne12; + const uint i12 = gid_z % p.ne12; - const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03; - const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23; + const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12]; - const uint ib = a_offset + i00/QUANT_K; // block index - const uint iqs = (i00%QUANT_K)/QUANT_R; // quant index - const uint iybs = i00 - i00%QUANT_K; // dst block start index - const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2; + const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03; + const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23; - vec2 v = dequantize(ib, iqs, 0); - const vec2 dm = get_dm(ib, 0); - v = v * dm.x + dm.y; + const uint ib = a_offset + i00/QUANT_K; // block index + const uint iqs = (i00%QUANT_K)/QUANT_R; // quant index + const uint iybs = i00 - i00%QUANT_K; // dst block start index + const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2; - data_d[d_offset + iybs + iqs ] = D_TYPE(v.x); - data_d[d_offset + iybs + iqs + y_offset] = D_TYPE(v.y); + vec2 v = dequantize(ib, iqs, 0); + const vec2 dm = get_dm(ib, 0); + v = v * dm.x + dm.y; + + data_d[d_offset + iybs + iqs ] = D_TYPE(v.x); + data_d[d_offset + iybs + iqs + y_offset] = D_TYPE(v.y); + + gid_y += gl_WorkGroupSize.y * gl_NumWorkGroups.y; + } + gid_z += gl_WorkGroupSize.z * gl_NumWorkGroups.z; + } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/hardsigmoid.comp b/ggml/src/ggml-vulkan/vulkan-shaders/hardsigmoid.comp new file mode 100644 index 0000000000..1da252cc66 --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/hardsigmoid.comp @@ -0,0 +1,22 @@ +#version 450 + +#include "generic_head.comp" +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable + +layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (i >= p.KX) { + return; + } + + const float x = float(data_a[i]); + data_d[i] = D_TYPE(min(1.0f, max(0.0f, (x + 3.0f) / 6.0f))); +} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/hardswish.comp b/ggml/src/ggml-vulkan/vulkan-shaders/hardswish.comp new file mode 100644 index 0000000000..3afc588274 --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/hardswish.comp @@ -0,0 +1,22 @@ +#version 450 + +#include "generic_head.comp" +#include "types.comp" + +#extension GL_EXT_control_flow_attributes : enable + +layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; +layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; + +void main() { + const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; + + if (i >= p.KX) { + return; + } + + const float x = float(data_a[i]); + data_d[i] = D_TYPE(x * min(1.0f, max(0.0f, (x + 3.0f) / 6.0f))); +} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp index b93e9948f7..f761391eae 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp @@ -1,7 +1,8 @@ #extension GL_EXT_control_flow_attributes : enable #extension GL_EXT_shader_16bit_storage : require #extension GL_EXT_shader_8bit_storage : require -#if USE_SUBGROUP_ADD + +#if USE_SUBGROUP_ADD || USE_SUBGROUP_ADD_NO_SHMEM #extension GL_KHR_shader_subgroup_basic : require #extension GL_KHR_shader_subgroup_arithmetic : require #endif @@ -12,10 +13,19 @@ #include "types.comp" +#ifndef MMQ layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; +#else +layout (binding = 0) readonly buffer A {A_TYPE_PACKED16 data_a[];}; +#endif + layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; +#ifdef B_TYPE_VEC2 layout (binding = 1) readonly buffer BV2 {B_TYPE_VEC2 data_b_v2[];}; +#endif +#ifdef B_TYPE_VEC4 layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];}; +#endif layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; #ifdef MUL_MAT_ID @@ -92,6 +102,23 @@ layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 1) const uint NUM_ROWS = 1; layout (constant_id = 2) const uint NUM_COLS = 1; +#ifdef USE_SUBGROUP_ADD_NO_SHMEM +void reduce_result(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) { + [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + temp[j][n] = subgroupAdd(temp[j][n]); + } + } + + if (tid == 0) { + [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(temp[j][n]); + } + } + } +} +#else shared FLOAT_TYPE tmpsh[NUM_COLS][NUM_ROWS][BLOCK_SIZE]; void reduce_result(FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) { @@ -152,3 +179,4 @@ void reduce_result(FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offs } #endif } +#endif diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vecq.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vecq.comp new file mode 100644 index 0000000000..8fb314fa0a --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vecq.comp @@ -0,0 +1,140 @@ +#version 450 + +#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require +#extension GL_EXT_integer_dot_product : require + +#define MMQ +#define B_TYPE block_q8_1_x4 + +#include "mul_mat_vec_base.comp" + +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; + +#define K_PER_ITER 8 + +#include "mul_mmq_funcs.comp" + +uint a_offset, b_offset, d_offset; + +int32_t cache_b_qs[2]; +vec2 cache_b_ds; + +void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i) { + [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { + const uint col = i*BLOCK_SIZE + tid*K_PER_ITER; + + // Preload data_b block + const uint b_block_idx = (j*p.batch_stride_b + col) / QUANT_K_Q8_1 + b_offset; + const uint b_qs_idx = tid % 4; + const uint b_block_idx_outer = b_block_idx / 4; + const uint b_block_idx_inner = b_block_idx % 4; + cache_b_ds = vec2(data_b[b_block_idx_outer].ds[b_block_idx_inner]); + +#if QUANT_R == 2 + cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx]; + cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx + 4]; +#else + cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 2]; + cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 2 + 1]; +#endif + + uint ibi = first_row*p.ncols; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint a_block_idx = (ibi + col)/QUANT_K + a_offset; + ibi += p.ncols; + + int32_t q_sum = 0; +#if QUANT_R == 2 + const i32vec2 data_a_qs = repack(a_block_idx, b_qs_idx); + q_sum += dotPacked4x8EXT(data_a_qs.x, + cache_b_qs[0]); + q_sum += dotPacked4x8EXT(data_a_qs.y, + cache_b_qs[1]); +#else + int32_t data_a_qs = repack(a_block_idx, b_qs_idx * 2); + q_sum += dotPacked4x8EXT(data_a_qs, + cache_b_qs[0]); + data_a_qs = repack(a_block_idx, b_qs_idx * 2 + 1); + q_sum += dotPacked4x8EXT(data_a_qs, + cache_b_qs[1]); +#endif + +#if QUANT_AUXF == 1 + temp[j][n] += mul_q8_1(q_sum, get_d(a_block_idx), cache_b_ds, 4); +#else + temp[j][n] += mul_q8_1(q_sum, get_dm(a_block_idx), cache_b_ds, 4); +#endif + } + } +} + +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { + const uint tid = gl_LocalInvocationID.x; + + get_offsets(a_offset, b_offset, d_offset); + a_offset /= QUANT_K; + b_offset /= QUANT_K_Q8_1; + + FLOAT_TYPE temp[NUM_COLS][NUM_ROWS]; + + [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + temp[j][n] = FLOAT_TYPE(0.0f); + } + } + + uint num_iters = p.ncols / (K_PER_ITER * BLOCK_SIZE); + if (num_iters * K_PER_ITER * BLOCK_SIZE + K_PER_ITER*tid < p.ncols) { + num_iters++; + } + int unroll_count = 4; + uint unrolled_iters = num_iters & ~(unroll_count - 1); + + uint i = 0; + while (i < unrolled_iters) { + // Manually partially unroll the loop + [[unroll]] for (uint k = 0; k < unroll_count; ++k) { + iter(temp, first_row, num_rows, tid, i*K_PER_ITER); + i++; + } + } + + unroll_count = 2; + unrolled_iters = num_iters & ~(unroll_count - 1); + +#if K_PER_ITER == 2 + if ((p.ncols & 1) != 0 && + unrolled_iters == num_iters && + unrolled_iters > 0) { + unrolled_iters -= unroll_count; + } +#endif + + while (i < unrolled_iters) { + // Manually partially unroll the loop + [[unroll]] for (uint k = 0; k < unroll_count; ++k) { + iter(temp, first_row, num_rows, tid, i*K_PER_ITER); + i++; + } + } + while (i < num_iters) { + iter(temp, first_row, num_rows, tid, i*K_PER_ITER); + i++; + } + + reduce_result(temp, d_offset, first_row, num_rows, tid); +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); + } +} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp index 5ecf68a643..7e10e99e9e 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp @@ -891,6 +891,20 @@ void main() { barrier(); } +#if defined(ACC_TYPE_MAX) +#ifdef COOPMAT + [[unroll]] for (uint j = 0; j < cms_per_row * cms_per_col; j++) { + [[unroll]] for (uint i = 0; i < sums[j].length(); ++i) { + sums[j][i] = clamp(sums[j][i], -ACC_TYPE_MAX, ACC_TYPE_MAX); + } + } +#else + [[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) { + sums[i] = clamp(sums[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); + } +#endif +#endif + const uint dr = ir * BM + warp_r * WM; const uint dc = ic * BN + warp_c * WN; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_cm2.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_cm2.comp index f5aebf6e93..69ac38fd41 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_cm2.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_cm2.comp @@ -349,6 +349,10 @@ void main() { sum = coopMatMulAdd(mat_a, mat_b, sum); block_k += BK; } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + coopmat mat_d = coopmat(sum); coopMatStoreTensorNV(mat_d, data_d, pos_d, sliceTensorLayoutNV(tensorLayoutD, ic * BN, BNover4, ir * BM, BM), tensorViewTranspose); @@ -388,6 +392,10 @@ void main() { sum = coopMatMulAdd(mat_a, mat_b, sum); block_k += BK; } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + coopmat mat_d = coopmat(sum); coopMatStoreTensorNV(mat_d, data_d, pos_d, sliceTensorLayoutNV(tensorLayoutD, ic * BN, BNover2, ir * BM, BM), tensorViewTranspose); @@ -428,6 +436,10 @@ void main() { sum = coopMatMulAdd(mat_a, mat_b, sum); block_k += BK; } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + coopmat mat_d = coopmat(sum); coopMatStoreTensorNV(mat_d, data_d, pos_d, sliceTensorLayoutNV(tensorLayoutD, ic * BN, BN, ir * BM, BM), tensorViewTranspose); @@ -444,18 +456,111 @@ void main() { tensorLayoutBClamp = setTensorLayoutStrideNV(tensorLayoutBClamp, stride_b, 1); - coopmat sum; - sum = coopmat(0.0); - uint k_iters = (end_k - start_k + BK - 1) / BK; fetch_scales(ir * BM, pos_a, stride_a, start_k, tid, false); + store_scales(tid); + +#ifdef MUL_MAT_ID + if (enable_smaller_matrices && ic * BN + BNover4 >= _ne1) { + coopmat sum; + sum = coopmat(0.0); + + [[dont_unroll]] + for (uint block_k = start_k, i = 0; i < k_iters; block_k += BK, ++i) { + + if ((block_k % QUANT_K) == 0) { + store_scales(tid); + } + if (block_k + BK < end_k && ((block_k + BK) % QUANT_K) == 0) { + fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false); + } + + if ((ir + 1) * BM <= p.M && block_k + BK <= end_k) { + coopmat mat_a; + coopmat mat_b; + + coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA); + coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose, decodeFuncB); + + sum = coopMatMulAdd(mat_a, mat_b, sum); + } else { + coopmat mat_a; + coopmat mat_b; + + coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA); + coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose, decodeFuncB); + + sum = coopMatMulAdd(mat_a, mat_b, sum); + } + } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + + // Convert from ACC_TYPE to D_TYPE + coopmat mat_d; + mat_d = coopmat(sum); + + // Call callback to store each element, remapping row through shared memory + coopMatPerElementNV(mat_d, mat_d, perElemOpD, ir, ic); + return; + } + if (enable_smaller_matrices && ic * BN + BNover2 >= _ne1) { + coopmat sum; + sum = coopmat(0.0); + + [[dont_unroll]] + for (uint block_k = start_k, i = 0; i < k_iters; block_k += BK, ++i) { + + if ((block_k % QUANT_K) == 0) { + store_scales(tid); + } + if (block_k + BK < end_k && ((block_k + BK) % QUANT_K) == 0) { + fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false); + } + + if ((ir + 1) * BM <= p.M && block_k + BK <= end_k) { + coopmat mat_a; + coopmat mat_b; + + coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA); + coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose, decodeFuncB); + + sum = coopMatMulAdd(mat_a, mat_b, sum); + } else { + coopmat mat_a; + coopmat mat_b; + + coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA); + coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose, decodeFuncB); + + sum = coopMatMulAdd(mat_a, mat_b, sum); + } + } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + + // Convert from ACC_TYPE to D_TYPE + coopmat mat_d; + mat_d = coopmat(sum); + + // Call callback to store each element, remapping row through shared memory + coopMatPerElementNV(mat_d, mat_d, perElemOpD, ir, ic); + return; + } +#endif + coopmat sum; + sum = coopmat(0.0); [[dont_unroll]] for (uint block_k = start_k, i = 0; i < k_iters; block_k += BK, ++i) { - store_scales(tid); - if (block_k + BK < end_k) { + if ((block_k % QUANT_K) == 0) { + store_scales(tid); + } + if (block_k + BK < end_k && ((block_k + BK) % QUANT_K) == 0) { fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false); } @@ -485,6 +590,9 @@ void main() { sum = coopMatMulAdd(mat_a, mat_b, sum); } } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif // Convert from ACC_TYPE to D_TYPE coopmat mat_d; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq.comp index 83de90eb7e..f36add62a9 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq.comp @@ -28,7 +28,7 @@ layout (binding = 0) readonly buffer A {A_TYPE_PACKED16 data_a[];}; #if defined(A_TYPE_PACKED32) layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];}; #endif -layout (binding = 1) readonly buffer B {block_q8_1_packed32 data_b[];}; +layout (binding = 1) readonly buffer B {block_q8_1_x4_packed128 data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; #ifdef MUL_MAT_ID @@ -98,7 +98,7 @@ shared FLOAT_TYPE_VEC2 buf_b_ds[BN]; #endif #define LOAD_VEC_A (4 * QUANT_R) -#define LOAD_VEC_B 4 +#define LOAD_VEC_B 16 #ifdef MUL_MAT_ID shared u16vec2 row_ids[4096]; @@ -270,15 +270,22 @@ void main() { const uint iqs = idx & 0x7; #else const uint ib = pos_b_ib + (loadc_b + l) * p.stride_b / BK; + const uint ib_outer = ib / 4; + const uint ib_inner = ib % 4; + const uint iqs = loadr_b; #endif const uint buf_ib = loadc_b + l; if (iqs == 0) { - buf_b_ds[buf_ib] = FLOAT_TYPE_VEC2(data_b[ib].ds); + buf_b_ds[buf_ib] = FLOAT_TYPE_VEC2(data_b[ib_outer].ds[ib_inner]); } - buf_b_qs[buf_ib * SHMEM_STRIDE + iqs] = data_b[ib].qs[iqs]; + const ivec4 values = data_b[ib_outer].qs[ib_inner * 2 + iqs]; + buf_b_qs[buf_ib * SHMEM_STRIDE + iqs * 4 ] = values.x; + buf_b_qs[buf_ib * SHMEM_STRIDE + iqs * 4 + 1] = values.y; + buf_b_qs[buf_ib * SHMEM_STRIDE + iqs * 4 + 2] = values.z; + buf_b_qs[buf_ib * SHMEM_STRIDE + iqs * 4 + 3] = values.w; } barrier(); @@ -349,7 +356,7 @@ void main() { cache_b_qs[cc * (BK / 4) + idx_k]); } - sums[sums_idx] += mul_q8_1(q_sum, cache_a_dm[cache_a_idx], cache_b_ds[cc]); + sums[sums_idx] += mul_q8_1(q_sum, cache_a_dm[cache_a_idx], cache_b_ds[cc], 1); } } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq_funcs.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq_funcs.comp index 34e8db9770..cdfb230f4e 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq_funcs.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq_funcs.comp @@ -16,8 +16,8 @@ i32vec2 repack(uint ib, uint iqs) { (vui >> 4) & 0x0F0F0F0F); } -ACC_TYPE mul_q8_1(int32_t q_sum, float da, vec2 dsb) { - return ACC_TYPE(da * (float(q_sum) * dsb.x - 8.0f * dsb.y)); +ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) { + return ACC_TYPE(da * (float(q_sum) * dsb.x - (8 / sum_divisor) * dsb.y)); } #endif @@ -29,8 +29,8 @@ i32vec2 repack(uint ib, uint iqs) { (vui >> 4) & 0x0F0F0F0F); } -ACC_TYPE mul_q8_1(int32_t q_sum, vec2 dma, vec2 dsb) { - return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y); +ACC_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) { + return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor); } #endif @@ -50,8 +50,8 @@ i32vec2 repack(uint ib, uint iqs) { return i32vec2(v0, v1); } -ACC_TYPE mul_q8_1(int32_t q_sum, float da, vec2 dsb) { - return ACC_TYPE(da * (float(q_sum) * dsb.x - 16.0f * dsb.y)); +ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) { + return ACC_TYPE(da * (float(q_sum) * dsb.x - (16 / sum_divisor) * dsb.y)); } #endif @@ -69,8 +69,8 @@ i32vec2 repack(uint ib, uint iqs) { return i32vec2(v0, v1); } -ACC_TYPE mul_q8_1(int32_t q_sum, vec2 dma, vec2 dsb) { - return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y); +ACC_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) { + return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor); } #endif @@ -81,7 +81,7 @@ int32_t repack(uint ib, uint iqs) { data_a[ib].qs[iqs * 2 + 1])); } -ACC_TYPE mul_q8_1(int32_t q_sum, float da, vec2 dsb) { +ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) { return ACC_TYPE(float(q_sum) * da * dsb.x); } #endif diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/quantize_q8_1.comp b/ggml/src/ggml-vulkan/vulkan-shaders/quantize_q8_1.comp index e2e020fec2..145c9fbdc9 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/quantize_q8_1.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/quantize_q8_1.comp @@ -3,6 +3,15 @@ #extension GL_EXT_control_flow_attributes : require #extension GL_EXT_shader_16bit_storage : require +#ifdef USE_SUBGROUPS +#extension GL_KHR_shader_subgroup_basic : require +#extension GL_KHR_shader_subgroup_clustered : require + +#define INVOCATION_ID gl_SubgroupInvocationID.x +#else +#define INVOCATION_ID gl_LocalInvocationID.x +#endif + layout (push_constant) uniform parameter { uint ne; @@ -14,13 +23,19 @@ layout(constant_id = 0) const uint GROUP_SIZE = 32; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {vec4 data_a[];}; +#ifndef QBLOCK_X4 layout (binding = 1) writeonly buffer D {block_q8_1_packed32 data_b[];}; +#else +layout (binding = 1) writeonly buffer D {block_q8_1_x4 data_b[];}; +#endif +#ifndef USE_SUBGROUPS shared float shmem[GROUP_SIZE]; +#endif void quantize() { const uint wgid = gl_WorkGroupID.x; - const uint tid = gl_LocalInvocationID.x; + const uint tid = INVOCATION_ID; // Each thread handles a vec4, so 8 threads handle a block const uint blocks_per_group = GROUP_SIZE / 8; @@ -30,9 +45,19 @@ void quantize() { const uint ib = wgid * blocks_per_group + block_in_wg; const uint iqs = tid % 8; +#ifndef QBLOCK_X4 if (ib >= gl_NumWorkGroups.x * blocks_per_group) { return; } +#else + const uint ibx4_outer = ib / 4; + const uint ibx4_inner = ib % 4; + + const uint required_x4_blocks = (p.ne + 127) / 128; + if (ibx4_outer >= required_x4_blocks) { + return; + } +#endif const uint a_idx = ib * 8 + iqs; @@ -40,7 +65,9 @@ void quantize() { const vec4 abs_vals = abs(vals); // Find absolute max for each block - shmem[tid] = max(max(abs_vals.x, abs_vals.y), max(abs_vals.z, abs_vals.w)); + const float thread_max = max(max(abs_vals.x, abs_vals.y), max(abs_vals.z, abs_vals.w)); +#ifndef USE_SUBGROUPS + shmem[tid] = thread_max; barrier(); [[unroll]] for (uint s = 4; s > 0; s >>= 1) { if (iqs < s) { @@ -50,14 +77,28 @@ void quantize() { } const float amax = shmem[block_in_wg * 8]; +#else + const float amax = subgroupClusteredMax(thread_max, 8); +#endif + const float d = amax / 127.0; const float d_inv = d != 0.0 ? 1.0 / d : 0.0; vals = round(vals * d_inv); + +#ifndef QBLOCK_X4 data_b[ib].qs[iqs] = pack32(i8vec4(round(vals))); +#else + data_b[ibx4_outer].qs[ibx4_inner * 8 + iqs] = pack32(i8vec4(round(vals))); +#endif + +#ifndef USE_SUBGROUPS barrier(); +#endif // Calculate the sum for each block - shmem[tid] = vals.x + vals.y + vals.z + vals.w; + const float thread_sum = vals.x + vals.y + vals.z + vals.w; +#ifndef USE_SUBGROUPS + shmem[tid] = thread_sum; barrier(); [[unroll]] for (uint s = 4; s > 0; s >>= 1) { if (iqs < s) { @@ -65,10 +106,19 @@ void quantize() { } barrier(); } +#else + const float sum = subgroupClusteredAdd(thread_sum, 8); +#endif if (iqs == 0) { +#ifndef USE_SUBGROUPS const float sum = shmem[tid]; +#endif +#ifndef QBLOCK_X4 data_b[ib].ds = f16vec2(vec2(d, sum * d)); +#else + data_b[ibx4_outer].ds[ibx4_inner] = f16vec2(vec2(d, sum * d)); +#endif } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/types.comp b/ggml/src/ggml-vulkan/vulkan-shaders/types.comp index a36c33e267..408722c878 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/types.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/types.comp @@ -207,6 +207,18 @@ struct block_q8_1_packed32 int32_t qs[8]; }; +// 4 blocks in one to allow 16-byte/128-bit alignment and loads +struct block_q8_1_x4 +{ + f16vec2 ds[4]; + int32_t qs[32]; +}; +struct block_q8_1_x4_packed128 +{ + f16vec2 ds[4]; + ivec4 qs[8]; +}; + // K-quants #define QUANT_K_Q2_K 256 diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index a973625857..613498d0d5 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -206,6 +206,22 @@ bool string_ends_with(const std::string& str, const std::string& suffix) { return std::equal(suffix.rbegin(), suffix.rend(), str.rbegin()); } +bool is_quantized_type(const std::string& type_name) { + return type_name != "f32" && type_name != "f16" && type_name != "bf16"; +} + +bool is_legacy_quant(const std::string& type_name) { + return type_name == "q4_0" || type_name == "q4_1" || type_name == "q5_0" || type_name == "q5_1" || type_name == "q8_0"; +} + +bool is_k_quant(const std::string& type_name) { + return string_ends_with(type_name, "_k"); +} + +bool is_iq_quant(const std::string& type_name) { + return string_starts_with(type_name, "iq"); +} + static const char path_separator = '/'; std::string join_paths(const std::string& path1, const std::string& path2) { @@ -323,6 +339,9 @@ void matmul_shaders(bool fp16, MatMulIdType matmul_id_type, bool coopmat, bool c } base_dict["ACC_TYPE"] = f16acc ? "float16_t" : "float"; + if (f16acc) { + base_dict["ACC_TYPE_MAX"] = "\"float16_t(65504.0)\""; + } if (coopmat) { base_dict["COOPMAT"] = "1"; @@ -399,7 +418,7 @@ void matmul_shaders(bool fp16, MatMulIdType matmul_id_type, bool coopmat, bool c } #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) - if (!coopmat && !coopmat2 && matmul_id_type == MatMulIdType::NONE && (tname == "q4_0" || tname == "q4_1" || tname == "q5_0" || tname == "q5_1" || tname == "q8_0")) { + if (!coopmat && !coopmat2 && matmul_id_type == MatMulIdType::NONE && is_legacy_quant(tname)) { string_to_spv(shader_name + "_" + tname + "_q8_1", "mul_mmq.comp", merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"D_TYPE", "float"},}), fp16, coopmat, coopmat2, f16acc); } #endif @@ -437,8 +456,12 @@ void process_shaders() { // flash attention for (const auto& f16acc : {false, true}) { - std::string acctype = f16acc ? "float16_t" : "float"; - std::string acctypev4 = f16acc ? "f16vec4" : "vec4"; + std::map fa_base_dict = base_dict; + fa_base_dict["ACC_TYPE"] = f16acc ? "float16_t" : "float"; + fa_base_dict["ACC_TYPEV4"] = f16acc ? "f16vec4" : "vec4"; + if (f16acc) { + fa_base_dict["ACC_TYPE_MAX"] = "\"float16_t(65504.0)\""; + } for (const auto& tname : type_names) { if (tname == "f32") { @@ -449,30 +472,30 @@ void process_shaders() { #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) if (tname == "f16") { string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm2.comp", - merge_maps(base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}}), true, false, true, f16acc); + merge_maps(fa_base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}}), true, false, true, f16acc); } else { std::string data_a_key = "DATA_A_" + to_uppercase(tname); string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm2.comp", - merge_maps(base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"DEQUANTFUNC", "dequantFunc"+to_uppercase(tname) }, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, true, f16acc); + merge_maps(fa_base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"DEQUANTFUNC", "dequantFunc"+to_uppercase(tname) }, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, true, f16acc); } #endif #if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT) if (tname == "f16") { string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm1.comp", - merge_maps(base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"ACC_TYPEV4", acctypev4}, {"COOPMAT", "1"}}), true, true, false, f16acc); + merge_maps(fa_base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"COOPMAT", "1"}}), true, true, false, f16acc); } else if (tname == "q4_0" || tname == "q8_0") { std::string data_a_key = "DATA_A_" + to_uppercase(tname); string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm1.comp", - merge_maps(base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"ACC_TYPEV4", acctypev4}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname)}, {"COOPMAT", "1"}}), true, true, false, f16acc); + merge_maps(fa_base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname)}, {"COOPMAT", "1"}}), true, true, false, f16acc); } #endif if (tname == "f16") { string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn.comp", - merge_maps(base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}}), true, false, false, f16acc); + merge_maps(fa_base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}}), true, false, false, f16acc); } else if (tname == "q4_0" || tname == "q8_0") { std::string data_a_key = "DATA_A_" + to_uppercase(tname); string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn.comp", - merge_maps(base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, false, f16acc); + merge_maps(fa_base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, false, f16acc); } } } @@ -488,8 +511,20 @@ void process_shaders() { string_to_spv("mul_mat_vec_" + tname + "_f32_f32_subgroup", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}})); string_to_spv("mul_mat_vec_" + tname + "_f16_f32_subgroup", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC2", "f16vec2"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}})); + string_to_spv("mul_mat_vec_" + tname + "_f32_f32_subgroup_no_shmem", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}})); + string_to_spv("mul_mat_vec_" + tname + "_f16_f32_subgroup_no_shmem", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC2", "f16vec2"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}})); + string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}})); + // mul mat vec with integer dot product +#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) + if (is_legacy_quant(tname)) { + string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}})); + string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}})); + string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup_no_shmem", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}})); + } +#endif + // Dequant shaders if (tname != "f16" && tname != "bf16") { string_to_spv("dequant_" + tname, "dequant_" + tname + ".comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float16_t"}})); @@ -572,7 +607,12 @@ void process_shaders() { string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {}); string_to_spv("fa_split_k_reduce", "flash_attn_split_k_reduce.comp", {}); + string_to_spv("quantize_q8_1", "quantize_q8_1.comp", {}); + string_to_spv("quantize_q8_1_subgroup", "quantize_q8_1.comp", {{"USE_SUBGROUPS", "1"}}); + + string_to_spv("quantize_q8_1_x4", "quantize_q8_1.comp", {{"QBLOCK_X4", "1"}}); + string_to_spv("quantize_q8_1_x4_subgroup", "quantize_q8_1.comp", {{"QBLOCK_X4", "1"}, {"USE_SUBGROUPS", "1"}}); string_to_spv("mul_f32", "mul.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); @@ -617,6 +657,10 @@ void process_shaders() { string_to_spv("tanh_f32", "tanh.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); string_to_spv("sigmoid_f16", "sigmoid.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}}); string_to_spv("sigmoid_f32", "sigmoid.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); + string_to_spv("hardsigmoid_f16","hardsigmoid.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}}); + string_to_spv("hardsigmoid_f32","hardsigmoid.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); + string_to_spv("hardswish_f16", "hardswish.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}}); + string_to_spv("hardswish_f32", "hardswish.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); for (auto rte : {false, true}) { std::string suffix = rte ? "_rte" : ""; @@ -814,12 +858,21 @@ void write_output_files() { fputs(len.c_str(), src); } - for (const std::string& btype : {"f16", "f32"}) { + std::vector btypes = {"f16", "f32"}; + +#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) + btypes.push_back("q8_1"); +#endif + + for (const std::string& btype : btypes) { for (const auto& tname : type_names) { - fprintf(hdr, "extern unsigned char *arr_dmmv_%s_%s_f32_data[2];\n", tname.c_str(), btype.c_str()); - fprintf(hdr, "extern uint64_t arr_dmmv_%s_%s_f32_len[2];\n", tname.c_str(), btype.c_str()); - std::string data = "unsigned char *arr_dmmv_" + tname + "_" + btype + "_f32_data[2] = {mul_mat_vec_" + tname + "_" + btype + "_f32_data, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_data};\n"; - std::string len = "uint64_t arr_dmmv_" + tname + "_" + btype + "_f32_len[2] = {mul_mat_vec_" + tname + "_" + btype + "_f32_len, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_len};\n"; + if (btype == "q8_1" && !is_legacy_quant(tname)) { + continue; + } + fprintf(hdr, "extern unsigned char *arr_dmmv_%s_%s_f32_data[3];\n", tname.c_str(), btype.c_str()); + fprintf(hdr, "extern uint64_t arr_dmmv_%s_%s_f32_len[3];\n", tname.c_str(), btype.c_str()); + std::string data = "unsigned char *arr_dmmv_" + tname + "_" + btype + "_f32_data[3] = {mul_mat_vec_" + tname + "_" + btype + "_f32_data, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_data, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_no_shmem_data};\n"; + std::string len = "uint64_t arr_dmmv_" + tname + "_" + btype + "_f32_len[3] = {mul_mat_vec_" + tname + "_" + btype + "_f32_len, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_len, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_no_shmem_len};\n"; fputs(data.c_str(), src); fputs(len.c_str(), src); } diff --git a/ggml/src/ggml-webgpu/ggml-webgpu.cpp b/ggml/src/ggml-webgpu/ggml-webgpu.cpp index 32f1e304e1..e5df883c13 100644 --- a/ggml/src/ggml-webgpu/ggml-webgpu.cpp +++ b/ggml/src/ggml-webgpu/ggml-webgpu.cpp @@ -611,6 +611,8 @@ static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node) { case GGML_OP_NONE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + case GGML_OP_RESHAPE: return false; case GGML_OP_CPY: { @@ -1062,6 +1064,8 @@ static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const case GGML_OP_NONE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + case GGML_OP_RESHAPE: return true; case GGML_OP_CPY: case GGML_OP_SET_ROWS: diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index d76ea58f78..f35c337952 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -974,6 +974,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "CONV_TRANSPOSE_1D", "IM2COL", "IM2COL_BACK", + "IM2COL_3D", "CONV_2D", "CONV_3D", "CONV_2D_DW", @@ -1018,7 +1019,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "GLU", }; -static_assert(GGML_OP_COUNT == 89, "GGML_OP_COUNT != 89"); +static_assert(GGML_OP_COUNT == 90, "GGML_OP_COUNT != 90"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -1077,6 +1078,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "conv_transpose_1d(x)", "im2col(x)", "im2col_back(x)", + "im2col_3d(x)", "conv_2d(x)", "conv_3d(x)", "conv_2d_dw(x)", @@ -1121,7 +1123,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "glu(x)", }; -static_assert(GGML_OP_COUNT == 89, "GGML_OP_COUNT != 89"); +static_assert(GGML_OP_COUNT == 90, "GGML_OP_COUNT != 90"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); @@ -4361,6 +4363,91 @@ struct ggml_tensor * ggml_conv_2d( return result; } +// a: [OC*IC, KD, KH, KW] +// b: [N*IC, ID, IH, IW] +// result: [N*OD, OH, OW, IC * KD * KH * KW] +struct ggml_tensor * ggml_im2col_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int64_t IC, + int s0, // stride width + int s1, // stride height + int s2, // stride depth + int p0, // padding width + int p1, // padding height + int p2, // padding depth + int d0, // dilation width + int d1, // dilation height + int d2, // dilation depth + enum ggml_type dst_type) { + const int64_t N = b->ne[3] / IC; + const int64_t ID = b->ne[2]; + const int64_t IH = b->ne[1]; + const int64_t IW = b->ne[0]; + + const int64_t OC = a->ne[3] / IC; + UNUSED(OC); + const int64_t KD = a->ne[2]; + const int64_t KH = a->ne[1]; + const int64_t KW = a->ne[0]; + const int64_t OD = ggml_calc_conv_output_size(ID, KD, s2, p2, d2); + const int64_t OH = ggml_calc_conv_output_size(IH, KH, s1, p1, d1); + const int64_t OW = ggml_calc_conv_output_size(IW, KW, s0, p0, d0); + + GGML_ASSERT((OD > 0) && "b too small compared to a"); + GGML_ASSERT((OH > 0) && "b too small compared to a"); + GGML_ASSERT((OW > 0) && "b too small compared to a"); + + + const int64_t ne[4] = {KW*KH*KD*IC, OW, OH, OD*N}; + + struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne); + int32_t params[] = { s0, s1, s2, p0, p1, p2, d0, d1, d2, (int32_t)IC}; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_IM2COL_3D; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// a: [OC*IC, KD, KH, KW] +// b: [N*IC, ID, IH, IW] +// result: [N*OC, OD, OH, OW] +struct ggml_tensor * ggml_conv_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int64_t IC, + int s0, // stride width + int s1, // stride height + int s2, // stride depth + int p0, // padding width + int p1, // padding height + int p2, // padding depth + int d0, // dilation width + int d1, // dilation height + int d2 // dilation depth + ) { + struct ggml_tensor * im2col = ggml_im2col_3d(ctx, a, b, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, a->type); // [N*OD, OH, OW, IC * KD * KH * KW] + + int64_t OC = a->ne[3] / IC; + int64_t N = b->ne[3] / IC; + struct ggml_tensor * result = + ggml_mul_mat(ctx, + ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N*OD, OH, OW, IC * KD * KH * KW] => [N*OD*OH*OW, IC * KD * KH * KW] + ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2] * IC), OC)); // [OC*IC, KD, KH, KW] => [OC, IC * KD * KH * KW] + + int64_t OD = im2col->ne[3] / N; + result = ggml_reshape_4d(ctx, result, im2col->ne[1]*im2col->ne[2], OD, N, OC); // [OC, N*OD*OH*OW] => [OC, N, OD, OH*OW] + result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OD, OH*OW] + result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], OD, OC * N); // [N*OC, OD, OH, OW] + + return result; +} + // ggml_conv_2d_sk_p0 struct ggml_tensor * ggml_conv_2d_sk_p0( @@ -4482,9 +4569,9 @@ struct ggml_tensor * ggml_conv_2d_direct( return result; } -// ggml_conv_3d +// ggml_conv_3d_direct -struct ggml_tensor * ggml_conv_3d( +struct ggml_tensor * ggml_conv_3d_direct( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, @@ -4710,11 +4797,36 @@ struct ggml_tensor * ggml_pad( int p1, int p2, int p3) { + return ggml_pad_ext(ctx, a, 0, p0, 0, p1, 0, p2, 0, p3); +} + +struct ggml_tensor * ggml_pad_ext( + struct ggml_context * ctx, + struct ggml_tensor * a, + int lp0, + int rp0, + int lp1, + int rp1, + int lp2, + int rp2, + int lp3, + int rp3 + ) { struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, - a->ne[0] + p0, - a->ne[1] + p1, - a->ne[2] + p2, - a->ne[3] + p3); + a->ne[0] + lp0 + rp0, + a->ne[1] + lp1 + rp1, + a->ne[2] + lp2 + rp2, + a->ne[3] + lp3 + rp3); + + ggml_set_op_params_i32(result, 0, lp0); + ggml_set_op_params_i32(result, 1, rp0); + ggml_set_op_params_i32(result, 2, lp1); + ggml_set_op_params_i32(result, 3, rp1); + ggml_set_op_params_i32(result, 4, lp2); + ggml_set_op_params_i32(result, 5, rp2); + ggml_set_op_params_i32(result, 6, lp3); + ggml_set_op_params_i32(result, 7, rp3); + result->op = GGML_OP_PAD; result->src[0] = a; diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp index 53504399c5..8cc4ef1cf4 100644 --- a/ggml/src/gguf.cpp +++ b/ggml/src/gguf.cpp @@ -273,7 +273,7 @@ struct gguf_reader { } bool read(std::string & dst) const { - uint64_t size = -1; + uint64_t size = 0; if (!read(size)) { return false; } @@ -523,7 +523,7 @@ struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_par // tensor shape { - uint32_t n_dims = -1; + uint32_t n_dims = 0; ok = ok && gr.read(n_dims); if (n_dims > GGML_MAX_DIMS) { GGML_LOG_ERROR("%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n", @@ -1166,50 +1166,51 @@ void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const vo ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; // double cast suppresses warning about casting away const } -struct gguf_writer { - std::vector & buf; +struct gguf_writer_base { + size_t written_bytes {0u}; - gguf_writer(std::vector & buf) : buf(buf) {} + ~gguf_writer_base(void) {} + + // we bet on devirtualization + virtual void write(int8_t val) = 0; + virtual void write(const std::vector & val) = 0; + virtual void write_tensor_data(const struct gguf_tensor_info & info, size_t offset_data, size_t alignment) = 0; template - void write(const T & val) const { + void write(const T & val) { for (size_t i = 0; i < sizeof(val); ++i) { - buf.push_back(reinterpret_cast(&val)[i]); + write(reinterpret_cast(&val)[i]); } } - void write(const std::vector & val) const { - buf.insert(buf.end(), val.begin(), val.end()); - } - - void write(const bool & val) const { + void write(const bool & val) { const int8_t val8 = val ? 1 : 0; write(val8); } - void write(const std::string & val) const { + void write(const std::string & val) { { const uint64_t n = val.length(); write(n); } for (size_t i = 0; i < val.length(); ++i) { - buf.push_back(reinterpret_cast(val.data())[i]); + write((val.data())[i]); } } - void write(const char * val) const { + void write(const char * val) { write(std::string(val)); } - void write(const enum ggml_type & val) const { + void write(const enum ggml_type & val) { write(int32_t(val)); } - void write(const enum gguf_type & val) const { + void write(const enum gguf_type & val) { write(int32_t(val)); } - void write(const struct gguf_kv & kv) const { + void write(const struct gguf_kv & kv) { const uint64_t ne = kv.get_ne(); write(kv.get_key()); @@ -1250,7 +1251,7 @@ struct gguf_writer { } } - void write_tensor_meta(const struct gguf_tensor_info & info) const { + void write_tensor_meta(const struct gguf_tensor_info & info) { write(info.t.name); const uint32_t n_dims = ggml_n_dims(&info.t); @@ -1263,14 +1264,33 @@ struct gguf_writer { write(info.offset); } - void pad(const size_t alignment) const { - while (buf.size() % alignment != 0) { + void pad(const size_t alignment) { + while (written_bytes % alignment != 0) { const int8_t zero = 0; write(zero); } } +}; - void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) const { +// vector buffer based writer +struct gguf_writer_buf final : public gguf_writer_base { + std::vector & buf; + + gguf_writer_buf(std::vector & buf) : buf(buf) {} + + using gguf_writer_base::write; + + void write(const int8_t val) override { + buf.push_back(val); + written_bytes++; + } + + void write(const std::vector & val) override { + buf.insert(buf.end(), val.begin(), val.end()); + written_bytes += val.size(); + } + + void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) override { GGML_ASSERT(buf.size() - offset_data == info.offset); GGML_ASSERT(ggml_is_contiguous(&info.t)); @@ -1284,14 +1304,58 @@ struct gguf_writer { GGML_ASSERT(info.t.data); memcpy(buf.data() + offset, info.t.data, nbytes); } + written_bytes += nbytes; pad(alignment); } }; -void gguf_write_to_buf(const struct gguf_context * ctx, std::vector & buf, bool only_meta) { - const struct gguf_writer gw(buf); +// file based writer +struct gguf_writer_file final : public gguf_writer_base { + FILE * file; + gguf_writer_file(FILE* file) : file(file) {} + + using gguf_writer_base::write; + + void write(const int8_t val) override { + const auto real_val = static_cast(val); + const auto ret = fputc(real_val, file); + written_bytes++; + if (ret != real_val) { + throw std::runtime_error("unexpected fputc result '" + std::to_string(ret) + "' instead of '" + std::to_string((int)real_val) + "'"); + } + } + + void write(const std::vector & val) override { + const auto ret = fwrite(val.data(), 1, val.size(), file); + written_bytes += val.size(); + if (ret != val.size()) { + throw std::runtime_error("unexpected fwrite number of bytes written, '" + std::to_string(ret) + "' instead of '" + std::to_string(val.size()) + "'"); + } + } + + void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) override { + GGML_ASSERT(written_bytes - offset_data == info.offset); + + GGML_ASSERT(ggml_is_contiguous(&info.t)); + const size_t nbytes = ggml_nbytes(&info.t); + + std::vector buf(nbytes); + if (info.t.buffer) { + ggml_backend_tensor_get(&info.t, buf.data(), 0, nbytes); + } else { + GGML_ASSERT(info.t.data); + memcpy(buf.data(), info.t.data, nbytes); + } + write(buf); + + pad(alignment); + } +}; + +template +static void gguf_write_out(const struct gguf_context * ctx, writer_t & gw, bool only_meta) { const int64_t n_kv = gguf_get_n_kv(ctx); const int64_t n_tensors = gguf_get_n_tensors(ctx); @@ -1321,7 +1385,7 @@ void gguf_write_to_buf(const struct gguf_context * ctx, std::vector & bu return; } - const size_t offset_data = gw.buf.size(); + const size_t offset_data = gw.written_bytes; // write tensor data for (int64_t i = 0; i < n_tensors; ++i) { @@ -1329,6 +1393,11 @@ void gguf_write_to_buf(const struct gguf_context * ctx, std::vector & bu } } +void gguf_write_to_buf(const struct gguf_context * ctx, std::vector & buf, bool only_meta) { + gguf_writer_buf gw(buf); + gguf_write_out(ctx, gw, only_meta); +} + bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) { FILE * file = ggml_fopen(fname, "wb"); @@ -1337,11 +1406,17 @@ bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, boo return false; } - std::vector buf; - gguf_write_to_buf(ctx, buf, only_meta); - const bool ok = fwrite(buf.data(), 1, buf.size(), file) == buf.size(); + try { + gguf_writer_file gw(file); + gguf_write_out(ctx, gw, only_meta); + } catch (const std::runtime_error& ex) { + GGML_LOG_ERROR("%s: failed to write GGUF data into '%s': %s\n", __func__, fname, ex.what()); + fclose(file); + return false; + } + fclose(file); - return ok; + return true; } size_t gguf_get_meta_size(const struct gguf_context * ctx) { diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 6156d35c2a..b8ac394580 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -231,10 +231,11 @@ class Keys: MIDDLE_ID = "tokenizer.ggml.middle_token_id" class Adapter: - TYPE = "adapter.type" - LORA_ALPHA = "adapter.lora.alpha" - LORA_TASK_NAME = "adapter.lora.task_name" - LORA_PROMPT_PREFIX = "adapter.lora.prompt_prefix" + TYPE = "adapter.type" + LORA_ALPHA = "adapter.lora.alpha" + LORA_TASK_NAME = "adapter.lora.task_name" + LORA_PROMPT_PREFIX = "adapter.lora.prompt_prefix" + ALORA_INVOCATION_TOKENS = "adapter.alora.invocation_tokens" class IMatrix: CHUNK_COUNT = "imatrix.chunk_count" @@ -340,6 +341,7 @@ class MODEL_ARCH(IntEnum): GEMMA2 = auto() GEMMA3 = auto() GEMMA3N = auto() + GEMMA_EMBEDDING = auto() STARCODER2 = auto() RWKV6 = auto() RWKV6QWEN2 = auto() @@ -674,6 +676,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.GEMMA2: "gemma2", MODEL_ARCH.GEMMA3: "gemma3", MODEL_ARCH.GEMMA3N: "gemma3n", + MODEL_ARCH.GEMMA_EMBEDDING: "gemma-embedding", MODEL_ARCH.STARCODER2: "starcoder2", MODEL_ARCH.RWKV6: "rwkv6", MODEL_ARCH.RWKV6QWEN2: "rwkv6qwen2", @@ -1719,6 +1722,24 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.LAUREL_R, MODEL_TENSOR.LAUREL_POST_NORM, ], + MODEL_ARCH.GEMMA_EMBEDDING: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_Q_NORM, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_K_NORM, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_POST_NORM, + MODEL_TENSOR.FFN_PRE_NORM, + MODEL_TENSOR.FFN_POST_NORM, + ], MODEL_ARCH.STARCODER2: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 497f48809f..b0c3d65e95 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -14,6 +14,7 @@ class TensorNameMap: "transformer.word_embeddings", # falcon "word_embeddings", # bloom "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid + "embed_tokens", # embeddinggemma "tok_embeddings", # llama-pth "embeddings.word_embeddings", # bert nomic-bert "language_model.embedding.word_embeddings", # persimmon @@ -141,6 +142,7 @@ class TensorNameMap: "rwkv.blocks.{bid}.ln1", # rwkv6 "model.layers.{bid}.ln1", # rwkv7 "model.layers.{bid}.input_layernorm", # llama4 + "layers.{bid}.input_layernorm", # embeddinggemma "transformer_encoder.{bid}.attention_norm", # neobert "model.layers.{bid}.operator_norm", # lfm2 "model.transformer.blocks.{bid}.attn_norm", # llada @@ -179,6 +181,7 @@ class TensorNameMap: # Attention query MODEL_TENSOR.ATTN_Q: ( "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe + "layers.{bid}.self_attn.q_proj", # embeddinggemma "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom "layers.{bid}.attention.wq", # llama-pth "encoder.layer.{bid}.attention.self.query", # bert @@ -197,6 +200,7 @@ class TensorNameMap: # Attention key MODEL_TENSOR.ATTN_K: ( "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe + "layers.{bid}.self_attn.k_proj", # embeddinggemma "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom "layers.{bid}.attention.wk", # llama-pth "encoder.layer.{bid}.attention.self.key", # bert @@ -216,6 +220,7 @@ class TensorNameMap: # Attention value MODEL_TENSOR.ATTN_V: ( "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe + "layers.{bid}.self_attn.v_proj", # embeddinggemma "layers.{bid}.attention.wv", # llama-pth "encoder.layer.{bid}.attention.self.value", # bert "transformer.layer.{bid}.attention.v_lin", # distillbert @@ -239,6 +244,7 @@ class TensorNameMap: "transformer.h.{bid}.self_attention.dense", # falcon "h.{bid}.self_attention.dense", # bloom "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe + "layers.{bid}.self_attn.o_proj", # embeddinggemma "model.layers.{bid}.self_attn.out_proj", # lfm2 "model.layers.{bid}.self_attn.linear_attn", # deci "layers.{bid}.attention.wo", # llama-pth @@ -277,6 +283,7 @@ class TensorNameMap: MODEL_TENSOR.ATTN_POST_NORM: ( "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge + "layers.{bid}.post_attention_layernorm", # embeddinggemma "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414 "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2 ), @@ -320,12 +327,14 @@ class TensorNameMap: # Post feed-forward norm MODEL_TENSOR.FFN_PRE_NORM: ( "model.layers.{bid}.pre_feedforward_layernorm", # gemma2 + "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma "model.layers.{bid}.pre_ff_layernorm.weight", ), # Post feed-forward norm MODEL_TENSOR.FFN_POST_NORM: ( "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2 + "layers.{bid}.post_feedforward_layernorm", # embeddinggemma "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414 "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2 "model.layers.{bid}.feed_forward.up_proj", @@ -362,6 +371,7 @@ class TensorNameMap: "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon "h.{bid}.mlp.dense_h_to_4h", # bloom "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2 + "layers.{bid}.mlp.up_proj", # embeddinggemma "layers.{bid}.feed_forward.w3", # llama-pth "encoder.layer.{bid}.intermediate.dense", # bert "transformer.layer.{bid}.ffn.lin1", # distillbert @@ -421,6 +431,7 @@ class TensorNameMap: # Feed-forward gate MODEL_TENSOR.FFN_GATE: ( "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2 + "layers.{bid}.mlp.gate_proj", # embeddinggemma "layers.{bid}.feed_forward.w1", # llama-pth "transformer.h.{bid}.mlp.w2", # qwen "transformer.h.{bid}.mlp.c_fc2", # jais @@ -461,6 +472,7 @@ class TensorNameMap: "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "h.{bid}.mlp.dense_4h_to_h", # bloom "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2 + "layers.{bid}.mlp.down_proj", # embeddinggemma "layers.{bid}.feed_forward.w2", # llama-pth "encoder.layer.{bid}.output.dense", # bert "transformer.layer.{bid}.ffn.lin2", # distillbert @@ -513,6 +525,7 @@ class TensorNameMap: "model.layers.{bid}.self_attn.q_layernorm", # persimmon "model.layers.{bid}.self_attn.query_layernorm", # hunyuan "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2 + "layers.{bid}.self_attn.q_norm", # embeddinggemma "transformer.blocks.{bid}.attn.q_ln", # sea-lion "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2 "transformer.layers.{bid}.attn.q_norm", # openelm @@ -525,6 +538,7 @@ class TensorNameMap: "model.layers.{bid}.self_attn.k_layernorm", # persimmon "model.layers.{bid}.self_attn.key_layernorm", # hunyuan "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2 + "layers.{bid}.self_attn.k_norm", # embeddinggemma "transformer.blocks.{bid}.attn.k_ln", # sea-lion "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2 "transformer.layers.{bid}.attn.k_norm", # openelm diff --git a/include/llama.h b/include/llama.h index 7025353850..453190e852 100644 --- a/include/llama.h +++ b/include/llama.h @@ -179,6 +179,14 @@ extern "C" { LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1, }; + enum llama_flash_attn_type { + LLAMA_FLASH_ATTN_TYPE_AUTO = -1, + LLAMA_FLASH_ATTN_TYPE_DISABLED = 0, + LLAMA_FLASH_ATTN_TYPE_ENABLED = 1, + }; + + LLAMA_API const char * llama_flash_attn_type_name(enum llama_flash_attn_type flash_attn_type); + enum llama_split_mode { LLAMA_SPLIT_MODE_NONE = 0, // single GPU LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs @@ -198,7 +206,7 @@ extern "C" { llama_token_data * data; size_t size; int64_t selected; // this is the index in the data array (i.e. not the token id) - bool sorted; + bool sorted; // note: do not assume the data is sorted - always check this flag } llama_token_data_array; typedef bool (*llama_progress_callback)(float progress, void * user_data); @@ -303,6 +311,7 @@ extern "C" { enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type` enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id enum llama_attention_type attention_type; // attention type to use for embeddings + enum llama_flash_attn_type flash_attn_type; // when to enable Flash Attention // ref: https://github.com/ggml-org/llama.cpp/pull/2054 float rope_freq_base; // RoPE base frequency, 0 = from model @@ -329,7 +338,6 @@ extern "C" { // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value. bool embeddings; // if true, extract embeddings (together with logits) bool offload_kqv; // offload the KQV ops (including the KV cache) to GPU - bool flash_attn; // use flash attention [EXPERIMENTAL] bool no_perf; // measure performance timings bool op_offload; // offload host tensor operations to device bool swa_full; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055) @@ -575,6 +583,10 @@ extern "C" { // Note: loaded adapters will be free when the associated model is deleted LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter); + // Get the invocation tokens if the current lora is an alora + LLAMA_API uint64_t llama_adapter_get_alora_n_invocation_tokens(const struct llama_adapter_lora * adapter); + LLAMA_API const llama_token * llama_adapter_get_alora_invocation_tokens (const struct llama_adapter_lora * adapter); + // The following functions operate on a llama_context, hence the naming: llama_verb_... // Add a loaded LoRA adapter to given context @@ -1148,11 +1160,6 @@ extern "C" { LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void); LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed); - /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. - /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first. - DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void), - "will be removed in the future (see https://github.com/ggml-org/llama.cpp/pull/9896#discussion_r1800920915)"); - /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 /// Setting k <= 0 makes this a noop LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k); diff --git a/models/templates/NVIDIA-Nemotron-Nano-v2.jinja b/models/templates/NVIDIA-Nemotron-Nano-v2.jinja new file mode 100644 index 0000000000..c8ab584830 --- /dev/null +++ b/models/templates/NVIDIA-Nemotron-Nano-v2.jinja @@ -0,0 +1,162 @@ +{%- set ns = namespace(enable_thinking=true) -%} +{%- for message in messages -%} + {%- set content = message['content'] -%} + {%- if message['role'] == 'user' or message['role'] == 'system' -%} + {%- if '/think' in content -%} + {%- set ns.enable_thinking = true -%} + {%- elif '/no_think' in content -%} + {%- set ns.enable_thinking = false -%} + {%- endif -%} + {%- endif -%} +{%- endfor -%} + +{%- if messages[0]['role'] != 'system' -%} + {%- set ns.non_tool_system_content = '' -%} + {{- 'System +' -}} +{%- else -%} + {%- set ns.non_tool_system_content = (messages[0]['content'] | default('', true)).replace('/think', '').replace('/no_think', '').strip() -%} + {{- 'System +' + ns.non_tool_system_content }} +{%- endif -%} + +{%- if tools -%} + {%- if ns.non_tool_system_content is defined and ns.non_tool_system_content != '' -%} + {{- ' + +' -}} + {%- endif -%} + {{- 'You can use the following tools to assist the user if required:' -}} + {{- ' +[' -}} + {%- for tool in tools -%} + {{- (tool.function if tool.function is defined else tool) | tojson -}} + {{- ', ' if not loop.last else '' -}} + {%- endfor -%} + {{- '] + +' -}} + {{- 'If you decide to call any tool(s), use the following format: +' -}} + {{- '[{{"name": "tool_name1", "arguments": "tool_args1"}}, ' -}} + {{- '{{"name": "tool_name2", "arguments": "tool_args2"}}] + +' -}} + {{- 'The user will execute tool-calls and return responses from tool(s) in this format: +' -}} + {{- '[{{"tool_response1"}}, {{"tool_response2"}}] + +' -}} + {{- 'Based on the tool responses, you can call additional tools if needed, correct tool calls if any errors are found, or just respond to the user.' -}} +{%- endif -%} +{{- ' + +' -}} +{%- set messages = messages[1:] if messages[0]['role'] == 'system' else messages -%} +{%- if messages[-1]['role'] == 'assistant' -%} + {%- set ns.last_turn_assistant_content = (messages[-1]['content'] | default('', true)).strip() -%} + {%- set ns.last_turn_assistant_tool_calls = messages[-1]['tool_calls'] if 'tool_calls' in messages[-1] else [] -%} + {%- set messages = messages[:-1] -%} +{%- endif -%} + +{%- for message in messages %} + {%- set content = message['content'] %} + {%- if message['role'] == 'user' -%} + {{- 'User +' + (content | default('', true)).replace('/think', '').replace('/no_think', '').strip() + ' +' }} + {%- elif message['role'] == 'tool' -%} + {%- if loop.first or (messages[loop.index0 - 1].role != 'tool') -%} + {{- 'User +' + '[' }} + {%- endif -%} + {{- message['content'] -}} + {{- ', ' if not loop.last and (messages[loop.index0 + 1].role == 'tool') else '' -}} + {%- if loop.last or (messages[loop.index0 + 1].role != 'tool') -%} + {{- ']' -}} + {%- endif -%} + {%- elif message['role'] == 'assistant' -%} + {%- if content and '' in content -%} + {%- set content = (content.split('')[1] | default('', true)).strip() %} + {%- endif -%} + {{- 'Assistant +' + ((content | default('', true)).strip() if content is not none else '') }} + {%- if message.tool_calls -%} + {%- if (content | default('', true)).strip() != '' -%} + {{- ' +' -}} + {%- endif -%} + {{- '[' -}} + {%- for call in message.tool_calls -%} + {%- set fn = call.function if call.function is defined else call -%} + {{- '{"name": "' + fn.name + '", "arguments": ' -}} + {%- if fn.arguments is string -%} + {{- fn.arguments -}} + {%- else -%} + {{- fn.arguments | tojson -}} + {%- endif -%} + {{- '}' + (', ' if not loop.last else '') -}} + {%- endfor -%} + {{- ']' -}} + {%- endif -%} + {{- ' + +' -}} + {%- endif -%} +{%- endfor -%} + +{%- if add_generation_prompt -%} + {{- 'Assistant +' -}} + {%- if ns.enable_thinking is defined and ns.enable_thinking is false -%} + {{- '' -}} + {%- else -%} + {{- ' +' -}} + {%- endif -%} + {%- if ns.last_turn_assistant_content is defined and ns.last_turn_assistant_content != '' -%} + {{- ns.last_turn_assistant_content -}} + {%- endif -%} +{%- else -%} + {%- if ns.last_turn_assistant_content is defined and ns.last_turn_assistant_content != '' -%} + {{- 'Assistant +' -}} + {%- if ns.enable_thinking is defined and ns.enable_thinking is false -%} + {{- '' -}} + {%- else -%} + {{- ' +' -}} + {%- endif -%} + {{- ns.last_turn_assistant_content -}} + {%- if continue_final_message is defined -%} + {%- if continue_final_message is false -%} + {{- ' + +' -}} + {%- endif -%} + {%- else -%} + {{- ' + +' -}} + {%- endif -%} + {%- endif -%} + {%- if ns.last_turn_assistant_tool_calls is defined and ns.last_turn_assistant_tool_calls | length > 0 -%} + {{- 'Assistant +' -}} + {{- '[' -}} + {%- for call in ns.last_turn_assistant_tool_calls -%} + {%- set fn = call.function if call.function is defined else call -%} + {{- '{"name": "' + fn.name + '", "arguments": ' -}} + {%- if fn.arguments is string -%} + {{- fn.arguments -}} + {%- else -%} + {{- fn.arguments | tojson -}} + {%- endif -%} + {{- '}' + (', ' if not loop.last else '') -}} + {%- endfor -%} + {{- ']' -}} + {{- ' + +' -}} + {%- endif -%} +{%- endif -%} \ No newline at end of file diff --git a/scripts/jinja/jinja-tester.py b/scripts/jinja/jinja-tester.py new file mode 100755 index 0000000000..a489305ee7 --- /dev/null +++ b/scripts/jinja/jinja-tester.py @@ -0,0 +1,504 @@ +#!/usr/bin/env python3 +import sys +import json +import argparse +import jinja2.ext as jinja2_ext +from PySide6.QtWidgets import ( + QApplication, + QMainWindow, + QWidget, + QVBoxLayout, + QHBoxLayout, + QLabel, + QPlainTextEdit, + QTextEdit, + QPushButton, + QFileDialog, +) +from PySide6.QtGui import QColor, QColorConstants, QTextCursor, QTextFormat +from PySide6.QtCore import Qt, QRect, QSize +from jinja2 import TemplateSyntaxError +from jinja2.sandbox import ImmutableSandboxedEnvironment +from datetime import datetime + + +def format_template_content(template_content): + """Format the Jinja template content using Jinja2's lexer.""" + if not template_content.strip(): + return template_content + + env = ImmutableSandboxedEnvironment() + tc_rstrip = template_content.rstrip() + tokens = list(env.lex(tc_rstrip)) + result = "" + indent_level = 0 + i = 0 + + while i < len(tokens): + token = tokens[i] + _, token_type, token_value = token + + if token_type == "block_begin": + block_start = i + # Collect all tokens for this block construct + construct_content = token_value + end_token_type = token_type.replace("_begin", "_end") + j = i + 1 + while j < len(tokens) and tokens[j][1] != end_token_type: + construct_content += tokens[j][2] + j += 1 + + if j < len(tokens): # Found the end token + construct_content += tokens[j][2] + i = j # Skip to the end token + + # Check for control structure keywords for indentation + stripped_content = construct_content.strip() + instr = block_start + 1 + while tokens[instr][1] == "whitespace": + instr = instr + 1 + + instruction_token = tokens[instr][2] + start_control_tokens = ["if", "for", "macro", "call", "block"] + end_control_tokens = ["end" + t for t in start_control_tokens] + is_control_start = any( + instruction_token.startswith(kw) for kw in start_control_tokens + ) + is_control_end = any( + instruction_token.startswith(kw) for kw in end_control_tokens + ) + + # Adjust indentation for control structures + # For control end blocks, decrease indent BEFORE adding the content + if is_control_end: + indent_level = max(0, indent_level - 1) + + # Remove all previous whitespace before this block + result = result.rstrip() + + # Add proper indent, but only if this is not the first token + added_newline = False + if result: # Only add newline and indent if there's already content + result += ( + "\n" + " " * indent_level + ) # Use 2 spaces per indent level + added_newline = True + else: # For the first token, don't add any indent + result += "" + + # Add the block content + result += stripped_content + + # Add '-' after '%' if it wasn't there and we added a newline or indent + if ( + added_newline + and stripped_content.startswith("{%") + and not stripped_content.startswith("{%-") + ): + # Add '-' at the beginning + result = ( + result[: result.rfind("{%")] + + "{%-" + + result[result.rfind("{%") + 2 :] + ) + if stripped_content.endswith("%}") and not stripped_content.endswith( + "-%}" + ): + # Only add '-' if this is not the last token or if there's content after + if i + 1 < len(tokens) and tokens[i + 1][1] != "eof": + result = result[:-2] + "-%}" + + # For control start blocks, increase indent AFTER adding the content + if is_control_start: + indent_level += 1 + else: + # Malformed template, just add the token + result += token_value + elif token_type == "variable_begin": + # Collect all tokens for this variable construct + construct_content = token_value + end_token_type = token_type.replace("_begin", "_end") + j = i + 1 + while j < len(tokens) and tokens[j][1] != end_token_type: + construct_content += tokens[j][2] + j += 1 + + if j < len(tokens): # Found the end token + construct_content += tokens[j][2] + i = j # Skip to the end token + + # For variable constructs, leave them alone + # Do not add indent or whitespace before or after them + result += construct_content + else: + # Malformed template, just add the token + result += token_value + elif token_type == "data": + # Handle data (text between Jinja constructs) + # For data content, preserve it as is + result += token_value + else: + # Handle any other tokens + result += token_value + + i += 1 + + # Clean up trailing newlines and spaces + result = result.rstrip() + + # Copy the newline / space count from the original + if (trailing_length := len(template_content) - len(tc_rstrip)): + result += template_content[-trailing_length:] + + return result + + +# ------------------------ +# Line Number Widget +# ------------------------ +class LineNumberArea(QWidget): + def __init__(self, editor): + super().__init__(editor) + self.code_editor = editor + + def sizeHint(self): + return QSize(self.code_editor.line_number_area_width(), 0) + + def paintEvent(self, event): + self.code_editor.line_number_area_paint_event(event) + + +class CodeEditor(QPlainTextEdit): + def __init__(self): + super().__init__() + self.line_number_area = LineNumberArea(self) + + self.blockCountChanged.connect(self.update_line_number_area_width) + self.updateRequest.connect(self.update_line_number_area) + self.cursorPositionChanged.connect(self.highlight_current_line) + + self.update_line_number_area_width(0) + self.highlight_current_line() + + def line_number_area_width(self): + digits = len(str(self.blockCount())) + space = 3 + self.fontMetrics().horizontalAdvance("9") * digits + return space + + def update_line_number_area_width(self, _): + self.setViewportMargins(self.line_number_area_width(), 0, 0, 0) + + def update_line_number_area(self, rect, dy): + if dy: + self.line_number_area.scroll(0, dy) + else: + self.line_number_area.update( + 0, rect.y(), self.line_number_area.width(), rect.height() + ) + + if rect.contains(self.viewport().rect()): + self.update_line_number_area_width(0) + + def resizeEvent(self, event): + super().resizeEvent(event) + cr = self.contentsRect() + self.line_number_area.setGeometry( + QRect(cr.left(), cr.top(), self.line_number_area_width(), cr.height()) + ) + + def line_number_area_paint_event(self, event): + from PySide6.QtGui import QPainter + + painter = QPainter(self.line_number_area) + painter.fillRect(event.rect(), QColorConstants.LightGray) + + block = self.firstVisibleBlock() + block_number = block.blockNumber() + top = int( + self.blockBoundingGeometry(block).translated(self.contentOffset()).top() + ) + bottom = top + int(self.blockBoundingRect(block).height()) + + while block.isValid() and top <= event.rect().bottom(): + if block.isVisible() and bottom >= event.rect().top(): + number = str(block_number + 1) + painter.setPen(QColorConstants.Black) + painter.drawText( + 0, + top, + self.line_number_area.width() - 2, + self.fontMetrics().height(), + Qt.AlignmentFlag.AlignRight, + number, + ) + block = block.next() + top = bottom + bottom = top + int(self.blockBoundingRect(block).height()) + block_number += 1 + + def highlight_current_line(self): + extra_selections = [] + if not self.isReadOnly(): + selection = QTextEdit.ExtraSelection() + line_color = QColorConstants.Yellow.lighter(160) + selection.format.setBackground(line_color) # pyright: ignore[reportAttributeAccessIssue] + selection.format.setProperty(QTextFormat.Property.FullWidthSelection, True) # pyright: ignore[reportAttributeAccessIssue] + selection.cursor = self.textCursor() # pyright: ignore[reportAttributeAccessIssue] + selection.cursor.clearSelection() # pyright: ignore[reportAttributeAccessIssue] + extra_selections.append(selection) + self.setExtraSelections(extra_selections) + + def highlight_position(self, lineno: int, col: int, color: QColor): + block = self.document().findBlockByLineNumber(lineno - 1) + if block.isValid(): + cursor = QTextCursor(block) + text = block.text() + start = block.position() + max(0, col - 1) + cursor.setPosition(start) + if col <= len(text): + cursor.movePosition( + QTextCursor.MoveOperation.NextCharacter, + QTextCursor.MoveMode.KeepAnchor, + ) + + extra = QTextEdit.ExtraSelection() + extra.format.setBackground(color.lighter(160)) # pyright: ignore[reportAttributeAccessIssue] + extra.cursor = cursor # pyright: ignore[reportAttributeAccessIssue] + + self.setExtraSelections(self.extraSelections() + [extra]) + + def highlight_line(self, lineno: int, color: QColor): + block = self.document().findBlockByLineNumber(lineno - 1) + if block.isValid(): + cursor = QTextCursor(block) + cursor.select(QTextCursor.SelectionType.LineUnderCursor) + + extra = QTextEdit.ExtraSelection() + extra.format.setBackground(color.lighter(160)) # pyright: ignore[reportAttributeAccessIssue] + extra.cursor = cursor # pyright: ignore[reportAttributeAccessIssue] + + self.setExtraSelections(self.extraSelections() + [extra]) + + def clear_highlighting(self): + self.highlight_current_line() + + +# ------------------------ +# Main App +# ------------------------ +class JinjaTester(QMainWindow): + def __init__(self): + super().__init__() + self.setWindowTitle("Jinja Template Tester") + self.resize(1200, 800) + + central = QWidget() + main_layout = QVBoxLayout(central) + + # -------- Top input area -------- + input_layout = QHBoxLayout() + + # Template editor with label + template_layout = QVBoxLayout() + template_label = QLabel("Jinja2 Template") + template_layout.addWidget(template_label) + self.template_edit = CodeEditor() + template_layout.addWidget(self.template_edit) + input_layout.addLayout(template_layout) + + # JSON editor with label + json_layout = QVBoxLayout() + json_label = QLabel("Context (JSON)") + json_layout.addWidget(json_label) + self.json_edit = CodeEditor() + self.json_edit.setPlainText(""" +{ + "add_generation_prompt": true, + "bos_token": "", + "eos_token": "", + "messages": [ + { + "role": "user", + "content": "What is the capital of Poland?" + } + ] +} + """.strip()) + json_layout.addWidget(self.json_edit) + input_layout.addLayout(json_layout) + + main_layout.addLayout(input_layout) + + # -------- Rendered output area -------- + output_label = QLabel("Rendered Output") + main_layout.addWidget(output_label) + self.output_edit = QPlainTextEdit() + self.output_edit.setReadOnly(True) + main_layout.addWidget(self.output_edit) + + # -------- Render button and status -------- + btn_layout = QHBoxLayout() + + # Load template button + self.load_btn = QPushButton("Load Template") + self.load_btn.clicked.connect(self.load_template) + btn_layout.addWidget(self.load_btn) + + # Format template button + self.format_btn = QPushButton("Format") + self.format_btn.clicked.connect(self.format_template) + btn_layout.addWidget(self.format_btn) + + self.render_btn = QPushButton("Render") + self.render_btn.clicked.connect(self.render_template) + btn_layout.addWidget(self.render_btn) + main_layout.addLayout(btn_layout) + + # Status label below buttons + self.status_label = QLabel("Ready") + main_layout.addWidget(self.status_label) + + self.setCentralWidget(central) + + def render_template(self): + self.template_edit.clear_highlighting() + self.output_edit.clear() + + template_str = self.template_edit.toPlainText() + json_str = self.json_edit.toPlainText() + + # Parse JSON context + try: + context = json.loads(json_str) if json_str.strip() else {} + except Exception as e: + self.status_label.setText(f"❌ JSON Error: {e}") + return + + def raise_exception(text: str) -> str: + raise RuntimeError(text) + + env = ImmutableSandboxedEnvironment( + trim_blocks=True, + lstrip_blocks=True, + extensions=[jinja2_ext.loopcontrols], + ) + env.filters["tojson"] = ( + lambda x, + indent=None, + separators=None, + sort_keys=False, + ensure_ascii=False: json.dumps( + x, + indent=indent, + separators=separators, + sort_keys=sort_keys, + ensure_ascii=ensure_ascii, + ) + ) + env.globals["strftime_now"] = lambda format: datetime.now().strftime(format) + env.globals["raise_exception"] = raise_exception + try: + template = env.from_string(template_str) + output = template.render(context) + self.output_edit.setPlainText(output) + self.status_label.setText("✅ Render successful") + except TemplateSyntaxError as e: + self.status_label.setText(f"❌ Syntax Error (line {e.lineno}): {e.message}") + if e.lineno: + self.template_edit.highlight_line(e.lineno, QColor("red")) + except Exception as e: + # Catch all runtime errors + # Try to extract template line number + lineno = None + tb = e.__traceback__ + while tb: + frame = tb.tb_frame + if frame.f_code.co_filename == "